Structure and elastic properties of quartz at pressure

LOUISE LEVIEN, **CHARLES T. PREWITT** AND **DONALD J. WEIDNER**

Department of Earth and Space Sciences
State University of New York
Stony Brook, New York 11794

Abstract

Unit cells and crystal structures were determined on a single crystal of quartz at seven pressures from 1 atm to 61.4 kbar. Unit-cell parameters are $a = 4.916(1)$ and $c = 5.4054(4)$Å at 1 atm, and $a = 4.7022(3)$ and $c = 5.2561(2)$Å at 61.4 kbar. Structural changes observed over this pressure range include a decrease in the Si–O–Si angle from 143.73(7)° to 134.2(1)°, a decrease in the average Si–O bond distance from 1.6092(7) to 1.605(1)Å, and an increase in distortion of the silicate tetrahedron. Several O–O distances show very large changes (11%) that can be related to the unit-cell-edge compression. As pressure is increased, the geometry of the SiO$_2$ (quartz) structure approaches that of the low-pressure GeO$_2$ (quartz) structure.

The structural changes that take place with increased temperature are not the inverses of those that occur with increased pressure; changes in the Si–O–Si angle and the tetrahedral tilt angle control thermal expansion, whereas smaller changes in the Si–O–Si angle and tetrahedral distortion control isothermal compression.

By constraining the zero-pressure bulk modulus to be equal to that calculated from acoustic data [$K_T = 0.371(2)$ Mbar], the pressure derivative of the bulk modulus at zero pressure [$K_T = 6.2(1)$] has been calculated by fitting the $P–V$ data to a Birch-Murnaghan equation of state. The anomalously low value of Poisson's ratio in quartz can be explained by the low ratio of the off-diagonal shear moduli to the pure-shear moduli. This small ratio reflects the easily expanding or contracting spirals of tetrahedra that behave like coiled springs.

Introduction

The literature on the crystal structure and compressibility of quartz leaves many questions about its changes with pressure. As high-pressure structural refinements have not been as precise as those performed under ambient conditions, these studies report large changes (e.g., the Si–O–Si interbond angle); however, subtle ones have not been previously resolvable. Recent experimental developments in our laboratory offer the potential of providing improved resolution in high-pressure structural data.

The crystal structure of quartz at room temperature and pressure has been refined many times (Young and Post, 1962; Smith and Alexander, 1963; Zachariasen and Plettinger, 1965; Le Page and Donnay, 1976; Jorgensen, 1978; d’Amour et al., 1979).

1 Present address: Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125.

0003-004X/80/0910-0920\times02.00