Word Count: 12,103 1 **Revision** 1 2 Wenjiite, $Ti_{10}(Si,P,\Box)_7$, and kangjinlaite, $Ti_{11}(Si,P)_{10}$, new minerals in the 3 ternary Ti-P-Si system from the Luobusa ophiolite, Tibet, China 4 5 Fahui Xiong^{1,2}, Xiangzhen Xu^{1,2}, Enrico Mugnaioli³, Mauro Gemmi³, Richard Wirth⁴, Jingsui 6 Yang^{1,5} and Edward S. Grew^{6*} 7 8 ¹Center for Advanced Research on the Mantle (CARMA), Key Laboratory of Deep-Earth 9 Dynamics of Ministry of Land and Resources, Institute of Geology, Chinese Academy of 10 Geological Sciences, Beijing 100037, China 11 ²Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, 12 China 13 ³Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia (IIT), Piazza San 14 Silvestro 12, 56127 Pisa, Italy 15 ⁴Helmholtz Centre Potsdam, GFZ (German Research Centre for Geosciences), 3.5 Surface 16 Geochemistry, Telegrafenberg, C 120, D-14473 Potsdam, Germany 17 ⁵School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China. 18 ⁶School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469 USA 19 E-mail: esgrew@maine.edu 20 21 22 Abstract

The new minerals wenjiite, $Ti_{10}(Si,P,\Box)_7$ (IMA2019-107c) and kangjinlaite, $Ti_{11}(Si,P)_{10}$ 23 (IMA2019-112b) occur with badengzhuite, zhiqinite and a K-bearing dmisteinbergite-like 24 mineral in a spheroid 20 µm across enclosed in corundum from the Cr-11 podiform chromitite 25 orebody near Kangjinla, Luobusa ophiolite, Tibet, China. In addition, wenjiite occurs with 26 deltalumite, jingsuiite, osbornite-khambaraevite and the K-bearing dmisteinbergite-like mineral 27 in a lamellar intergrowth 100 µm long, also enclosed in corundum from the same locality. The 28 new minerals were characterized by energy-dispersive spectroscopy and three-dimensional 29 electron diffraction, which enabled us to obtain an ab-initio structure solution and dynamical 30 refinement from grains a few µm across hosted in a FIB lamella. Four analyses of wenjiite from 31 the spheroid gave in wt% Si 21.67, P 6.24, Ti 66.39, V 1.37, Cr 2.20, Mn 0.97, Fe 1.17, total 100 32 (normalized), which corresponds to $(Ti_{0.93}Cr_{0.03}Mn_{0.01}Fe_{0.01}V_{0.02})_{10}(Si_{0.79}P_{0.21})_{6.51}$ on the basis of 33 10 cations excluding Si and P. The simplified formula is Ti₁₀(Si,P)_{6.5}, or more generally Ti₁₀Si_xP_y, 34 where x > y and $6 \le (x + y) \le 7$, i.e., $Ti_{10}(Si,P,\Box)_7$. Wenjiite has hexagonal symmetry, space 35 group: $P6_3/mcm$ (#193), with a = 7.30(10) Å, c = 5.09(10) Å, V = 235(6) Å³, Z = 1, and is 36 isostructural with xifengite, mavlyanovite, synthetic Ti₅Si₃ and synthetic Ti₅P_{3,15}. Four analyses 37 of kangjinlaite gave in wt% Si 25.56, P 9.68, Ti 62.35, V 0.21, Cr 0.83, Mn 0.42, Fe 0.95, total 38 39 100 (normalized), which corresponds to $(Ti_{10.65}V_{0.03}Cr_{0.13}Mn_{0.06}Fe_{0.14})_{\Sigma 11.01}(Si_{7.43}P_{2.55})_{\Sigma 9.99}$. The simplified formula is $Ti_{11}(Si,P)_{10}$. Kangjinlaite is tetragonal, with space group: I4/mmm (#139), a 40 = 9.4(2) Å, c = 13.5(3) Å, V = 1210(50) Å³, Z = 4, and is isostructural with synthetic compounds 41 42 of the Ho₁₁Ge₁₀ type, being the most compact of these phases. Despite there now being over 70 compounds containing 38 elements isostructural with Ho₁₁Ge₁₀, synthesis of an analogue of 43 kangjinlaite has not been previously reported in either the Ti-P or Ti-Si binary systems or in a 44 45 multicomponent system. The previously deduced crystallization sequence with decreasing

46	temperature of the 4 minerals in the spheroid wenjiite \rightarrow kangjinlaite \rightarrow zhiqinite +
47	badengzhuite is consistent with relationships reported in 9 binary systems containing
48	intermetallic compounds of Ge and Sn isostructural with Mn_5Si_3 and $Ho_{11}Ge_{10}$, in 8 of which the
49	Mn_5Si_3 analogue melts congruently, whereas the $Ho_{11}Ge_{10}$ analogue never does. Instead the
50	Ho ₁₁ Ge ₁₀ analogue melts peritectically, generally to an Mn ₅ Si ₃ analogue and less commonly to
51	compounds with 5:4 stoichiometry. Final crystallization of the spheroid to zhiqinite +
52	badengzhuite is expected to be well below the temperature of 1500 °C for the congruent melting
53	of zhiqinite in the Ti-Si system, i.e. in the range of $\sim 1100 - 1300$ °C.
54	
55	Keywords: Luobusa chromitite, wenjiite, kangjinlaite, intermetallic melts, crystal structure,
56	transmitting electron microscopy, 3-dimensional electron diffraction
57	*E-mail: <u>esgrew@maine.edu</u>
57 58	*E-mail: <u>esgrew@maine.edu</u> Introduction
57 58 59	*E-mail: <u>esgrew@maine.edu</u> Introduction Intermetallic phases are relatively rare in natural systems, being largely restricted to extra-
57 58 59 60	*E-mail: <u>esgrew@maine.edu</u> Introduction Intermetallic phases are relatively rare in natural systems, being largely restricted to extra- terrestrial environments. Most of these occurrences are dominated by iron, e.g., meteorites,
57 58 59 60 61	*E-mail: esgrew@maine.edu Introduction Intermetallic phases are relatively rare in natural systems, being largely restricted to extra- terrestrial environments. Most of these occurrences are dominated by iron, e.g., meteorites, whereas occurrences with minerals dominated by Ti are rare. Notable examples include a
57 58 59 60 61 62	*E-mail: esgrew@maine.edu Introduction Intermetallic phases are relatively rare in natural systems, being largely restricted to extra- terrestrial environments. Most of these occurrences are dominated by iron, e.g., meteorites, whereas occurrences with minerals dominated by Ti are rare. Notable examples include a fulgurite containing TiP (Essene and Fisher 1986), the type locality for native titanium (Fang et
57 58 59 60 61 62 63	*E-mail: <u>esgrew@maine.edu</u> Introduction Intermetallic phases are relatively rare in natural systems, being largely restricted to extra- terrestrial environments. Most of these occurrences are dominated by iron, e.g., meteorites, whereas occurrences with minerals dominated by Ti are rare. Notable examples include a fulgurite containing TiP (Essene and Fisher 1986), the type locality for native titanium (Fang et al. 2013; Dobrzhinetskaya et al. 2014) and inclusions in corundum from Mount Carmel, Israel
57 58 59 60 61 62 63 64	*E-mail: esgrew@maine.edu Introduction Intermetallic phases are relatively rare in natural systems, being largely restricted to extra- terrestrial environments. Most of these occurrences are dominated by iron, e.g., meteorites, whereas occurrences with minerals dominated by Ti are rare. Notable examples include a fulgurite containing TiP (Essene and Fisher 1986), the type locality for native titanium (Fang et al. 2013; Dobrzhinetskaya et al. 2014) and inclusions in corundum from Mount Carmel, Israel (e.g., Griffin et al. 2020, 2021), and the Luobusa ophiolite, Tibet, China (e.g., Xiong et al. 2020, 2021)
57 58 59 60 61 62 63 64 65	*E-mail: esgrew@maine.edu Introduction Intermetallic phases are relatively rare in natural systems, being largely restricted to extra- terrestrial environments. Most of these occurrences are dominated by iron, e.g., meteorites, whereas occurrences with minerals dominated by Ti are rare. Notable examples include a fulgurite containing TiP (Essene and Fisher 1986), the type locality for native titanium (Fang et al. 2013; Dobrzhinetskaya et al. 2014) and inclusions in corundum from Mount Carmel, Israel (e.g., Griffin et al. 2020, 2021), and the Luobusa ophiolite, Tibet, China (e.g., Xiong et al. 2020, 2021a, 2021b, 2022, this study). Although Ti-bearing intermetallic phases have wide applications
57 58 59 60 61 62 63 64 65 66	*E-mail: <u>esgrew@maine.edu</u> Introduction Intermetallic phases are relatively rare in natural systems, being largely restricted to extra- terrestrial environments. Most of these occurrences are dominated by iron, e.g., meteorites, whereas occurrences with minerals dominated by Ti are rare. Notable examples include a fulgurite containing TiP (Essene and Fisher 1986), the type locality for native titanium (Fang et al. 2013; Dobrzhinetskaya et al. 2014) and inclusions in corundum from Mount Carmel, Israel (e.g., Griffin et al. 2020, 2021), and the Luobusa ophiolite, Tibet, China (e.g., Xiong et al. 2020, 2021a, 2021b, 2022, this study). Although Ti-bearing intermetallic phases have wide applications and are thus extensively studied, naturally occurring compounds are being reported that have yet

69	Wenjiite and kangjinlaite are two such examples as they are the first ternary solid solutions to be
70	reported in the Ti-Si-P system, either natural or synthetic. End member Ti_5Si_3 was first
71	synthesized by Pietrokowsky and Duwez (1951) and has been widely studied due to its industrial
72	importance as a refractory silicide (e.g. Frommeyer and Rosenkranz, 2004). This end member is
73	isostructural with the minerals xifengite, Fe_5Si_3 (Yu et al. 1984) and mavlyanovite (Yusupov et
74	al. 2009), Mn_5Si_3 , as well as with synthetic Ti_5P_{3+x} (Bärnighausen et al. 1965; Lundström and
75	Snell 1967). In contrast, no compound isostructural with kangjinlaite has been reported in either
76	the Ti-P or the Ti-Si system. Instead, kangjinlaite is isostructural with synthetics of the Ho ₁₁ Ge ₁₀
77	type, the structure of which was first determined by Smith et al. (1967). At present, the structures
78	of over 70 phases composed of 38 elements have been shown to be isostructural with $Ho_{11}Ge_{10}$.
79	Research on phases of the Ho ₁₁ Ge ₁₀ type has been motivated by their potential energy-converting
80	or saving capabilities as magnetocaloric or thermoelectric materials because global demands for
81	alternative energy resources has stimulated a renewed interest in thermoelectric materials for use
82	in power generation (Rauscher et al. 2007; Jeon et al. 2016).
83	
84	The present paper describes wenjiite and kangjinlaite, which were reported preliminarily in
85	Xiong et al. (2021a,b). Their characterization as new minerals is largely based on the spheroid in
86	foil #5358, also the holotype specimen for badengzhuite and zhiqinite (Xiong et al. 2020). We
87	consider the implications of wenjiite and kangjinlaite for understanding intermetallic phases for
88	natural parageneses and synthetic assemblages. The structures of both minerals were determined
89	ab-initio and dynamically refined by 3-dimensional electron diffraction (Kolb et al. 2007;
90	Mugnaioli and Gemmi 2018; Gemmi et al. 2019; Steciuk et al. 2019a,b; Mugnaioli et al.
91	2020a,b).

92

Methods

Preparation of corundum separates from the Cr-11 chromitite body and evidence for a natural origin of the corundum

Corundum and the unusual minerals included therein were extracted by processing ~ 1100 kg of 95 chromitite at the Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy 96 97 of Geological Sciences, Zhengzhou, including massive, disseminated, and nodular ores from the Cr-11 orebody near Kangjinla, a process carried out with great care as described in detail by Xu 98 et al. (2009, 2015). In brief, the samples were first passed through a jaw crusher and then ground 99 100 in stages to three sizes, and the minerals were separated from each size fraction by a combination of gravity, magnetic and electrostatic techniques. The mineral concentrates were handpicked 101 under a binocular microscope, and the selected minerals mounted in epoxy and then ground to 102 about half their thickness. The grains were polished using man-made diamond grinding grease 103 and cleaned in an ultrasonic bath. As far as we are aware, no industrial alumina was used at any 104 105 stage of the extraction process.

106 Despite the assertions that contamination of the separates was unlikely, the occurrence of highly

reduced phases in the Luobusa ophiolite remains controversial. Litasov et al. (2019a,b)

108 contended that the separates were contaminated by brown fused alumina used in abrasives,

whereas Ballhaus et al. (2017, 2018, 2021) argued formation of the highly reduced phases at

110 mantle depths was unlikely. After reviewing the arguments for and against a natural origin,

111 Xiong et al. (2020, 2022) concluded the preponderance of evidence favored a natural origin of

the corundum grains and the highly reduced phases enclosed in these grains from the Cr-11

113 chromitite deposit.

