Revision \#1

Pomite and pseudopomite, two new carbonate-encapsulating mixed-valence polyoxovanadate minerals

ANTHONY R. KAMPF ${ }^{1 \xi}$, JOHN M. HUGHES ${ }^{2}$, CHI MA ${ }^{\mathbf{3}}$, JOE MARTY ${ }^{1,}$, AND TiMOTHY P. ROSE ${ }^{4}$

${ }^{1}$ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, U.S.A.
${ }^{2}$ Department of Geology, University of Vermont, Burlington, VT 05405, U.S.A.
${ }^{3}$ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, U.S.A.
${ }^{4}$ Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.

Abstract

Pomite (IMA2021-063), ideally $\mathrm{Ca}_{3}\left[\mathrm{~V}^{4+}{ }_{5} \mathrm{~V}^{5+}{ }_{10} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right] \cdot 37 \mathrm{H}_{2} \mathrm{O}$, and pseudopomite (IMA2021064), ideally $\mathrm{Ca}_{3.5}\left[\mathrm{~V}^{4+}{ }_{6} \mathrm{~V}^{5+}{ }_{9} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right] \cdot 32 \mathrm{H}_{2} \mathrm{O}$, are two new polyoxometalate minerals from the Blue Streak mine, Bull Canyon, Montrose County, Colorado, U.S.A. Pomite properties: striated blades up to $\sim 1 \mathrm{~mm}$ long; very dark green-blue color; green-blue streak; vitreous luster; brittle; Mohs hardness ≈ 2; irregular, splintery fracture; good cleavages on $\{010\}$ and $\{001\} ; 2.19(2) \mathrm{g}$ cm^{-3} density; refractive indices in the vicinity of 1.70 ; weakly birefringent with little or no pleochroism. Pseudopomite properties: striated prisms and blades up to $\sim 1 \mathrm{~mm}$; very dark bluegreen color; blue-green streak; vitreous luster; brittle; Mohs hardness ≈ 2; curved, irregular fracture; probably two fair cleavages, $\{100\}$ and $\{001\} ; 2.40(2) \mathrm{g} \mathrm{cm}^{-3}$ density; refractive indices in the vicinity of 1.72; no discernable birefringence or pleochroism. Electron microprobe

[^0]analyses provided the empirical formulas $\mathrm{Ca}_{3.11}\left[\mathrm{~V}^{4+}{ }_{5.23} \mathrm{~V}^{5+}{ }_{9.77} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right] \cdot 37 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Ca}_{3.49}\left[\mathrm{~V}^{4+}{ }_{5.98} \mathrm{~V}^{5+}{ }_{9.02} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right] \cdot 29 \mathrm{H}_{2} \mathrm{O}$ for pomite and pseudopomite, respectively. Pomite is triclinic, $P-1$, with $a=12.3668(10), b=12.9692(12), c=22.068(2) \AA, \alpha=99.038(7), \beta=$ $95.689(7), \gamma=103.249(7)^{\circ}, V=3368.7(5) \AA^{3}$, and $Z=2$. Pseudopomite is triclinic, $P-1$, with $a=$ $12.2910(18), b=12.6205(15), c=20.917(3) \AA, \alpha=77.381(6), \beta=85.965(5), \gamma=64.367(7)^{\circ}, V$ $=2853.6(7) \AA^{3}, Z=2$. The crystal structures of both minerals (pomite, $R_{1}=0.103 ;$ pseudopomite, $R_{1}=0.116$) contain a novel $\left[\mathrm{V}^{4+}{ }_{x} \mathrm{~V}^{5+}{ }_{15-x} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right]^{(1+x)-}$ heteropolyanion, which is unique in natural and synthetic materials but has similarities to the $\left[\mathrm{V}^{4+}{ }_{8} \mathrm{~V}^{5+}{ }_{7} \mathrm{O}_{36}\left(\mathrm{CO}_{3}\right)\right]^{7-}$ and $\left[\mathrm{H}_{8} \mathrm{~V}^{4+}{ }_{15} \mathrm{O}_{36}\left(\mathrm{CO}_{3}\right)\right]^{6-}$ heteropolyanions reported in synthetic phases.

Keywords: pomite; pseudopomite; new mineral; crystal structure; polyoxometalate; vanadate; carbonate encapsulation; Blue Streak mine, Montrose County, Colorado, U.S.A.

Introduction

The Uravan mineral belt along the eastern edge of the Colorado Plateau has long been recognized as a unique environment for uranium and vanadium minerals. In the 1950s, in conjunction with the national effort led by the U.S. Geological Survey (USGS) and Atomic Energy Commission (AEC), an intensive program of study was undertaken on the vanadium ores of the region, led largely by H.T. Evans, Jr., of the USGS. The innumerable mines in the Uravan belt have exploited uranium and vanadium ores in roll-front deposits in the sandstone of the Salt Wash member of the Morrison Formation (Carter and Guiltieri 1965; Shawe 2011) and have provided a rich environment for the study of vanadium mineralogy under ambient temperatures and a variety of Eh and pH conditions.

Following the initial USGS investigations of the 1950s, the mineralogy of the Uravan deposits received little attention until recently when collecting efforts, organized primarily by one of the authors (JM), have yielded extensive suites of secondary U and V minerals from the increasingly limited number of mines that are still accessible. Investigations have led to the discovery of more than 30 new minerals; the new mineral descriptions and attendant crystal structure solutions have significantly enhanced our knowledge on the mineralogy of vanadium. Of particular interest in these studies is the discovery and description of many new minerals that are in a chemical class known as polyoxometalates (often abbreviated as POMs), a type of compound with many technological and medical applications that have been extensively studied by chemists and material scientists (Kampf et al. 2019). Polyoxometalates are clusters of three or more transition-metal-centered polyhedra that are linked by sharing oxygen ligands between and among the polyhedra. The clusters are usually anionic in charge and are linked to form closed (isolated) three-dimensional frameworks.

In a detailed summary of polyoxometalate minerals, Krivovichev (2020) observed that 34 of the 42 naturally known (at that writing) POM complexes have been discovered in the $21^{\text {st }}$ century, and he noted that the vast majority of POM minerals are polyoxovanadates (POVs). All of the 30 known POV minerals are found in the Uravan mineral belt and all but two of these were first discovered there. Twenty-one of these POV minerals contain the decavanadate isopolyanion, $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$, formed of ten VO_{6} octahedra linked through corner- and edge-sharing. These comprise the pascoite mineral family (Kampf et al. 2021). The other POV minerals (followed by their POV clusters in brackets) are sherwoodite $\left[\mathrm{AlV}^{4+}{ }_{2} \mathrm{~V}^{5+}{ }_{12} \mathrm{O}_{40}\right]^{9-}$ (Evans and Konnert 1978), the five members of the vanarsite family $\left[\left(\mathrm{V}^{4+} \mathrm{V}^{5+}{ }_{10-\mathrm{x}}\right) \mathrm{O}_{28}\right]^{(6+\mathrm{x})-}$ (Kampf et al.

