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minerals in intrusive igneous rocks; (2) terrestrial minerals con-
taining the element chromium; and (3) minerals containing the 
element copper. These subsets of the more than 5200 mineral 
species approved by the International Mineralogical Associa-
tion’s Commission on New Minerals and Mineral Names (IMA-
CNMMN) exemplify the potential of network analysis to address 
fundamental questions in mineralogy and petrology.

Examples of mineral networks

Minerals, whether in rocks, sediments, meteorites, or ore 
deposits, exist as assemblages of coexisting species. Here we 
introduce mineral networks as a strategy to represent and analyze 
the large and growing data resources related to these assem-
blages with various mathematical and graphical models—network 
“renderings” that are available through open access sources. In 
each case mineral networks employ nodes (also known as verti-
ces), each corresponding to a mineral species. Some node pairs 
are connected by links (also known as edges), which indicate that 
those two minerals are found together at the same location or de-
posit. Variations in the ways that nodes and links are represented 
highlight different aspects of network relationships, as illustrated 
in the following examples.

Fruchterman-Reingold force-directed networks
Figure 1a illustrates a simplified Fruchterman-Reingold force-

directed network (Fruchterman and Reingold 1991; Csardi and 
Nepusz 2006), representing 36 major rock-forming minerals that 
occur in holocrystalline intrusive igneous rocks, as described in 
Alfred Harker’s classic Petrology for Students (Harker 1964). 
Mineralogical descriptions of 77 igneous rocks, each with 1 to 6 
major minerals (see Supplemental1 Information 1), provide the 
input data for this visualization.

The Fruchterman-Reingold force-directed graph algorithm is 
based on two main principles: (1) vertices connected by an edge 
should be drawn near each other and (2) vertices generally should 
not be drawn too close to each other. These criteria resemble those 
of molecular or planetary simulations where bodies exert both at-
tractive and repulsive forces on one another. This method attempts 
to balance the energy of the system through iterative displacement 
of the vertices by calculating the effect of attractive forces on each 
vertex, then calculating the effect of repulsive forces, and finally 
limiting the total displacement with a temperature parameter. In 
this rendering, we have no control over the length of the edges; 
edge length is determined by the final positions of vertices as the 
system reaches equilibrium, however, highly connected groups of 
nodes will tend to form clusters.

In Figure 1, we created a simplified Fruchterman-Reingold 
force-directed network using the igraph package in R. We imported 
tabulated data on coexisting rock-forming minerals into R as a data 
frame, which was then converted into a matrix object to enable vi-
sualization using the igraph package. The igraph software enables 
a high level of customization based on different network metrics. 
If “auto.layout” is used, then the package finds the best-suited 
algorithm based on the nodes and the number of links between the 

nodes. After some preliminary analysis, we found the best-suited 
algorithm to be the Fruchterman-Reingold force-directed network 
with self-loops removed.

Note that many of the mineral names employed by Harker 
do not correspond to approved IMA-CNMMN species. In some 
instances, such as “biotite,” “hornblende,” and “tourmaline,” the 
names once commonly employed by optical petrologists have 
been replaced by several related species (i.e., annite, fluorannite, 
siderophyllite, and tetraferriannite for “biotite”). In the case of 
plagioclase feldspar, on the other hand, Harker distinguishes six 

Figure 1. (a) A Fruchterman-Reingold force-directed network diagram 
of 36 rock-forming minerals in holocrystalline intrusive igneous rocks. Each 
circular node represents a rock-forming mineral and each link indicates pairs 
of coexisting minerals in one or more rocks, as recorded in Harker (1964). 
(b) Different types of igneous rocks appear as closely linked clusters, or 
“cliques,” in this diagram.

