Mineralogical characterization of individual growth structures of Mn-nodules with different Ni+Cu content from the central Pacific Ocean

ANNA V. WEGORZEWSKI1,*, THOMAS KUHN1, REINER DOHRMANN1,2, RICHERT WIRTH3 AND SYLVAIN GRANGEON4

1Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover, Germany
2State Authority of Mining, Energy and Geology (LBEG), Stilleweg 2, D-30655 Hannover, Germany
3Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ), Telegrafenberg, Building C, 14473 Potsdam, Germany
4BRGM, 3 Avenue Claude Guillemin, 45060 Orléans cedex 2, France

ABSTRACT

The mineralogy of manganese nodules from the German license area in the eastern Clarion and Clipperton Zone (CCZ) of the central Pacific Ocean was studied using X-ray diffraction. Their individual nanometer to micrometer thick genetically different (hydrogenetic/diagenetic) layer growth structures were investigated using high-resolution transmission electron microscopy. Relationships between the mineral phases and metal content (e.g., Ni+Cu) were assessed with electron microprobe analyzer.

The main manganese phase detected in nodules of this study was vernadite, a nanocrystalline and turbostratic phyllomanganate with hexagonal layer symmetry. In layer growth structures of hydrogenetic origin, Fe-vernadite dominates. Layer growth structures of suboxic-diagenetic origin contain three vernadite forms, which are the main Ni and Cu carriers. These Mn-phases were identified on the basis of their structural layer-to-layer distances (7 and 10 Å) and on their capacity to retain these distances when heated. The first form is 7 Å vernadite, which is minor component of the nodules. The second is a thermally unstable ~10 Å vernadite collapsing between room temperature and 100 °C, and the third is a thermally stable ~10 Å vernadite collapsing between 100 and 300 °C. Todorokite was neither detected in bulk nodules nor in any of the individual suboxic-diagenetic growth structures. Because the mineralogical composition of the nodule is quite homogeneous (only different vernadite-types), it is suggested that the content of Ni and Cu in the individual growth structures is controlled by their availability in the environment during individual growth phases.

A profile through a CCZ nodule revealed that the thermal stability of the vernadites change from younger (thermally unstable vernadites, collapsing <100 °C) to older growth structures (thermally stable 10 Å vernadites, collapsing >100 °C) of the nodule accompanied with changes in type and amount of interlayer cations (e.g., Mg, Na, Ca, K). The stability of the vernadites is probably due to re-organization and incorporation of metals within the interlayer of the crystal structure.

Keywords: Manganese nodules, phyllomanganates, vernadite, todorokite, HRTEM analysis, cation exchange experiments

INTRODUCTION

Manganese nodules forming on the ocean seafloor in water depth between 4000 and 6500 m consist of Mn-Fe (oxy)hydroxides, which contain high amounts of economically important metals such as Ni, Cu, Zn, Co, Mo, and rare earth elements (Koschinsky and Halbach 1995; Hudson-Edwards 2000; Takahashi et al. 2007; Hein et al. 2013).

An economically important area for Mn-nodules exploration is located within the Clarion and Clipperton Zone (CCZ) in the central equatorial Pacific. This area has high abundance of Mn-nodules (up to 30 kg/m²; Rühlemann et al. 2010) that contain high concentrations of Ni (1.32 ±0.21 wt%), Cu (1.21 ±0.11 wt%), and Co (0.15 ±0.02 wt%) (data from Wegorzewski and Kuhn 2014; Halbach et al. 1988). These nodules consist of individual genetically different layer growth structures (LGS) such as hydrogenetic and diagenetic, which alternate concentrically around a nucleus (Halbach et al. 1988).

Hydrogenetic LGS form due to metal precipitation out of oxic near bottom sea water (Halbach et al. 1988; Koschinsky and Halbach 1995) and oxic sediment pore water (Wegorzewski and Kuhn 2014). Those LGS generally have low Mn/Fe ratios (~3) and low Ni+Cu contents (~1.5 wt%) but are enriched in Co (~0.4 wt%; Halbach et al. 1988). In contrast, metal precipitation under suboxic conditions leads to LGS of high Mn/Fe ratios (>10; von Stackelberg 1997). LGS of suboxic-diagenetic origin of nodules from the eastern CCZ are characterized by Ni+Cu contents varying between 0.8 and 6.5 wt%, but these nodules are low in Co (0.07 ±0.07 wt%; data from Wegorzewski and Kuhn 2014; Halbach et al. 1988).

The individual LGS may consist of different Mn-Fe-oxide minerals. The most common Mn-oxide minerals in those