115 Transmission electron microscopy and the focused ion beam technique

At the GFZ Potsdam, transmission electron microscopy (TEM) and the focused ion beam (FIB) 116 technique (for details of method in general, see Wirth 2004, 2009) were used to prepare foils 117 #5357, #5358 and #6034 for subsequent EDX and 3-dimensional electron diffraction analysis at 118 the Istituto Italiano di Tecnologia. TEM requires that samples be prepared as foils sufficiently 119 120 thin to be transparent to electrons (generally, the foil thickness is less than 200 nm). Electron transparent foils were prepared with a FIB. Typical TEM foils have the dimensions $15 \times 10 \times 0.20$ 121 μm. A FIB single beam device (FEI FIB 200 TEM) was used for sample preparation. For this, a 122 123 Ga-ion beam (30 keV acceleration voltage) is focused onto a selected location of the sample surface to sputter material from the sample. We exclude the possibility that FIB preparation can 124 induce a phase transition in an intermetallic phase such as wenjiite or kangjinlaite. In addition, 125 amorphisation was never detected in our samples. 126

127

128 Energy dispersive X-ray analyses

129 Chemical analyses of minerals in foils #5358 and #6034 were carried out at the Istituto Italiano

di Tecnologia (IIT), Center for Nanotechnology Innovation@NEST, Pisa, using energy

dispersive X-ray spectroscopy (EDX) with a Bruker EDX XFlash6T-60 detector mounted on a

132 Zeiss Libra TEM operating at 120 kV.

133

EDX quantifications used the thin-specimen approximation by Cliff and Lorimer (1975). We did not use standards, consequently the reported weight percent derive from the initial calibration of the instrument. The absence of any significant drift is evident in the precision of the analyses at 4 closely spaced analyses of wenjiite (Fig. 1), that is, the 1-sigma errors range mostly 4-10 % for

138	the three major constituents, Si, P and Ti at each of the 4 spots analysed over a 6-month period
139	from June to December, 2019 (columns 1-4 in Table 1) and mostly from 3 to 10 wt % for an
140	average of all 4 spots analysed (column 5, Table 1). Similarly, the absence of significant drift
141	over the 6-month period that kangjinlaite was analysed is evident in the precision of the analyses
142	at 4 closely spaced analytical spots (Fig. 1). That is, the 1-sigma errors range from 4 to 8 wt% for
143	the three major constituents, Si, P and Ti at each of the 4 spots analysed (columns 1-4 in Table 2)
144	and from 3 to 7 wt % for an average of all 4 spots analysed (column 5, Table 2). Since the
145	precision for the average analysis is the same as for the individual analyses of both minerals, we
146	conclude that there was negligible drift over this 6-month period.
147	
148	Although the EDX analyses of wenjiite and kangjinlaite were standardless, badengzhuite and
149	zhiqinite analysed concurrently with kangjinlaite on June 27, 2019 could be used as internal
150	standards because of their simple stoichiometry, TiP and TiSi ₂ , respectively. The results on these
151	internal standards give their stoichiometry as close to ideal, $Ti_{1:020}P_{0:980}$ and $Ti_{0:905}Si_{2:095}$,
152	respectively (Xiong et al. 2020). Since there is no evidence for significant drift, data on the
153	internal standards at one session can be applied to other sessions.
154	
155	Three-dimensional electron diffraction and structure analysis
156	3-dimensional electron diffraction (3D ED) data (Gemmi et al. 2019) were acquired on foils
157	#5357, #5358, and #6034 with a Zeiss Libra TEM operating at 120 kV and equipped with a LaB_6
158	source at the Istituto Italiano di Tecnologia (IIT), Center for Nanotechnology Innovation@NEST,
159	Pisa, whereas structure analysis was carried out only on foil #5358 (Fig. 1). 3D ED was
160	performed in STEM mode after defocusing the beam in order to have a parallel Köhler
161	illumination on the spot being analyzed. A beam size of about 150 nm in diameter was obtained

by inserting a 5 µm C2 condenser aperture. An extremely low dose illumination was used in 162 order to avoid any possible amorphization of the sample. A 150 nm diameter beam results in a 163 considerable reduction of resolution. Nonetheless, we can generally see features of few hundreds of 164 165 nanometers across, because the STEM step is still very small. For foil #5358, difficulties for crystal 166 tracking were not connected with the defocusing of the beam, but with the different phases having a 167 similar density, which mostly determines contrast in STEM. Fortunately, dimensions of the areas for 168 wenjiite and kangjinlaite are large compared to our 150 nm beam, and no reduction of data quality is to be expected. In contrast, analyzing badengzhuite (TiP) and zhiqinite (TiSi₂) in the same FIB lamella was a 169 170 challenge (Xiong et al. 2020). For both wenjiite and kangjinlaite data were collected in a relatively thin 171 area close to the FIB lamella edge, still a greater thickness than conventional powdered samples has to be expected. This increases the relative amount of dynamical scattering. 172 173 174 175 The best data for use in structure solution and refinements were collected from foil #5358 using an angular step of 1° and in total tilt range of 110° (from -50° to +60°), using an omega energy-176 177 filter for cutting-out the inelastic scattering. After each tilt, a diffraction pattern was acquired and crystal position tracked by defocused STEM imaging. During the experiment, the beam was 178 precessed around the optical axis by an angle of 1° (Vincent and Midgley 1994), as first 179 180 described by Mugnaioli et al. (2009). Precession was obtained using a Nanomegas Digistar P1000 device. Diffraction patterns were recorded by an ASI Timepix single-electron camera 181 182 (Nederlof et al. 2013). 183 3D ED data were analyzed using the software PETS (Palatinus et al. 2019). Ab-initio structure determination was obtained by standard direct methods (SDM) as implemented in the software 184 SIR2014 (Burla et al. 2015). Data were treated with a fully kinematical approximation, i.e. 185

186	neglecting dynamical scattering and assuming that I_{hkl} was proportional to $ F_{hkl} ^2$. Least-squares
187	structure refinement was performed with the software JANA2006 (Petříček et al. 2014) using the
188	dynamical refinement procedure described by Palatinus et al. (2015a,b). For kangjinlaite all
189	available 111 diffraction patterns were used for the refinement, whereas for wenjiite 18 patterns
190	were discarded due to bad quality. Some thermal parameters, especially for Ti, tend to turn
191	negative during dynamical refinement. Therefore, all thermal parameters were constrained to the
192	value 0.005 Å ²
193	More details about structure determination and refinement are reported in the supplements
194	(Tables S1 and S2).
195	The visualization of the 3D ED data was obtained by the software ADT3D (Kolb et al. 2011) and
196	structure sketches were drawn by the software VESTA (Momma and Izumi 2011).
197	
198	Powder pattern
100	
155	X-ray powder diffraction data for wenjiite (Appendix Table S3 and Figure S1) and kangjinlaite
200	X-ray powder diffraction data for wenjiite (Appendix Table S3 and Figure S1) and kangjinlaite (Table S4 and Figure S2) were obtained by simulation in Debye-Scherrer geometry with a
200 201	X-ray powder diffraction data for wenjiite (Appendix Table S3 and Figure S1) and kangjinlaite (Table S4 and Figure S2) were obtained by simulation in Debye-Scherrer geometry with a monochromatic Cu K α_1 radiation (λ =1.540598) using the software PowderCell 2.4.
200 201 202	X-ray powder diffraction data for wenjiite (Appendix Table S3 and Figure S1) and kangjinlaite (Table S4 and Figure S2) were obtained by simulation in Debye-Scherrer geometry with a monochromatic Cu K α_1 radiation (λ =1.540598) using the software PowderCell 2.4.
200 201 202 203	X-ray powder diffraction data for wenjiite (Appendix Table S3 and Figure S1) and kangjinlaite (Table S4 and Figure S2) were obtained by simulation in Debye-Scherrer geometry with a monochromatic Cu K α_1 radiation (λ =1.540598) using the software PowderCell 2.4. Electron Backscattered Diffraction (EBSD)
200 201 202 203 204	X-ray powder diffraction data for wenjiite (Appendix Table S3 and Figure S1) and kangjinlaite (Table S4 and Figure S2) were obtained by simulation in Debye-Scherrer geometry with a monochromatic Cu K α_1 radiation (λ =1.540598) using the software PowderCell 2.4. Electron Backscattered Diffraction (EBSD) EBSD was used for the identification of wenjiite and associated minerals in sample G7708 only.
200 201 202 203 204 205	X-ray powder diffraction data for wenjiite (Appendix Table S3 and Figure S1) and kangjinlaite (Table S4 and Figure S2) were obtained by simulation in Debye-Scherrer geometry with a monochromatic Cu K α_1 radiation (λ =1.540598) using the software PowderCell 2.4. Electron Backscattered Diffraction (EBSD) EBSD was used for the identification of wenjiite and associated minerals in sample G7708 only. Sample surface preparation included stepwise diamond polishing followed by a 30–45 minute
200 201 202 203 204 205 206	X-ray powder diffraction data for wenjiite (Appendix Table S3 and Figure S1) and kangjinlaite (Table S4 and Figure S2) were obtained by simulation in Debye-Scherrer geometry with a monochromatic Cu K α_1 radiation (λ =1.540598) using the software PowderCell 2.4. Electron Backscattered Diffraction (EBSD) EBSD was used for the identification of wenjiite and associated minerals in sample G7708 only. Sample surface preparation included stepwise diamond polishing followed by a 30–45 minute chemo-mechanical polishing step in a suspension of sequential 25 nm, 10 nm and 5nm colloidal
200 201 202 203 204 205 206 207	X-ray powder diffraction data for wenjiite (Appendix Table S3 and Figure S1) and kangjinlaite (Table S4 and Figure S2) were obtained by simulation in Debye-Scherrer geometry with a monochromatic Cu K α_1 radiation (λ =1.540598) using the software PowderCell 2.4. Electron Backscattered Diffraction (EBSD) EBSD was used for the identification of wenjiite and associated minerals in sample G7708 only. Sample surface preparation included stepwise diamond polishing followed by a 30–45 minute chemo-mechanical polishing step in a suspension of sequential 25 nm, 10 nm and 5nm colloidal silica (pH 9.8) to eliminate any mechanical damage. No carbon coating was applied in order to

209	emission scanning electron microscope (FEI-SEM Quanta450) equipped with the Nordlys Max2
210	EBSD camera commercialized by Oxford Instruments, housed in Institute of Geology, Chinese
211	Academy of Geological Sciences. The microscope working conditions were the same for all
212	analyses, with an acceleration voltage of 20 kV, a probe current of \sim 1.1 nA, a stage tilt of 70°,
213	and a working distance of 23 mm.
214	
215	Mineral names and deposition of holotype material
216	The first new mineral and its name, wenjiite, was approved by the IMA CNMNC (IMA2019-
217	107c) (Xiong et al. 2021a). The mineral is named for Bai Wenji, born in China, Jilin Province,
218	October 15, 1935, and died January 11, 2019. In the literature, his name is written with "Bai" as
219	his surname and "Wenji" as his given name. His professional career began in 1958. He was
220	Research Professor of Institute of Geology, Chinese Academy of Geological Sciences. He was
221	the first person to find diamonds, native Fe and other special minerals in chromitite in the
222	Luobusa ophiolite in 1981. He carried out detailed research on many suture zone ophiolite
223	chromitites in China, including Dongqiao, Hegenshan and Sartuohai. He discovered and named 7
224	new mineral species and was first or second author on the articles reporting them, including
225	luobusaite, linzhiite, naquite, zangboite, yarlongite, qusongite, native titanium. He was also the
226	first or co-author of about 50 papers and two Chinese Geologic Books.
227	The second new mineral and its name, kangjinlaite, was approved by the IMA CNMNC
228	(IMA2019-112b) (Xiong et al. 2021b). The mineral is named for Kangjinla, the district in which
229	the chromitite orebody Cr-11 is located.
230	The holotype specimen of both wenjiite and kangjinlaite has been submitted to the Chinese
231	Geological Museum, Xisiyangrouhutong 15th, Xicheng District, Beijing, China. The number

assigned to this specimen is M16104 (source of foil no. 5358). Foil no. 5358, designated as the
holotype sample of both minerals, is to be kept with the specimens in the Chinese Geological
Museum.

