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The goal of the present section is to show that the size of the critical nuclei is smaller in 
experiments conducted in alkaline solution compared to water. First, one can express the quantity 
of carbonate ion for the two experiments (carbonation in water, alkaline solution) as follows:

[CO3
2–]wat

eq < [CO3
2–]alk

eq	 (A1)

where [CO3
2–]wat

eq and [CO3
2–]alk

eq represent the concentration of CO3
2– species in equilibrium with 

calcite under constant CO2 fugacity, in water and in the alkaline solution, respectively. The time 
needed for achievement of calcite saturation is considered arbitrary, and is called t0 in both cases. 
Because the initial pH values of both solutions were 3.1 and 5.6 (water and alkaline solution, 
respectively), and assuming that wollastonite dissolution rates are independent of pH in the range 
2–6 (Weissbart and Rimstidt 2000), then over an infinitesimal interval of time ∆t, the same amount 
of calcium (∆nCa

wat and ∆nCa
alk, respectively) is released to the fluid by wollastonite dissolution at 

each condition:

∆nCa
wat = ∆nCa

alk	 (A2)

Multiplying the left and right terms of Equation A1 by the respective number of incremental 
moles of Ca released (Eq. A2), and dividing by the volume, yields:

(∆nCa
wat/Vf) × [CO3

2–]wat
eq < [CO3

2–]alk
eq × (∆nCa

alk/Vf)	 (A3)

If activities are equated with aqueous concentrations, and the activity of calcite is unity, one can 
write:

Ks= [Ca2+]wat
eq × [CO3

2–]wat
eq = [Ca2+]alk

eq × [CO3
2–]alk

eq	(A4)

where [Ca2+]wat
eq and [Ca2+]alk

eq are the concentration of Ca2+ species in equilibrium with calcite 
under constant CO2 fugacity, in water and in the alkaline solution, respectively, and Ks is the 
equilibrium constant for the reaction:

CaCO3  Ca2+ + CO3
2–	 (A5)

Summing Equations A3 and A4, and rearranging the carbonate terms, results in:

[CO3
2–]wat

eq × (ΔnCa
wat/Vf + [Ca2+]wat

eq) < [CO3
2–]alk

eq × (ΔnCa
alk/Vf + [Ca2+]alk

eq)	(A6)

At this stage, each side of Equation A6 nearly represents the ion activity product of Equation A5 
at t0 +∆t in water and in alkaline solution, respectively, a point at which the fluid is supersaturated 
with respect to calcite, although it has not yet formed. This is, however, not exactly correct 
because the release of ∆nCa

wat (or ∆nCa
alk) to the respective solutions is necessarily accompanied 

by a pH increase and a concomitant modification of the fluid speciation. As revealed in Table 1, 
the carbonation reaction in both cases (water, alkaline solution) takes place at pH < pKa1 << pKa2 
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[where pKa1 and pKa2 stand for the pKa of the reactions CO2 + H2O → HCO3
– + H+ and HCO3

– → 
CO3

2– + H+, respectively, equal to 6.39 and 10.08 at 100 °C (CHESS ref.)]. Thus, in this acidic to 
circum-neutral pH range, the main effect of the consumption of protons by the dissolution step will 
be the decomposition of carbonic acid and production of HCO3

– species, while the concentration 
of CO3

2– species will remain approximately the same. Therefore, the following approximations 
can be considered as reasonable:

[CO3
2–]wat

eq + (∆nCO3
wat/Vf) ≈ [CO3

2–]wat
eq	 (A7a)

[CO3
2–]alk

eq + (∆nCO3
alk/Vf) ≈ [CO3

2–]alk
eq	 (A7b)

where ∆nCO3
wat and ∆nCO3

alk are the amount of CO3
2– species produced when ∆nCa

wat and ΔnCa
alk are 

released in water and in the alkaline solution respectively. Substituting [CO3
2–]wat

eq and [CO3
2–]alk

eq 
in Equation A6 by their values taken from Equations A7a and A7b, assuming that aqueous species 
concentrations are equivalent to activities and knowing that at t0 + ∆t, the fluid is supersaturated 
with respect to calcite, leads to:

