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Abstract 12 
 13 
The dynamic properties and melting behaviour of the Earth’s mantle are strongly influenced 14 

by the presence of volatile species including water, carbon dioxide and the halogens. The role 15 

that halogens play in the mantle has not yet been fully quantified: their presence in only small 16 

quantities has dramatic effects on the stability of mantle minerals, melting temperatures and 17 

in generating halogen-rich melts such as lamproites. Lamproites are volumetrically small 18 

volcanic deposits but are found on every continent on the planet: they are thought to be melts 19 

generated from volatile-rich mantle sources rich in fluorine and water. To clarify the mantle 20 

sources of lamproites we present experimentally determined mineral/melt partition 21 

coefficients for fluorine and barium between phlogopite and lamproite melts. Both fluorine 22 

and barium are compatible in phlogopite 23 

(𝐷ி(௉௛௟/ெ௘௟௧)0.96 ± 0.02 − 3.44 ± 0.33, 𝐷஻௔(௉௛௟/ெ௘௟௧)0.52 ± 0.05 − 3.68 ± 0.43) at a range 24 

of pressures (5 – 30 kbar), temperatures (1000 - 1200°C), and fluid compositions (C-O-H 25 

mixtures). Using our partition coefficients, we model the melt compositions produced by 26 

potential lamproite sources, including phlogopite garnet lherzolite, phlogopite harzburgite, 27 

and hydrous pyroxenite. The results demonstrate that hydrous pyroxenites and phlogopite 28 

garnet lherzolite can produce melts with F and Ba contents similar to lamproites, but only 29 

hydrous pyroxenites fully reproduce other geochemical characteristics of lamproites 30 

including high K2O, low CaO content, and high F/H2O ratios.  31 
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 32 

Introduction 33 

 34 
The Earth’s mantle is a reservoir for highly incompatible and volatile elements including 35 

hydrogen, carbon, halogens, and barium (Bell and Rossman, 1992; Karato, 2011; Klemme 36 

and Stalder, 2018; Koga and Rose-Koga, 2018). The role and importance of H2O and CO2 in 37 

the mantle has been of interest for many decades, with direct observations supplied by 38 

investigations of mantle xenoliths (e.g. Carswell and Dawson, 1970; Dawson, 1971; 39 

Richardson et al., 1985; Safonov et al., 2019; Tollan et al., 2015; Waters, 1987). More 40 

recently extensive experimental studies have explored the role and effects of H2O and CO2 in 41 

the mantle and during melting (Dasgupta et al., 2013; Dasgupta and Hirschmann, 2010, 2006; 42 

Foley et al., 2009; Green, 2015, 1990; Green et al., 2014, 2010; Kovács et al., 2012; Pintér et 43 

al., 2021). Despite the growing interest in volatile elements, halogens have received less 44 

attention even though their presence in small concentrations has profound effects on solidus 45 

temperatures (Brey et al., 2009), the stability of minerals (Foley, 1991) and potential deep 46 

mantle storage of halogens (Grützner et al., 2017; Roberge et al., 2015). 47 

The common halogens (F, Cl, I, & Br) and barium are considered to be moderately to highly 48 

incompatible in most anhydrous silicate minerals  (Fabbrizio et al., 2013; Joachim et al., 49 

2017), whereas F is compatible in apatite, phlogopite, amphibole and titanates (Chevychelov 50 

et al., 2008; Edgar and Arima, 1985; Edgar and Charbonneau, 1991; Edgar and Pizzolato, 51 

1995; Flemetakis et al., 2021; Li et al., 2018; Vukadinovic and Edgar, 1993). All of these 52 

may occur as accessory minerals in mantle peridotites (Grégoire et al., 2002; Kelley, 2000) 53 

and as more common minerals in some pyroxenites (Fitzpayne et al., 2018a; Sweeney et al., 54 

1993; Waters, 1987). These halogen-bearing minerals are the principal reservoirs of fluorine 55 

in the upper mantle, and apatite and phlogopite may additionally accommodate several 56 
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weight percent of barium in their structures (Shaw and Penczak, 1996; Solovova et al., 2009; 57 