2016, 2020), kegginite $\left[\mathrm{As}^{5+} \mathrm{V}^{5+}{ }_{12} \mathrm{O}_{40}(\mathrm{VO})\right]^{12-}$ (Kampf et al. 2017), bicapite $\left[\mathrm{H}_{2} \mathrm{PV}_{12} \mathrm{O}_{40}(\mathrm{VO})_{2}\right]^{7-}$ (Kampf et al. 2019), and, reported herein, pomite and pseudopomite $\left[\mathrm{V}^{4+}{ }_{x} \mathrm{~V}^{5+}{ }_{15-x} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right]^{(1+x)-}$.

The new minerals and their names were approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2021-063, pomite; IMA2021-064, pseudopomite). The name "pomite" is based on the acronym POM, which stands for polyoxometalate. Initially, the two minerals were thought to be a single phase because of their similar appearances and compositions, as well as their intimate association. The second phase, named "pseudopomite" for obvious reasons, was recognized only when its powder diffraction pattern could not be matched to the pattern calculated from the structure of pomite. The holotype specimen containing both pomite and pseudopomite is deposited in the collections of the Natural History Museum of Los Angeles County, Los Angeles, California, USA, under catalogue number 76155 .

Occurrence

Pomite and pseudopomite were discovered underground in the Blue Streak mine, Bull Canyon, Montrose County, Colorado, USA (38.199434-108.839946), about 13 km west of the town of Naturita. The minerals were collected in April, 2019 by one of the authors (TPR), and have been found very sparingly on only several small specimens. They occur on montroseite-corvusite-bearing sandstone in close association with calcite. Interestingly, Evans and Garrels (1957) recognized such an environment in their landmark work, noting that "two distinct branches appear in the alteration sequence (of primary montroseite): one is confined to acid conditions characteristic of zones of primary vanadium oxide concentration in the sandstone in the presence of pyrite; and the other occurs in more basic conditions where calcite is common".

Pomite and pseudopomite occur in the latter, calcite-present, alteration sequence.
The Blue Streak mine is in the Uravan mineral belt, in which uranium and vanadium minerals occur together in bedded or roll-front deposits in the sandstone of the Salt Wash member of the Jurassic Morrison formation (Carter and Gualtieri, 1965; Shawe, 2011). The new minerals form from the oxidation of montroseite-corvusite assemblages in a moist environment. Mining operations have exposed unoxidized and oxidized phases. Under ambient temperatures and generally oxidizing near-surface conditions, water reacts with pyrite to form aqueous solutions with relatively low pH . The various secondary vanadate phases that form depend upon prevailing Eh-pH conditions (Evans and Garrels 1957) and the presence of other cations.

Appearance, Optical Properties and Physical Properties

Both pomite and pseudopomite crystals are very dark green blue, appearing black. Pomite crystals are striated blades up to about 1 mm long (Figs. 1 and 2), whereas pseudopomite crystals are striated prisms and blades up to about 1 mm long (Figs. 3 and 4). Both minerals display bluegreen streak and vitreous luster, and are transparent (only on very thin edges). The minerals display a brittle tenacity, are non-fluorescent, have a Mohs hardness ~ 2, and have no observed parting. Pomite displays good $\{010\}$ and $\{001\}$ cleavages; pseudopomite probably has two fair cleavages, $\{100\}$ and $\{001\}$; however, the fragility of crystals makes it difficult to determine the cleavage directions with certainty. For pomite, the fracture is irregular and splintery; for pseudopomite, the fracture is curved and irregular. The densities for pomite and pseudopomite were measured as $2.19(2) \mathrm{g} / \mathrm{cm}^{3}$ and $2.40(2) \mathrm{g} / \mathrm{cm}^{3}$, respectively, both by floatation in methylene iodide - toluene. For pomite, the calculated density is $2.176 \mathrm{~g} / \mathrm{cm}^{3}$ for the empirical formula and $2.171 \mathrm{~g} / \mathrm{cm}^{3}$ for the ideal formula; for pseudopomite, the calculated density is $2.419 \mathrm{~g} / \mathrm{cm}^{3}$ for
both the empirical and ideal formulas.
Pomite and pseudopomite crystals are very difficult to examine optically because of their dark color. For pomite, thin fragments are only weakly birefrigent and exhibit very little, if any, pleochroism. All three indices of refraction appear to be in the vicinity of 1.70, and the Gladstone-Dale relation predicts an average index of refraction of 1.675 calculated on the basis of the empirical formula. For pseudopomite, all three indices of refraction appear to be in the vicinity of 1.72 , and the Gladstone-Dale relation predicts an average index of refraction of 1.736 calculated on the basis of the empirical formula.

Chemistry of Pomite and Pseudopomite

Analyses of pomite (11 points on two crystals) and pseudopomite (10 points on two crystals) were performed at Caltech on a JEOL 8200 electron microprobe in WDS mode. Analytical conditions were 15 kV accelerating voltage, 5 nA beam current and $2 \mu \mathrm{~m}$ beam diameter. $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} were not determined directly because of extreme paucity of material. For pomite, the $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} contents were calculated by stoichiometry on the basis of 15 V and 77 O apfu as indicated by the crystal structure refinement. Note that the interstitial portion of the pomite structure exhibits considerable disorder. Note that the structure refinement provided 76.19 O apfu, but significant unresolved electron density led us to round up the O content to 77 apfu, which we use for the ideal formula. For pseudopomite, the $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} contents were calculated by stoichiometry on the basis of 15 V and 69 O apfu as indicated by the crystal structure refinement.

Table 1 contains the chemical analytical data for pomite and pseudopomite. For pomite, the empirical formula (based on $\mathrm{O}=77 \mathrm{apfu}$) is $\mathrm{Ca}_{3.11}\left[\mathrm{~V}^{4+}{ }_{5.23} \mathrm{~V}^{5+}{ }_{9.77} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right] \cdot 37 \mathrm{H}_{2} \mathrm{O}$, the
simplified formula is $\mathrm{Ca}_{3+x}\left[\mathrm{~V}^{4+}{ }_{5+2 x} \mathrm{~V}^{5+}{ }_{10-2 x} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right] \cdot 37 \mathrm{H}_{2} \mathrm{O}(x \approx 0-0.20)$, and the ideal formula is $\mathrm{Ca}_{3}\left[\mathrm{~V}^{4+}{ }_{5} \mathrm{~V}^{5+}{ }_{10} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right] \cdot 37 \mathrm{H}_{2} \mathrm{O}$, which requires $\mathrm{CaO} 7.64, \mathrm{VO}_{2} 18.83, \mathrm{~V}_{2} \mathrm{O}_{5} 41.28, \mathrm{CO}_{2} 2.00$, $\mathrm{H}_{2} \mathrm{O} 30.26$. For pseudopomite, the empirical formula (based on $\mathrm{O}=69 \mathrm{apfu}$) is $\mathrm{Ca}_{3.49}\left[\mathrm{~V}^{4+}{ }_{5.98} \mathrm{~V}^{5+}{ }_{9.02} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right] \cdot 29 \mathrm{H}_{2} \mathrm{O}$, the simplified formula is $\mathrm{Ca}_{3.5}\left[\mathrm{~V}^{4+}{ }_{6} \mathrm{~V}^{5+}{ }_{9} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right] \cdot 29 \mathrm{H}_{2} \mathrm{O}$, and the ideal formula is $\mathrm{Ca}_{3.5}\left[\mathrm{~V}^{4+}{ }_{6} \mathrm{~V}^{5+}{ }_{9} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right] \cdot 32 \mathrm{H}_{2} \mathrm{O}$, which requires $\mathrm{CaO} 9.44, \mathrm{VO}_{2} 23.94$, $\mathrm{V}_{2} \mathrm{O}_{5}$ 39.37, CO_{2} 2.12, $\mathrm{H}_{2} \mathrm{O}$ 25.13.