- 235
- 236

Results

237 Occurrence and morphology

Wenjiite and kangjinlaite occur in the Cr-11 orebody, one of several significant chromitite 238 deposits in the Luobusa ophiolite, which is located about 200 km east-southeast of Lhasa. The 239 240 Cr-11 orebody, elevation of 5 300 m, is located at 29°11' N, 92°18' E, is the largest ore body of the Kangjinla mining area, and now has an increase of 300,000 tons of reserves. The orebody Cr-241 11 is a podiform body, 0.3–10.5 m thick, at least a length of 330m now, which strikes 105° and 242 dips 50°–72° SW. Rutile and REE minerals were found as inclusions in corundum from Cr-11. 243 244 Wenjiite is found in several inclusions, together with kangjinlaite in one, of highly reduced 245 compounds enclosed in corundum. Identification was confirmed by 3-dimensional electron 246 diffraction data obtained at one point each in foils #5358 (holotype, Fig. 1), #5357 (Xiong et al. 247 248 2022, Fig. 4) and #6034 (Fig. 2), and by electron backscattered diffraction in G7708 (Fig. 3). There are four modes of occurrence for wenjiite and one of kangjinlaite: 249 ---(1) Wenjiite and kangjinlaite together constitute about 50% of a spheroid 20 μ m across 250 251 enclosed in corundum (brighter patches in BSE image in the inset, Fig. 1). Zhiqinite, TiSi₂, constitutes much of the remainder of the spheroid (less bright phase in BSE image). Wenjiite and 252 kangjinlaite cannot be distinguished visually in the high-angle annular dark-field scanning-253 254 transmission electron microscope (HAADF-STEM) image; chemical analyses and electron

255	diffraction were required to distinguish them. The two minerals are readily distinguished from
256	zhiqinite, which forms an aggregate composed of individual grains mostly 1 to 2 μ m long,
257	several of which have a tabular habit. The zhiqinite aggregate encloses globules $\leq 1 \ \mu m$ across of
258	badengzhuite, TiP. A K-bearing dmisteinbergite-like mineral has a direct contact with wenjiite.
259	Xu et al. (2018) illustrated a similar spheroid ~15 μ m in diameter from the same locality. It is
260	composed of two grains \sim 5 µm across of Ti-Si-P that could be wenjiite and kangjinlaite
261	surrounded by a matrix rich in Si, most likely zhiqinite, studded with grains $< 1 \ \mu m$ across rich
262	in P, presumably badengzhuite. Electron microprobe analyses reported by Xu et al. (2018) are
263	consistent with these provisional identifications.
264	(2) An incomplete overgrowth of wenjiite up to 20 μ m thick around a jingsuiite grain about 40
265	μ m across in association with osbornite-khamrabaevite (Xiong et al. 2022, Fig. 4).
266	(3) A platelet of wenjiite flattened // (100) occurs in a lamellar intergrowth with jingsuiite,
267	khamrabaevite-osbornite and deltalumite, (Al, Mg, \Box)Al ₂ O ₄ , in foil #6034 (Fig. 2). The relative
268	orientation of the phases was determined by 3-dimensional electron diffraction to be jingsuiite
269	(001) // khamrabaevite-osbornite (111) // deltaluminite (111) // interstitial K-bearing
270	dmisteinbergite-like mineral (001) //wenjiite (100). The surrounding corundum areas all have the
271	same orientation, which implies that these areas belong to a single crystal. However, the
272	crystallographic orientation of corundum does not appear to be related to the crystallographic
273	orientations of the inclusions.
274	(4) Wenjiite forms two grains up to 20 μ m in the longest dimension (Fig. 3) with osbornite and
275	a Ti-Zr-Al-Si oxide close to carmeltazite in stoichiometry. However, attempts to confirm
276	identification as carmeltazite using EBSD were not successful as matches for kangjinlaite and
277	Ti ₅ Si ₄ as well as for carmeltazite were obtained. Jingsuiite is also present, but not in contact with

278 wenjiite.

279

Nowotny et al. (1959, Fig. 1) synthesized 6-sided prismatic crystals of the end member
composition Ti₅Si₃ by sublimation from a gas phase. The crystals are 0.5 mm across and 5 mm
long (elongation // [001]) and are terminated by pyramidal faces. Frommeyer and Rosenkranz
(2004) reported twinning in the synthetic Ti₅Si₃ end member, but none has been found in natural
wenjiite.

285

286 Physical and optical properties

The natural material is too fine-grained for physical properties to be observable, but properties have been reported from synthetic wenjiite. No synthetic analogue is available for kangjinlaite as this compound has never been synthesized. Synthetic end member wenjiite (Ti_5Si_3) is silvery gray (Krikorian, 1955), whereas Hahn and Ness (1957) reported sublimation of synthetic wenjiite to a thin violet film or to a silvery gray coating of crystals. The lustre is metallic (Krikorian, 1955). The hardness (Mohs) is $6\frac{1}{2}$ as estimated from the Vickers hardness (Microindentation) of 970 ± 20 in Vickers scale (load 1 kp Frommeyer and Rosenkranz, 2004). The

densities calculated from cell parameters, structural model and EDX data are $4.762 \text{ g} \cdot \text{cm}^{-3}$ for

wenjiite and 4.538 g·cm⁻³ for kangjinlaite. The measured density is reported to be 4.32 g·cm⁻³ for

end member Ti_5Si_3 (Frommeyer and Rosenkranz, 2004).

297

298

299 Chemical composition

Wenjiite was analysed at 4 spots in foil #5358 (Fig.1, Table 1), the holotype sample, and at 4

301	spots on foil #6034 (Fig. 2, Table 3). EDX spectra revealed the presence of Si, P, Ti, V, Cr, Mn
302	and Fe in both minerals. Relatively few net counts of O were detected during EDX analyses
303	(Tables 1, 3), and we conclude that O is not present, and by extension, neither H_2O nor CO_2 is
304	present.
305	
306	The two EDX chemical analyses numbered 413 and 466 and the 3-dimensional diffraction data
307	of wenjiite were collected within the area marked by the large white square in Figure 1 or very
308	close, whereas the two analyses numbered C31 and C32 were collected within 1 $\mu m.$ The two
309	sets of EDX analyses are nearly identical. We believe that we are justified in concluding there is
310	complete crystallographic continuity in the immediate vicinity of the square, and thus all four
311	EDX analyses were obtained on the same crystal and could be averaged (Fig. 1).
312	
313	The empirical formulae for the averages calculated on the basis of 10 cations excluding Si and P,
314	a normalization consistent with the crystallographic data, yielded
315	$(Ti_{0.93}Cr_{0.03}Mn_{0.01}Fe_{0.01}V_{0.02})_{10}(Si_{0.79}P_{0.21})_{6.51}$ for wenjiite in foil #5358. The ideal formula based
316	on this average is $Ti_{10}Si_xP_y$, where $x > y$ and $6 \le (x + y) \le 7$). The end member $Ti_{10}Si_6$ requires
317	73.96, Si 26.04, Total 100 wt%. The ideal formula can also be written $Ti_{10}(Si,P,\Box)_7$ where $0 \leq \Box$
318	\leq 1 on the basis of the crystal structure, that is, $\square \approx 0.5$ for wenjiite in foil #5358. In contrast the
319	4 analyses of wenjiite in foil #6034 give an average of $Ti_{0.90}Cr_{0.03}Fe_{0.06}Mn_{0.01})_{10}(Si_{0.65}P_{0.35})_{5.72}$,
320	that is, $Si + P < 6$ per formula unit (Fig. 4). However, EDX analyses on foil #6034 were done
321	with a non-analytical TEM holder, and therefore a small increase of Ti signal had to be expected.
322	As a result, we will consider only the analyses from foil #5358 in deducing the compositional
323	range of wenjiite.

524	
325	Kangjinlaite was analysed at 4 spots in two areas in foil #5358 (Fig. 1, Table 2). The empirical
326	formula calculated on the basis of 21 cations from the average (Fig. 4), a normalization
327	consistent with the crystallographic data indicating that all the Ti and (Si, P) sites are fully
328	occupied, gave $(Ti_{10.65}V_{0.03}Cr_{0.13}Mn_{0.06}Fe_{0.14})_{\Sigma 11.01}(Si_{7.43}P_{2.55})_{\Sigma 9.99}$. The simplified formula is
329	$Ti_{11}(Si,P)_{10}$, and the ideal end member formula is $Ti_{11}Si_{10}$, which requires Ti 65.21, Si 34.79,
330	Total 100 wt%. Kangjinlaite has a higher $X_P = P/(P + Si)$ [atomic] than associated wenjiite (Fig.
331	4).
332	
333	Powder X-ray diffraction patterns
334	The simulated powder X-ray powder patterns are included in the supplements (Tables S1 and S2;
335	Fig. S1 and S2) to aid investigators identify Ti-Si-P phases in the absence of single-crystal X-ray
336	or electron diffraction data.
337	
338	Wenjiite crystal structure
339	Projections of the 3-dimensional reconstructed diffraction volume for wenjiite in foil #5358 are
340	shown in Figure 5. The input composition was $Ti_{10}Si_{5.4}P_{1.6}$. The 3-dimensional electron
341	diffraction data set collected after energy-filtering the inelastic scattering gave a nice ab-initio
342	structure solution in space group $P6_3/mcm$. This solution showed two sites for Ti and one site for
343	(Si,P); the difference Fourier map shows two significant potentials: one positive close to $(0,0,0)$
344	and one negative along $(\frac{2}{3}, \frac{1}{3}, z)$.
345	The next step was a dynamical refinement. The negative potential almost disappeared, whereas

the positive one got stronger. This is a clear hint of an 'interstitial' atom at (0,0,0). The average

of 4 EDX analyses suggest for this site an occupancy of 0.51.

348

Subsequently an (Si,P) atom was placed at (0,0,0) and refined again. In the first attempt we 349 constrained only the overall Si:P ratio as determined by EDX and the total occupancy of 0.5 for 350 the "interstitial" Si/P site at (0,0,0), while the Si:P ratio was freely refined for both Si/P sites. In 351 352 this case the interstitial site is fully occupied by Si. On the other hand, P may be more consistent with the smaller space of the interstitial position, so the structure was refined a second time, 353 keeping the interstitial position fully occupied by P. For a third attempt, the structure was refined 354 355 so that Si:P ratio was fixed to be the same value for both (Si,P) positions. The output of these three refinements is very close in terms of residual. Therefore we decided to accept the third one 356 (Tables 4, S3) out of caution, that is, in order to avoid extracting from our data more information 357 than we can be confident of extracting. The final agreement factors are: R(3sigma)=0.1258, 358 wR(3sigma)=0.1604; R(all)=0.1970 and wR(all)=0.1707 (see attached CIF). We finally note that 359 the Si2/P2 site is less strictly coordinated than the Si1/P1 and is at least 50% vacant. Considering 360 this situation, we are not surprised to have ended up with an anomalously high thermal parameter 361 for this site. 362

363

An additional refinement was attempted after reducing the symmetry to $P-3_1m$, thereby giving only one interstitial atom per cell, but with full occupancy. This refinement yielded a strong positive potential in the Fourier map exactly where the second interstitial atom is supposed to be. This means that disorder is present at the scale of few tens of nanometers, and therefore $P6_3/mcm$ is the correct choice for the space group.

370	Further confirmation that the refinement is reasonable is provided by the relative lengths of
371	cation-cation bonds, which are very consistent with bond lengths reported for Ti_5Si_3 and $Ti_5P_{3^+x}$
372	(Table 5). Bonds that are relatively short in the binary compounds are relatively short in wenjiite
373	and conversely, bonds that are relatively long in the binary compounds are relatively long in
374	wenjiite.
375	
376	The structure of wenjiite (Fig. 6) hosts two crystallographically independent Ti atoms. Til is
377	coordinated with six (Si,P) atoms inside a rather distorted octahedron. Ti2 is instead coordinated
378	with five fully occupied (Si,P) atoms and two half-occupied interstitial (Si,P) atoms. Both
379	coordination polyhedra are closely packed in a face-sharing configuration. When the interstitial
380	(Si,P) atoms are removed from the structure, we observe a channel at $(0,0,l)$, with a relatively
381	large diameter of about 5.2 Å.
382	
383	Kangjinlaite crystal structure
384	The three-dimensional electron diffraction data of kangjinlaite were collected from foil #5358
385	(Fig. 1). The input composition was $Ti_{11}(Si_{7.4}P_{2.6})_{\Sigma 10}$.
386	
387	The reconstructed 3-dimensional diffraction volume is consistent within experimental error with
388	a <i>F</i> -centered cubic cell having $a = 13.4(3)$ Å (Fig. 7). No further extinction was detected,
389	suggesting the extinction symbol ' F '. Structure solutions were attempted in all related
390	space groups (F23, Fm-3, F432, F-43m and Fm-3m), but no stable and crystal-chemical sensible
391	model could be obtained.
392	Symmetry was then reduced to tetragonal I4/mmm, taking into account all the three

393	possible axis choices. Only one of these settings, the one with the longest parameter associated
394	with the unique c axis, allowed a consistent structure determination. The resulting cell
395	parameters are $a = 9.4(2)$ Å, $c = 13.5(3)$ Å (Fig. 7).
396	Structure solution was obtained by SIR2014 (Burla et al., 2015) using scattering factors
397	for electrons and kinematical approximation. The potential map showed nine well-resolved
398	peaks. The strongest four peaks were interpreted as Ti positions, while the other five peaks were
399	interpreted as mixed (Si,P) positions. The resulting stoichiometry is $Ti_{11}(Si,P)_{10}$.
400	The structure (Tables 6, 7, S4; Fig. 8) was subsequently refined by both kinematical and
401	dynamical methods, using the software JANA2006 (Petříček et al., 2014; Palatinus et al.,
402	2015a,b). No geometrical restraint or constraint was imposed. In both refinements most of
403	thermal parameters turn negative, arguably as a consequence of the thickness of the FIB lamella
404	from which data were recorded. Dynamical refinement converged with $wR(all) = 17.08\%$. We
405	did not attempt to refine the Si-P distribution due to the close scattering values of these two
406	atomic species.
407	
408	The structure of kangjinlaite belongs to the Ho ₁₁ Ge ₁₀ type (Smith et al., 1967) and can be
409	described by an assembly of face-sharing coordination polyhedra centered on four
410	crystallographically independent Ti atoms. Ti atoms are coordinated with 7 to 8 (Si,P) atoms,
411	with interatomic Ti-(Si,P) distances ranging between 2.39 and 2.81 Å. Like for all Ho ₁₁ Ge ₁₀ -type
412	structures, some Ti-Ti and Si-Si interatomic distances are unusually short. In particular, Si1
413	atoms form a squared cluster with side of 2.41 Å, an unusual feature already spotted by Smith et
414	al. (1967) and resembling the aromatic Si4 rings described by Liu & Wang (2018) and the
415	germanium-iron cluster described by Wolf et al. (2013).

