Deposit AM-11-054

The compression pathway of quartz

RICHARD M. THOMPSON, ROBERT T. DOWNS, AND PRZEMYSLAW DERA

APPENDIX

This appendix presents the derivation of the ideal quartz structures. All tetrahedra are perfectly regular with edge length 2r. Appendix Figure 1¹ illustrates an important quantity in the derivations. The dashed line segment, *h*, passing through the center of the tetrahedron is the portion of the tetrahedral twofold within the tetrahedron, and has length $\sqrt{2}r$. Alternatively, it can be described as the line segment connecting the midpoints of opposing tetrahedral edges.

Ideal β -quartz is relatively easy to derive. Appendix Figure 2 illustrates its unit cell. **c** = 3h = $3\sqrt{2}r$ and **a** = w + h = ($\sqrt{6} + \sqrt{2}$)r. Appendix Figure 3 allows the derivation of the oxygen x-coordinate. Because O is on a special position, $x_{03} = x_{01}/2$, so $x_m = 3x_{01}/4$, and $x_{si} = 1/2$, so $(1/2 - 3x_{01}/4)/(3x_{01}/4) = (\sqrt{2}/2)/(\sqrt{6}/2)$, giving $x_{01} = 1 - 1/\sqrt{3}$.

Ideal α -quartz is more complicated. Coordinates for O2 (Appendix Fig. 3) are derived below in terms of a series intermediate parameters illustrated in Appendix Figure 4 and 6 and ultimately in terms of the tetrahedral rotation angle, ϕ , and the model oxygen radius, *r*. From this, the coordinates can be recast in terms of the Si-O-Si angle, θ , and used to calculate the position of O1 and Si

APPENDIX FIGURE 1. Tetrahedral geometry. The line segment, h, connecting the midpoints of opposing edges in a regular tetrahedron with edge length 2r has length $\sqrt{2r}$.

Ideal β-quartz

APPENDIX FIGURE 2. Cell parameters of ideal β -quartz. c = $3\sqrt{2r}$, a = $\sqrt{6r}$.

APPENDIX FIGURE 3. Deriving the oxygen x-coordinate of ideal β -quartz.

APPENDIX FIGURE 5. Deriving the c cell edge of ideal α -quartz. Each dotted line passes through the midpoints of the edges of tetrahedra. Thus, the same vertical percentage of each tetrahedron is between dotted lines and c = 6za.

APPENDIX FIGURE 4. Deriving the oxygen positional coordinates of ideal α -quartz. za represents the length of the vertical line segment forming the right-hand side of the dotted triangle. zb represents the length of the dotted vertical line segment originating at and perpendicular to the ab-plane and ending at the uppermost corner of the tetrahedron. The ideal quartz structure in this example has an Si-O-Si angle of 130° and a tetrahedral rotation angle, φ , of 26.9°.

APPENDIX FIGURE 6. Important quantities in deriving a, xO2, and yO2. This ideal quartz structure in this example has an Si-O-Si angle of 145° and a tetrahedral rotation angle, φ , of 15.4° .

APPENDIX FIGURE 7. Deriving xO2 and yO2.

(see text). From Appendix Figure 4:

$$h = \sqrt{2r}$$

$$z_{a} = r \cdot \cos\phi/\sqrt{2}$$

$$z_{b} = r \cdot \sin(\phi + 45^{\circ})$$

by inspection of Appendix Figure 5, $c = 6z_a$

$$z_{02} = z_b/c$$

$$y_a = r \cdot \cos(\phi + 45^\circ)$$

$$y_b = h \cdot \cos\phi - 2y_a = \sqrt{2r \cdot \cos\phi} - 2r \cdot \cos(\phi + 45^\circ) = \sqrt{2r \cdot \sin\phi}.$$

From Appendix Figure 6:

$$y_c = y_a/2$$

$$x_a = (2/\sqrt{3}) \cdot (y_a + y_b + y_c)$$

$$x_b = x_a/2$$

$$x_c = (\sqrt{3}/2) \cdot y_a$$

$$a = x_a + x_b + x_c + h.$$

From Appendix Figure 7:

$$y_{02} = (2y_a/\sqrt{3})/a$$

 $x_{02} = (x_b + x_c + x_d + h)/a.$

Finally:

$$\begin{aligned} x_{\rm Si} &= (x_{\rm O2} + y_{\rm O2} + 1)/4 \\ x_{\rm O1} &= -x_{\rm O2} + y_{\rm O2} + 1 \\ y_{\rm O1} &= -x_{\rm O2} + 1 \\ z_{\rm O1} &= z_{\rm O2} - 1/3. \end{aligned}$$

To derive the relation between ϕ and the Si-O-Si angle, θ , examine the oxygen atom O2 at [x, y, z]. Form the vectors $\mathbf{v} = O2Si1$ and $\mathbf{w} = O2Si2$, where Si1 = [(x + y + 1)/4, 0, 0] and Si2 = [1, (x + y + 1)/4, 1/3]. Solve the equation $\cos\theta = \mathbf{v} \cdot \mathbf{w}/(||v|| ||w||)$, substitute the expressions for *x*, *y*, and *z* as functions of ϕ , and complete the square.