0 < ∆Gr(CaCO3)t0+∆t
wat < ∆Gr(CaCO3)t0+∆t

alk		  (A8)

where ∆Gr(CaCO3)t0+∆t
wat and ∆Gr(CaCO3)t0+∆t

alk are the Gibbs free energy of calcite dissolution 
at t0 + ∆t in water and in the alkaline solution, respectively. Thus, the incremental dissolution of 
wollastonite results in a higher degree of calcite supersaturation in the alkaline solution compared 
to water. Two important consequences follow from this result. First, as the critical radius (rc) of a 
simple spherical nucleus is given by:

rc = 2γ/∆Gr	 (A9)

where γ is its surface tension, then, the combination of Equations A8 and A9 yields:

rc
alk < rc

wat	 (A10)

The difference in the critical radii may explain why calcite is more prevalent in the silica layer 
(nano-crystallites in pores and cracks) when carbonation takes place in an alkaline solution 
compared to water. Such crystals could in turn fill up the pores and cracks in experiments with 
alkaline fluid. Secondly, larger initial supersaturations lead to faster nucleation rates, which 
translates into more numerous and smaller crystal sizes. Similar reasoning could be used for the 
precipitation of C-S-H phases, leading to the same consequences as the ones described above 
with respect to the silica layer.

Appendix B

The purpose of the present section is to detail how the general diffusion equation (Eq. 
4) can be solved, supposing that: (1) the rate of retreat of the fluid–solid interface is nul (a = 0, 
see section “Mechanism of silica layer formation” for details), and (2) the outward diffusion of 
cations Ca2+ and the inward diffusion of H+ are coupled by an ion exchange reaction between H+ 
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and Mn+ species.
 The expression below can be used to describe binary cation diffusion behavior in silicate 

minerals (from Brady 1995; see original references therein):
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where the reaction is Az
+a

 Za
–z → Bz

+bZb
–z, DAZ

* and DBZ
* are the respective tracer diffusion coefficients 

for phases AZ and BZ, and NAZ and NBZ are the mole fractions for each phase. Neglecting the activity 
coefficient of Equation A11 (γAZ ≈ 1, see details in Hellmann 1997), the diffusion coefficient 
describing interdiffusion of monovalent species (H+) for divalent species (Ca2+) is given by the 
following simplified expression:

D
D D C

D C D C
Ca H

Ca H
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+

+ −
( )

( )
1

4 1

2

	 (A12)

DH is the diffusion coefficient of H+. Due to the non-linearity of the D  expression in terms of 
concentration and consequently depth, solving Equation 4 analytically is difficult. However, 
this equation can be linearized and then solved numerically using a finite-volume approach and 
implicit-explicit discretization. Theoretical Ca gradients are numerically approximated by the 
general following equation:
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where ∆x and ∆t are infinitesimal space and time intervals respectively, Ci
n is the concentrations 

of Ca at time t and at depth x, Ci
n+1, Ci+1

n+1, and Ci–1
n+1 are the concentrations of Ca at time t + 

∆t and at depth x, x + ∆x and x – ∆x, respectively. The parameter di
n  represents the diffusion 

coefficient at the boundary between two adjacent meshes at depths x – ∆x and x, respectively, 
and for the time t. These boundary diffusion coefficients can then be calculated from the values 
of the interdiffusion coefficients in each mesh (see Cassou 2000 for further explanations):
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where Di
n  is the interdiffusion within the ith mesh, and N is the total number of considered 

meshes during the course of the numerical simulation. This last expression takes into account 
the boundary conditions described earlier: there is a constant concentration at the “in-”boundary 
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flux of the first mesh and no flux at the “out-”boundary of the Nth mesh. Finally, the calculation 
of Ci

n+1 consists in solving the following system of Equation A15a which also comprises the 
initial conditions of Equation A15b:
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C i Ni
1 1 1= ∀ ∈ [ , ]  			   (A15b)


