LETTER

Synthesis and crystal structure of Mg-bearing Fe₉O₁₁: New insight in the complexity of Fe-Mg oxides at conditions of the deep upper mantle

TAKAYUKI ISHII^{1,*}, LAURA UENVER-THIELE², ALAN B. WOODLAND², EDITH ALIG³, AND TIZIANA BOFFA BALLARAN¹

¹Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

²Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany ³Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany

ABSTRACT

A novel Mg-bearing iron oxide Mg_{0.87(1)}Fe³⁺₄(D₁₁ was synthesized at 12 GPa and 1300 °C using a large volume press. Rietveld structural analysis was conducted with a laboratory X-ray diffraction pattern obtained at ambient conditions. The crystal structure, which has one oxygen trigonal prism site and four octahedral sites for the cations, was found to be isostructural with Ca₂Fe₇O₁₁. The unit-cell lattice parameters are a = 9.8441(5) Å, b = 2.8920(1) Å, c = 14.1760(6) Å, $\beta = 99.956(4)^\circ$, V = 397.50(3) Å³, and Z = 2 (monoclinic, C2/m). Mg and Fe cations are disordered on the trigonal prism site and on two of the four octahedral sites, and the remaining Fe is accommodated at the other two octahedral sites. The present structure is closely related to the other recently discovered Fe oxide structures, e.g., Fe₄O₅ and Fe₅O₆, by distortion derived either from incorporation (Fe₄O₅) or removal (Fe₅O₆) of an edge-shared FeO₆ single octahedral chain in their structures. The present synthesis at deep upper mantle conditions and the structural relationships observed between various novel Mg-Fe oxides indicate that a series of different phases become stable above 10 GPa and that their relative stabilities (Fe²⁺/Fe³⁺) must be controlled by oxygen fugacity.

Keywords: Iron oxide, high-pressure synthesis, Walker-type multi-anvil apparatus, Rietveld analysis, X-ray diffraction, Fe_9O_{11}