Wendlandt, 1977).  58 

Fluorine concentrations in continental mantle-derived melts are overwhelmingly influenced 59 

by the halogen-bearing minerals, and it has been demonstrated that F content increases with 60 

increasing melt alkalinity (Edgar et al., 1996), with ultrapotassic melts considered to have the 61 

highest F contents of known primary mantle melts (Edgar et al., 1996; Foley et al., 1987). 62 

The causes of F and Ba enrichments in lamproites have been the subject of many scientific 63 

studies but have proven challenging to identify (Edgar et al., 1996, 1992; Edgar and 64 

Vukadinovic, 1993; Foley, 1992, 1993, 1990a, 1990b, 1989a, 1989b; Foley et al., 1987, 65 

1986; Fritschle et al., 2013; Mitchell, 2021, 1995; Mitchell and Bergman, 1991; Murphy et 66 

al., 2002; Tappe et al., 2008; Vukadinovic and Edgar, 1993). Whilst a complete consensus on 67 

the source of lamproites has not been reached there is some agreement that phlogopite, 68 

amphibole, apatite and titanates are likely to play important roles in generating parental melts 69 

of lamproites (Edgar and Pizzolato, 1995; Edgar and Vukadinovic, 1993; Fitzpayne et al., 70 

2018a; Foley, 1992; Konzett et al., 1997; Mitchell, 1995; Sweeney et al., 1993; Tappe et al., 71 

2008; Vukadinovic and Edgar, 1993). Of these minerals, phlogopite is often present as a 72 

phenocryst phase in lamproites and the coupled behaviour of F vs. K2O attests to the presence 73 

of phlogopite in the source of lamproite melts (Aoki et al., 1981; Edgar and Charbonneau, 74 

1991; Mitchell, 2021). Lamproites are highly enriched in incompatible elements including 75 

Rb, Sr, Ba, light rare-earth elements (LREE), Zr, Nb, Pb, Th and U. Of these elements, 76 

concentrations of barium are extremely high, in some cases up to 1.7 wt% (Guo and Green, 77 

1990; Jaques et al., 1986, 1984). The enrichments in BaO appear to be common to all 78 

lamproites (Jaques et al., 1986; Murphy et al., 2002; Sheppard and Taylor, 2019; Solovova et 79 

al., 2009; Wendlandt, 1977), and with few common mantle minerals able to accommodate 80 
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appreciable quantities of Ba into their structure, phlogopite and apatite present themselves 81 

again as key minerals in the generation of lamproite melts. 82 

To understand the role phlogopite may play in the genesis of lamproite melts, this study 83 

experimentally determines F and Ba phlogopite/melt partition coefficients for lamproitic 84 

melts over a wide range of pressure, temperature, 𝑓𝑂ଶ and mixed volatile species. These 85 

newly determined partition coefficients are subsequently used to interrogate possible mantle 86 

sources and their F/H2O ratios with partial melting models for lamproite melts. 87 

 88 

Experiments and analytical methods 89 

High pressure experiments 90 

To constrain mineral/melt partition coefficients, high-pressure, high-temperature experiments 91 

described in Foley (1989a) were revisited. These liquidus experiments were conducted on 92 

two synthetic lamproite compositions (Table 1): (i) an olivine lamproite primary magma 93 

composition for West Kimberley, Australia, and (ii) a leucite lamproite based on the 94 

Gaussberg lamproite, Antarctica. The starting mixtures consisted of sintered oxides and 95 

carbonates, fluorine was added as MgF2, and experiments were run in C-O-H fluid saturated 96 

conditions which buffered water activity and oxygen fugacity; the experimental design is 97 

fully described in Foley (1989b) and so briefly summarized here.  98 

All experiments were performed in a ½” piston cylinder apparatus using a talc or NaCl 99 

assembly, temperatures were measured with Pt/Pt90Rh10 (S-type) thermocouples. Synthetic 100 

starting materials were loaded in graphite inner capsules, with an extra graphite inner capsule 101 

containing an iron-wüstite buffer to prevent oxidation and iron loss to outer noble metal 102 

capsules of Pt or Ag50Pd50. C-O-H fluids were produced from a solid source of Al4C3 + 103 

Al(OH)3, and 12 wt% distilled H2O was added to sample capsules via microsyringe (Foley, 104 

