## Jingwenite-(Y) from the Yushui Cu deposit, South China: The first occurrence of a V-HREE-bearing silicate mineral

## PENG LIU<sup>1,\*</sup>, XIANGPING GU<sup>2,\*</sup>, WENLAN ZHANG<sup>3</sup>, HUAN HU<sup>3</sup>, XIAODAN CHEN<sup>4</sup>, XIAOLIN WANG<sup>3,†</sup>, WENLEI SONG<sup>1</sup>, MIAO YU<sup>2</sup>, AND NIGEL J. COOK<sup>5,</sup><sup>‡</sup>

<sup>1</sup>State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China <sup>2</sup>School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, China

<sup>3</sup>State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China <sup>4</sup>MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences,

Beijing 100037, China

<sup>5</sup>School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia

## ABSTRACT

Jingwenite-(Y),  $Y_2Al_2V_2^{+*}(SiO_4)O_4(OH)_4$ , the first V-HREE-bearing silicate mineral discovered in nature, is an abundant component of a sediment-hosted stratiform Cu (SSC) deposit, Yushui, South China. The mineral occurs in bedded/massive sulfide-bearing ore and is associated with bornite, chalcopyrite, galena, xenotime-(Y), nolanite, thortveitite, roscoelite, barite, and quartz. Optically, jingwenite-(Y) is biaxial (+), with  $\alpha = 1.92(4)$ ,  $\beta = 1.95(2)$ ,  $\gamma = 1.99(3)$  (white light), and 2V (calculated) = 83°. The dispersion is medium with r < v, and the pleochroism is with X = light brown, Y = brown, Z = dark brown. The color, streak, luster, and hardness (Mohs) are light brown, yellowish gray, vitreous, and  $4\frac{1}{2}$ -5, respectively.

Jingwenite-(Y) is monoclinic, with space group I2/a, Z = 4, and unit-cell parameters a = 9.4821(2) Å, b = 5.8781(1) Å, c = 19.3987(4) Å,  $\beta = 90.165(2)^{\circ}$ , and V = 1081.21(4) Å<sup>3</sup>. The structure of jingwenite-(Y) has chains of edge-sharing Al(V,Fe)-O octahedra and V(Ti)-O octahedra extending along the *b*-axis and linked by insular Si-O tetrahedra, leaving open channels occupied by HREEs. Jingwenite-(Y) is a new nesosilicate structural type.

Sm-Nd dating and Nd isotope signatures of jingwenite-(Y) reveal an epigenetic origin and suggest that HREEs and V were added to the SSC system via leaching of abundant heavy minerals in the footwall red sandstone by oxidized basinal brines. The abundance of jingwenite-(Y) at Yushui indicates that it could potentially be a valuable resource for HREE and V. Moreover, HREE and V mineralization can also occur in the same sediment-hosted Cu mineral system.

Keywords: New mineral, jingwenite-(Y), heavy rare earth elements, Yushui