American Mineralogist: April 2021 Online Materials AM-21-47714

Data Repository,
Recycled volatiles determine fertility of porphyry deposits in

collisional settings

Bo Xu', William L. Griffin?, Suzanne Y. O’Reilly?, Zeng-Qian Hou®, Yongjun
Lu*®, Elena Belousova?, Zhen-Yu Chen?, Ji-Feng Xu'

IState Key Laboratory of Geological Processes and Mineral Resources, China
University of Geosciences, Beijing 100083, China

2ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC,
Macquarie University, NSW 2109, Australia

3 Chinese Academy of Geological Sciences, Beijing 100037, China

4 Geological Survey of Western Australia, 100 Plain Street, East Perth, WA 6004,
Australia

> Centre for Exploration Targeting and CCFS, School of Earth Sciences, The University
of Western Australia, Crawley, WA 6009, Australia

Contents

Geological settings,

Analytical methods,

Figure DR1, (A) The fertile magmatic suites investigated in Arasbaran porphyry
copper belt in Iran. (B) The fertile magmatic suites investigated in Kerman porphyry
copper belt in Iran; (C) the Gangdese belt in southern Tibet; and (D) the Sanjiang

orogen in Yunnan province;

Figure DR2, The BSE image of apatite grains;



American Mineralogist: April 2021 Online Materials AM-21-47714

Figure DR3, (A) Apatite V/Y vs REE+Y (ppm), (B) Apatite V/Y vs (Ce/Pb)n plot;
Figure DR4, The rare elements of apatite this study;

Figure DRS5, The chlorine analyses from core to rim in CL and BSE images;
Figure DR6, The chlorine and sulfur composition in apatite standards;

Figure DR7, The 37Sr/%¢Sr isotopic composition in apatite standards;

Table DRI, Infertile and fertile magmatic suites used in this work;

Table DR2, The major elements of apatite;

Table DR3, The trace elements of apatite;

Table DR4, The 37Sr/3Sr isotopic composition in apatite;

Table DRS, The major elements of apatite standards;

Table DR6, The trace elements of apatite standards.

Geological settings

In this study, we focus on the Arasbaran and Kerman porphyry copper belt in
Iran (Fig. DR1A and B); the Gangdese belt in southern Tibet (Fig. DR1C); and the
Sanjiang orogen in Yunnan province (Fig. DR1D).
Arasbaran and Kerman porphyry copper belt in Iran

The Arasbaran porphyry belt (APCB) is located in northwestern Iran (Fig.
DRT1A). This belt is 20-40 km wide and over 200 km long and is mostly composed of
Cretaceous—Cenozoic volcano-sedimentary strata and Cenozoic intrusive bodies.
Large granitoid plutons of different types were emplaced during the Oligocene—
Miocene in the APCB (Aghazadeh et al., 2011; Castro et al., 2013). Middle-late

Oligocene rocks have a typical calc-alkaline arc affinity, whereas late Oligocene-early
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Miocene shoshonitic intrusions and late Miocene domes display high Sr/Y
characteristics (Aghazadeh et al., 2011). Porphyry copper mineralization in the
Arsabaran belt, including the Sungun deposit, is mainly associated with
Oligocene-Miocene monzonitic and monzodioritic intrusive bodies. There are more
than 10 porphyry copper deposits and prospects in the belt (Aghazadeh et al., 2011).
In this study, we focus on samples from the world-class Sungun porphyry deposits
and the Masjed Daghi porphyry deposits.

The Sungun porphyry Cu-Mo deposit is located in the Caucasus belt of northern
Iran. It has an estimated 740 million metric tons (Mt) of ore at a grade of 0.661 wt %
Cu and 0.024 wt % Mo, corresponding to 4.9 Mt of Cu, and 0.18 Mt of Mo. The
ore-bearing intrusions at Sungun were emplaced at ~21 Ma (molybdenite Re-Os
dating; Aghazadeh et al., 2015).

