The influence of Al₂O₃ on the structural properties of MgSiO₃ akimotoite

NICKI C. SIERSCH^{1,*,†}, GIACOMO CRINITI^{1,}§, ALEXANDER KURNOSOV¹, TIZIANA BOFFA BALLARAN¹, Zhaodong Liu^{1,2,#}, Takayuki Ishii^{1,‡}, Daniel J. Frost^{1,}||, Tony Yu³, and Yanbin Wang³

¹Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany ²State Key Laboratory of Superhard Materials, Jilin University, Changchun 13001, China ³Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, U.S.A.

ABSTRACT

Akimotoite, a MgSiO₃ polymorph present in the lower transition zone within ultramafic portions of subducting slabs and potentially also in the ambient mantle, will partition some amount of Al, raising the question of how this will affect its crystal structure and properties. In this study, a series of samples along the MgSiO₃-Al₂O₃ (akimotoite-corundum) solid solution have been investigated by means of single-crystal X-ray diffraction to examine their crystal chemistry. Results show a strong nonlinear behavior of the *a*- and *c*-axes as a function of Al content, which arises from fundamentally different accommodation mechanisms in the akimotoite and corundum structures. Furthermore, two Al₂O₃-bearing akimotoite samples were investigated at high pressure to determine the different compressible at least up to 20 mol% Al₂O₃, due likely to an increase in compressibility as the Al cation is incorporated into the SiO₆ octahedron. This observation is in strong contrast to the stiffer corundum end-member having a $K_T = 250$ GPa, which is larger than that of the akimotoite end-member [$K_T = 205(1)$ GPa]. These findings have implications for mineral physics models of elastic properties, which have in the past assumed linear mixing behavior between the MgSiO₃ akimotoite and Al₂O₃ corundum end-members to calculate sound wave velocities for Al-bearing akimotoite at high pressure and temperature.

Keywords: Akimotoite, corundum, X-ray diffraction, high pressure, solid solution