1Deposit item AM-17-86104, Supplemental Material (Excel files and movie 
files). Deposit items are free to all readers and found on the MSA web site, via the 
specific issue’s Table of Contents (go to http://www.minsocam.org/MSA/AmMin/
TOC/2017/Aug2017_data/Aug2017_data.html).  
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elements represent the number of localities where two minerals 
coexist and whose diagonal elements represent the total number 
of localities at which each mineral is found. As a preliminary step 
we imported these data into R as data frames and converted into 
two lists, one with nodes representing all the minerals in the data 
set, and the other with links representing coexistence relationships 
between the nodes. We created the list of nodes by extracting the 
row or column names of the data frame, each of which represents 
a mineral, and we produced the list of links by iterating over the 
upper or lower triangle of the matrix and copying the row name, 
column name, and computing a coexistence metric between the 
two minerals. We added additional fields to the nodes list, such as 
mineral compositions, the number of localities at which the mineral 
occurs, and/or structural classification of the mineral.

We combined these two lists and converted them into a Ja-
vascript Object Notation (JSON) file, which is stored along with 
a web page written in Hypertext Markup Language (HTML) 
and Javascript that uses functions from the D3 4.0 library. The 
data file is read from the file system and rendered when the page 
is opened in a web-browser. Our Javascript code generates the 
layout by performing a many body (n-body) simulation and con-
straining edge lengths to values that equal the coexistence metric 
multiplied by a constant to make the connections more apparent. 
We set node sizes to the binary logarithm of the abundance value 
of a mineral in the cases of Cu and igneous rocks diagrams, and 
the actual abundance values in the Cr diagram. Node colors in 
Figure 5 variously indicate the structural classification of the 
minerals (igneous network), paragenetic mode (Cr network), and 
composition (Cu network).

The mineral network diagrams in this study require data on 
coexisting minerals in individual rocks or from individual locali-
ties. We manually generated spreadsheets of coexisting minerals in 
igneous rocks from text and tables in Harker (1964) and Johannsen 
(1932–1938) as presented in Supplemental1 Information 1 and 2. 
We used a PERL script to construct spreadsheets of coexisting 
chromium and copper minerals, which are generated automati-
cally from data on coexisting species from localities recorded in 
the crowd-sourced mineral web site mindat.org. We define Cr- or 
Cu-minerals as those reported in the official IMA list of minerals 
at rruff.info/ima. For each pair of coexisting minerals we gener-
ated a file that contains all localities at which those two minerals 
occur. A second program reads the assembled files to obtain the 
number of localities at which each pair occurs and outputs these 
counts in matrix form.

An important feature of browser-based force-directed graphs 
is that they can be manipulated with a computer mouse—indi-
vidual nodes can be “pulled aside,” thus deforming the network 
and illustrating the number and nature of links to other nodes 
(see movies in Supplemental1 Information 4, 5, and 6). Figure 5 
presents static images of three contrasting force-directed graphs: 
(1) 51 common rock-forming igneous minerals; (2) 58 terrestrial 
minerals of chromium; and (3) 664 minerals of copper.

In Figure 5a, which represents connections among 51 igneous 
minerals, the node colors indicate broad compositional groups 
(see Figure for key). Note that while colors are largely mixed, 
the red (quartz and feldspar minerals) and orange (feldspathoids 
and zeolite mineral) nodes tend to concentrate near the lower and 
upper halves of the network, respectively—a feature that reflects 

Figure 4. Cluster analysis of 30 common chromium-bearing 
minerals reveals segregation into four groups. The central cluster 
(group 1) includes 17 Cr3+ species formed through igneous, metamorphic, 
or hydrothermal processes. The left-hand cluster (group 2) includes seven 
Cr6+ species formed through hydrothermal alteration, whereas the two 
smaller clusters (groups 3 and 4) include chromate minerals precipitated 
in soils and desert environments. Black lines indicate coexistence of 
minerals within a cluster, and red lines indicate coexistence between 
minerals of neighboring clusters.

for revealing patterns of diagenesis and distribution in a variety 
of mineral systems.