416

417

Discussion

- 418 Compositional range covered by the mineral wenjiite
- In defining a compositional range for wenjiite and its P analogue we have taken into
- 420 consideration the following: (1) crystallographic studies of synthetic P and Si analogues (e.g.,
- Bärnighausen et al. 1965; Lundström and Snell 1967; Thom et al. 2000; Williams et al. 2000a,b;
- Bilibrov et al. 2014), (2) compositional data on the synthetic Ti-Si and Ti-P binary analogues of
- 423 wenjiite (Fiore et al., 2016; Okamoto, 2007) and (3) compositional and crystallographic data
- obtained on naturally occurring ternary wenjiite (this study). After consideration of these studies,
- 425 we propose the formula $Ti_{10}Si_xP_y$, where $6 \le (x + y) \le 7$, i.e., $Ti_{10}(Si,P,\Box)_7$ with $0 \le \Box \le 1$, for
- 426 wenjiite. This formula expresses the potential compositional range for wenjiite and its P-
- 427 dominant analogue (Fig. 4).
- 428

The upper limit of Si + P = 7 (\Box = 0) per formula unit proposed for wenjiite and its P analogue is 429 430 dictated by occupancy of the interstitial (0, 0, 0) site (Si2/P2 in Table 5). There is no crystallographic evidence for $\Box > 1$, i.e., for vacancies at the Si1/P1 site either in published 431 refinements or in our own structure refinement. Synthetic compounds incorporating elements at 432 the interstitial site have been extensively studied and have been given the formula $Ti_{10}Si_6X_2$ 433 where X denotes the occupant of the interstitial site and includes B, C, N or O (e.g., Thom et al. 434 2000; Williams et al. 2000a; Bilibrov et al. 2014, Corbett 2000; Corbett et al. 1998). In most 435 cases, the interstitial site in these compounds is not more than 50% occupied, that is one atom of 436 B, C, N or O per formula unit or $Ti_{10}Si_6X_1$ (e.g., Thom et al. 2000; Williams et al. 2000a). 437

460	Kangjinlaite – a new compound of the Ho ₁₁ Ge ₁₀ type
459	to be more compelling than the compositional data reported in Table 3 and in the literature.
458	resulting in a small increase in the Ti signal. Consequently, we consider the crystallographic data
457	expected because the EDX analyses on foil #6034 were done with a non-analytical TEM holder,
456	ranging from ~5.5 to ~7.0 per formula unit ($\Box \approx 0$ -1.5, Fig. 4). Lower (Si + P) contents would be
455	reveal deviations from the ideal stoichiometry of $Ti_{10}Si_6$ and $Ti_{10}P_6$, resulting in (Si + P) contents
454	available compositional data on the binary Ti-Si and Ti-P analogues of wenjiite. These data
453	for Si + P is our choice for wenjiite and its P analogue despite this limit not being consistent with
452	are no reports of vacancies at Si1/P1 sites, and thus setting Si + P = 6 (\Box = 1) as the lower limit
451	Determining the lower limit of (Si + P) in wenjiite is more problematic. As noted above, there
450	
449	exceeding 7 (Si, P) per formula unit in wenjiite from foil #5358 (Fig. 4).
448	Bärnighausen et al. (1965) and Lundström and Snell (1967) and by the maximum Si content not
447	Å (Table 5). This constraint is consistent with the 15-31% P occupancy reported by
446	expected not to be more than 50% occupied because of the very short (Si,P)2-Ti distance of 2.16
445	subordinate, if any, role in wenjiite. Instead, $X = Si$ and/or P, in which case the interstitial site is
444	kangjinlaite, zhiqinite or badengzhuite, do not contain H. Thus, we conclude H plays a
443	analyzed. In our case we have no evidence of H in any of the surrounding phases, that is,
442	only for measuring accurate cell parameters, and the synthesized products were not chemically
441	appear that the presence of H was determined crystallographically; X-ray diffraction was used
440	(Corbett and León-Escamilla 2003; León-Escamilla and Corbett 2006). However, it does not
439	J.D. Corbett and E.A. León-Escamilla have also discussed occupancy of the interstitial site by H

461 Kangjinlaite is isostructural with synthetics of the $Ho_{11}Ge_{10}$ type, the structure of which was first

462	determined by Smith et al. (1967). In the 1960s – 1990s isostructural compounds ranging widely
463	in composition (37 elements in all, Fig. 9) were shown belong to this structure type. After it was
464	realized (e.g., Rauscher et al. 2007; Jeon et al. 2016) that compounds isostructural with $Ho_{11}Ge_{10}$
465	are potential thermoelectric material, syntheses of phases isostructural with Ho ₁₁ Ge ₁₀ soared,
466	with over 30 compounds reported since 2012, although most of the new phases are versions of
467	known phases doped to improve their thermoelectric capability.

468

Despite there now being over 70 compounds containing 37 elements isostructural with $Ho_{11}Ge_{10}$, 469 470 our literature search has not revealed a report of the synthesis of an analogue of kangjinlaite in the Ti-Si-P ternary system or in the Ti-P or Ti-Si binary systems. Moreover, none of the 471 compounds isostructural with Ho₁₁Ge₁₀ contain P even as a minor substituent at the Ge site, thus 472 kangjinlaite adds P as the 38th element to be found in the Ho₁₁Ge₁₀ structure type. Moreover, 473 only one isostructural compound contains As ($Eu_{11}As_{10}$, Taylor et al. 1978), suggesting but a 474 475 limited potential for a P-bearing analogue. In none of the reported compounds is Ti the dominant cation at the Ho sites; in the two compounds containing Ti, Sc and Zr are the dominant cations 476 (Markiv et al. 1989). Several isostructural compounds contain Si, and in two of these, Si is 477 478 dominant at the sites occupied by Ge in the prototype, $Sc_7Cr_{4+x}Si_{10-x}$ [x = 0.8] (Kutar et al. 1985) and $Sc_7Re_{4-x}Si_{10+x}$ [x = 0.65] (Zhao et al. 1988). These two compounds, together with an Mn-479 bearing germanide, $Sc_7Mn_{4+x}Ge_{10-x}$ [x = 1.3] reported by Kutar et al. (1988), are the most 480 481 compact of the 70 synthetic phases for which crystallographic data are available (Table 5, Fig. 482 10) in terms of cell volume per formula unit and in terms of the Ti1-Ti3 bond length, a representative vector that includes all three cell components. However, our data show that 483 484 kangjinlaite is even more compact, and thus the most compact of the phases isostructural with

485 Ho₁₁Ge₁₀.

486 The ternary Ti-Si-P system.

487

488	Badengzhuite, zhiqinite, kangjinlaite and wenjiite in foil #5358 are composed almost exclusively
489	of Ti, Si and P, with a maximum of 2 wt% V, 3 wt% Cr, 2 wt% Mn and 6 wt% Fe in the latter
490	two phases (Tables 1-3). Xu et al. (2018) described a spheroid with similar levels of impurities,
491	in which larger grains can be provisionally identified as wenjiite (61.3 wt% Ti, 18.5 wt% Si, 6.8
492	wt% P) and kangjinlaite (59.0 wt% Ti, 23.0 wt% Si, 8.4 wt% P). These grains are set in a matrix
493	provisionally identified as a mixture of zhiqinite and badengzhuite since both Si (37.9 wt.%) and
494	P (2.3 wt.%) are present. Their analyses also gave 2.1-4.4 wt% N and 3.0-5.7 wt% C, which
495	suggests admixture of osbornite and khamrabaevite with the Ti-Si-P phases in their spheroid.
496	
497	Nonetheless, melts that crystallized to the two spheroids are closer to being a ternary Ti-P-Si
498	system than other aggregations of intermetallic phases, which presumably are also crystallized
499	melts in the Luobusa chromitite. For example, jingsuiite, osbornite, khamrabaevite, Fe-Ti
500	silicides and oxides are widespread constituents in such aggregations. A comparable chemical
501	complexity is reported for crystallized melts at Mount Carmel, including several containing
502	Ti ₅ Si ₃ , i.e., wenjiite (Griffin et al. 2021).
503	
504	On the basis of the phase relationships in the Ti-Si-P ternary system, Xiong et al. (2020) inferred
505	that the 4 minerals in the spheroid crystallized with decreasing temperature in the sequence
506	wenjiite \rightarrow kangjinlaite \rightarrow zhiqinite + badengzhuite (Fig. 11). This interpretation is supported by

similarity with relationships reported in other binary systems containing intermetallic compounds

508	isostructural with Mn_5Si_3 and $Ho_{11}Ge_{10}$ (Fig. 12). For the 9 binaries involving Ge or Sn, the
509	Mn_5Si_3 analogue melts congruently in 8 cases, whereas the $Ho_{11}Ge_{10}$ analogue never does.
510	Instead the Ho ₁₁ Ge ₁₀ analogue melts peritectically, generally to an Mn ₅ Si ₃ analogue, and less
511	commonly to compounds with a 5:4 stoichiometry, which are listed in the column of intervening
512	phases in Figure 12. The 5 binaries involving Sb or Bi show a varied response: (1) compounds
513	having the $Ho_{11}Ge_{10}$ and Mn_5Si_3 type structures melt peritectically to an intervening phase, (2)
514	$Ca_{11}Sb_{10}$ melts congruently, while Ca_5Sb_3 melts peritectically, or (3) Sr_5Bi_3 inverts from a
515	Mn_5Si_3 type structure to a Yb_5Sb_3 type structure, and latter compound melts congruently. Since
516	we would expect the Ti-Si system to behave more like systems involving Ge or Sn than systems
517	involving Sb and Bi, we suggest that kangjinlaite melts peritectically to wenjiite and that the
518	upper temperature limit for end member kangjinlaite is less than 1920 °C (Fig. 11b). Moreover,
519	the Mn_5Si_3 type structure melts at a higher temperature than the $Ho_{11}Ge_{10}$ type structure in 13 of
520	the 14 systems (excluding Ti-Si), the exception being the Ca-Sb system, more evidence that the
521	Mn_5Si_3 type structure tends to form at higher temperatures than the $Ho_{11}Ge_{10}$ type structure.
522	
523	Wenjiite would be expected to have crystallized at a lower temperature in the ternary system than
524	in the bounding binary systems (Xiong et al. 2020). Comparison with the impact of Fe on the Ti-
525	Si system (Weitzer et al. 2008) suggests that the impact of P on the Ti–Si system could be several
526	hundreds of degrees Celsius and thus final crystallization to zhiqinite + badengzhuite would be
527	well below the temperature of 1500 °C for the congruent melting of zhiqinite (Fig. 11), i.e. in the
528	range of $\sim 1100 - 1300$ °C, temperatures plausible for the upper mantle.

529

530 The presence of kangjinlaite in the natural ternary system distinguishes it from the two bounding

synthetic binary systems Ti-P and Ti-Si, neither of which includes a compound isostructural with 531 Ho₁₁Ge₁₀. Conversely, the synthetic phases intermediate in Ti/Si and Ti/P ratio, i.e., Ti₅Si₄, TiSi 532 and Ti₄P₃, have yet to be confirmed in a natural system. Griffin et al. (2021) did report 9 analyses 533 of isolated Fe-bearing Ti-Si inclusions in corundum with a stoichiometry close to Ti₅Si₄, but did 534 not provide the crystallographic data needed to identify the inclusions. The different assemblages 535 536 could simply reflect (1) influence of minor constituents, (2) activities of H and O in a gaseous phase associated with the intermetallics, or (3) P and Si interacting with one another in a way to 537 foster crystallization of P-bearing kangjinlaite at the expense of P-Si-bearing phases isostructural 538 539 with Ti₅Si₄, TiSi or Ti₄P₃. Alternatively, it is not inconceivable that pressure above atmospheric played a role by favoring kangjinlaite over the other phases. Pressures of 20-30 kbar have been 540 estimated for crystallization of the melts (Xiong et al. 2020, 2022), whereas relationships in the 541 bounding binaries were determined by syntheses at atmospheric pressure, and as far as we are 542 aware, syntheses of these phases at elevated pressures have not yet been attempted except for 543 544 TiSi₂ (to 520 kbar, Li et al. 2013). Kangjinlaite is more compact than other phases isostructural 545 with Ho₁₁Ge₁₀ (Fig. 10). It has been noted that room-pressure germanate crystal chemistry could serve as a guide for high-pressure silicate crystal chemistry (Finger and Hazen 2000), but 546 whether room pressure germanide crystal chemistry could serve the same function for silicide 547 crystal chemistry has not been previously considered, as far as we are aware. 548 549

550

Implications

- As we noted in the section describing the method of sample preparation, the question whether the highly reduced phases in the Luobusa ophiolite are natural or the result of technogenic
- contamination remains highly controversial (e.g., Litasov et al. 2019a,b). While we regard
- wenjiite and kangjinlaite to be natural minerals, fortunately there are implications of this study

555	that have significant relevance to materials science even if these phases were someday to be
556	shown to be technogenic. Wenjiite has implications for understanding polymorphism in
557	intermetallic compounds. It is isostructural with a large number of compounds (>175, Corbett
558	2000), but this structure type is only one of four principal types reported for the 5:3
559	stoichiometry (Franceschi and Ricaldone 1984). Two structure types have been reported in 11
560	binary systems, one is isostructural with wenjiite, the other isostructural with one or both of two
561	closely related orthorhombic phases isostructural with Yb ₅ Sb ₃ or Y ₅ Bi ₃ (Grew 2021). However,
562	evidence for which polymorph forms at higher temperatures in these systems is contradictory.
563	One might speculate that since compounds isostructural with wenjiite melt congruently and at
564	the highest temperature in 8 of 9 of the binary systems most closely related to Ti-Si (Fig. 12), it
565	is likely that such compounds form from the orthorhombic compounds with increasing
566	temperature.
567	
568	The occurrence of wenjiite also raises the question why is polymorphism restricted to relatively

few systems, while in other systems only one polymorph has been reported (Grew 2021). In

relating radius ratio, cell volume and electronegativity for intermetallic compounds having 5:3

stoichiometry, Bruzzone et al. (1978) and Franceschi and Ricaldone (1984) attempted to explain

572 the distribution of structures of these compounds.