1989b). This produces a mixture of CH4 and H2O at high pressures: it does not buffer oxygen 105 

fugacity exactly (Taylor and Foley, 1989) but the extra H2O added ensures fO2 close to, but 106 
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below the water maximum in most cases. The oxygen fugacity is well characterised by the 107 

fluid composition, which was measured after each run by puncturing the capsule at 150˚C in 108 

a GCMS (Taylor and Foley, 1989). This also confirmed fluid saturation in all experiments. 109 

The range of oxygen fugacities achieved is shown in Figure 1, in which the fO2 is plotted 110 

against fluid composition, simplified as mol% H2O in the fluid. The position of the graphite 111 

saturation curve is shown exemplarily for 20 and 40 kbar and shows a “water maximum” at 112 

intermediate fO2 at which fluids contain >90% H2O. At lower fO2, fluids are principally 113 

H2O+CH4 mixtures, and H2O+CO2 mixtures at higher fO2 than the water maximum. The 114 

fluid compositions measured for individual experiments at 20 kbar (Table 2) are 115 

superimposed on Figure 1, from which it can be seen that the majority, which have 116 

H2O>CH4, lie 1-1.5 log units above the iron-wüstite buffer and well within 1 log unit of each 117 

other. Two experiments had measured H2O+CO2 mixtures, which lie at about 1.5 log units 118 

higher fO2 than those with H2O+CH4 mixtures, and very similar fO2 to each other despite 119 

their disparate fluid compositions (Figure 1). The analysed fluid compositions match closely 120 

those calculated for the same conditions (Taylor and Foley, 1989), which demonstrates that 121 

equilibrium was achieved in the experiments. 122 

In addition, to revisiting old experiments, results for 3 new high-pressure, high-temperature 123 

experiments are also presented for natural leucite lamproites from Gaussberg, Antarctica and 124 

West Kimberley, Australia. Full results of these experiments will be presented elsewhere, but 125 

are used here to provide an excellent comparison between natural and synthetic lamproites.  126 

Starting materials for these new experiments were ground under propanol to an initial 0.5 µm 127 

mixture, and 5 or 10 wt% water was added via micro-syringe directly in the platinum 128 

capsules and welded shut. Platinum capsules were enriched in iron by heating with wüstite 129 

under vacuum for several days to prevent iron loss from the starting materials during 130 

experiments. Experiments were performed at Macquarie University using a rapid quench 131 
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end-loaded piston cylinder apparatus with a ½”assembly of natural CaF2. Temperature was 132 

monitored with Type B Pt30Rh70 – Pt6Rh94 thermocouples and pressure calibrations were 133 

conducted using the quartz-coesite transition (Perrillat et al., 2003) and the albite = 134 

jadeite+quartz reaction (Holland, 1980). Experimental charges were first brought to the 135 

desired pressure before being rapidly heated at 41°C per minute to above liquidus conditions, 136 

and slowly cooled at a rate of 10°C per minute until the final run temperature was achieved 137 

(Table 2). Run durations lasted 15 - 24 hours to ensure the growth of large primary 138 

phlogopite, experiments were rapidly quenched by switching off power to the furnace and 139 

room temperature was reached in 10 seconds. Details of all experiments and run products are 140 

provided in Table 2.  141 

 142 

Analytical methods 143 

Samples were recovered from high-pressure, high-temperature experiments following 144 

decompression and sliced into three discs by diamond wire saw before embedding into epoxy 145 

resin. Mounts were polished to a 3 µm diamond finish to ensure accurate chemical 146 

compositions could be determined (Figures 2 & 3).  147 

Compositions of phlogopite and quenched glasses were quantified using wavelength-148 

dispersive spectroscopy (WDS) at the Australian National University using a 5 spectrometer 149 