The Masjed Daghi porphyry and epithermal prospect is located in the NW part of
the Arasbaran belt. It contains 340 Mt of ore reserves with an average of 0.27 wt% Cu
and 0.006 wt% Mo, and 20 Mt ore with an average grade of 0.32 ppm Au (Aghazadeh
etal., 2015). A Miocene ore-hosting monzodiorite—-monzonite stock in the deposit
intruded Eocene andesite to trachy-andesite and their volcanoclastic equivalents
which are cut by several andesitic post-ore dykes.

The Kerman belt is 450 km in length and 60 to 80 km wide, located on the
southeast of the Central Iranian volcano-plutonic belt (Fig. DR1A). Temporally, the

deposits overlap with the Alpine-Himalayan collision. This belts hosts one giant
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deposit (Sarcheshmeh: 1200 Mt at 0.7% Cu and 0.03% Mo; Shafiei et.al., 2009), one

large deposit (Meiduk: 170 Mt at 0.86% Cu, 0.007% Mo, 82 ppb Au, and 1.8 ppm Ag;

Taghipour et al., 2008), and at least three medium-sized deposits and dozens of

mineralized porphyry bodies (e.g., Shafiei et.al., 2009). The Sar Cheshmeh Cu deposit

host 1200 Mt of ore reserves with 0.7% Cu and 0.03% Mo. The Miocene ore-forming

porphyry was emplaced within Eocene to Oligocene volcanic rocks of andesitic

composition.

Gangdese porphyry copper belt

The Miocene Gangdese magmatic belt is located in the Indo-Asian continental

collision zone and is a typical porphyry belt in a collisional setting. There are several

large porphyry Cu-Mo deposits actively mined, including the Jiama and Qulong

deposit, with a total resource of 15 Mt of copper (Hou et. al., 2015). All these deposits

are spatially and temporally associated with intrusions that have high St/Y (>40) (e.g.,

Chung et. al., 2003; Lu et al., 2015). The Qulong porphyry Cu-Mo deposit is located

in the eastern Gangdese belt of southern Tibet. It is the largest porphyry-copper

deposit in China, with an estimated 2120 Mt of ore at a grade of 0.5 wt % Cu and 0.03

wt % Mo, corresponding to 10.6 Mt of Cu and 0.6 Mt of Mo (Yang et al., 2009). The

Qulong ore-bearing porphyry intrusions were emplaced at ~16 Ma (Table DR1;

Zircon U-Pb; Hou et al., 2015). Hydrothermal and magmatic anhydrite is abundant at

Qulong, indicating that the magmatic-hydrothermal system was highly oxidized and

volatile-rich (Yang et al., 2009). The Jiama porphyry-skarn Cu-Mo-Au deposit is also
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located in the eastern Gangdese belt of southern Tibet (Fig. DR 1C). It has an

estimated 1045 Mt of ore at a grade of 0.44 wt % Cu, 0.036 wt % Mo, and 0.21 g/t Au,

corresponding to 4.6 Mt of Cu, 0.38 Mt of Mo, and 85 t of Au (Hou et al., 2015). The

ore-bearing Jiama granite porphyry was emplaced at ~16 Ma (Zircon U-Pb; Hou et al.,

2015). We also collected samples from the Chongmuda and Nuri

porphyry-hydrothermal deposits with ages of 30.3 Ma and 23.4 Ma (molybdenite

Re-Os dating; Hou et al., 2015; Table DR1).

Sanjiang region

The Sanjiang region was formed during the closure of the Paleotethyan ocean

and the subsequent amalgamation of Gondwana-derived micro-continental blocks and

Paleozoic arc terranes (e.g., Metcalfe, 2013; Deng et al., 2014; Fig. DR1D). In

Cenozoic time, large-scale geological processes including the adjacent continental

collision and the distant oceanic-plate subduction have largely re-shaped the

lithospheric structure. After continental convergence, an Eocene-Oligocene

potassic-ultrapotassic magmatic suite was intruded over a distance of 2000 km along

the Jinshajiang-Ailaoshan tectonic belt, and is associated with porphyry-skarn Cu—

Mo-Au deposits, including the large Beiya and Machangqing deposits (e.g., Deng et

al.,2014; Lu et al., 2013).

