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The symmetry-adapted Monte Carlo 

The symmetry-adapted Monte Carlo (SA-MC) takes advantage of symmetry to perform a 

uniform at random sampling of the configurational space (CS) corresponding to a given cell 

and a given composition of a solid solution or disordered crystalline compound. The original 

formulation was developed by Dixon and Wilf (1983) to find independent graphs. In the 

following, we will briefly outline the ideas sustaining the SA-MC. To do so, we must switch 

from the classical mineralogical perspective on symmetry (in the Euclidian space) to a 

combinatorial one. When possible, we will make links to examples that should help the 

reader. 

Elements (operations) of symmetry (point or space) groups permute points in such a way 

that the set of points remains unchanged. The points that are exchanged are symmetry 

equivalent. Consider the set 𝑆 of mappings of a set 𝐷 of points on a set 𝑅 of elements. 𝐷 

contains |𝐷| points, 𝑅 contains |𝑅| elements (e.g., atoms, colors, etc.). A natural consequence 

of the existence of a symmetry group 𝐺 acting on 𝐷 is that the |𝑅||!| possible mappings in 𝑆 

are split in symmetry independent classes (SICs) of configurations. Mappings 𝑠 belonging to 

one SIC share the same symmetry (not the same symmetry elements). The group 𝐻 of each 𝑠 

is a sub-group of 𝐺. These 𝑠 can be exchanged by a symmetry operation 𝑔 𝑔 ∈ 𝐺,𝑔 ∉ 𝐻 . 

Recall that symmetry groups act on every type of set. For example, the action of the group on 

itself produces conjugacy classes (CC). The group action on 𝑆 is the Pòlyà’s action defined 

by: 

𝑔 ∙ 𝑠 𝑥 = 𝑠 𝑔!!𝑥                  𝑔 ∈ 𝐺𝑥 ∈ 𝐷 

Let us give an example. Consider four points 𝐷 = {1,2,3,4} that are equivalent by the 𝐶!! 

group and a mapping from this set on a set of two colors, 𝑅 = {𝑟, 𝑏}. Then, 16  (2!) different 

mappings exist, among which 𝑠! = (𝑟!, 𝑟!, 𝑟!, 𝑏!)  and 𝑠! = (𝑟!, 𝑏!, 𝑟!, 𝑟!) , see the figure 

below. 

 
Because the points are equivalent, it is 𝑠! ≡ 𝑠!. The two configurations are related by the 

operation 𝐶!, so they belong to the same SIC. The number of SICs can be calculated 
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considering the symmetry group as isomorphous to a group of permutation (Cayley's 

theorem). In our case, the 4-fold axis permutes 1 → 2, 2 → 3, 3 → 4 and 4 → 1. The 2-fold 

axis, instead, moves 1 → 3,3 → 1 and 2 → 4,4 → 2. We say that the 4-fold axis partitions 𝐷 

in one cycle of length 4, while the 2-fold axis splits 𝐷 in 2 cycles of length 2. The number of 

cycles of an operation 𝑔 acting on 𝐷, |𝐶𝑦𝑐!(!)|, gives the number of SICs, ∆(𝑆) , through 

Pòlyà’s formula: 

|Δ(𝑆)| =
1
|𝐺| |𝑅| !"#!(!)

!∈!
 

The number of configurations (multiplicity) in a SIC is |𝐺|/|𝐻|   (Lagrange's theorem). Note 

that this formula is equivalent to the one providing the number of orientation states for twin 

crystals (Hahn and Klapper, 2010). Therefore, the lower the symmetry, the larger the number 

of configurations, which implies that a direct sampling of the CS favors low symmetry 

classes. To overcome this problem, a change in the probability of reaching different SICs is 

required.  

Operations belonging to the same CC share the same cycle structure (number and length 

of the cycles). Then, Pòlyà’s formula can be factorized by CC: 

|∆(𝑆)| =
1
|𝐺| |𝐶!||𝑅|

!"#!(!!)

|!|

!!!

 

where 𝐶  is the number of CC and 𝑔! is a representative of 𝐶!. From this expression it 

follows: 

𝐶! 𝑅 !"#!(!!)

|∆(𝑆)||𝐺|

|!|

!!!

= 1 

which defines a probability distribution on the set of CC, 𝐶 = 𝐶!…𝐶|!| :  

𝑃𝑟𝑜𝑏 𝐶! =   
𝐶! 𝑅

!"#
! !!

∆ 𝑆 𝐺   ,                        𝑗 = 1… |𝐶| 

Choosing a conjugacy class 𝐶!  with the probability 𝑃𝑟𝑜𝑏(𝐶!) , picking a 𝑔 ∈ 𝐶! , and 

constructing a configuration in which every element 𝑑 of a cycle of 𝑔 is mapped on the same 

element 𝑟 ∈ 𝑅, a configuration whose group 𝐻 contains 𝑔 is obtained. In this process, the 

probability of reaching a given SIC depends on 𝐶!, so it is bayesian. As shown by Dixon and 

Wilf (1983), by repeating this process, each SIC is obtained with the same probability 

1/|∆(𝑆)|, independently of its symmetry. 
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