573

We have demonstrated that wenjiite and kangjinlaite, followed by badengzhuite and zhiqinite, are the result of crystallization of a ternary Ti-Si-P melt during cooling. To our knowledge, this represents an "experiment" that has not yet been carried out in the laboratory. As far as we are aware, neither mineralogists nor material scientists appear to have previously investigated this

578	system. The "experiment" has yielded a phase new to science - kangjinlaite, which has not been
579	previously reported either in nature or as a product of synthesis. Moreover, like other compounds
580	isostructural with Ho ₁₁ Ge ₁₀ , kangjinlaite could have potential technological applications. Its
581	presence in the Luobusa corundum also raises the question of why such a compound has not yet
582	been synthesized in the laboratory, given the numerous studies in recent decades on the Ti-Si and
583	Ti-P binary systems.
584	
585	Discovering and characterizing kangjinlaite and wenjiite, as well as zhiqinite (TiSi ₂) and
586	badengzhuite (TiP) (Xiong et al. 2020), was only possible thanks to the recently developed 3-
587	dimensional electron diffraction technique. The four minerals, together with a dmisteinbergite-
588	like mineral now under study, occur together in an area of less than 100 μ m ² . The new technique
589	enables the collection of structural data suitable for ab-initio solution and refinement of crystal
590	structures from single grains of less than 1 μ m in size in situ, obviating the need to extract tiny
591	grains from a polyphasic solid matrix. The possibility to perform single-crystal-like analysis at
592	this scale opens unprecedented opportunities not only for mineralogy and petrology at the nano-
593	scale, for example, nano-scale melt inclusions, but also for materials science, since tiny droplets
594	of crystallized intermetallic melts can be readily investigated.
595	
596	ACKNOWLEDGMENTS
597	We thank the three anonymous reviewers for their constructive and detailed comments on the
598	manuscript.
599	FUNDING
600	This research was co-supported by the National Natural Science Foundation of China (NNSFC;

- 601 Project No. 41720104009, 92062215, 42172069, 41672046), Second Tibetan Plateau Scientific
- Expedition and Research Program (No. 2019QZKK0801), Key Special Project for Introduced
- Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
- 604 (No. GML2019ZD0201), the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural
- Resources Fund (No. J1901-28), and the China Geological Survey (CGS; Project No.
- 606 DD20190060).
- 607 Enrico Mugnaioli and Mauro Gemmi acknowledge the Regione Toscana for funding the
- ⁶⁰⁸ purchase of the ASI Timepix detector through the FELIX project (Por CREO FESR 2014–2020
- 609 action).
- 610

611 References

612	Achgar, K., Kardellass, S., Selhaoui, N. and Bouirden, L. (2017) Thermodynamic optimization
613	of the erbium-germanium binary system. Journal of Alloys and Compounds, 724, 1157-
614	1166.
615	Achgar, K., Iddaoudi, A., Tamim, R., Azza, H.and Bouirden, L. (2018a) Thermodynamic
616	evaluation of the germanium-lutetium and dysprosium-germanium binary systems.
617	Calphad, 62, 18-29.
618	Achgar, K., Kardellass, S., Azza, H. and Selhaoui, N. (2018b) Thermodynamic evaluation of the
619	thulium-germanium binary system. Journal of Thermal Analysis and Calorimetry, 131,
620	2699–2707.
621	Achgar, K., Kardellass, S. and Selhaoui, N. (2018c) Thermodynamic assessment of the
622	ytterbium-germanium binary system. Journal of Thermal Analysis and Calorimetry,131,
623	443–453.
624	Ballhaus, C., Wirth, R., Fonseca, R.O.C., Blanchard, H., Pröll, W., Bragagni, A., Nagel, T.,
625	Schreiber, A., Dittrich, S., Thome, V., Hezel, D.C., Below, R., Cieszynski, H. (2017)
626	Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning
627	strikes. Geochemical Perspectives Letters 5, 42-46.
628	Ballhaus, C., Fonseca, R.O.C., Bragagni, A. (2018) Reply to Comment on "Ultra-high pressure
629	and ultra-reduced minerals in ophiolites may form by lightning strikes" by Griffin et al.,
630	2018: No evidence for transition zone metamorphism in the Luobusa ophiolite.
631	Geochemical Perspectives Letters, 7, 3-4.
632	Ballhaus, C., Helmy, H.M., Fonseca, R.O.C., Wirth, R., Schreiber, A., I, Jöns, N. (2021) Ultra-

reduced minerals in ophiolites cannot come from Earth's mantle. American Mineralogist,

- 634 106, in press.
- Bärnighausen, H., Knausenberger, M., Brauer, G. (1965) Die Kristallstruktur von TiP_{0.63}. Acta
 Crystallographica, 19, 1-5.
- 637 Bilibrov, Y.M., Trachevskii, V.V., Bondar, A.A., Velikanova, T.Y., Artyukh, L.V., Pashchenko,
- 638 V.Y., Soboliev, V.B. (2014) Boron solubility in silicide Ti₅Si₃. Journal of Phase
- Equilibria and Diffusion, 35, 406-412.
- Bruzzone, G., Franceschi, E. and Merlo, F. (1978) Intermediate phases formed by Ca, Sr and Ba,
 Journal of the Less-Common Metals, 60, 59 63.
- Burla, MC, Caliandro, R., Carrozzini, B; Cascarano, GL; Cuocci, C; Giacovazzo, C; Mallamo,
- 643 M; Mazzone, A; Polidori, G. (2015) Crystal structure determination and refinement via
- 644 SIR2014. Journal of Applied Crystallography, 48, 306-309. DOI:
- 645 10.1107/S1600576715001132
- Cliff, G., and Lorimer, G.W. (1975). The quantitative analysis of thin specimens. Journal of
 Microscopy, 103, 203-207.
- 648 Corbett, J.D. (2000) Exploratory Synthesis in the solid state. Endless Wonders. Inorganic
- 649 Chemistry, 39, 5178-5191
- 650 Corbett, J.D and León-Escamilla, E.-A. (2003) Role of hydrogen in stabilizing new hydride
- bi phases or altering old ones, Journal of Alloys and Compounds, 356–357, 59–64
- 652 Corbett, J.D., Garcia, E., Guloy, A.M., Hurng, W.-M., Kwon, Y.-U., León-Escamilla, E. (1998)
- 653 Widespread interstitial chemistry of Mn_5Si_3 -type and related phases. Hidden impurities 654 and opportunities. Chem. Mater., 10, 2824-2836
- Dobrzhinetskaya, L.F., Wirth, R., Yang, J., Green, H.W., Hutcheon, I.D., Weber, P.K. and Grew,
- E.S. (2014) Qingsongite, natural cubic boron nitride: The first boron mineral from the

- Earth's mantle. American Mineralogist, 99, 764-772.
- Eremenko, V.N., Obushenko, I.M., Buyanov, Yu.I. (1980) Phase-diagram for the holmium-
- 659 germanium system. Dopovidi Akademiïa Nauk Ukraïn'skoï RSR, Seriia Heolohichni
- chimichni ta biolohechi Nauku, 7, 87-91 (in Ukrainian).
- 661 Eremenko, V.N., Meleshevich, K.A., Buyanov, Yu.I. and Martsenyuk, P.S. (1988) Phase diagram
- of the terbium-germanium system. Ukrainskii Khimicheskii Zhurnal, 54(10), 1019-1023.
- Essene, E. J., and Fisher, D.C. (1986) Lightning strike fusion: Extreme reduction and metal-
- silicate liquid immiscibility. Science, 234, 189-193
- 665 <u>https://doi.org/10.1126/science.234.4773.189</u>.
- Fang Q, Bai W, Yang J, Rong H, Shi N, Li G, Xiong M, Ma Z (2013) Titanium, Ti, a new
 mineral species from Luobusha, Tibet, China. Acta Geologica Sinica 87, 1275-1280.
- Finger, L.W. and Hazen, R.M. (2000) Systematics of high-pressure silicate structures. Reviews
 in Mineralogy and Geochemistry, 41, 123-156.
- Fiore, M., Neto, F.B., de Farias Azevedo, C.R. (2016) Assessment of the Ti-rich corner of the Ti-
- Si phase diagram: The recent dispute about the eutectoid reaction. Materials Research,
 19(4), 942-953.
- Franceschi, E.A. and Ricaldone, F. (1984) Intermetallic binary phases of 5:3 composition, Revue
 de Chimie Minérale, 1984, 21, 202-220
- Frommeyer, G. and Rosenkranz, R. (2004) Structures and properties of the refractory silicides
- Ti₅Si₃ and TiSi₂ and Ti-Si-(Al) eutectic alloys. In: Senkov, O.N.; Miracle, D.B.; Firstov,
- 677 S.A. Metallic Materials with High Structural Efficiency, NATO Science Series, Series II:
- Mathematics, Physics and Chemistry, 146, 287-308.

- 679 Gemmi, M., Mugnaioli, E., Gorelik, T., Kolb, U., Palatinus, L., Boullay, P., Hovmöller, S.,
- Abrahams, P.A. (2019) 3D Electron Diffraction: The nanocrystallography revolution.
- ACS Central Science, 2019, 5, 1315–1329.
- Grew, E.S. (2021) Polymorphism in the Sr-Bi System. Journal of Phase Equilibria and Diffusion.
- 683 https://doi.org/10.1007/s11669-021-00925-6.
- 684 Griffin, W.L., Gain, S.E. M., Saunders, M., Bindi, L., Alard, O., Toledo, V., O'Reilly, S.Y.
- $(2020) \text{ Parageneses of TiB}_2 \text{ in corundum xenoliths from Mt Carmel, Israel: Siderophile}$
- behaviour of boron under reducing conditions. American Mineralogist, 105, 1609–1621.
- Griffin, W.L., Gain, S.E. M., Saunders, M.J., Huang, X.J., Alard, O., Toledo, V., O'Reilly, S.Y.
- 688 (2021) Immiscible metallic melts in the upper mantle beneath Mount Carmel, Israel:
- 689 Silicides, phosphides and carbides. American Mineralogist, 106, in press.
- Hahn, H. and Ness, P. (1957) Zur Frage der Existenz von Subchalkogenidphasen des Titans.
 Naturwissenschaften, 44, 581.
- Iddaoudi, A., Selhaoui, N., Ait Amar, M., Kardellass, S. and Bouirden, L. (2013)
- 693 Thermodynamic reassessment of the Sn–Y system. Journal of Optoelectronics and
 694 Advanced Materials, 15, 1280 1285.
- Jeon, B.-Y., Nam, G., Lee, D.W., Ok, K.M., You, T.-S. (2016) Ce₁₁Ge_{3.73(2)}In_{6.27}: Solid-state
 synthesis, crystal structure and site-preference. Journal of Solid State Chemistry, 236,
- **697 195–202**.
- Kolb, U., Gorelik, T., Kübel, C., Otten, M.T., Hubert, C. (2007) Towards automated diffraction
 tomography: Part I—Data acquisition. Ultramicroscopy, 107, 507-513.
- 700 doi.org/10.1016/j.ultramic.2006.10.007

701	Kolb U., Mugnaioli E., Gorelik T.E. (2011) Automated electron diffraction tomography - A new
702	tool for nano crystal structure analysis. Crystal Research and Technology, vol. 46, (no. 6),
703	pp. 542-554 <u>https://doi.org/10.1002/crat.201100036</u>
704	Krikorian, O.H. (1955) High temperature studies: I. Reactions of the Refractory Silicides with
705	Carbon and with Nitrogen. II. Thermodynamic Properties of the Carbides. III. Heat of
706	Formation of the ${}^{3}\pi_{u}$ State of C ₂ from Graphite. Lawrence Berkeley National Radiation
707	Laboratory. Ph.D. Thesis.
708	Kutar, B.Ya., Bodak, O.I., Zavodnik, V.E. (1985) The silicide $Sc_7Cr_{4+x}Si_{10-x}$ ($x = 0.8$): the first
709	representative of a superlattice structure of the Ho ₁₁ Ge ₁₀ type. Soviet Physics
710	Crystallography, 30(5), 521-523 (translation of Kristallografia, 30, 899-903, 1985).
711	Kutar, B.Ya., Andrusyak, R.I. and Zavodnik, V.E. (1988) The germanides $Sc_7Mn_{4+x}Ge_{10-x}$ (x =
712	1.3) and $Sc_7Cr_{4+x}Ge_{10-x}$ —new representatives of compounds with superstructure of the
713	Ho ₁₁ Ge ₁₀ type. Soviet Physics Crystallography, 33(1), 141-142 (translation of
714	Kristallografia, 33, 240-241, 1988).
715	León-Escamilla, E.A. and Corbett, J.D. (2006) Hydrogen in polar intermetallics. Binary pnictides
716	of divalent metals with Mn_5Si_3 -type structures and their isotypic ternary hydride
717	solutions, Chemical Materials, 18, 4782-4792.
718	Li, C.Y., Yu, Z.H., Liu, H.Z., and Lü, T.Q.: The crystallographic stability and anisotropic
719	compressibility of C54- type $TiSi_2$ under high pressure. Journal of Physics and Chemistry
720	of Solids, 74, 1291–1294, https://doi.org/10.1016/j.jpcs.2013.04.006, 2013.
721	Litasov, K. D., Kagi, H. Bekker, T. B. (2019a) Enigmatic super-reduced phases in corundum
722	from natural rocks: Possible contamination from artificial abrasive materials or
723	metallurgical slags. Lithos 340-341 (2019) 181-190.