Force-directed mineral graphs
An important potential contribution of mineral network 

analysis lies in the simultaneous visualization and study of rela-
tionships among scores or hundreds of minerals that are related 
by composition, age, tectonic setting, deposit type, or numerous 
other variables. Force-directed graphs (Fig. 5), which represent 
the distribution of nodes as a dynamic network with balanced 
spring-like interactions among nodes, are particularly useful in 
this regard. We generate these graphs by algorithms that run 
through several iterations, displacing the nodes according to fic-
tive attractive and repulsive forces that they exert on each other, 
until a layout is found that minimizes the “energy” of the system 
and possibly satisfies other constraints such as drawing connected 
nodes at certain separations. These methods are implemented in 
highly customizable modules in multiple programming languages, 
such as Javascript and R, making it possible to render the graphs 
through several interfaces including web browsers.

In Figure 5, we created the web-browser-based force-directed 
graphs using the D3 4.0 d3-force module (Bostock et al. 2011), 
which simulates physical forces using velocity Verlet integration 
(Verlet 1967) and implements the Barnes-Hut approximation 
(Barnes and Hut 1986) for performing n-body simulations, similar 
to those of molecular or planetary systems. For each of the three 
graphs we compiled a symmetric matrix whose non-diagonal 
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the natural avoidance of quartz and feldspathoids. Node colors 
in Figure 5b for chromium minerals correspond to paragenetic 
modes; note the strong clustering of nodes by color—an obser-
vation that parallels the cluster analysis in Figure 4. Node colors 
in Figure 5c for copper minerals indicate mineral compositions 
separated according to the presence or absence of sulfur or oxy-
gen. Strong segregation by color reveals clustering according to 
these compositional variables for sulfides, sulfates, and oxygen-
bearing species.

Network metrics
An important attribute of networks is the ability to compare 

and contrast their topological characteristics through the use of 
many quantitative network metrics (e.g., Newman 2013; Table 1). 
For example, a network’s edge density D, defined as the ratio of 
the number of observed links to the maximum possible number of 
links, quantifies the extent to which a network is interconnected. 
For a network with N nodes and L links:

D = 2L/[N(N – 1)].			    (1)

D can vary from 0 in a network with no links to 1 for a fully 
connected network. For mineral networks, 0 means every mineral 
occurs by itself, whereas 1 means every mineral co-occurs with 
every other mineral.

Freeman network centralization or degree centralization, FNC, 
is one of several measures of how many nodes play central roles 
in the network. In a network of N nodes, degree centralization for 
each node i is the number of links to other nodes, or node degree, 
deg(i). Freeman network centralization is defined as:

FNC=
degmax−deg(i)
(N−1)(N−2)i=1

N∑ 		  (2)

in which degmax is the maximum degree node. FNC can vary from 
0 to 1; in a mineral network, low centralization indicates that min-
erals are uniformly interconnected, whereas high centralization 
indicates that only one or a few minerals are highly connected.

Transitivity, T, is defined by the ratio of the number of 
loops of length three and the number of paths of length two in 
a network. In mineral networks, 0 means that minerals co-occur 
only as pairs and 1 means that each mineral co-occurs with at 
least two others.

Diameter, d, of a network with N nodes is defined as the 
maximum value of the shortest path (i.e., “degree of separa-
tion”) between any two nodes in the network, as determined by 
the number of edges and the average edge length between the 
two nodes.

Mean distance, MD, of a network with N nodes indicates the 
average path length, calculated from the shortest paths between 
all possible pairs of nodes. In a mineral network, MD represents 
the average separation between mineral pairs.

The three force-directed mineral networks illustrated in Fig-

Table 1. Network metrics for force-directed graphs (see Fig. 5)
Mineral	 Density	 Centralization	 Transitivity	 Diameter	 Mean 
  system	  	  	  	  	 distance
Igneous	 0.64	 0.34	 0.77	 2	 1.36
  minerals
Cr minerals	 0.05	 0.33	 0.44	 6	 2.65
Cu minerals	 0.12	 0.68	 0.48	 4	 1.93

Figure 5. Force-directed network graphs of minerals: (a) 51 rock-
forming igneous minerals sorted by structural groups; (b) 58 chromium 
minerals sorted by paragenetic mode; (c) 664 copper minerals sorted by 
composition. See Supplemental1 Information 4, 5, and 6, respectively, for 
animations of these three dynamic graphs.

a

b

c
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minerals located around the periphery. Note also the rela-
tive paucity of sulfate minerals—only 7 species (7%), all 
of them rare, out of 97 Archean copper minerals.

