American Mineralogist, Volume 103, pages 1599–1603, 2018

Surface energy of fayalite and its effect on Fe-Si-O oxygen buffers and the olivine-spinel transition

KRISTINA LILOVA¹, MICHAEL T. DEANGELIS², LAWRENCE M. ANOVITZ³, AND ALEXANDRA NAVROTSKY^{1,*}

¹Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California 95616, U.S.A.
²Department of Earth Sciences, University of Arkansas at Little Rock, Little Rock, Arkansas 72204-1099, U.S.A.
³Geochemistry and Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, U.S.A.

ABSTRACT

The surface energy (hydrated surfaces) of fayalite (α -Fe₂SiO₄) was determined to be 2.47 ± 0.25 J/m² using high-temperature oxide melt solution calorimetry. This is larger than the surface energy of magnetite (Fe₃O₄), but lower than that of forsterite (α -Mg₂SiO₄). The changes in the positions of the quartz-fayalite-magnetite (QFM) and quartz-iron-fayalite (QIF) buffers with particle size reduction were calculated. QFM is lowered in f_{O_2} by 3–7 log units as a function of temperature for 30 nm particles while QIF is raised by 1–2 log units. The estimated surface energy difference between olivine and spinel polymorphs decreases the pressure of the olivine-spinel transition in Fe₂SiO₄ by about 1 GPa.

Keywords: Olivine-spinel transition, nano fayalite, quartz-fayalite-magnetite (QFM) buffers, quartz-iron-fayalite (QIF) buffers, surface energy