- Litasov, K. D., Bekker, T. B. Kagi, H. (2019b) Discussion. Reply to the discussion of "Enigmatic
- super-reduced phases in corundum from natural rocks: Possible contamination from
- artificial abrasive materials or metallurgical slags" by Litasov et al. (Lithos, v.340–341,
- 727 p.181–190) by W.L. Griffin, V. Toledo and S.Y. O'Reilly. Lithos 340–341 (2019) 181–
- 728 190. Lithos, 348. DOI: 10.1016/j.lithos.2019.105170
- Lu, N., Wang, J. (2018) Odd aromatic Si4 ring stabilized by V–V bond passing through it: May
 π-bonding form without σ-bonding as precondition? International Journal of Quantum
- 731 Chemistry, 118, e25788
- T32 Lundström, T. and Snell, P.-O. (1967) Studies of crystal structures and phase relations in the Ti-
- P system. Acta Chemica Scandinavica, 21, 1343-1352.
- Markiv, V., Belyavina, N.N. and Kazachkova, S.S. (1989) Crystal structure of Sc_5Ga_4 and new compounds of the structural type $Ho_{11}Ge_{10}$. Russian Metallurgy, 1989(3), 191-194.
- 736 Momma, K.; Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric

and morphology data. Journal of Applied Crystallography, 44, 1272–1276.

- 738 Mugnaioli E., Gemmi M. (2018) Single-crystal analysis of nanodomains by electron diffraction
- tomography: Mineralogy at the order-disorder borderline. Zeitschrift für Kristallographie
- Crystalline Materials, 233, 163-178.
- 741 Mugnaioli E., Gorelik T., Kolb U. (2009)"Ab initio" structure solution from electron diffraction
- data obtained by a combination of automated diffraction tomography and precession
- technique. *Ultramicroscopy*, vol. 109, (no. 6), pp. 758-765. doi:
- 744 10.1016/j.ultramic.2009.01.011

745	Mugnaioli, E., Bonaccorsi, E., Lanza, A.E., Elkaim, E., Diez-Gómez, V., Sobrados, I., Gemmi,
746	M., Gregorkiewitz, M. (2020a) The structure of kaliophilite KAlSiO ₄ , a long-lasting
747	crystallographic problem. IUCrJ, 7, 1070–1083.
748	Mugnaioli, E., Lanza, A.E., Bortolozzi, G., Righi, L., Merlini, M., Cappello, V., Marini, L.,
749	Athanassiou, A. Gemmi, M. (2020b) Electron Diffraction on Flash-Frozen Cowlesite
750	Reveals the Structure of the First Two-Dimensional Natural Zeolite. ACS Central
751	Science, 6, 1578–1586.
752	Nederlof, I.; van Genderen, E.; Li, YW.; Abrahams, J.P. (2013) A Medipix quantum area
753	detector allows rotation electron diffraction data collection from submicrometre three-
754	dimensional protein crystals. Acta Crystallographica D, 69, 1223-1230.
755	Nowotny, H., Auer-Welsbach, H., Bruss, J., Kohl, A. (1959) Ein Beitrag zur Mn ₅ Si ₃ -Struktur
756	(D8 ₈ -Typ). Monatshefte für Chemie, 90, 15-23
757	Okamoto, H. (2007) P-Ti (Phosphorus-titanium). Journal of Phase Equilibria and Diffusion, 28,
758	587.
759	Okamoto, H. (2013a) Supplemental literature review of binary phase diagrams: Ag-Ni, Al-Cu,
760	Al-Sc, C-Cr, Cr-Ir, Cu-Sc, Eu-Pb, H-V, Hf-Sn, Lu-Pb, Sb-Yb, and Sn-Y. Journal of
761	Phase Equilibria and Diffusion, 34, 493–505.
762	Okamoto, H. (2013b) Eu-Sb (europium-antimony). Journal of Phase Equilibria and Diffusion,
763	34, 146-147.
764	Okamoto, H. (2014) Supplemental literature review of binary phase diagrams: Al-Br, B-Cd, Cd-
765	Mg, Cd-Ti, Er-Fe, Fe-Nd, Ge-Na, Ge-Ni, Ge-Sc, Hf-W, Pb-Yb, and Re-Ti. Journal of
766	Phase Equilibria and Diffusion, 35, 195–207.

- La, Bi-Ti, Cd-Pr, Ce-Ga, Cu-Na, Ge-Ta, Ge-Y, H-Zr, Na-Si, and Pb-Sc. Journal of Phase
 Equilibria and Diffusion, 36:644–655.
- 770 Okamoto, H. (2016) Supplemental literature review of binary phase diagrams: Al-Nd, Al-Sm,
- Al-V, Bi-Yb, Ca-In, Ca-Sb, Cr- Nb, Cu-Ga, Ge-O, Pt-Sn, Re-Y, and Te-Yb. Journal of
- Phase Equilibria and Diffusion, 37, 350–362.
- Palatinus, L.; Corrêa C. A., Steciuk G., Jacob D., Roussel P., Boullay P., Klementová M., Gemmi
- M., Kopeček J. Domeneghetti M. C., Cámara F.; Petříěk V. (2015a) Structure refinement
 using precession electron diffraction tomography and dynamical diffraction: tests on
 experimental data. Acta Crystallographica B, 71, 740–751.
- Palatinus, L.; Petříček, V.; Corrêa, C. A. (2015b) Structure refinement using precession electron
 diffraction tomography and dynamical diffraction: theory and implementation. Acta
 Crystallographica A, 71, 235-244.
- Palatinus, L.; Brázda, P., Jelínek, M., Hrdá, J., Steciuk G., Klementova M. (2019) Specifics of
 the data processing of precession electron diffraction tomography data and their
 implementation in the program *PETS2.0*. Acta Crystallographica B, 75, 512–522.
- Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic computing system JANA2006:
 general features. Zeitschrift für Kristallographie, 229, 345–352.
- Pietrokowsky, P. and Duwez, P. (1951) Crystal structure of Ti₅Si₃, Ti₅Ge₃ and Ti₅Sn₃. Journal of
 Metals, 3, 772-773
- Rauscher, J.F., Kauzlarich, S.M., Ikeda, T. and G. J. Snyder,G.J. (2007) Synthesis, structure, and
 high temperature thermoelectric properties of Yb₁₁Sb_{9.3}Ge_{0.5}. Zeitschrift für Anorganische
 und Allgemeine Chemie, 633, 1587-1594.

⁷⁶⁷ Okamoto, H. (2015) Supplemental literature review of binary phase diagrams: B-La, B-Zn, Bi-

- Smith, G.S., Johnson, Q. and Tharp, A.G. (1967) The crystal structure of Ho₁₁Ge₁₀. Acta
- 791 Crystallographica, 23, 640-644.
- 792 Steciuk, G., Ghazisaeed, S., Kiefer, B., Plášil, J. (2019a) Crystal structure of vyacheslavite,
- $U(PO_4)(OH)$, solved from natural nanocrystal: a precession electron diffraction
- tomography (PEDT) study and DFT calculations. RSC Advances, 9, 19657–19661.
- 795 Steciuk, G., Palatinus, L., Rohlíček, J., Ouhenia, S., Chateigner, D. (2019b) Stacking sequence
- variations in vaterite resolved by precession electron diffraction tomography using a
- unified superspace model. Scientific Reports, 9, 9156.
- 798 Svechnikov, V.N., Kocherzhinskiy, Yu.A., Yubko, L.M., Kulik, O.G., Shishkin, Ye. A. (1970)
- Phase Diagram of the Titanium-Silicon System. Doklady Akademii Nauk SSSR,
 193(2):393-396 (in Russian).
- Taylor, J.B., Calvert, L.D., Utsunomiya, T., Wang, Y. and Despault, J.G. (1978) Rare earth
 arsenides: The metal-rich europium arsenides. Journal of the Less-Common Metals, 57,
 39 51
- Thom, A.J., Young, V.G., Akinc, M. (2000) Lattice trends in $Ti_5Si_3Z_x$ (Z=B,C,N,O and 0<*x*<1). Journal of Alloys and Compounds, 296, 59–66.
- Vincent, R. and Midgley, P.A. (1994) Double conical beam-rocking system for measurement of
 integrated electron diffraction intensities. Ultramicroscopy 53, 271-282.
- 808 Wang, Y., Xin, J., Chen, C., Liu, S., Hu, B. and Du, Y. (2014) Thermodynamic assessment of
- the Sr–In and Sr–Bi systems supported by first-principles calculations. CALPHAD:
- 810 Computer Coupling of Phase Diagrams and Thermochemistry, 45, 49–54.
- Wang, Y. L. Calvert, D., Gabe, E.J. and Taylor, J.B. (1978) Structure of two forms of europium
 arsenide Eu₅As₃. Acta Crystallographica, B34, 2281-2284.

813	Weitzer, F., Schuster, J.C., Naka, M., Stein, F., Pulm, M. (2008) On the reaction scheme and
814	liquidus surface in the ternary system Fe—Si—Ti. Intermetallics, 16, 273—282
815	Williams, J.J., Kramer, M.J., Akinc, M., Malik, S.K. (2000a) Effects of interstitial additions on
816	the structure of Ti ₅ Si ₃ . J. Materials Research, 15, 1773-1779.
817	Williams, J.J., Ye., Y.Y., Kramer, M.J., Ho, K.M., Hong, L., Fu, C.L. Malik, S.K. (2000b)
818	Theoretical calculations and experimental measurements of the structure of Ti_5Si_3 with
819	interstitial additions. Intermetallics, 8, 937-943.
820	Wirth, R., 2004. Focused ion beam (FIB): a novel technology for advanced application of micro-
821	and nanoanalysis in geosciences and applied mineralogy. European Journal of
822	Mineralogy 16, 863–877.
823	Wirth, R., 2009. Focused ion beam (FIB) combined with SEM and TEM: advanced analytical
824	tools for studies of chemical composition, microstructure and crystal structure in
825	geomaterials on a nanometre scale. Chemical Geology 261, 217–229.
826	Wolf, S., Klopper, W., Feldmann, C. (2013) Ge12{Fe(CO)3}8(μ -I)4: a germanium–iron cluster
827	with Ge4, Ge2 and Ge units. Chemical Communications, 54, 1217.
828	Xiong, F., Xu, X., Mugnaioli, E., Gemmi, M., Wirth, R., Grew, E.S. Robinson, P.T., Yang, J.
829	(2020) Badengzhuite, TiP, and zhiqinite, TiSi ₂ , two new minerals from the Cr-11
830	chromitite orebody, Luobusa ophiolite, Tibet, China: Evidence for super-reduced mantle-
831	derived fluids? European Journal of Mineralogy, 32, 557-574.
832	Xiong, F., Xu, X., Mugnaioli, E., Gemmi, M., Wirth, R., Yang, Y., and Grew, E. S.(2021a)
833	Wenjiite, IMA 2019-107c, in: CNMNC Newsletter 61, Eur. J. Mineral., 33,
834	https://doi.org/10.5194/ejm-33-299-2021, 2021.

