In-situ iron isotope analyses reveal igneous and magmatic-hydrothermal growth of magnetite at the Los Colorados Kiruna-type iron oxide-apatite deposit, Chile

JAAYKE L. KNIPPING1,2,3,* ADRIAN FIEGE1 ADAM C. SIMON3 MARTIN OESER2 MARTIN REICH4 AND LAURA D. BILENKER5

1Department of Earth and Planetary Sciences, American Museum of Natural History, Central Park West at 79th Street, New York 10024-5192, U.S.A.
2Institut für Mineralogie, Leibniz Universität Hannover, Callinstrasse 3, 30167 Hannover, Germany
3Department of Earth and Environmental Sciences, University of Michigan, 1100 North University Avenue, Ann Arbor, Michigan 48109-1005, U.S.A.
4Department of Geology and Andean Geothermal Center of Excellence (CEGA), FCFM, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile
5Pacific Centre for Isotopic and Geochemical Research, Department Earth, Ocean, & Atmospheric Sciences, University of British Columbia, 2020 and 2207 Main Mall, Vancouver, Brish Colombia V6T 1Z4, Canada

ABSTRACT

Iron-oxide apatite (IOA) deposits are mined for iron (Fe) and can also contain economically exploitable amounts of Cu, P, U, Ag, Co, and rare earth elements (REE). Recently, it has been proposed based on trace element zonation in magnetite grains from the Los Colorados Kiruna-type IOA deposit, Chile, that ore formation is directly linked to a magmatic source. The model begins with the crystallization of magnetite microlites within an oxidized volatile-rich (H2O+Cl) andesitic magma reservoir, followed by decompression, nucleation of fluid bubbles on magnetite microlite surfaces, segregation of a Fe-Cl-rich fluid-magnetite suspension within the magma reservoir, and subsequent ascent of the suspension from the magma chamber via pre-existing structurally enhanced dilatant zones that act as conduits. Emplacement and precipitation of the suspension results in the formation of magnetite grains with core-to-rim features that record a transition from purely igneous to magmatic-hydrothermal conditions within IOA deposits. Here we test this model by using in situ femtosecond laser ablation MC-ICP-MS measurements of Fe isotopes to determine grain-to-grain and intra-grain Fe isotope variations in magnetite grains from the Los Colorados IOA deposit. All in situ δ56Fe values ([56]Fe/54Fe relative to IRMM-14) plot within the magmatic range (0.06 to 0.50‰), in agreement with previously published bulk Fe isotope analyses in magnetite from the Los Colorados IOA deposit. Different trace element signatures of these magnetite grains indicate an igneous or magmatic-hydrothermal origin, respectively. Although data partly overlap, the assigned igneous magnetites yield on average higher δ56Fe values (0.24 ± 0.07‰; n = 33), when compared to magmatic-hydrothermal magnetites (0.15 ± 0.05‰; n = 26). Some magnetite grains exhibit a distinct core-to-rim trend from higher toward lower δ56Fe signatures. Furthermore, the δ56Fe of the igneous magnetites correlate negatively with trace elements contents typical for igneous formation (Ti, Al, Ga, V, Mn, Zn); igneous magnetites become isotopically heavier with decreasing concentrations of these elements, indicating a trend toward higher δ56Fe in the magnetite with magma evolution. Model calculations of the δ56Fe evolution in melt, magnetite, and fluid further constrain the magmatic-hydrothermal origin of Kiruna-type IOA deposits.

Keywords: Los Colorados, Chilean Iron Belt, Kiruna-type deposits, iron oxide-apatite deposits, iron isotopes, magnetite flotation; From Magmas to Ore Deposits

INTRODUCTION

The Los Colorados iron oxide-apatite (IOA) mineral deposit is one of about 50 Kiruna-type IOA and iron oxide-copper-gold (IOCG) mineral deposits in the Chilean Iron Belt. The Chilean Iron Belt is directly linked to the crustal-scale transcurrent Atacama Fault System (Fig. 1a), which was created by the tec-tonic change from transtensional to transpressional stress along the South American subduction zone during the late Lower Cretaceous (Uyeda and Kanamori 1979). The Los Colorados IOA deposit consists of two sub-parallel massive magnetite ore bodies, referred to as dikes by the mining company geologists (Fig. 1b), and both are hosted within andesite of the Punta del Cobre Formation (Pincheira et al. 1990) along with several plutonic units (Fig. 1a). Los Colorados has proven resources of >900 Mt iron ore with an average grade of 34.8% (CAP Annual Report). The genesis of Kiruna-type IOA deposits remains controversial, with several models proposed to explain mineralization, ranging from (non-) magmatic-hydrothermal (Menard 1995; Rhodes and Oreskes 1995, 1999; Barton and Johnson 1996, 2004; Haynes et al. 1995; Rhodes et al. 1999; Haynes 2000; Sillitoe and Burrows 2002; Pollard 2006) to purely igneous processes such as liquid immiscibility between iron-rich and