The Beiya porphyry-skarn Au-Cu deposit is located in Yunnan Province,

southeastern China (Fig. DR1D). This deposit has reserves of 125 Mt, grading 2.42

g/t Au, 0.48 wt % Cu, 25.5 wt % Fe, 38.85 g/t Ag, 1.24 wt % Pb, and 0.53 wt % Zn
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(He et al., 2015). The Eocene Machangqing porphyry Cu-Mo deposit (32 Ma; zircon

U-Pb ages; Bi et al., 2004) in Yunnan Province is located in the NE-trending

Machangqing granite intrusive complex, and consists of a large body of equigranular

granite and numerous granite porphyries intruding Ordovician clastic rocks and

Devonian limestone. The deposit has reserves of 39 Mt @ 0.64 wt% Cu for the Cu

orebodies and 56 Mt @ 0.08 wt% Mo for the Mo orebodies (Hou et al., 2015). The

Yao’an porphyry Au deposit has a resource of 2.2 Mt @ 4.5 g/t Au (10 t Au) and is

spatially associated with syenite and quartz monzonite porphyry intruded at 33.4 Ma

(zircon U-Pb ages; Bi et al., 2004).

Barren suites

The barren suites were collected from the Miocene Zhada, Renduoxiang and

Nanmugqie porphyries and the Oligocene Sangri and Wolong granitoids in the

Gangdese belt as well as the Oligocene Liuhe and Songgui porphyries in Sanjiang

region (Fig. DR1C-D; Table DR1). The Zhada and Renduo porphyry intrusions are

located the western part of the Gangdese belt, near the edge of the I'YS. After several

years’ exploration and study, no obvious mineralization has been found, and the

western Gangdese belt is regarded as a barren area (e.g., Hou et al., 2015; Lu et al.,

2017). The Miocene Nanmugqie porphyry, intruding into Upper Jurassic and Lower

Cretaceous strata, is porphyritic and contains K-feldspar phenocrysts. No alteration or

associated mineralization has been observed associated with these intrusions,

suggesting that the magma system is barren. The Oligocene Sangri and Wolong
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granites, located on the northeastern edge of the IYZSZ (Indus—Yarlung-angbo suture
zone; Fig. DR1C), are emplaced into Proterozoic amphibolite-facies metamorphic
rocks and Cretaceous-Eocene granitoid batholiths. They are dominated by granitoid
plutons, and comprises quartz, plagioclase, amphibole and biotite, with minor
accessory minerals, including titanite, Fe-Ti oxides, epidote, apatite, and zircon. They
are fresh and do not show associated mineralization. The Oligocene Liuhe and
Songgui porphyries occur as dykes intruding Triassic volcanic strata in the Sanjiang

region.

METHODS SUMMARY
Major- and Trace- Element Compositions

The apatite major-element compositions were measured using a CAMECA
SX-100 Electron Microprobe, fitted with five wavelength dispersive spectrometers.
The conditions include an accelerating voltage of 10 and 15 kV, a beam current of 20
nA and a beam size of approximate Spum. Measured elements were counted 10s on
peaks and 5s on background on each side of the peak. The PAP method (Pouchou and
Pichoir 1984) was used to calibrate the peaks by measurements of standards (natural
minerals and synthetic oxides). The acquired data for standards gave relative standard
deviations less than 1%, and agreed within the uncertainties with the nominal values
of each element. The apatite also was analyzed using a JEOL JXA-8230 electron
microprobe at the Institute of Mineral Resources, Chinese Academy of Geological
Sciences (CAGS). Selected representative minerals were analyzed at an accelerating

voltage of 10 and 15 kV with a 20 nA beam current and a Spum beam diameter. The
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counting times were 10s on the peak and 5s for background measurements on each
side of the peak. In order to assess both intra- and inter-grain chemical homogeneity,
several grains of each sample were analyzed across core to rim. In order to check the
data, the gem-quality Durango (Mexico) and Moy (Myanmar) apatites were used as
monitoring standards, especially for Cl and S results (Durango, Cl: 0.34-0.4 wt%, SOs:
0.25-0.35wt%; Moy, CI: 0.03 wt%, SOs: 0.29 wt%; Mark et.al., 2012; Yang et.al.,
2012). Overall, both analytical instrument with low-intensity and a high-intensity
analytical protocol technique show consistent accuracy on the Durango and MADA-B
apatite standard (Fig. DR4).

