Solubility of \(\text{Na}_2\text{SO}_4 \) in silica-saturated solutions: Implications for REE mineralization

HUAN CHEN1, HAO CUI1, RICHEN ZHONG\textsuperscript{1,*, YULING XIE\textsuperscript{1,*, CHANG YU1, ZIMENG LI1, AND YIFAN LING1}

1School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Sulfate is traditionally considered to have retrograde solubility in aqueous solutions. However, our recent hydrothermal diamond-anvil cell (HDAC) experiments have shown that the solubility of \(\text{Na}_2\text{SO}_4 \) changes from retrograde to prograde in the presence of silica, leading to the formation of sulfate-rich solutions at high temperatures, in line with observations on natural geofluids. In this study, we use synthetic inclusions of fused silica capillary capsules containing saturated \(\text{Na}_2\text{SO}_4 \) solutions and \(\text{Na}_2\text{SO}_4 \) crystals to quantitatively investigate the solubility of \(\text{Na}_2\text{SO}_4 \) at different temperatures in the \(\text{Na}_2\text{SO}_4-\text{SiO}_2-\text{H}_2\text{O} \) system. Sulfate concentrations were measured using Raman spectroscopy and calibrated using Cs\(_4 \text{SO}_4 \) solutions with known concentrations. The solubility of crystalline \(\text{Na}_2\text{SO}_4 \) dropped slightly when heated from 50 to 225 °C and dramatically from 225 to 313 °C. At 313 °C, the \(\text{Na}_2\text{SO}_4 \) crystals began to melt, forming immiscible sulfate melt coexisting with the aqueous solution, with or without solid \(\text{Na}_2\text{SO}_4 \). With the formation of sulfate melt, the solubility of \(\text{Na}_2\text{SO}_4 \) was reversed to prograde (i.e., solubility increased considerably with increasing temperatures). The solubility of \(\text{Na}_2\text{SO}_4 \) in the measured solution was significantly higher than that predicted in the absence of \(\text{SiO}_2 \) over the entire temperature range (except for temperatures around 313 °C). This indicates that the presence of \(\text{SiO}_2 \) greatly changes the dissolution behavior of \(\text{Na}_2\text{SO}_4 \), which may be caused by the formation of a sulfate–silicate intermediate such as \(\text{Si(OH)}_2\text{SO}_4 \). Considering that most crustal fluids are silica-saturated, the solubility curve of \(\text{Na}_2\text{SO}_4 \) obtained in this study can better reflect the characteristics of geofluids when compared to that of \(\text{Na}_2\text{SO}_4-\text{H}_2\text{O} \) binary system. At temperatures of 313–425 °C, the solubility of \(\text{Na}_2\text{SO}_4 \) increases with temperature following the function \(C_{\text{sulfate}} = -3173.7/T + 5.9301 \), where \(C_{\text{sulfate}} \) and \(T \) represent the solubility of \(\text{Na}_2\text{SO}_4 \) in mol/kg \(\text{H}_2\text{O} \) and temperature in Kelvin, respectively. As an application, this temperature-solubility relationship can be used to evaluate the sulfate contents in fluid inclusions that contain sulfate daughter minerals, based on the temperature of sulfate disappearance obtained from microthermometric analysis. The sulfate concentrations of the ore-forming fluids of the giant Maoniuping carbonatite-related rare earth element (REE) deposit (southwest China) were calculated to be 4.67–4.81 m (mol/kg \(\text{H}_2\text{O} \)). These sulfate concentrations were then used as internal standards to calibrate the previously reported semi-quantitative results of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis of REE-forming stage fluid inclusions at this deposit. The calculated Ce concentrations in the REE-mineralizing fluid range from 0.42 to 0.49 wt%. The high fluid REE contents suggest that the sulfate-rich fluids are ideal solvents for REE transport. A mass-balance calculation was carried out to evaluate the minimal volume of carbonatite melt that was required for the formation of the giant Maoniuping REE deposit. The result indicates that the carbonatite dikes in the mining area are enough to provide the required fluids and metals, and thus a deep-seated magma chamber is not necessary for ore formation.

Keywords: \(\text{Na}_2\text{SO}_4 \) solubility, silica saturation, rare earth element, mineralizing fluid, FSCC

Introduction

Sulfate is the second most abundant solute in seawater and widely exists in the crustal mantle fluids and extraterrestrial aqueous environments, such as the surface of Mars and Europa (Chiper and Vaniman 2007; McCord et al. 1998). Sulfate is abundant in some hydrothermal systems related to ore formation, such as volcanogenic massive sulfide (VMS) deposits (Yang et al. 2018) and copper porphyry deposits (Sun et al. 2013). Furthermore, syn-ore fluid inclusions containing sulfate daughter minerals have been reported in carbonatite-related rare earth element (REE) deposits, such as the world-class Bayan Obo in northern China (Xie et al. 2019) and the Maoniuping and Lizhuang in southwestern China (Xie et al. 2015). However, the presence of sulfate-rich geofluids contradicts the knowledge that sulfate salts have retrograde solubility, which would lead to low concentrations of dissolved sulfate in high-temperature solutions (Seward et al. 2014).

Our recent study shows that the presence of dissolved silica is a key to changing the temperature dependence of sulfate...