Field Emission Electron Probe Analyser (FE-EMPA) JEOL JXA 8530F, operating at 15 kV 150 

and 20 nA. WDS measurements were taken by pre-programming positions for phlogopite and 151 

glass with a minimum of 5 analyses per mineral/melt pair and running overnight analyses to 152 

collect spectra. Two setups were used with different beam current and spot size to ensure 153 

volatile components and delicate silicate glasses were not lost or damaged by the electron 154 

beam. The first setup was used for collecting mineral chemistry of phlogopite and other 155 

silicate phases with a 20 nA beam current, 5-10 µm defocused beam and acquisition to 156 
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background time of 90/45s respectively. The second setup was designed to minimise beam 157 

damage to quenched glasses, which are feathery in appearance and dominated by clumped 158 

patches of phlogopite with other minor phases (Figure 2).  Determining compositions of the 159 

quench patches required a careful approach to FE-EMPA analysis; spot sizes were increased 160 

to a defocused spot of 10-20 µm, where possible, to homogenise the compositions of 161 

quenched mats and the beam current was lowered to 3 nA; a minimum of 5 analyses per 162 

experimental charge were recorded. In regions free of large primary phlogopite, grid analyses 163 

of 30 points covering approximately a 25 µm area were also taken to assess glass 164 

homogeneity.  165 

To ensure high precision and accuracy in the measurements of F and Ba, F was 166 

independently assigned to an LTAP spectrometer with peak to background times of 90 and 167 

45 seconds respectively. Fluorine was calibrated against a well-characterised CaF2 at 168 

operating conditions of 15 kV and 20 nA, secondary standards of VG-2 were used to confirm 169 

detection limits of 100 ppm (Supplementary Table 1).  Barium was calibrated against barite 170 

and assigned to LLIF, with the same peak to background times and operating conditions as 171 

were used for the collection of fluorine measurements. Mineral and melt compositions are 172 

reported in Tables 3 and 4. 173 

High-resolution images of the quenched run products were taken at Macquarie University 174 

using an FEI – Field Emission Scanning Electron Microscope (FE-SEM) operating at 15 kV, 175 

11 nA beam current, calibrated to specimen current of 13 nA using a Faraday cup on the 176 

sample stage, with a spot size of 14.8 µm and a working distance of ~10 mm.  177 

 178 

Results 179 

Experimental run products are reported in Table 2 and Figures 2 - 3, mineral compositions in 180 

Table 3 and Figure 4, melt compositions in Table 4, and partition coefficients in Table 5 and 181 
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Figure 5. Mineral compositions of accessory phases, olivine and clinopyroxene are reported 182 

in Supplementary Table 2. 183 

Phlogopite  184 

Large 50 – 200 μm primary phlogopite is present in all experiments, with secondary silicate 185 

phases including olivine, clinopyroxene and orthopyroxene (Tables 2 & 3, Figures 2 & 3). 186 

Phlogopites are inclusion free and recognisable in SEM micrographs as either basal sections 187 

or large tabular plates. They are surrounded by matted quench products of phlogopite, spinel, 188 

rutile, orthopyroxene, olivine or clinopyroxene, the proportion of each dependent on the 189 

experimental pressure Figures 1 & 2 (Foley, 1990a, 1989b). 190 

Experimental phlogopite compositions are presented in Table 3: their compositions are 191 

discussed in detail in Foley (1990a, 1989a) but the major element behaviour in phlogopite is 192 

reappraised here in view of the improved quantification of major elements and in particular 193 

fluorine by FE-EMPA, resulting in small but significant changes to the interpretation of 194 

major element behaviour with respect to pressure and temperature (Edgar and Arima, 1985; 195 

Foley, 1990a). 196 

Phlogopite in both olivine and leucite lamproite experiments have Al2O3 ranging from 13 – 197 

17 wt % and FeO from 3 – 7 wt %. TiO2 ranges from 1 – 2.5 wt % in the olivine lamproite 198 

series and 1.8 – 5 wt % in leucite lamproite phlogopite. The experimental phlogopite 199 

compositions are similar to those in natural lamproites, with West Kimberley phlogopite 200 

compositions in the range of 8-12 wt % Al2O3, 3.5 – 4 wt % FeO, and TiO2 ranging from 5– 201 

6 wt % (Jaques et al., 1986, 1984). Experimental phlogopite compositions produced from the 202 

natural West Kimberley and Gaussberg lamproite compositions are also reported in Table 3, 203 

for comparison to their synthetic counterparts.  204 

 F contents in phlogopites from olivine lamproite experiments range from 0.39 – 0.71 wt % 205 

and 0.19 – 0.56 wt % in the leucite lamproites, reflecting the initially higher F content of the 206 
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olivine lamproite starting material (Figure 4 a and b). Fluorine contents of natural West 207 