Trace-element compositions of minerals were measured using laser-ablation
inductively coupled plasma mass spectrometry (LA-ICPMS) in the Geochemical
Analysis Unit of CCFS/GEMOC, Macquarie University. The instrument was an
Agilent 7700 ICPMS with a 193 nm ArF EXCIMER laser. The ablation was carried
out in He gas, which was then mixed with Ar gas to introduce the samples into the
ICPMS. The operational conditions were 5 Hz pulse frequency and energy intensity of
~4.93 J/cm?. We collected a 60 s record of background at the beginning, and then 120
s for collection of sample data. The beams were 50um in diameter for all grains. In
each run of analyses (<5 unknown samples), SRM NIST 610 was measured for the
element-concentration calibration, and standard USGS BCR-2, zircon standards (GJ-1
and 91500) and apatites standards (Durango, MADA-B and Moy) was analyzed to

monitor the instrument working conditions and the calibration, **Ca was used as the
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internal standard to calculate the trace-element compositions of unknown samples.
The raw data were processed using the online software program GLITTER 4.4

(Griffin et al., 2008).
Apatite Sr-Isotope Compositions

In situ apatite Sr isotopic data were measured in situ by a Nu Plasma multi-collector
sector ICPMS, coupled to a 193 nm ArF EXCIMER laser system at CCFS/GEMOC
(Macquarie University). The analyses were carried out using the Nu Plasma
time-resolved analysis software. The signal for each mass and ratio is monitored as a
function of time during the analysis. This allows for the more stable portions of the
ablation to be selected for analysis, before the data are processed to yield final results.
It also allows the analyst to recognize and exclude portions of the signal affected by
inclusions or cracks, and to terminate the analysis if the laser drills through into an
altered zone, or into the matrix. Sr isotopes were analyzed on the same grains using an
80-120 mm spot size for apatite. 85% power (fluence of 2-5 J/cm?) and run times of
200s (60s of background data collection followed by 140s of sample-data collection).
Because of the very low concentrations of 8’Rb in most the analyzed apatite (<0.3,
Table.DR5), the effect of isobaric interference of 8’Rb on ¥’Sr is negligible. The
interference of ®*’Rb on 3’Sr was also corrected by measuring the intensity of 3°Rb and
using **Rb/%Rb = 0.38632. This value was obtained by sequentially doping the QCD
Analysts Sr standard with Rb (Plasmachem Lot No: S4JS3700) and repeatedly
measuring it to refine the value of **Rb/2"Rb necessary to give the true ¥Sr/*Sr

(Nowell and Parrish 2001). The maximum 8’Rb/*’Sr of the spiked solutions used in
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the refinement of the 3Rb/*’Rb ratio was 0.3977. Interference from the bivalent rare
earth elements (REEs) was also considered due to the potentially high concentrations
of REEs in apatite. As proposed by Ramos et al. (2004), the presence of '’Er?*,
7yH?*, and '3Yb?" at masses 83.5, 85.5, and 86.5 was monitored. Then the
contributions of '®Er?* and 1*Yb?* to 34Sr; "Er?** and '7Yb?* to #Sr (*¥Rb); 12 Yb?*
to 3Sr; 174Yb?* to ¥Sr (**7Rb); and 7°Yb** to 38Sr were calculated according to the
isotopic abundances of Er and Yb. We also measured by a Neptune plus
Multiple-Collector ICP-MS coupled to a 193-nm (ArF) Resonetics RESOlution M-50
laser-ablation system at Beijing Kehui laboratory. We used a repetition rate of 8§ Hz
and spot sizes of 80 to 108 um with a laser output energy of 90 mJ and 50% energy
attenuator (resulting energy density of ca. 8 J-cm2). Data were acquired using
multi-collector static mode, during a ca. 47 s measurement characterized by 1.052 s
integration time (45 ratios), and a mass configuration array as follows: ¥*Kr* (L4),
ISR (L3), $4Sr* (L2), BRb* (L1), 7Y (C), #6Srt (H1), 1PYb> (H2), 87Sr" (H3)
and ®Sr* (H4). Average baselines were measured by performing on-peak gas blank
measurements after each 4-5 analyses. Data reduction was carried out using an
in-house Excel spreadsheet. Isobaric interference and instrumental mass bias
corrections were internally corrected for each individual ratio of an analytical spot.
The contributions of doubly charged REE (E™" and Yb*") to Kr, Rb and Sr masses
were determined using the gas blank-corrected intensities on masses '*’Er?*, 171y b?

