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1 Major-element analyses by EPMA 

The major-element composition of the naturally altered basaltic glass was determined 

by EPMA, using a JEOL JXA-8100 electron microprobe at the SKLaBIG-CAS, with a 15 

kV accelerating voltage, 10 nA current, and 10 µm beam diameter. Counting time was 

typically 10 s. Standards GSD-1G, BCR-2G, BHVO-2G, and BIR-1G were used for 

calibration and data-correction purposes. Determination of the major-element composition 

of the sample involved the same analysis spots as those used for oxygen isotope 
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determinations, after re-polishing of the sample. Analytical uncertainties were usually 

better than ±2.5% (1σ). 

 

Supplementary Table 1 Major-element profiles analyses from core to rim of altered glass, 

(analysis-spot locations as in Fig. 2a) by EMPA. Analytical uncertainties were about ±2.5% 

(1σ). 

location Na2O FeO K2O SiO2 MnO CaO Al2O3 TiO2 P2O5 MgO Total H2O 
1 3.20 9.94 0.33 51.05 0.16 10.56 14.77 1.87 0.10 7.19 99.18 0.82 
2 3.09 9.63 0.36 50.34 0.14 10.61 14.85 1.84 0.13 7.25 98.25 1.75 
3 3.06 10.08 0.32 50.94 0.18 10.56 14.87 1.74 0.10 7.22 99.08 0.92 
4 3.09 9.97 0.35 51.44 0.20 10.49 14.95 1.72 0.12 7.26 99.60 0.40 
5 3.08 9.99 0.37 50.82 0.16 10.58 14.74 1.86 0.14 7.21 98.95 1.06 
6 2.95 10.09 0.35 50.88 0.17 10.44 15.10 1.81 0.10 7.30 99.19 0.81 
7 2.73 24.29 1.94 43.43 0.03 1.83 10.40 5.67 0.04 2.96 93.30 6.70 
8 1.91 17.41 3.11 52.91 0.03 0.96 11.12 2.17 0.01 5.16 94.76 5.24 
9 1.58 18.70 3.31 51.74 0.01 0.67 10.50 2.34 0.01 5.11 93.97 6.03 
10 1.59 18.21 3.39 51.94 0.08 0.68 10.15 3.00 0.01 5.34 94.39 5.61 
 Density-corrected values 
1 3.20 9.94 0.33 51.05 0.16 10.56 14.77 1.87 0.10 7.19   
2 3.09 9.63 0.36 50.34 0.14 10.61 14.85 1.84 0.13 7.25   
3 3.06 10.08 0.32 50.94 0.18 10.56 14.87 1.74 0.10 7.22   
4 3.09 9.97 0.35 51.44 0.20 10.49 14.95 1.72 0.12 7.26   
5 3.08 9.99 0.37 50.82 0.16 10.58 14.74 1.86 0.14 7.21   
6 2.95 10.09 0.35 50.88 0.17 10.44 15.10 1.81 0.10 7.30   
7 2.73 24.29 1.94 43.43 0.03 1.83 10.40 5.67 0.04 2.96   
8 1.63 14.89 2.66 45.26 0.02 0.82 9.51 1.86 0.01 4.42   
9 1.35 16.00 2.83 44.26 0.01 0.57 8.99 2.00 0.01 4.37   
10 1.36 15.58 2.90 44.44 0.07 0.58 8.68 2.57 0.01 4.57   

The H2O contents were calculated based on 100% –total of oxides determined by EPMA. The density-

correction perform on palagonite and take basaltic glass as basic, and the calculation was according to  

the Eq.(3): c`i (p)= (ρp/ρg) × ci (p), The values of ρp and ρg were determined as 2.56 (2σ = 0.1) and 2.19 (2σ = 

0.1) g·cm–3, respectively.   
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2 Oxygen isotope and H2O profiles during palagonitization 

 
Supplementary Fig. 1 The calibration curve of the ratios of 16O1H/16O vs the water 

content of nine reference materials. 

 

Supplementary Table 2 The water analyses of basaltic glass standards based on SIMS. 1σ 

is standard deviation. 

standards 
16O1H/16O by 

SIMS 1σ /% N H2O content /% [Li, et al, 2019] 
G323-9 0.0007461  0.50 3 0.18 
G324-10 0.0006157  0.31 3 0.144 
G325-11 0.0013994  0.34 3 0.32 
G326-12 0.0003944  2.5 3 0.12  
G327-13 0.0004594  0.43 3 0.134 
G329-15 0.0003772  0.47 3 0.07  
G330-16 0.0014807  1.72 3 0.43  
G331-17 0.0014551  0.32 3 0.41  
ALV-519 0.0005775  0.34 3 0.17 
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Supplementary Table 3 Oxygen isotopic analyses of basaltic glass standards. Number in 

parentheses are 1σ standard deviation. 

standards analyses by SIMS   analyses by laser fluorination IMF/ 
‰ 18O/16O 1σ/ ‰ N  δ18O/ ‰  

BIR-1G 0.0020292  0.22 15   5.00 (0.02) (Hartley, et al 2012) 6.9 
BHVO-2G 0.0020291  0.19 15  5.60 (-) (Hartley, et al 2012) 6.35 
GSD-1G 0.0020366  0.24 15  9.64 (0.22) (This study) 6.03 
BCR-2G 0.0020295  0.22 15   7.01(-) (Hartley, et al 2012) 5.12 

Where IMF= ((18O/16OSIMS)/(18O/16O V-SMOW) – 1) × 1000 – δ18Olaser, and 18O/16OV-SMOW = 0.0020052. 
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3 The effect of temperature and pH on precipitation of Ca(OH)2 and Mg(OH)2 
 

 
Supplementary Fig. 2 Effect of temperature on precipitation behavior of (a) Ca(OH)2, (b) 

Mg(OH)2 at different pH value with the initial concentration of Ca2+ and Mg2+ of 10 

mmol/dm3, which indicates that the precipitation of Ca(OH)2 and Mg(OH)2 would take 

place at a higher pH by decreasing temperature; (c) and (d) are the effect of initial 

concentration of Ca2+ and Mg2+ on precipitation behavior of Ca(OH)2 and Mg(OH)2 at 

different pH values, respectively, which indicates that the precipitation of Ca(OH)2 and 

Mg(OH)2 would take place at lower pH with increasing the concentration of Ca2+ and Mg2+ 

(T = 90 oC) (Um and Hirato 2014). 
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4 Trace element distribution patterns 

 

 
Supplementary Fig. 3 Trace element imaging for (a) Ni, (b) Zn, (c) Sc, (d) Hf, (e) Ta, (f) 

Nb, (g) U, (h) La, (i) Y, (j) Pr, (k) Nd, (l) Lu, (m) Gd, (n) Sm, (o) Eu, (p) Ho, (q) Er, (r) 

Tm, (s) Tb, and (t) Dy. Color keys indicate the logarithm of concentration. 
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5 Scanning electron photomicrographs of the sample 
 

 
Supplementary Fig. 4 Scanning electron photomicrographs of (a) the aging palagonite, 

which indicate that there are large amounts of nanometer-sized porosity within 

palagonite, and (b) the interface zone between basaltic glass and aging palagonite, 

showing greater porosity and specific surface area than the aging palagonite. 
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