Kimberley lamproites are slightly higher at 1 – 2 wt %, possibly reflecting higher source 208 

fluorine content.  209 

BaO is also higher in olivine lamproite phlogopites at 1.70 – 3.18 wt % compared to 0.26 – 210 

1.02 wt % in leucite lamproites (Figure 4 c and d).  F decreases with increasing pressure 211 

across the temperatures investigated here (Figure 4). There is little to no noticeable 212 

temperature dependency on either the F or Ba content of the experimental phlogopites 213 

(Figure 4 b, d; Foley, 1990a). 214 

The temperature and pressure effects are weak in comparison to the effects of water activity 215 

in experimental charges (Foley, 1989a). Olivine lamproite experiments were performed under 216 

low oxygen fugacity conditions of approximately IW + 1 to + 1.5 log units fO2, and varying 217 

water activity (XH2O). Most of the olivine lamproites had high water activity with H2O > CH4 218 

(see Table 1), except for run 1832, which had H2O < CH4.  219 

Run 1835 (H2O>CH4) and run 1832 (H2O<CH4) were both conducted at 20 kbar and 1050°C, 220 

with only fluid composition (and so water activity) differing between them. F uptake in 221 

phlogopite increased from 0.48 to 0.64 wt % whilst BaO decreased from 3.18 to 2.46 wt % 222 

with decreasing water activity, demonstrating the large impact of water activity on phlogopite 223 

compositions (Figure 4 a, c) (Foley, 1990a, 1989a).  224 

A similar comparison is more challenging to ascertain in the leucite lamproite series, as all 225 

experiments except for run 1951 were conducted at fluid compositions with H2O>CH4 and 226 

there are no other experiments at the same pressure and temperature conditions as run 1951 to 227 

draw comparisons from. Run 1951 has the highest F content amongst the leucite lamproite 228 

phlogopites, but whether this is controlled by water activity or its low-pressure temperature 229 

conditions (5 kbar, 1050°C) cannot be easily distinguished from the current dataset.   230 
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Whilst all precautions were taken to ensure only primary phlogopites were analysed, 231 

occasional quench phlogopites were identified and differ in chemistry, with higher TiO2 and 232 

SiO2 contents and lower K2O and F (Foley, 1990a). These spurious analyses were removed 233 

when determining partition coefficients.  234 

Melt 235 

The experiments presented here were conducted at near liquidus conditions to ensure growth 236 

of large primary phlogopite and minimise the growth of other silicate phases, and as a result 237 

large areas of quenched melt alongside large primary phlogopite were present in all 238 

experimental charges (Figures 2-3).  239 

Melt regions consist of quench crystals, phlogopite, olivine, occasional pyroxene, rutile and 240 

spinel and have a complex matted to feathery appearance with very few areas of “clean” glass 241 

(Figure 1). FE-EMPA measurements were adjusted to homogenise areas of quench crystal 242 

growth (see details in analytical methods) and measurements were subsequently compared to 243 

those from new experiments run in the rapid quench piston cylinder, which has vastly 244 

improved the quench rate, texture and so the homogeneity of glasses (Figure 3). The 245 

compositions of melts from Run MO21-061 (Table 4) a West Kimberley leucite lamproite, 246 

are similar, within analytical uncertainty, to those in the synthetic leucite lamproite series, 247 

providing confidence in the EMPA technique used to homogenise and determine chemical 248 

compositions of the melts.  249 

The melts have a restricted range of compositions with SiO2 varying from 31.3 – 35.6 wt% 250 

and 39.5 – 51.8 wt%, K2O ranges from 1- 5 wt% and 5.4-8.8 wt% in the olivine and leucite 251 

lamproite series experiments respectively. Both sets of experimental melt compositions have 252 

high K2O/Na2O ratios: 2.4-10.65 for the leucite lamproite, 2.2 – 20.67 for the olivine 253 

lamproite and a range of 4.7 – 7.7 for the natural West Kimberley and Gaussberg 254 

experiments, whilst P2O5 content ranged from 0.76 – 2.79 wt%. CaO content is low, 255 
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generally below 5.2 wt% reflecting primary compositions of West Kimberley olivine 256 

lamproites (average 5.4 wt%) (Jaques et al., 1986) and Gaussberg leucite lamproites (average 257 

