Synthetic and natural ammonium-bearing tourmaline

BERND WUNDER^{*,1}, ELEANOR BERRYMAN^{1,2}, BIRGIT PLESSEN¹, DIETER RHEDE¹, MONIKA KOCH-MÜLLER¹ AND WILHELM HEINRICH¹

¹GeoForschungsZentrum Potsdam, 14473 Potsdam, Germany ²Fachgebiet Mineralogie-Petrologie, Technische Universität Berlin, 13355 Berlin, Germany

ABSTRACT

Due to the similar ionic radius of K^+ and NH_4^+ , K-silicates can incorporate a significant amount of NH_4 . As tourmaline is able to accommodate K in its crystal structure at high and ultrahigh pressure, we test if this also holds true for NH_4 .

Piston-cylinder experiments in the system $(NH_4)_2O$ -MgO-SiO₂-Al₂O₃-B₂O₃-H₂O at 4.0 GPa, 700 °C, with B₂O₃ and NH₄OH in excess produce an assemblage of tourmaline, phengite, and coesite. The tourmaline crystals are up to $10 \times 40 \ \mu\text{m}$ in size. EMP analyses indicate that the tourmalines contain 0.22 (±0.03) wt% (NH₄)₂O and are solid solutions mainly along the magnesio-foitite and "NH₄-dravite" join with the average structural formula ^X[(NH₄)_{0.08(1)} $\square_{0.92(1)}]^{Y}$ [Mg_{2.28(8})Al_{0.72(8)}]^Z[Al_{5.93(6)}Si_{0.07(6)}]^T[Si_{6.00(5)} O₁₈](BO₃)₃(OH)₄.

NH₄ incorporation is confirmed by characteristic $\langle N-H \rangle$ stretching and bending modes in the IR-spectra of single crystals on synthetic tournaline. Further evidence is the increased unit-cell parameters of the tournaline [a = 15.9214(9) Å, c = 7.1423(5) Å, V = 1567.9(2) Å³] relative to pure magnesio-foitite.

Incorporation of NH₄ in natural tourmaline was tested in a tourmaline-bearing mica schists from a high-*P*/low-*T* (>1.2 GPa/550 °C) metasedimentary unit of the Erzgebirge, Germany, rich in NH₄. The NH₄-concentrations in the three main NH₄-bearing phases are: biotite (~1400 ppm) > phengite (~700 ppm) > tourmaline (~500 ppm). This indicates that tourmaline can act as important carrier of nitrogen between the crust and the deep Earth, which has important implications for a better understanding of the large-scale light element cycle.

Keywords: Tourmaline, high-pressure synthesis, ammonium, Erzgebirge mica-schists, nitrogen cycle