- Xiong, F., Xu, X., Mugnaioli, E., Gemmi, M., Wirth, R., Grew, E. S., and Yang, Y.(2021b)
- Kangjinlaite, IMA 2019-112b, in: CNMNC Newsletter 61, Eur. J. Mineral., 33,
- 837 https://doi.org/10.5194/ejm-33-299-2021, 2021.
- Xiong, F., Xu, X., Mugnaioli, E., Gemmi, M., Wirth, R., Grew, E.S. and Robinson, P.T. (2022)
- Jingsuiite, TiB₂, a new mineral from the Cr-11 podiform chromitite orebody, Luobusa
 ophiolite, Tibet, China: Implications for recycling of boron. American Mineralogist (in
 press).
- Xu, X., Yang, J., Chen, S., Fang, Q. and Bai, W. (2009) Unusual Mantle Mineral Group from
- Chromitite Orebody Cr-11 in Luobusa Ophiolite of Yarlung-Zangbo Suture Zone, Tibet. *Journal of Earth Science*, 20, 284–302.
- Xu, X.Z., Yang, J.S., Robinson, P.T., Xiong, F.H., Ba, D.Z., Guo, G.L. (2015) Origin of
- ultrahigh pressure and highly reduced minerals in podiform chromitites and associated
 mantle peridotites of the Luobusa ophiolite, Tibet. *Gondwana Research* 27, 686–700
- 848 Xu, X.Z., Yang, J.S., Xiong, F.H., Guo, G.L. (2018) Characteristics of titanium-bearing
- 849 inclusions found in corundum of Luobusa podiform chromitite, Tibet. *Earth Science*,
- 43(4), 1025-1037 (in Chinese with English abstract).
- Yu, Z. (1984) Two new minerals gupeiite and xifengite in cosmic dusts from Yanshan, Acta
- Petrologica Mineralogica et Analytica 3, 231-238 (in Chinese with an English abstract)
- 853 Yusupov R. G., Stanley, C. J., Welch, M. D., Spratt, J., Cressey, G., Rumsey, M. S., Seltmann,
- 854 R. and Igamberdiev, E. (2009) Mavlyanovite, Mn₅Si₃: a new mineral species from a
- lamproite diatreme, Chatkal Ridge, Uzbekistan. Mineralogical Magazine, 73, 43-50.
- Zaitsev, A.I., Sheikova, N.E. and Mogutnov, B.M. (1997) Thermodynamic properties and phase
- equilibria in the Ca-Sb system. Zeitschrift für Metallkunde, 88, 250-255.

- Zhao, J.T., Chabot, B. and Parthé, E. (1988) Sc₇Re₄Si₁₀, a ternary substitution variant of the
- tetragonal Ho₁₁Ge₁₀ type. Acta Crystallographica, C44, 397-399

TABLES

3	Foil #	5358	5358	5358	5358	Average
4	Analysis	416	433	C31	C32	(Stdev)
5	Date ¹	2019-06-18	2019-06-27	2019-12-18	2019-12-18	
5	$3D ED^2$	YES	YES	_	_	_
7		Net counts				
3	С	0	0	0	0	—
	0	49	36	38	25	—
	Si	601	493	339	139	—
	Р	147	159	87	41	—
	Ti	1605	1272	859	417	—
	V	41	11	22	6	—
	Cr	44	52	18	15	—
	Mn	41	17	2	3	—
	Fe	31	27	18	0	—
	Cu ³	582	729	543	469	—
		wt% (1 sigma	error)			
	Si	21.65(0.93)	21.96(1.03)	22.88(1.29)	20.17(1.77)	21.67(1.13)
	Р	5.41(0.52)	7.27(0.66)	6.07(0.72)	6.22(1.04)	6.24(0.77)
	Ti	65.84(2.67)	64.53(2.76)	65.99(3.14)	69.19(4.19)	66.39(1.98)
	V	1.76(0.32)	0.72(0.23)	1.83(0.44)	1.18(0.51)	1.37(0.52)
	Cr	1.94(0.34)	2.76(0.45)	1.49(0.40)	2.61(0.75)	2.20(0.59)
	Mn	1.91(0.35)	1.12(0.30)	0.20(0.17)	0.64(0.40)	0.97(0.73)
	Fe	1.49(0.31)	1.63 (0.36)	1.55(0.43)	0(0)	1.17(0.78)
		Atomic%				
	Si	31.41	31.51	32.79	29.32	31.26(1.44)
	Р	7.12	9.46	7.88	8.20	8.17(0.97)
	Ti	56.04	54.32	55.47	59.01	56.21(0.20)
	V	1.40	0.57	1.44	0.95	1.09(0.41)
	Cr	1.52	2.14	1.15	2.05	1.72(0.47)
	Mn	1.42	0.82	0.15	0.48	0.72(0.54)
	Fe	1.08	1.18	1.11	0	0.84(0.56)
	V	0 195	0.221	0 104	0.104	0.207(0.021)

Note: 1. Year-month-day. 2. 3D ED = 3-dimensional electron diffraction. 3. The Cu counts ar from the prong to which the foil is attached in the focused ion beam support grid. $X_P = P/(P + Si)$ atomic.

901 902

861

- -

903

Area	1	2	1	2	Average
Analysis no. (Fig. 1)	415	432	C-29	C-30	(stdev)
Date ¹	2019-06-18	2019-06-27	2019-12-18	2019-12-18	—
		Net cou	ints		
С	0	0	0	0	_
0	4	37	0	2	—
Si	853	977	825	648	—
Р	300	366	319	233	_
Ti	2032	2023	1841	1249	
V	0	20	3	0	_
Cr	22	20	18	16	_
Mn	11	20	9	1	_
Fe	35	20	19	13	_
Cu ²	321	587	489	372	_
		wt% (1 sign	na error)		
Si	23.93(0.86)	25.92(0.87)	24.85(0.91)	27.55(1.13)	25.56(1.55)
Р	8.66(0.60)	9.96(0.64)	9.89(0.67)	10.20(0.78)	9.68(0.69)
Ti	64.83(2.50)	61.04(2.36)	63.07(2.48)	60.47(2.60)	62.35(1.99)
V	0	0.72(0.19)	0.12(0.10)	0	0.21(0.34)
Cr	0.85(0.21)	0.77(0.19)	0.75(0.20)	0.94(0.26)	0.83(0.09)
Mn	0.45(0.16)	0.78(0.20)	0.40(0.16)	0.06(0.09)	0.42(0.29)
Fe	1.28(0.26)	0.81(0.21)	0.92(0.23)	0.78(0.25)	0.95(0.23)
	× ,			()	()
		atomic	%		
Si	33.63	35.81	34.53	37.64	35.40(1.74)
Р	11.04	12.48	12.47	12.63	12.16(0.75)
Ti	53.45	49.47	51.42	48.46	50.70(2.21)
V	0	0.55	0.09	0	0.16(0.26)
Cr	0.65	0.57	0.56	0.69	0.62(0.06)
Mn	0.33	0.55	0.28	0.04	0.30(0.21)
Fe	0.91	0.56	0.64	0.53	0.66(0.17)
Total	100.01	99.99	99.99	99.99	100.00
V	0.247	0.258	0 265	0.251	0.256(0.005

Foil #	6034	6034	6034	6034	Average
Analysis	C45	C46	C47	C48	(Stdev)
Date	2019-12-18	2019-12-18	2019-12-18	2019-12-18	
$3D ED^2$	—	YES	_	—	
	Net counts				
С	0	0	0	0	—
Ο	32	13	12	45	
Si	1257	929	1136	871	
Р	690	558	713	441	
Ti	4479	3454	4122	3133	
V	14	0	0	0	
Cr	142	114	118	114	
Mn	5	15	38	18	
Fe	292	213	280	232	
Cu ³	1185	904	1118	801	
	wt% (1 sigma	error)			
Si	16.42(0.50)	15.81(0.55)	15.92(0.51)	16.24(0.59)	16.10(0.28)
Р	9.29(0.48)	9.76(0.54)	10.29(0.53)	8.47(0.51)	9.45(0.77)
Ti	66.60(2.29)	66.86(2.37)	65.76(2.28)	66.45(2.39)	66.42(0.47)
V	0.27(0.09)	0	0	0	0.07(0.14)
Cr	2.25(0.24)	2.34(0.27)	2.01(0.23)	2.59(0.29)	2.30(0.24)
Mn	0.10(0.07)	0.38(0.12)	0.80(0.16)	0.49(0.14)	0.44(0.29)
Fe	5.09(0.38)	4.85(0.41)	5.22(0.39)	5.75(0.46)	5.23(0.38)
	Atomic%				
Si	24.19	23.32	23.43	24.08	23.76(0.44)
Р	12.41	13.06	13.73	11.39	12.65(1.00)
Ti	57.56	57.87	56.77	57.80	57.50(0.50)
V	0.22	0	0	0	0.06(0.11)
Cr	1.79	1.87	1.60	2.08	1.84(0.20)
Mn	0.07	0.28	0.61	0.37	0.33(0.22)
Fe	3.77	3.60	3.86	4.29	3.88(0.29)
V	0 220	0.350	0.360	0.221	0 247(0 021
$\frac{\Lambda P_{.}}{1}$	0.337	0.337	0.309	0.321	0.347(0.021

the prong to which the foil is attached in the focused ion beam support grid. $X_P = P/(P + Si)$ 981

			. 2	
982	Table 4 Coordinates and equiva	alent displacement	parameters ($U_{iso} Å^2$) of atoms in weniiite
202	Tueste II. eeser anna equiti			

Label	Williams ¹	x/a	y/b	z/c	U_{iso}	occupancy n	nultiplicity
Ti1	Ti ^{4d}	2/3	1/3	0	0.0053(8)	1	4
Ti2	Ti ^{6g}	0.7614(3)	0	0.25	0.0060(7)	1	6
Si1	Si	0.5981(6)	0.5981(6)	0.25	0.0071(9)	0.77	6
P1	—	0.5981(6)	0.5981(6)	0.25	0.0071(9)	0.23	6
Si2	Ζ	0	0	0	0.020(4)	0.385	2
P2	—	0	0	0	0.020(4)	0.115	2
	Label Ti1 Ti2 Si1 P1 Si2 P2	LabelWilliams1Ti1Ti4dTi2Ti6gSi1SiP1-Si2ZP2-	LabelWilliams1 x/a Ti1Ti ^{4d} $\frac{2}{3}$ Ti2Ti ^{6g} 0.7614(3)Si1Si0.5981(6)P10.5981(6)Si2Z0P20	LabelWilliams1 x/a y/b Ti1Ti ^{4d} $2/_3$ $1/_3$ Ti2Ti ^{6g} 0.7614(3)0Si1Si0.5981(6)0.5981(6)P10.5981(6)0.5981(6)Si2Z00P200	LabelWilliams1 x/a y/b z/c Ti1Ti ^{4d} $2/3$ $1/3$ 0Ti2Ti ^{6g} 0.7614(3)00.25Si1Si0.5981(6)0.5981(6)0.25P10.5981(6)0.5981(6)0.25Si2Z000P2000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Note: 1. Site designation from Williams et al. (2000a,b)

993	Table 5. Bond lengths in	wenjiite and in	synthetic analo	ogs (in A)
994	Bonds	$Ti_{10}(Si,P,\Box)_7$	Ti ₅ Si ₃	Ti_5P_{3+x}
995		wenjiite	synthetic	synthetic
996	Source	(1)	(2)	(3)
997	Occupancy of 0,0,0	0.5	0.0	0.3
998	Si1/P1-Si1/P1	2.92	3.032	2.966
999	Si1/P1-Si2/P2	3.20	n.a.	3.123
1000	Si2/P2-Si2/P2	2.55	2.576	2.547
1001	Ti1-Si1/P1	2.56	2.634	2.558
1002	Ti1-Ti1	2.54	2.576	2.547
1003	Ti1-Ti2	3.11	n.a.	3.060
1004	Ti2-Si1/P1 (I)	2.56	2.785	2.768
1005	Ti2-Si1/P1 (II)	2.62	2.658	2.603
1006	Ti2-Si1/P1 (III)	2.56	2.570	2.493
1007	Ti2-T2 (I)	3.02	3.184	3.063
1008	Ti2-T2 (II)	3.08	3.242	3.100
1009	Ti2-Si2/P2	2.16	2.272	2.179
1010	Note: $n a - not available$	Bold indicate	an unusually st	ort hand Sou

(:... **%**) T-1-1-6 D 11 .1 . · · · , 1. .1 .. 1

Note: n.a. – not available. Bold indicate an unusually short bond. Source of data: (1) This study; 1010

(2) Williams et al. (2000b); (3) Lundström and Snell (1967) 1011

1012

1013

1015	Table 6	. Coordinates	and equivale	ent displacement	parameters (U_i	so $Å^2$) of atoms	in kangjinlaite
1016	Label	\mathbf{x}/a	y/b	z/c	$U_{ m iso}$	occupancy	multiplicity
1017	Ti1	0.1811(3)	0.1811(3)	0	0.005	1	8
1018	Ti2	0.5	0.1654(3)	0.10097(16)	0.005	1	16
1019	Ti3	0.2509(3)	0	0.18651(15)	0.005	1	16
1020	Ti4	0.5	0.5	0.1661(3)	0.005	1	4
1021	Si1	0.3720(4)	0.3720(4)	0	0.005	0.74	8
1022	P1	0.3720(4)	0.3720(4)	0	0.005	0.26	8
1023	Si2	0	0	0.1030(5)	0.005	0.74	4
1024	P2	0	0	0.1030(5)	0.005	0.26	4
1025	Si3	0.2937(3)	0.2937(3)	0.1742(2)	0.005	0.74	16
1026	P3	0.2937(3)	0.2937(3)	0.1742(2)	0.005	0.26	16
1027	Si4	0.3595(6)	0	0	0.005	0.74	8 .
1028	P4	0.3595(6)	0	0	0.005	0.26	8 .
1029	Si5	0.5	0	0.25	0.005	0.74	4
1030	P5	0.5	0	0.25	0.005	0.26	4
1031							