and !Yb?" and natural Er and Yb isotopic ratios, applying a mass bias correction

10
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based on Yb (normalization to the natural 7'Yb/!"3Yb ratio and using an exponential
law) and assuming BEr = BYb. The contribution of #*Kr and ¥Kr to 34Sr and #Sr was
corrected by subtracting the bulk signal measured on these masses with the intensities
obtained during gas blank measurements. Corrections factors for Rb mass bias and
Rb/Sr inter-elemental fractionation were determined by multiple measuring of the
NIST610 reference material during each analytical session, and applied to correct for
87Rb contribution on mass 3’(Rb + Sr), by normalization to the natural ratio of
85Rb/A"Rb = 2.58745. The corrected signals were subsequently used to determine Sr
isotope ratios, applying a mass bias correction determined using an exponential law

and normalized to the natural ratio of 3°Sr/%8Sr = 0.1194.

Accuracy and external reproducibility of the method were controlled by repeated
analyses of in-house reference materials, including the Durango, MAD-B apatite (for
results see Table DRS5). For Durango, MAD-B and Morc apatite we obtained an
average 3'Sr/%Sr 0f 0.70603+27 (2S.D, n=16), 37Sr/%¢Sr of 0.71155+ 7 (2S.D., n=20)
and 87Sr/%6Sr of 0.70851+ 7 (2S.D., n=10), which agrees within error with published
values measured by solution method (Durango: 0.70602 + 2 to 0.70634 + 3; MADA
and 0.71153 £2 t0 0.71165 £ 8; Morc: 0.70850 +£3 to 0.70875 + 3; Horstwood et al.
2008; Hou et al. 2013; McFarlane and McCulloch 2008; Yang et al. 2014, Xu
unpublic data). The average natural ratios of Sr isotopes (3*Sr/3Sr and #4Sr/*3Sr)
obtained on both standards are also identical within uncertainty to the natural values
(Table.DRS). External reproducibility on standards is generally better than 100 ppm

11



American Mineralogist: April 2021 Online Materials AM-21-47714

on ¥Sr/%Sr (ca. 7-10-5) for a given analytical session; and values are reproducible

within uncertainty in-between the different sessions.
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Figure Captions in The Data Repository

Figure DR1. (A-D) The fertile and barren magmatic suites investigated in Arasbaran
porphyry copper belt (APCB) in Iran; the Gangdese belt in southern Tibet; and the

Sanjiang orogen in Yunnan province.

Figure DR2. Chondrite-normalized REE patterns of apatite. The values for chondrite

were taken from Sun & McDonough (1989).

Figure DR3. Representative cathodoluminescence and back-scatter electron (BSE)
images showing the morphology and internal structure of apatite. White scales are 50

um in length.

