Thermal expansion of minerals in the pyroxene system and examination of various thermal expansion models

GUY L. HOVIS1,*, MARIO TRIBAUDINO2, AMANDA LEAMAN3, CHRISTINE ALMER4, CAITLIN ALTOMARE5, MATTHEW MORRIS6, NICOLE MAKSYMiw7, DEREK MORRIS8, KEVIN JACKSON8, BRIAN SCOTT10, GARY TOMAINO11, AND LUCIANA MANTOVANI2

Department of Geology and Environmental Geosciences, Lafayette College, Easton, Pennsylvania 18042, U.S.A.

Department of Geosciences, Utah State University, Logan, Utah 84322, U.S.A.

Department of Geology and Environmental Geoscience, Lafayette College, Easton, Pennsylvania 18042, U.S.A.

Department of Geology and Environmental Geoscience, Lafayette College, Easton, Pennsylvania 18042, U.S.A.

Shell Exploration and Production Company, 701 Poydras Street, New Orleans, Louisiana 70139, U.S.A.

Langan Engineering and Environmental Services, 2700 Kelly Road, Warrington, Pennsylvania 18976, U.S.A.

Environmental Logic, LLC, 11 Princess Road, Lawrenceville, New Jersey 08648, U.S.A.

Department of Natural Resources and the Environment, University of Connecticut, Storrs, Connecticut 06269, U.S.A.

Department of Geology and Environmental Geosciences, Lafayette College, Easton, Pennsylvania 18042, U.S.A.

Specialty Minerals, Inc., 640 North Third Street, Easton, Pennsylvania 18042, U.S.A.

INTRODUCTION

A principal line of research at Lafayette College over more than 20 years has been the investigation of the relationship of thermal expansion to the chemical compositions of minerals within specific structural groups. Previously published results include investigation of the entire feldspar system (Hovis et al. 1999, 2008, 2010; Hovis and Graeme-Barber 1997), nepheline-kalsilite feldspathoids (Hovis et al. 2006, 2003), and both F-Cl and F-OH apatites (Hovis et al. 2014, 2015). We now have expanded this work by collecting data on more than 50 mineral specimens covering wide compositional ranges in five additional silicate mineral systems. In the present paper, we explore thermal expansion relationships among pyroxenes.

A primary goal of present and previous work has been to provide valuable research experiences for undergraduate students at Lafayette College. Participants in the present work, now all graduated, are coauthors of this paper. The analysis of thermal expansion data has progressed significantly in the last decade, going far beyond questions asked in the previous studies listed above. In fact, high-quality volume-temperature (V-T) data can be utilized to test various mathematical formulations of V-T data and also incorporated into thermodynamic databases for the purpose of calculating phase equilibria at elevated temperatures. Even though pyroxene thermal expansion has been studied previously (references appropriate to specific minerals given later), an exploration of physical thermal expansion models for a systematic collection of pyroxenes is lacking. The current study provides data that can be used for such a purpose, similar to studies on plagioclase and olivine by Tribaudino et al. (2011) and Kroll et al. (2012), respectively.