1032

1034		Kangjinlaite	Synthetic	Synthetic
1035	Source	this study	Kotur et al. (1985)	Zhao et al. (1988)
1036	Ideal formula	$Ti_{11}(Si,P)_{10}$	$Sc_{10}Cr_{(4+x)}Si_{(10-x)} = 0.8$	$Sc_7Re_{(4-x)}Si_{(10+x)} [x = 0.65]$
1037	Space group	I4/mmm	I4/mmm	I4/mmm
1038	a Å	9.4	9.757	9.8123
1039	c Å	13.5	13.884	14.274
1040	V Å ³	1190	1321.7	1374.3
1041	Ζ	4	4	4
1042	Si1-Si1 Å	2.41	2.3827	2.189
1043	Si1-Si3 Å	2.57	2.5953	2.815
1044	Si2-Si2 Å	2.78	2.999	2.89
1045	Si3-Si3 Å	2.35	2.3690	2.516
1046	Si4-Si4 Å	2.64	2.598	2.49
1047	Ti1-Ti1 Å	3.41	3.4891	3.631
1048	Ti1-Ti2 Å	3.30	3.481	3.451
1049	Ti1-Ti3 Å	3.11	3.2266	3.281
1050	Ti2-Ti2 Å	2.73-3.11	3.452	3.050
1051	Ti2-Ti3 Å	2.98-3.04	3.010	3.063
1052	Ti2-Ti4 Å	3.27	3.2679	3.372
1053	Ti3-Ti4 Å	3.08	3.2270	3.264
1054				

	1033	Table 7.	Compari	son of kaı	ngjinlaite	e with S	Si-rich	compounds	isostructural	with Ho ₁₁ Ge ₁₀	о.
--	------	----------	---------	------------	------------	----------	---------	-----------	---------------	--	----

1056

FIGURE CAPTIONS

1057	Figure 1. High-angle annular dark-field scanning-transmission electron microscope (HAADF-
1058	STEM) image of foil #5358 showing an aggregate of zhiqinite, TiSi ₂ , several of which have a
1059	tabular habit, enclosing globules of TiP and surrounded by wenjiite (Ti ₁₀ (Si,P) ₇) and kangjinlaite
1060	$Ti_{11}(Si,P)_{10}$. Al ₂ O ₃ – corundum hosting the Ti silicide inclusion. Two of the four EDX chemical
1061	analyses and the 3-dimensional electron diffraction (3D ED) data of wenjiite were collected on a
1062	single crystal within the area marked by the large white square or very close. The analyzed area
1063	is exactly the same for EDX and 3-dimensional electron diffraction because there is a complete
1064	crystallographic continuity in the immediate vicinity of the square; that is, the analyses were
1065	obtained on the same crystal. Two more analyses were obtained a short distance away (small
1066	white squares). White filled circle indicates where electron diffraction data were collected for
1067	kangjinlaite. Numbered unfilled black circles indicate the two areas where chemical data were
1068	obtained. The boundary between wenjiite and kangjinlaite is marked by a thick white line since it
1069	is not otherwise visible. The image was obtained at the Istituto Italiano di Tecnologia. Insert
1070	shows enlargement of the spheroid composed of wenjiite $(Ti_{10}(Si,P)_7)$ and kangjinlaite
1071	$(Ti_{11}(Si,P)_{10}$ (white) and $TiSi_2$ (zhiqinite, gray). Image taken at the Center for Advanced
1072	Research on the Mantle, Beijing. Figure is modified from Figures 2 and 3(b) in Xiong et al.
1073	(2020).

1074

Figure 2. High-angle annular dark-field scanning-transmission electron microscope (HAADF-1075

STEM) image of foil #6034 showing a lamellar intergrowth of khamrabaevite-osbornite, 1076

Ti(C,N), deltalumite, (Al, Mg, \Box)Al₂O₄, jingsuiite, TiB₂ and wenjiite. A K-bearing 1077

dmisteinbergite-like mineral occurs in two interstices in the intergrowth. Al₂O₃ indicates the 1078

corundum hosting the lamellar intergrowth. Areas analyzed at the Istituto Italiano di Tecnologia 1079

1080	are marked by squares. 3-dimensional electron diffraction data were also obtained at C46 and
1081	gave the same cell and extinctions as wenjiite in foil #5358. The image was obtained at the GFZ
1082	German Research Centre for Geosciences. Figure is modified from Figure 6(b) in Xiong et al.
1083	(2022)
1084 1085	Figure 3. Backscattered electron image of foil #G7708 showing the occurrence of wenjiite with
1086	osbornite, jingsuiite and an unidentified oxide included in corundum. The image was obtained at
1087	the Institute of Geology, Chinese Academy of Geological Sciences.
1088 1089	Figure 4. Diagram of the compositional ranges and averages for kangjinlaite and wenjiite in foils
1090	#5358 and #6034 in the ternary system P-Si-Ti (a), expressed in terms of the idealized end-
1091	member components $Ti_{10}P_6$, $Ti_{10}Si_6$, $Ti_{11}P_{10}$ and $Ti_{11}Si_{10}$, in which V, Cr, Mn and Fe are included
1092	with Ti (b). Sources for data from the literature: single-crystal structure refinements (SREF) of
1093	synthetic $Ti_{10}P_6$ (Bärnighausen et al. 1965, Lundström and Snell 1967); range of synthetic $Ti_{10}P_6$
1094	(Okamoto 2007), and range of synthetic $Ti_{10}Si_6$ (Svechnikov et al. 1970; Fiore et al. 2016).
1095 1096	Figure 5. Three-dimensional reconstruction of electron diffraction data taken from wenjiite, $Ti_{10}(Si,P,\Box)_7$,
1097	in the area enclosed in the white square in foil #5358 (Fig. 1). (a) View along [100]*, with extinction
1098	obeying the rule $0k\ell$: $\ell = 2n$ highlighted by pink arrows. (b) View along $[001]^*$. (c) View along $[110]^*$,
1099	which shows no evidence for the hh -2 $h\ell$ extinction rule. This limits the possible space groups to P63cm
1100	(#185), <i>P</i> -6c2 (#188) and <i>P</i> 6 ₃ /mcm (#193). Cell edges are yellow. Red vectors indicate a^* direction, green
1101	vectors indicate b^* direction and blue vectors indicate c^* direction. Note that those are projections of a
1102	three-dimensional reconstruction and not two-dimensional electron diffraction patterns. Therefore,
1103	panels are indicated as $[100]^*$, $[001]^*$ and $[110]^*$ and not as $0kl$, $hk0$ and $h-h0$, and planar
1104	extinctions appear as projected columns of extinct reflections. Data were obtained at the Istituto Italiano
1105	di Tecnologia.

1106 1107 1108	Figure 6. Crystal structure of wenjiite. (a) View along a; (b) view along c.
1109	Figure 7. Three-dimensional reconstruction of electron diffraction data taken from kangjinlaite,
1110	$Ti_{11}(Si,P)_{10}$, from the white filled circle in foil #5358 (Fig. 1). (a) View along [100]*. (b) View along
1111	[010]*. (c) View along [001]*. (d) View along [110]*, showing chess-board extinctions due to the <i>I</i> -
1112	centered lattice. Cell edges are sketched in yellow. Red vectors indicate a^* direction, green vectors
1113	indicate b^* direction and blue vectors indicate c^* direction. Note that those are projections of a three-
1114	dimensional reconstruction and not two-dimensional electron diffraction patterns. Therefore, panels are
1115	indicated as [100]*, [010]*, [001]* and [110]* and not as 0kl, h0l, hk0 and h <u>-h</u> 0, and planar
1116	extinctions appear as projected columns of extinct reflections. Data were obtained at the Istituto Italiano
1117	di TecnologiaData were obtained at the Istituto Italiano di Tecnologia.
1118 1119	Figure 8. Crystal structure of kangjinlaite. A. View along c. Note square array of Si1 atoms (blue
1120	outline and lettering), which lies below the surface. B. View along a.
1121 1122	Figure 9. The Periodic Table showing the 38 elements reported in compounds isostructural with
1123	Ho ₁₁ Ge ₁₀ , including kangjinlaite.
1124 1125	Figure 10. Plot of equivalents of Ti1 – Ti3 bond length in kangjinlaite in 55 compounds of the
1126	Ho ₁₁ Ge ₁₀ type, which are isostructural with kangjinlaite. The three most compact structures
1127	reported to date are labelled as containing Si or Mn. The literature sources of data are given in
1128	Appendix II.
1129	
1130 1131	Figure 11. (a) Plot of compounds in the ternary Ti–Si–P system in foil no. 5358 (modified from
1132	Figure 9 in Xiong et al. 2020). Source of compositional data: badengzhuite and zhiqinite (Xiong
1133	et al. 2020); wenjiite and kangjinlaite (Tables 1 and 3). Compositions for synthetic Ti-Si phases

1134	are from Fiore et al. (2016). Red is tie line for badengzhuite-zhiqinite . Red arrow shows inferred
1135	crystallization sequence for the ternary melt yielding the spheroid in foil no. 5358. (b) Plot of
1136	compounds in the binary Ti–Si system in foil no. 5358 (modified from Figure 10(a) in Xiong et
1137	al. 2020). Temperatures for melting in the Ti-Si binary are taken from Fiore et al. (2016) except
1138	for kangjinlaite, which Fiore et al. (2016) did not report.
1139	
1140	Figure 12. List of 15 systems in which structures of the $Ho_{11}Ge_{10}$ and Mn_5Si_3 type are both
1141	reported. For Y-Ge, two phases melt congruently. Intervening phases have compositions between
1142	Ho:Ge = 11:10 and Ho:Ge = 5:3. Sources: Ti-Si (Fiore et al. 2016); Sc-Ge (Okamoto 2014); Y-
1143	Ge (Okamoto 2015); Tb-Ge (Eremenko et al. 1988); Ho-Ge (Eremenko et al. 1980); Er-Ge
1144	(Achgar et al. 2017); Tm-Ge (Achgar et al. 2018b); Yb-Ge (Achgar et al. 2018c), Lu-Ge (Achgar
1145	et al. 2018a); Eu-As (Taylor et al. 1978; Wang et al. 1978), Y-Sn (Okamoto 2013a, compare
1146	Iddoudi et al. 2013); Ca-Sb (Okamoto (2016, compare Zaitsev et al. 1997); Eu-Sb (Okamoto

- 1147 2013b); Yb-Sb (Okamoto 2013a); Sr-Bi (Wang et al. 2014, Grew 2021) and (Yb-Bi (Okamoto
- 1148 2016).

Figure 4

Н																	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											Al	Si	Р	S	Cl	Ar
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	Tİ	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac															
	Ce Pr Nd Pm Sm					Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu			
			Th	Ра	U												
	Reported as an occupant at the Ho site																
	Reported as an occupant at the Ge site																
	Reported as an occupant at both sites																
	Reported only in kangjinlaite																
	Repo	rted o	nly in	Eu ₁₁ A	s ₁₀											Figu	re 9

Ho position	Ge position	Intervening phase	Liquidus T (°C) Ho ₁₁ Ge ₁₀ type	Liquidus T (°C) Mn₅Si₃ type
Ti	Si	P-Ti₅Si₄ (two polymorphs)	P < 1920	C-2130
Sc	Ge	P-Sc ₅ Ge ₄ (Sm ₅ Ge ₄ type)	P-1668	C-2061
Y	Ge	C- Y_5 Ge ₄ (Sm ₅ Ge ₄ type) at 1941 °C	P-1884	C-1968
Tb	Ge	P-Tb ₅ Ge ₄ (Sm ₅ Ge ₄ type)	P-1660	C-1800
Но	Ge	P-Ho ₅ Ge ₄ (Sm ₅ Ge ₄ type)	P-1700	C-1950
Er	Ge	P-Er ₅ Ge ₄ (Sm ₅ Ge ₄ type)	P-1719	C-1954
Tm	Ge	P-Tm ₅ Ge ₄ (Sm ₅ Ge ₄ type)	P-1722	C-1960
Yb	Ge	C-Yb5Ge4 (Sm5Ge4 type) at 1642 °C	P-1505	P-1581
Lu	Ge	P-Lu ₅ Ge ₄ (Sm ₅ Ge ₄ type)	P-1719	C-2044
Eu	As	Eu ₅ As ₄ to 1402 °C	>1402	1502
Y	Sn	P-Y ₅ Sn ₄ (Sm ₅ Ge ₄ type)	P-1603	C-1940
Ca	Sb	none found	C-1127	P-880
Eu	Sb	P-Eu ₅ Sb ₄ , C-Eu ₁₆ Sb ₁₁	P-950	P-1445
Yb	Sb	C-Yb ₄ Sb ₃ at 1680 °	P-1405	P-1540
Sr	Bi	$C-Sr_5Bi_3$ (Yb ₅ Sb ₃ type) at 945 °C	P-610	P-700
Yb	Bi	C-Yb ₄ Bi ₃ at 1480 °C	P-900	P-1400
P = peritectic melting		C = congruent melting		Figure 12