Cation ordering, twinning, and pseudo-symmetry in silicate garnet: The study of a birefringent garnet with orthorhombic structure

HUIFANG XU^{1,*}, SHIYUN JIN^{1,2,‡}, SEUNGYEOL LEE^{1,3,4,†}, AND PHILIP E. BROWN¹

¹Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A.

²Gemological Institute of America, 5355 Armada Drive, Carlsbad, California 92008, U.S.A.

³USRA Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas 77058, U.S.A.

⁴Department of Earth and Environmental Sciences, Chungbuk National University, Cheongju 2864, Republic of Korea

ABSTRACT

The crystal structure of a birefringent garnet (\sim Adr₅₃Grs₄₇) that occurs as a late-stage rim on andradite from Stanley Butte, Graham County, Arizona is analyzed and refined using single-crystal XRD. The structure has an orthorhombic I 2/a 1 2/d (unconventional setting for Fddd) space group symmetry, with unit-cell parameters of a = b = 11.966(3) Å, c = 11.964(3) Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 90.29(2)^{\circ}$, V =1713.0(7) Å³, Z = 8. The orthorhombic garnet displays very high birefringence ($\delta \sim 0.021$) produced by the strong Fe-Al ordering in the octahedral sites, with Fe occupancies of 0.804 and 0.221 in Y_1 and Y_2 sites, respectively. Diffraction peaks (such as 101 and 103) violating the $la\bar{3}d$ symmetry of cubic garnet are obvious even in powder XRD pattern. The homogenization temperatures of the fluid inclusions suggest that the low-crystallization temperature is responsible for the ordered orthorhombic structure. The strong ordering state of the structure and the sharp boundaries in the chemical zoning in the crystal (between $\sim Adr_{53}Grs_{47}$ and $\sim Adr_{100}$) indicate the orthorhombic intermediate grandite garnet is a thermodynamically stable phase at low temperature, separated by wide miscibility gaps from the pure end-members (grossular and andradite) with cubic structures. Most of the previously reported triclinic garnet structures are likely artifacts produced by pseudo-merohedral twinning of less-ordered orthorhombic structure, as indicated by the characteristic pairing pattern of different Y-sites with the same occupancies.

Keywords: Orthorhombic garnet, Fe-Al ordering, non-cubic garnet, birefringent garnet, pseudomerohedral twinning, fluid inclusion