The Atomic Arrangements of Pomite and Pseudopomite

Experimental

X-ray powder diffraction data were recorded using a Rigaku R-Axis Rapid II curved imaging plate microdiffractometer with monochromatized $\mathrm{Mo} \mathrm{K} \alpha$ radiation. A Gandolfi-like motion on the φ and ω axes was used to randomize the sample. The pattern obtained was a good fit for that calculated from the structure. The patterns of both structures are dominated by two low-angle peaks, one of which is a composite of numerous lines, and all other peaks are relatively indistinct composites of numerous low-intensity lines. Observed d values and intensities were derived by profile fitting using JADE Pro software (Materials Data, Inc.). Complete powder diffraction results are on deposit ${ }^{1}$.

Single-crystal X-ray studies were carried out using the same instrument, and gave the following data. Pomite: Crystal System: Triclinic, $P-1$ (\#2), $a=12.3668(10), b=12.9692(12), c$ $=22.068(2) \AA, \alpha=99.038(7), \beta=95.689(7), \gamma=103.249(7)^{\circ}, V=3368.7(5) \AA^{3}$, and $Z=2$. Pseudopomite: Triclinic, $P-1(\# 2), a=12.2910(18), b=12.6205(15), c=20.917(3) \AA$,
$\alpha=77.381(6), \beta=85.965(5), \gamma=64.367(7)^{\circ}, V=2853.6(7) \AA^{3}, Z=2$. Complete details of data collection are provided in deposited CIFs for each phase. ${ }^{1}$

The Rigaku CrystalClear software package was used for processing the structure data, including the application of an empirical absorption correction using the multi-scan method with ABSCOR (Higashi 2001). The structures were solved using SHELXT (Sheldrick 2015a). SHELXL-2016 (Sheldrick 2015b) was used for the refinement of the structures. For pomite, the structural unit is well ordered except for the V15 site, which is split into two sites, V15A and V15B, separated by $1.55 \AA$. These sites were jointly refined to $\mathrm{V} 15 \mathrm{~A}_{0.838} \mathrm{~V}^{2} \mathrm{BB}_{0.162(8)}$. The V15A site has tetrahedral coordination and the V15B site has square-pyramidal five-fold coordination, discussed subsequently. The interstitial complex, which includes Ca and $\mathrm{H}_{2} \mathrm{O}$ sites, exhibits significant disorder and includes three fully occupied Ca sites, two low-occupancy Ca sites, 31 fully occupied $\mathrm{H}_{2} \mathrm{O}$ sites and nine partially occupied $\mathrm{H}_{2} \mathrm{O}$ sites. Many of the $\mathrm{H}_{2} \mathrm{O}$ sites exhibit large displacement parameters. Not surprisingly, difference-Fourier syntheses failed to locate any H atom positions. The final R_{1} is 0.103 .

For pseudopomite, the structural unit is well ordered. The interstitial complex, which includes Ca and $\mathrm{H}_{2} \mathrm{O}$ sites, exhibits significant disorder and includes three fully occupied Ca sites, one approximately half-occupied Ca site, 27 fully occupied $\mathrm{H}_{2} \mathrm{O}$ sites and three adjacent partially occupied $\mathrm{H}_{2} \mathrm{O}$ sites (with a total occupancy set to 2.0). Many of the $\mathrm{H}_{2} \mathrm{O}$ sites exhibit large displacement parameters and prolate or oblate ellipsoids. As in pomite, difference-Fourier syntheses failed to locate any H atom positions. The final R_{1} is 0.116 .

[^1]Data collection and refinement details are given in the deposited CIFs, as are atom coordinates and displacement parameters; note that the crystals were not strong diffractors, yielding $\sin \theta / \lambda$ values of 0.50 and 0.53 for the two crystals. Selected bond distances and bondvalence sums (BVS) for pomite are reported in Table 2 and those for pseudopomite in Table 3.

The Structural Unit in Pomite and Pseudopomite

The structures of pomite and pseudopomite consist of two distinct parts, a structural unit and an interstitial complex, as suggested by Schindler and Hawthorne (2001) for such hydrated minerals with a polyanion. Figure 5 displays the structural unit found in both new phases compared with the heteropolyanion found in synthetic phases described below. Figure 6 illustrates the two atomic arrangements, displaying the disposition of the structural unit and interstitial units in pomite and pseudopomite.

The $\left[\mathrm{V}^{4+}{ }_{5} \mathrm{~V}^{5+}{ }_{10} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right]^{6-}$ heteropolyanion forming the structural unit in pomite and the essentially identical $\left[\mathrm{V}^{4+}{ }_{6} \mathrm{~V}^{5+}{ }_{9} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right]^{7-}$ heteropolyanion forming the pseudopomite structural unit are comprised of a cluster of nine VO_{6} octahedra, five VO_{5} square-based pyramids (ignoring the small amount of V contained in the V 15 B site in pomite), one VO_{4} tetrahedron, and a planar carbonate CO_{3} group. The VO_{6} and VO_{5} polyhedra link to one another by sharing edges and corners; the VO_{4} tetrahedron links to the other vanadate polyhedra by sharing two of its corners; the carbonate group, is located at the center of the cluster, sharing its three corners with VO_{6} octahedra. This heteropolyanion is unique among natural and synthetic materials, but is very similar to the $\left[\mathrm{V}^{4+}{ }_{8} \mathrm{~V}^{5+}{ }_{7} \mathrm{O}_{36}\left(\mathrm{CO}_{3}\right)\right]^{7-}$ heteropolyanion reported by Müller et al. (1990) and Yamase and Ohtaka (1994) and the $\left[\mathrm{H}_{8} \mathrm{~V}^{4+}{ }_{15} \mathrm{O}_{36}\left(\mathrm{CO}_{3}\right)\right]^{6-}$ heteropolyanion reported by Mulkapuri et al. (2019). The heteropolyanion in pomite and pseudopomite differs from the aforementioned
synthetic heteropolyanions only in having a VO_{4} tetrahedron in place of one VO_{5} square pyramid (V15; Figs. 5 and 6). However, it should be noted that this $\mathrm{V15O}_{4}$ tetrahedron in pomite is only 0.838 occupied. The complementary 0.162 -occupied V15B site $1.55 \AA$ from the V15A site is located at the center of the "missing" VO_{5} square pyramid observed in the aforementioned synthetic phases (Figure 5). The fact that the V15 polyhedra are split in pomite can be attributed to the valence of the V ions at that site. In pseudopomite, all the V 15 exists as V^{5+}, and occupies the V15 tetrahedron, with a bond-valence sum on V15 of 5.32 vu . In pomite, V15 is mixedvalent $\mathrm{V}^{4+} / \mathrm{V}^{5+}$. The $\mathrm{V}^{5+}(0.838 / 1.00)$ occupies the V 15 A tetrahedron, and has an appropriate bond-valence sum of 5.07 vu . However, the small proportion of $\mathrm{V}^{4+}(0.162 / 1.00)$ would have a bond-valence sum of 4.81 in that site, dramatically overbonded, and V^{4+} does not occur in tetrahedral coordination (Schindler et al. 2000). Thus, the V^{4+} in site V 15 splits to the V15B site, a square-based pyramid similar to that in $\left[\mathrm{Na}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{24}\right]\left[\mathrm{H}_{8} \mathrm{~V}^{4+}{ }_{15} \mathrm{O}_{36}\left(\mathrm{CO}_{3}\right)\right] \cdot 3 \mathrm{~N}_{2} \mathrm{H}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (Mulkapuri et al. 2019). The bond-valence sum of V^{4+} in that site is 3.78 vu . Thus, the V15 site splits to sites appropriate for V^{5+} (the V15A tetrahedron) and V^{4+} (the V15B square-based pyramid).