• The Cenozoic bipartite network for copper minerals 
contrasts with that of the Archean Eon in several respects. 
The significant increase in the number of identified min-
eral species (colored nodes), from 97 to almost 400, is 
to be expected when comparing Earth’s recent mineral-
ogy with the scant record of rocks more than 2.5 billion 
years old. However, there are also striking and previously 
unrecognized differences in the distributions of mineral 
compositions from these two geological intervals. Sulfide 
minerals (red nodes) continue to make up a significant frac-
tion of the most common species located near the center 
of the diagram. Of the approximately 100 mineral nodes 
located within the “U” of black locality nodes, more than 
40 are sulfide minerals. Furthermore, most of these phases 
are concentrated at the “bottom” of the “U”—a position 
representing the most widely distributed copper minerals. 
Of the remaining common Cu phases in the central region, 
most are carbonate, phosphate, and other minerals that 
contain oxygen but not sulfur (blue nodes concentrated in 
the “upper” region inside the “U”), perhaps reflecting the 
oxygenation by photosynthesis of Earth’s atmosphere and 
oceans, and the corresponding generation of novel oxidized 
copper mineral species.

• Peripheral (i.e., rare) copper minerals from the Ceno-
zoic Era differ markedly in composition from those of the 
Archean Eon. Sulfide minerals account for only about 50 
(<20%) of the more than 280 rare species, whereas at least 
210 (~75%) oxygen-bearing minerals, 60 of them sulfates, 
decorate the diagram in sprays and clusters of phases known 
from only one or two geographic regions.

These intriguing insights regarding copper mineral evolu-
tion and ecology have been hidden among large data tables of 
more than 600 species from more than 10 000 localities, rep-
resenting more than 100 000 individual mineral-locality data 
(http://rruff.info/ima/; https://www.mindat.org/). Research now in 
progress will investigate these intriguing trends for copper mineral 
evolution and ecology in greater detail, while searching for pat-
terns that might point to the prediction of new copper minerals 
and ore deposits.

Concluding remarks

Network analysis provides mineralogists and petrologists with 
a dynamic, multi-dimensional, quantitative visualization approach 
to explore complex and otherwise hidden patterns of diversity 
and distribution in systems of numerous minerals—information 
that heretofore has been buried in large and growing mineral data 
resources. Open access data repositories now document more than 
5200 mineral species (rruff.info/ima), from 275 000 localities, 
incorporating approximately one million mineral/locality data 
(mindat.org). It is thus possible to employ mineral network visual-
izations to quantitatively investigate patterns of coexistence, phase 
relationships, reaction pathways, network metrics, frequency dis-
tributions, and deep-time evolution of virtually any mineral group.

Figure 6. Bipartite networks for copper minerals from the Archean 
Eon (a) and Cenozoic Era (b) reveal distinctive patterns of mineral 
diversity and distribution through space and time. Black nodes represent 
localities, whereas colored nodes represent mineral species linked 
to those localities. The distinctive pattern of an “O”- or “U”-shape 
arrangement of localities with relatively few common minerals in the 
center area and a greater number of rare minerals in peripheral positions 
conforms to a Large Number of Rare Events frequency distribution 
(Hazen et al. 2015; Hystad et al. 2015). Note also the increase in mineral 
diversity, as well as the evolution of mineral compositions, from a to b.

We suggest that further investigation of mineral networks 
will reveal previously hidden patterns of species coexistence 
and clustering based, for example, on structure type, chemistry, 
age, solubility, hardness and other mechanical properties, redox 
state, depth and temperature of formation, year and method of 
mineral discovery, and paragenetic mode. Mineral metadata, 
furthermore, permit exploration of mineral subsets through filter-
ing by geographic region, tectonic setting, co-occurrence with 
varied biozones, economic resources, environmental character-
istics, and other key parameters. In addition, networks are now 
being generated for minerals on Mars, the Moon, and Vesta (as 
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