Figure DR4. (A-L) Apatite standards of CI (wt%) and SO; (wt%) plot, showing that
the monitor standards are consistent with Cl and SO; content, and (M-N)

chondrite-normalized REE patterns of apatite. The values for chondrite were taken

from Sun & McDonough (1989).
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Figure DRS5. Summary of measured #’Sr/*Sr, and ¥Rb/*Sr isotopic data for different

apatite standards. Error bars (SE) are at the 20 level of uncertainty.
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Table DR1 Infertile and Fertile Magmatic Suites Used in This Work

Sample

Masjed Daghi
Sungun
Sarcheshmeh
Qulong
Jiama
Zhunuo
Chongmuda
Nuri
Mingze
Beiya
Machangqing
Yao'an

Zhada
Renduoxiang
Nanmugqie
Sangri
Wolong
Liuhe
Songgui

Locality

Arasbaran
Arasbaran
Kerman
Gangdese
Gangdese
Gangdese
Gangdese
Gangdese
Gangdese
Sanjiang
Sanjiang
Sanjiang

Gangdese
Gangdese
Gangdese
Gangdese
Gangdese
Sanjiang
Sanjiang

Deposit type Longitude

Cu-Au
Cu-Au
Cu-Au
Cu-Mo
Cu-Au
Cu
Cu-Mo
Au-Cu
Mo-Cu
Au-Cu
Cu-Au
Au

Barren
Barren
Barren
Barren
Barren
Barren
Barren

45.6
46.7
55.5
91.6
91.8
87.3
91.9
91.8
91.9
100.2
100.5
101.3

80.4
83.5
88.3
92.1
93.5
100.3
100.2

Latitude

39.0
38.7
29.5
29.6
29.7
29.3
29.3
29.3
29.3
26.2
25.5
254

31.7
31.2
29.5
29.3
29.1
26.5
26.3

Lithology

Monzodiorite—monzonite

Granite porphyry
Granite porphyry
Manzogranite porphry
Granite porphyry
Granite porphyry
Granodiorite
Granodiorite
Granite porphyry
Manzogranite porphry
Manzogranite porphry

Quartz manzonite porphry

Granite porphyry
Granite porphyry
Manzogranite porphry
Granite porphyry
Granodiorite
Syenite porphyry
Manzogranite porphry

Age (Ma)

20.5
21.7-22.9
13.2-13.4
15.9-16.1
15.4-15.5

13.7

30.3

234

28.2

36.8

35.8

33.7

26.2
16.7
14.0-14.4
37.7
37.4-38.5
34.6
36.5

Method

Molybdenite Re-Os
Molybdenite Re-Os
Molybdenite Re-Os
Molybdenite Re-Os
Molybdenite Re-Os
Molybdenite Re-Os
Molybdenite Re-Os
Molybdenite Re-Os
Molybdenite Re-Os
Molybdenite Re-Os
Molybdenite Re-Os
Molybdenite Re-Os

Zircon U-Pb
Zircon U-Pb
Zircon U-Pb
Zircon U-Pb
Zircon U-Pb
Zircon U-Pb
Zircon U-Pb

Reference

Aghazadeh et.al.,2009

Simmonds et.al.,2017

Aghazadeh et.al.,2009

Liet.al.,2017
Li et.al.,2005
Zheng et.al.,2007
Yan et.al.,2010
Zhang et.al.,2015
Fan et.al.,2011
He et.al.,2015
Hou et.al.,2006
Jiang et.al.,2018

Zhang, 2018
Zhang, 2018
Xu et.al.,2009
Jiet.al.,, 2009
Guan et.al., 2012
Hou et.al.,2017
Lu et.al.,2012
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Table DR2 Apatite major elements

Macroelement (ppm) Cl melt average
Analysis Spot
F Na,O MgO AlLO; CaO P,Os KO SO; SiO, FeO MnO Cr,0; Cl SrO Ce;0;3 TiO; Total (ppm) magmatic S

RDX1512-5-2 2.8 0.18 53.81 40.64 0.14 0.19 0.01 0.02 0.04 0.05 0.37 98.27 141.57256 18.5798
RDX1512-5-1 2.84 0.1 5417 40.66 0.13 0.16 0 0.03 0.03 0.05 0.21 98.4 108.25623 17.43328
RDX1512-6 2.65 0.15 53.76 40.61 0.2 0.21 0.03 0.04 0.06 0.09 0.37 98.19 200.27855 27.22786
RDX1512-7 2.66 0.09 53.81 40.71 0.17 0.27 0.04 0.03 0.06 0.07 0.42 98.33 20.090467 22.49196