The Interstitial Units in Pomite and Pseudopomite

Pomite. Balancing the charge of the anionic heteropolyanions in each of the two new minerals are the interstitial complexes, which also serve to link the individual structural units. In pomite, with ideal formula $\mathrm{Ca}_{3}\left[\mathrm{~V}^{4+}{ }_{5} \mathrm{~V}^{5+}{ }_{10} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right] \cdot 37 \mathrm{H}_{2} \mathrm{O}$, the interstitial unit has a composition of $\left[\mathrm{Ca}_{3} \cdot 37 \mathrm{H}_{2} \mathrm{O}\right]^{6+}$.

The interstitial complex in pomite includes three fully occupied Ca sites ($\mathrm{Ca} 1, \mathrm{Ca} 2$ and

Ca 3) and two low-occupancy Ca sites (Ca 4 and Ca 5). The total refined occupancy of the Ca sites is 3.20 apfu, a bit higher than the 3.11 Ca apfu based on the EPMA, although it should be noted that the Ca 4 and Ca 5 sites are only $2.65 \AA$ apart, indicating that they are probably partially occupied by the O atoms of $\mathrm{H}_{2} \mathrm{O}$ groups, i.e., when an $\mathrm{H}_{2} \mathrm{O}$ group is located at Ca 4 , it is coordinated to the Ca at Ca 5 , and vice versa. The excess Ca above 3 apfu is easily charge balanced by varying the relative amounts of $4+$ and $5+\mathrm{V}$. To allow for this, the formula can be expressed as $\mathrm{Ca}_{3+x}\left[\mathrm{~V}^{4+}{ }_{5+2 x} \mathrm{~V}^{5+}{ }_{10-2 x} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right] \cdot 37 \mathrm{H}_{2} \mathrm{O}(x \approx 0-0.20)$, whereas the ideal formula, $\mathrm{Ca}_{3}\left[\mathrm{~V}^{4+}{ }_{5} \mathrm{~V}^{5+}{ }_{10} \mathrm{O}_{38}\left(\mathrm{CO}_{3}\right)\right] \cdot 37 \mathrm{H}_{2} \mathrm{O}$, corresponds to $x=0$.

Ca 1 and Ca 3 are coordinated to two peripheral O sites of the heteropolyanion and to six $\mathrm{H}_{2} \mathrm{O}$ groups in the interstitial complex. Ca 2 is coordinated to one peripheral O site of the heteropolyanion and to seven $\mathrm{H}_{2} \mathrm{O}$ groups. Ca 4 is coordinated eight $\mathrm{H}_{2} \mathrm{O}$ sites, two of which are located at $\mathrm{Ca} 5 . \mathrm{Ca} 5$ coordinates to one peripheral O site of the heteropolyanion and to seven $\mathrm{H}_{2} \mathrm{O}$ groups, one of which are located at Ca 4 . The complete structure, combining the structural unit and the interstitial complex, is shown in Figure 6.

Pseudopomite. The interstitial complex includes three fully occupied Ca sites $(\mathrm{Ca} 1, \mathrm{Ca} 2$ and Ca 3) and one approximately half-occupied Ca site (Ca 4). The total refined occupancy of the Ca sites is 3.54 apfu, very close to the 3.49 Ca apfu based on the EPMA. Ca1 coordinates to two peripheral O sites of the heteropolyanion and to $\operatorname{six} \mathrm{H}_{2} \mathrm{O}$ groups in the interstitial complex. Ca 2 is coordinated to two peripheral O sites of the heteropolyanion and to seven $\mathrm{H}_{2} \mathrm{O}$ groups. Ca 3 is coordinated to three peripheral O sites of the heteropolyanion and to five $\mathrm{H}_{2} \mathrm{O}$ groups. Ca 4 is coordinated to two peripheral O sites of the heteropolyanion and to six $\mathrm{H}_{2} \mathrm{O}$ groups. The BVS for $\mathrm{Ca} 3(1.64 v u)$ is significantly low and that for $\mathrm{Ca} 4(2.47 v u)$ is significantly high; however, as noted above, many of the $\mathrm{H}_{2} \mathrm{O}$ sites exhibit large displacement parameters and prolate or oblate
ellipsoids, indicating disorder in the interstitial complex, which certainly impacts the reliability of the BVS values for the Ca sites. The complete structure is shown in Figure 6.

IMPLICATIONS

Krivovichev (2020), in his survey of polyoxometalate minerals, made the important observation that the discovery of POM minerals is one of the specific landmarks of descriptive mineralogy and mineralogical crystallography of our time. The most recently discovered POM minerals, pomite and pseudopomite are the first to incorporate carbonate as the central heteropolyhedral group of the POM. Synthetic carbonate-bearing POMs have been suggested as useful for the capture of atmospheric carbon. For example, Mulkapuri et al. (2019) synthesized a vanadium POM with a structural unit of $\left[\mathrm{H}_{8} \mathrm{~V}^{\mathrm{IV}}{ }_{15} \mathrm{O}_{36}\left(\mathrm{CO}_{3}\right)^{6-}\right]$. During the synthesis, CO_{2} was not used as a reactant; the source of the carbonate was absorbed aerial CO_{2} in the pertinent aqueous alkaline reaction, suggesting that the POM can be used to sequester atmospheric CO_{2}. The use of polyoxometalates as a means of CO_{2} fixation is a fruitful area of future research (Yu et al. 2018), and naturally occurring phases, such as pomite and pseudopomite, may prove to be important guides in that respect.

Acknowledgments

Reviewers Michael Schindler, two anonymous reviewers, and Associate Editor Diego Gatta are sincerely thanked for constructive comments, which improved the manuscript. This study was funded, in part, by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County.

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America.
The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2022-8335. http://www.minsocam.org/

Burns, P.C. (2020) Complex minerals preserve natural geochemically important nanoscale metal oxide clusters. Acta Crystallographica, B76, 512-513.

Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247.

Carter, W.D., and Gualtieri, J.L. (1965) Geology and uranium-vanadium deposits of the La Sal quadrangle, San Juan County, Utah, and Montrose County, Colorado. U.S. Geological Survey Professional Paper 508.

Cooper, M.A., Hawthorne, F.C., Kampf, A.R., and Hughes, J.M. (2019) Determination of $\mathrm{V}^{4+}: \mathrm{V}^{5+}$ ratios in the $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]$ decavanadate polyanion. The Canadian Mineralogist, 57(2), 235-244.

Evans, H.T., J., and Garrels, R.M. (1957) Thermodynamic equilibria of vanadium in aqueous systems as applied to the interpretation of the Colorado Plateau ore deposits. Trace Elements Investigation Report 666, United States Department of the Interior, U.S. Geological Survey.

Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.
Kampf, A.R., Hughes, J.M., Nash, B.P., and Marty, J. (2016) Vanarsite, packratite, morrisonite, and gatewayite: four new minerals containing the $\left[\mathrm{As}^{3+} \mathrm{V}^{4+, 5+}{ }_{12} \mathrm{As}^{5+}{ }_{6} \mathrm{O}_{51}\right]$ heteropolyanion, a novel polyoxometalate cluster. The Canadian Mineralogist, 54, 145162.

Kampf, A.R., Hughes, J.M., Nash, B.P., and Marty, J. (2017) Kegginite, $\mathrm{Pb}_{3} \mathrm{Ca}_{3}\left[\mathrm{AsV}_{12} \mathrm{O}_{40}(\mathrm{VO})\right] \cdot 20 \mathrm{H}_{2} \mathrm{O}$, a new mineral with an ε-isomer of the Keggin anion. American Mineralogist, 102, 461-465.

Kampf, A.R., Hughes, J.M., Nash, B.P., and Marty, J. (2019) Bicapite, $\mathrm{KNa}_{2} \mathrm{Mg}_{2}\left(\mathrm{H}_{2} \mathrm{PV}^{5+}{ }_{14} \mathrm{O}_{42}\right) \cdot 25 \mathrm{H}_{2} \mathrm{O}$, a new mineral with a bicapped Keggin anion from the Pickett Corral mine, Montrose County, Colorado, USA. American Mineralogist, 104, 1851-1856.

Kampf, A.R., Hughes, J.M., Nash, B.P., Marty, J., and Rose, T.P. (2020) Lumsdenite, $\mathrm{NaCa}_{3} \mathrm{Mg}_{2}\left(\mathrm{As}^{3+} \mathrm{V}^{4+}{ }_{2} \mathrm{~V}^{5+}{ }_{10} \mathrm{As}^{5+}{ }_{6} \mathrm{O}_{51}\right) \cdot 45 \mathrm{H}_{2} \mathrm{O}$, a new polyoxometalate mineral from the Packrat mine, Mesa County, Colorado, USA. The Canadian Mineralogist, 58, 137-151.

Kampf, A.R., Hughes, J.M., Cooper, M.A., Hawthorne, F.C., Nash, B.P., Olds, T.A., Adams, P.M. and Marty, J. (2021) The pascoite family of minerals, including the redefinition of rakovanite. The Canadian Mineralogist, 59, 771-779.

Krivovichev, S. V. (2020). Polyoxometalate clusters in minerals: review and complexity analysis. Acta Crystallographica, B76, 618-629.

Mulkapuri, S., Kurapati, S.K., and Das, S.K. (2019) Carbonate encapsulation from dissolved atmospheric CO_{2} into a polyoxovanadate capsule. Dalton Transactions, 48, 8773-8781.

Müller, A., Penk, M., Rohlfing, R., Krickemeyer, E. and Döring, J. (1990) Topologically Interesting Cages for Negative Ions with Extremely High "Coordination Number": An Unusual Property of V-O Clusters. Angewandte Chemie International Edition in English, 29, 926-927.

Schindler, M. and Hawthorne, F.C. (2000) A bond-valence approach to the structure, chemistry, and paragenesis of hydroxyl-hydrated oxysalt minerals. I. Theory. The Canadian Mineralogist, 39, 1225-1242.

Schindler, M., Hawthorne, F.C., and Baur, W.H. (2000) Crystal chemical aspects of vanadium: polyhedral geometries, characteristic bond valences, and polymerization of (VOn) polyhedra. Chemistry of Materials, 12, 1248-1259.

Shawe, D.R. (2011) Uranium-vanadium deposits of the Slick Rock district, Colorado. U.S. Geological Survey Professional Paper 576-F.

Sheldrick, G.M. (2015a) SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 3-8.

Sheldrick, G.M. (2015b) Crystal Structure refinement with SHELX. Acta Crystallographica, C71, 3-8.

Yamase, T. and Ohtaka, K. (1994) Photochemistry of polyoxovanadates. Part 1. Formation of the anion-encapsulated polyoxovanadate $\left[\mathrm{V}_{15} \mathrm{O}_{36}\left(\mathrm{CO}_{3}\right)\right]^{7-}$ and electron-spin polarization of α hydroxyalkyl radicals in the presence of alcohols. Journal of the Chemical Society, Dalton Transactions, 18, 2599-2608.

Yu, B., Zou, B., and Hu, C.-W. (2018) Recent applications of polyoxometalates in CO_{2} capture and transformation. Journal of CO_{2} Utilization, 26, 314-322.

Figure 1. Pomite crystals; the field of view is 0.84 mm across.

FIGURE 2. Crystal drawing of pomite, clinographic projection in non-standard orientation, a vertical.

FIGURE 3. Pseudopomite crystals; the field of view is 1.7 mm across.

Figure 4. Crystal drawings of two blade habits of pseudopomite, clinographic projections in non-standard orientations, \mathbf{b} vertical.

$\left[\mathrm{V}_{5}^{4+} \mathrm{V}_{10}^{5+} \mathrm{O}_{37}\left(\mathrm{CO}_{3}\right)\right]^{6-}$

$\left[\mathrm{H}_{8} \mathrm{~V}_{15}^{4+} \mathrm{O}_{36}\left(\mathrm{CO}_{3}\right)\right]^{6-}$

Figure 5. Heteropolyanions in pomite (left, with ideal formula of heteropolyanion) and $\left[\mathrm{Na}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{24}\right]\left[\mathrm{H}_{8} \mathrm{~V}^{4+}{ }_{15} \mathrm{O}_{36}\left(\mathrm{CO}_{3}\right)\right] \cdot 3 \mathrm{~N}_{2} \mathrm{H}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (right) (Mulkapuri et al., 2019). The VO_{6} octahedra are orange, the VO_{5} square pyramids are light brown, the VO_{4} tetrahedron is yellow and the central CO_{3} triangles are red. The low-occupancy V15B site is shown as a light brown ball with VO_{5} square pyramidal bonds shown as white sticks. The topology of the heteropolyhedron in pseudopomite is identical to that in pomite except that the low-occupancy V15B site is completely vacant in pseudopomite.