RDX1512-10 2.75 0.08 5417 41.49 0.02 -0.01 0.01 0.07 0.04 0.08 0.19 98.91 138.655 8.6516
RDX1512-11 2.78 0.15 53.96 41.47 0.15 0.2 0.01 0.03 0.02 0.07 0.26 99.14 70.33145 19.80173
RDX1515-1-1 2.78 0.05 54.13 40.95 0.1 0.2 0.02 0.04 0.06 0.07 0.33 98.75 210.09421 14.40101
RDX1515-1-2 2.7 0.05 54.41 414 0.08 0.1 0.01 0.05 0.02 0.07 0.14 99.03 68.28014 12.67852
RDX1515-4-1 2.73 0.09 53.44 41.02 0.11 0.45 0.17 0.04 0.01 0.03 0.15 98.2 34.54539 15.34811
RDX1515-4-2 2.77 0.1 54.3 41.13 0.13 0.09 0.04 0.06 0.04 0.05 0.17 98.91 139.77029 17.43328
RDX1515-7-2 2.81 0.1 54.2 41.02 0.16 0.19 0.01 0.04 0.05 0.06 0.3 98.97 177.60821 21.10402
RDX1515-8-1 2.8 0.15 5417 40.58 0.11 0.18 0.04 0.04 0.04 0.05 0.29 98.49 141.57256 15.34811
RDX1515-8-2 2.78 0.11 5417 41.05 0.13 0.19 0.02 0.02 0.05 0.09 0.2 98.83 175.25706 17.43328
RDX15-1-2-2 2.92 0.1 53.58 40.43 0.16 0.21 0.02 0.04 0.05 0.08 0.27 97.87 188.27907 21.10402
RDX15-1-2-3 2.82 0.05 54.29 41.26 0.07 0.05 0.02 0.05 0.02 0.09 0.23 98.96 71.55569 11.89616
RDX15-1-2-4 2.89 0.08 53.93 41.04 0.11 0.13 0 0.04 0.03 0.02 0.16 98.42 111.07951 15.34811
RDX15-1-2-5 2.74 0.13 54.07 411 0.16 0.14 0.03 0.02 0.06 0.07 0.23 98.76 206.65842 21.10402
RDX15-1-2-6 2.75 0.09 54.43 41.17 0.12 0.11 0.01 0 0.04 0.08 0.16 98.91 138.655 16.3575
RDX15-1-2-7 2.72 0.15 53.91 41.08 0.13 0.13 -0.01 0.01 0.05 0.08 0.16 98.4 171.13933 17.43328
RDX15-1-2-8 2.93 0.07 54.18 41.15 0.12 0.2 0.02 0.02 0.03 0.04 0.22 99.01 113.66534 16.3575
RDX15-1-2-9 2.76 0.13 53.79 40.85 0.22 0.16 0.04 0.06 0.06 0.13 0.22 98.4 208.32528 30.92699
RDX15-1-2-10 2.69 0.13 53.73 40.86 0.1 0.15 0.03 0.02 0.04 0.09 0.2 98.01 135.68249 14.40101
RDX15-1-2-11 2.69 0.15 53.54 40.5 0.19 0.17 0.04 0.08 0.06 0.07 0.35 97.84 202.90168 25.54768
RDX15-1-2-12 2.65 0.14 53.53 40.7 0.14 0.27 0.07 0.09 0.07 0.14 0.38 98.17 233.26488 18.5798
RDX15-1-2-13 2.69 0.09 53.92 41.17 0 0.04 0.04 0.03 0.03 0.01 0.13 98.15 101.92196 7.61679
RDX1501050101  3.069 0 0.007 0 54791 40.116 0.005 0.056 0.195 0.045 0.046 0.068 0.026 0 0.275 0.045 98.744 108.83334 10.88127
RDX1501050102 3.1 0.01 0.014 0.013 55.077 40.116 0 0.095 0.129 0.069 0 0 0.014 0 0.049 0.027 98.713 60.10955 13.9496
RDX1501050201 2.883 0.039 0 0 55.1