Figure 6. The structures of pomite and pseudopomite. The polyhedra are as indicated in Figure 5. The Ca atoms are turquoise balls, the $\mathrm{H}_{2} \mathrm{O}$ groups are white balls. The unit cells are outlined with dashed lines. Note that the low-occupancy V15B site in the pomite structure is omitted.

TAbLE 1. Analytical data ($\mathrm{wt} \%$) for pomite and pseudopomite.

| | Pomite | | | | Pseudopomite | | | | |
| :--- | ---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Oxide | Mean | Range | S.D. | Norm. | Mean | Range | S.D. | Norm. | Standard |
| CaO | 9.05 | $8.70-9.46$ | 0.24 | 7.89 | 9.88 | $9.73-10.03$ | 0.10 | 9.42 | anorthite |
| $\mathrm{V}_{2} \mathrm{O}_{5}$ | (70.88) | $70.29-71.63$ | 0.45 | | (68.86) | $67.16-70.15$ | 0.96 | | V metal |
| $\mathrm{VO}_{2}{ }^{*}$ | 22.54 | | | 19.65 | 25.02 | | | 23.85 | |
| $\mathrm{~V}_{2} \mathrm{O}_{5}{ }^{*}$ | 46.17 | | | 40.26 | 41.43 | | | 39.48 | |
| CO_{2}^{\S} | | | | 2.00 | | | | 2.12 | |
| $\mathrm{H}_{2} \mathrm{O}^{\S}$ | | | | 30.20 | | | | 25.14 | |
| Total | | | | 100.00 | | | | 100.01 | |

[^2]TABLE 2. Selected bond distances (\AA) and bond valences $(v u)$ in pomite ${ }^{\xi}$

Bond	Distance	BV									
V1-O12	1.599(11)	1.74	V2-O17	1.627(10)	1.61	V3-O20	1.588(11)	1.79	Ca1-OW1	2.419(11)	0.29
V1-O30	1.713(10)	1.28	V2-O37	1.961(9)	0.65	V3-O25	1.888(11)	0.79	Ca1-OW5	2.443(11)	0.27
V1-O31	1.916(10)	0.74	V2-O38	1.972(10)	0.63	V3-O30	1.913(10)	0.74	Ca1-OW6	2.450(11)	0.27
V1-O26	1.925(10)	0.72	V2-O39	$2.005(10)$	0.58	V3-O39	1.958(10)	0.66	Ca1-OW2	2.450 (11)	0.27
V1-O36	2.034(10)	0.54	V2-O31	2.030 (9)	0.54	V3-O6	2.004(10)	0.58	$\mathrm{Ca1-O17}$	2.477(10)	0.25
V1-O2	2.618(12)	0.11	V2-O2	2.329(13)	0.24	V3-O2	2.517(12)	0.15	$\mathrm{Ca1-O13}$	$2.508(10)$	0.23
<V1-O>	1.968	5.11	<V2-O>	1.987	4.26	<V3-O>	1.978	4.71	Ca1-OW4	$2.550(11)$	0.21
					3.86			4.55	Ca1-OW3	2.595(12)	0.19
									< $\mathrm{Ca} 1-\mathrm{O}$ >	2.487	1.96
V4-O13	1.632(10)	1.59	V5-O15	1.609(10)	1.69	V6-O16	1.616(10)	1.66			
V4-O24	1.973(10)	0.63	V5-O35	1.834(10)	0.92	V6-O35	1.820(10)	0.96	Ca2-OW16	2.371(14)	0.32
V4-O28	1.997(10)	0.59	V5-O33	$1.916(9)$	0.74	V6-O32	$1.919(9)$	0.73	Ca2-OW10	2.412(15)	0.29
V4-O33	2.012(9)	0.57	V5-O38	1.952(10)	0.67	V6-O37	1.947(9)	0.68	Ca2-OW9	$2.466(13)$	0.25
V4-O32	2.018(10)	0.56	V5-O34	$2.015(9)$	0.56	V6-040	1.994(10)	0.60	Ca2-OW11	2.472(15)	0.25
V4-O1	2.316(13)	0.25	V5-O1	2.643(11)	0.10	V6-O1	2.646(13)	0.10	Ca2-O18	2.490 (11)	0.24
<V4-O>	1.991	4.19	<V5-O>	1.995	4.68	<V6-O>	1.990	4.72	Ca2-OW12	2.527(16)	0.22
		3.75			4.51			4.57	Ca2-OW7	2.534(14)	0.22
									Ca2-OW14	2.542(16)	0.21
V7-09	1.585(10)	1.80	V8-O10	1.628(10)	1.60	V9-O8	1.626(10)	1.61	< $\mathrm{Ca} 2-\mathrm{O}$ >	2.477	2.01
V7-025	1.964(11)	0.65	V8-022	$1.732(10)$	1.21	V9-O22	1.911(10)	0.75			
V7-O26	1.990(10)	0.60	V8-O27	1.918(10)	0.73	V9-O24	1.943(10)	0.68	Ca3-OW25	2.33(2)	0.36
V7-O27	2.023(10)	0.55	V8-O28	1.919(9)	0.73	V9-O23	1.955(11)	0.66	Ca3-OW8	$2.386(17)$	0.31
V7-O23	2.059(11)	0.50	V8-O29	1.991(9)	0.60	V9-O7	1.993 (9)	0.60	Ca3-O4	2.389(11)	0.31
V7-O3	2.216(12)	0.33	V8-O3	$2.706(12)$	0.09	V9-O3	2.473(12)	0.16	Ca3-OW13	2.405(19)	0.30
<V7-O>	1.973	4.43	<V8-O>	1.982	4.97	<V9-O>	1.984	4.47	$\mathrm{Ca} 3-\mathrm{OW} 15$	$2.406(15)$	0.30
		4.12			4.95			4.18	Ca3-O9	$2.426(10)$	0.28
									Ca3-OW31	2.51(4)	0.23
V10-O11	1.605(11)	1.71	V11-O14	1.617(10)	1.65	V12-O21	1.586(10)	1.80	Ca3-OW35	2.71(4)	0.08
V10-O29	1.905(10)	0.76	V11-O34	1.891(10)	0.79	V12-O34	1.867(10)	0.84	< $\mathrm{Ca} 3-\mathrm{O}>$	2.445	2.16
V10-O26	1.929(10)	0.71	V11-O29	1.912(10)	0.74	V12-O36	1.877(10)	0.82			
V10-O36	1.948(10)	0.68	V11-O28	1.949(9)	0.67	V12-O38	$1.909(10)$	0.75	Ca4-OW19(×2)	2.18(2)	0.51
V10-O27	1.966(10)	0.64	V11-O33	1.958(9)	0.66	V12-O31	1.952(9)	0.67	Ca4-OW26(×2)	2.38(3)	0.31
<V10-O>	1.871	4.50	<V11-O>	1.865	4.52	<V12-O>	1.838	4.88	Ca4-OW12(×2)	2.810(16)	0.11
		4.23			4.26			4.81	<Ca4-O >	2.457	1.88
V13-O18	1.608(10)	1.69	V14-O19	1.617(11)	1.65	V15A-O5	1.651(12)	1.51			
V13-O37	1.923(10)	0.72	V14-O40	1.903(10)	0.76	V15A-O4	$1.659(11)$	1.48	Ca5-OW26	2.02(4)	0.76
V13-O40	1.923(10)	0.72	V14-O24	1.931(10)	0.71	V15A-O6	1.784(10)	1.05	Ca5-OW18	2.25(3)	0.43
V13-O39	1.943(9)	0.68	V14-O32	1.942(10)	0.69	V15A-O7	1.792(9)	1.03	Ca5-OW12	2.31(3)	0.37
V13-O6	1.964(10)	0.65	V14-O7	1.984(10)	0.61	<V15A-O>	1.722	5.07	Ca5-O19	2.31(3)	0.37
<V13-O>	1.872	4.47	<V14-O>	1.875	4.42				Ca5-OW11	2.62(3)	0.17
		4.18			4.11	V15B-O4	1.552(19)	1.97	Ca5-OW19	2.74(4)	0.13
						V15B-O25	2.002(19)	0.58	Ca5-OW20	2.90(4)	0.09
C-O1	1.244(16)	1.47				V15B-O7	$2.050(19)$	0.51	< $\mathrm{Ca} 5-\mathrm{O}>$	2.450	2.33
$\mathrm{C}-\mathrm{O} 2$	1.282(17)	1.34				V15B-O6	2.05(2)	0.51			
$\mathrm{C}-\mathrm{O} 3$	1.284(17)	1.33				V15B-O23	2.14(2)	0.40			
<C-O>	1.270	4.14				<V15B-O>	1.959	$\begin{aligned} & 3.98 \\ & 3.43 \end{aligned}$			

${ }^{\xi}$ All V-O bond valences calculated using V^{5+} bond valence parameters of Brown and Altermatt (1985); for V-polyhedra with bond-valence sums $<5.0 v u$ in Table 3a, b, the bond-valence of the mixed-valence site is recalculated using the method of Cooper et al. (2019). That revised bondvalence is given in italics below the bond valence calculated with the Brown and Altermatt parameters.

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America.
The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2022-8335. http://www.minsocam.org/

TABLE 3. Selected bond distances (in $\AA \AA$) and bond valences (BV in $v u$) in pseudopomite.

Bond	Distance	BV									
V1-O12	1.616(16)	1.66	V2-O17	1.615(15)	1.66	V3-O20	1.618(17)	1.65	Ca1-OW4	2.362(18)	0.33
V1-O30	1.734(17)	1.21	V2-O37	1.969(13)	0.64	V3-O25	1.780(16)	1.06	Ca1-OW7	$2.426(19)$	0.28
V1-O26	1.887(15)	0.80	V2-O38	1.997(15)	0.59	V3-O30	1.922(16)	0.72	Ca1-OW6	2.444(17)	0.27
V1-O31	1.897(15)	0.78	V2-O39	2.005(14)	0.58	V3-O6	1.953(14)	0.67	Ca1-OW3	$2.446(18)$	0.27
V1-036	2.063(15)	0.50	V2-O31	2.030(14)	0.54	V3-O39	$1.959(14)$	0.66	Ca1-O17	2.510 (15)	0.23
V1-O2	2.621(17)	0.11	V2-O2	$2.318(17)$	0.25	V3-O2	$2.555(17)$	0.13	Ca1-OW8	2.538(18)	0.21
<V1-O>	1.970	5.04	<V2-O>	1.989	4.26	<V3-O>	1.965	4.89	Cal-O13	2.611(15)	0.18
					4.263.86			4.83	Ca1-OW5	2.642(19)	0.17
									<Ca1-O >	2.497	1.93
V4-O13	1.603(14)	1.72	V5-O15	1.608(15)	1.69	V6-O16	1.617(15)	1.65			
V4-O28	1.994(14)	0.60	V5-O35	1.826(16)	0.94	V6-O35	1.835(14)	0.92	Ca2-OW13	2.36(2)	0.33
V4-O24	2.025(13)	0.55	V5-O33	1.924(14)	0.72	V6-O32	1.916(15)	0.74	Ca2-OW15	2.40(3)	0.30
V4-O33	$2.036(14)$	0.53	V5-O38	1.971(16)	0.64	V6-O37	$1.925(14)$	0.72	Ca2-OW12	2.40 (3)	0.30
V4-O32	2.052(15)	0.51	V5-O34	2.030(16)	0.54	V6-040	1.968(15)	0.64	Ca2-OW21	2.42(3)	0.29
V4-O1	2.255(16)	0.29	V5-O1	2.633(15)	0.11	V6-O1	$2.646(17)$	0.10	Ca2-08	2.452(15)	0.26
<V4-O>	1.994	$\begin{aligned} & 4.20 \\ & 3.77 \end{aligned}$	<V5-O>	1.999	4.64	<V6-O>	1.985	4.77	Ca2-O11	2.480 (15)	0.25
					4.44			4.64	Ca2-OW1	$2.485(18)$	0.24
									Ca2-OW30	2.65(4)	0.16
V7-09	1.585(15)	1.80	V8-O10	1.611(15)	1.68	V9-O8	1.615(15)	1.66	Ca2-OW23	2.75(4)	0.13
V7-025	1.933(16)	0.70	V8-O22	1.747(14)	1.16	V9-O22	1.916(13)	0.74	< $\mathrm{Ca} 2-\mathrm{O}$ >	2.489	2.26
V7-O26	1.979(14)	0.62	V8-O28	1.911(15)	0.75	V9-O24	1.920(13)	0.73			
V7-O23	2.044(14)	0.52	V8-O27	1.953(14)	0.67	V9-O23	$2.005(14)$	0.58	Ca3-O4	2.354(18)	0.34
V7-O27	2.083(15)	0.47	V8-O29	1.989(13)	0.60	V9-07	2.007(14)	0.58	Ca3-O27	2.521(14)	0.22
V7-O3	2.225(14)	0.32	V8-O3	2.657(16)	0.10	V9-O3	2.440 (17)	0.18	Ca3-OW10	2.52(2)	0.22
<V7-O>	1.975	$\begin{aligned} & 4.44 \\ & 4.14 \end{aligned}$	<V8-O>	1.978	$\begin{aligned} & 4.96 \\ & 4.94 \end{aligned}$	<V9-O>	1.984	4.46	Ca3-OW11	2.53(2)	0.22
								4.17	Ca3-OW2	2.57(2)	0.20
									Ca3-OW20	2.62(4)	0.17
V10-O11	1.649(14)	1.52	V11-O14	1.650(15)	1.51	V12-O21	1.581(18)	1.82	Ca3-OW17	2.67(3)	0.15
V10-O29	1.889(15)	0.79	V11-O34	1.931(16)	0.71	V12-O36	1.831(15)	0.93	Ca3-O9	2.805(18)	0.11
V10-O26	1.941(15)	0.69	V11-O29	1.939(14)	0.69	V12-O34	1.844(15)	0.90	< $\mathrm{Ca} 3-\mathrm{O}$ >	2.574	1.64
V10-O36	1.962(16)	0.65	V11-O28	1.956(13)	0.66	V12-O38	1.914(14)	0.74			
V10-O27	1.983(14)	0.61	V11-O33	1.962(14)	0.65	V12-O31	1.948(16)	0.68			
<V10-O>	1.885	4.26	<V11-O>	1.888	4.22	<V12-O>	1.824	5.06	Ca4-OW16	2.19(3)	0.50
		3.86			3.80				Ca4-OW19	2.23(4)	0.45
									Ca4-OW25	2.29(5)	0.39
									Ca4-OW28	2.49(4)	0.24
V13-O18	1.595(16)	1.75	V14-O19	1.596(18)	1.75	V15-O5	1.579(17)	1.83	Ca4-O15	2.500(19)	0.23
V13-O37	1.922(14)	0.72	V14-O40	1.904(14)	0.76	V15-O4	1.630(18)	1.60	Ca4-OW25	2.51(4)	0.23
V13-O40	1.927(14)	0.72	V14-O24	1.914(13)	0.74	V15-07	1.817(15)	0.96	Ca4-O14	2.520(19)	0.22
V13-O6	1.930(14)	0.71	V14-O32	1.930(13)	0.71	V15-O6	1.830(15)	0.93	Ca4-OW14	2.58(4)	0.19
V13-O39	1.966(14)	0.64	V14-O7	1.970(15)	0.64	<V15-O>	1.714	5.32	<Ca4-O >	2.414	2.47
<V13-O>	1.868	4.55	<V14-O>	1.863	$\begin{aligned} & 4.60 \\ & 4.38 \end{aligned}$						
		4.31									
$\mathrm{C}-\mathrm{O} 1$	1.27(3)	1.34									
$\mathrm{C}-\mathrm{O} 2$	1.28(3)	1.22									
$\mathrm{C}-\mathrm{O} 3$	1.32(3)	1.38									
<C-O>	1.29	3.94									

	$d_{\text {obs }}$	$d_{\text {calc }}$	$I_{\text {calc }}$	hkl
		21.578	20	001
		12.405	47	010
100	11.87	11.918	100	100
		11.737	69	0-11
		11.115	31	-101
98	10.62	10.789	73	002
30	10.04	9.9832	32	011
		9.9162	5	-110
		9.8623	5	101
		9.1197	23	1-11
37	9.06	9.0109	1	0-12
		8.9047	18	-111
		8.6242	6	-102
6	7.61	7.6904	2	110
6	7.61	7.4916	3	102
		7.1891	2	-112
		6.2023	1	020
		5.9112	1	1-13
		5.8683	1	0-2 2
8	5.79	5.8451	1	-211
8	5.79	5.7614	1	-121
		5.6872	2	021
		5.6320	5	1-2 2
7	5.51	5.5474	6	201
7	5.51	5.3944	5	004
		5.3518	5	-212
14	5	5.1986	7	0-2 3
14	5.21	5.1262	3	-1-2 1
		5.0142	3	120
		4.9916	2	022
		4.9611	2	-1-2 2
		4.9428	2	-203
11	4.92	4.9311	1	202
11	4.92	4.9148	1	210
		4.8313	3	-2-12
6	4.69	4.7218	3	-213
6	4.69	4.6738	1	104
		4.6418	3	014
		4.5882	3	-1-2 3
		4.5599	3	2-2 2
8	4.51	4.5055	1	0-2 4
8	4.51	4.4879	3	2-13
		4.4718	2	-2-13
		4.3332	1	0-15
		4.3174	1	023
12	430	4.3013	8	203
12	4.30	4.2536	2	-105
		4.2478	1	-130
		4.1835	1	212
7	14	4.1349	2	030
7	14	4.1254	2	0-32
		4.0909	1	-310
		4.0822	2	-311
		4.0424	1	114
18	3.921	3.9357	3	-312
		3.9123	9	-115
		3.9078	2	2-14
		3.8978	1	0-2 5
		3.8836	1	-2-2 2
		3.8797	1	-230
		3.8596	1	015

	$d_{\text {obs }}$	$d_{\text {calc }}$	$I_{\text {calc }}$	hkl
7	3.728	3.7587	1	-321
		3.7458	2	204
		3.7247	1	-2-2 3
		3.7131	1	-1-31
		3.7049	1	-303
		3.6909	2	-313
		3.5918	2	1-3 4
3	3.477	3.5533	1	-1-3 3
		3.4888	1	-2-2 4
		3.4154	1	1-16
3	3.354	3.3945	1	311
		3.3406	1	124
		3.3336	1	3-23
		3.3164	2	106
		3.3081	1	0-3 5
5	3.281	3.3025	1	-233
		3.2904	1	-206
		3.2828	3	3-3 1
		3.2698	1	1-26
		3.2636	1	-1-26
		3.2489	1	132
		3.2331	1	-3-14
8	3.161	3.1553	1	-216
		3.1519		-305
		3.1306	1	0-1 7
		3.1209	1	-2-31
		3.1011	1	040
19	3.075	3.0915	1	-107
		3.0886	1	-411
		3.0833	5	-240
		3.0763	4	-410
		3.0707	1	-3-2 2
		3.0619	1	0-4 3
		3.0590	4	230
		3.0563	2	2-42
		3.0389	3	-412
11	2.999	3.0274	2	116
		3.0210	1	320
		3.0146	1	2-16
		3.0094	1	-401
		3.0036	6	304
		2.9905	1	0-2 7
		2.9774	2	125
		2.9702	6	1-17
		2.9561	1	2-43
8	2.937	2.9482	2	-142
		2.9433	1	4-2 1
		2.9381	1	-2-3 4
		2.9356	2	-413
		2.9177	3	-117
		2.9139	1	321
7	2.895	2.9099	1	-207
		2.8875	2	107
		2.8840	2	4-12
		2.8807	1	-242
		2.8697	2	-1-36
		2.8524	1	3-15
12	2.826	2.8346	3	-135
		2.8203	4	-316
		2.8160	1	2-44

$I_{\text {obs }}$	$d_{\text {obs }}$	$d_{\text {calc }}$	$I_{\text {calc }}$	$h k l$
	2.8084	1	$3-41$	
	2.7934	3	232	

[^0]: §Email: akampf@nhm.org

[^1]: ${ }^{1}$ Deposit item AMS-22-xx 1-4 for complete powder diffraction patterns and Crystallographic Information Files. Deposit items are available two ways: for paper copies, contact the Business Office of the Mineralogical Society of America (see inside front cover of recent issue) for price information. For an electronic copy, visit the MSA web site at http://www.minsocam.org, go to the American Mineralogist Contents, find the table of contents for the specific volume/issue wanted, and then click on the deposit link there.

[^2]: * Total V was apportioned between VO_{2} and $\mathrm{V}_{2} \mathrm{O}_{5}$ to attain charge balance.
 ${ }^{\S}$ Based upon the crystal structure.