4.4 wt%) (Murphy et al., 2002). Run 1835 has the highest CaO content (8.47 wt%), but still 258 

falls within the reported range for olivine lamproites (Jaques et al., 1986). 259 

 260 

Partition coefficients of fluorine and barium 261 

Partition coefficients 𝐷ி(௉௛௟/ெ௘௟௧), 𝐷஻௔(௉௛௟/ெ௘௟௧) are presented in Table 5 and Figure 5. Fluorine 262 

and barium behave compatibly in phlogopite with partition coefficients above 1, with 263 𝐷ி(௉௛௟/ெ௘௟௧) ranging from 0.96 ± 0.02 to 3.44 ± 0.33 and 𝐷஻௔(௉௛௟/ெ௘௟௧) 0.99 ± 0.11 to 3.68 ± 264 

0.43 across the pressure, temperature and fluid composition range investigated here (Figure 265 

5).  266 

Several previous studies have constrained 𝐷ி(௉௛௟/ெ௘௟௧)  for various compositions, pressures, 267 

and temperatures (Edgar and Pizzolato, 1995; Flemetakis et al., 2021; Vukadinovic and 268 

Edgar, 1993), with Vukadinovic and Edgar (1993) reporting 𝐷ி(௉௛௟/ெ௘௟௧) 1.24 – 2 for a 269 

phlogopite – apatite – melt  system, and Edgar and Pizzolato (1995) 𝐷ி(௉௛௟/ெ௘௟௧) 0.68 – 1.55 270 

for a K-richterite – apatite – phlogopite – melt system. More recently, Flemetakis et al. 271 

(2021) determined 𝐷ி(௉௛௟/ெ௘௟௧) for a basanitic system, reporting compatible 𝐷ி(௉௛௟/ெ௘௟௧) values 272 

of 0.93 ± 0.08 – 2.56 ± 0.15. Our newly determined partition coefficients for lamproite melts 273 

agree within reported uncertainties with previous work irrespective of composition, pressure, 274 

and temperature, highlighting the ubiquitous compatibility of F in phlogopite (Edgar and 275 

Pizzolato, 1995; Flemetakis et al., 2021; Vukadinovic and Edgar, 1993). 276 

Despite the importance of Ba in phlogopite, fewer experimental studies have constrained 277 𝐷஻௔(௉௛௟/ெ௘௟௧) for lamproite compositions (Fabbrizio et al., 2010; Guo and Green, 1990; 278 

Schmidt et al., 1999). Guo and Green (1990), found 𝐷஻௔(௉௛௟/ெ௘௟௧) < 1 in all their experiments, 279 
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despite similar starting compositions and run conditions to those presented here (Figure 6). 280 

The cause of the differing 𝐷஻௔(௉௛௟/ெ௘௟௧) values in the study of Guo and Green (1990)  to those 281 

presented here is unclear, but could be due to the higher fO2 conditions and the lack of a free 282 

fluid phase in the study of Guo and Green (1990), both of which affect  𝐷஻௔(௉௛௟/ெ௘௟௧) as 283 

demonstrated here. However, Fabbrizio et al. (2010) and Schmidt et al.,(1999) conducted 284 

partitioning experiments on the same leucite lamproite composition as Guo and Green 285 

(1990), with  Fabbrizio et al. (2010)  reporting 𝐷஻௔(௉௛௟/ெ௘௟௧) 1.57 ± 0.16 to 3.08 ± 0.20 and 286 

Schmidt et al. (1999) 𝐷஻௔(௉௛௟/ெ௘௟௧) 0.56 ± 0.03 to 1.61 ± 0.10, both of which are in excellent 287 

agreement with the results presented here (Figure 6). Fabbrizio et al. (2010) were also unable 288 

to isolate the cause of differing partition coefficients between their study and that of Guo and 289 

Green (1990). Without further investigation of mineral/melt pairs in ultrapotassic melts, it is 290 

not possible to comment further on these differences. Several other experimental studies 291 

(Adam and Green, 2006; Green et al., 2000; Latourrette et al., 1995; Sweeney et al., 1995) 292 

also report similarly high 𝐷஻௔(௉௛௟/ெ௘௟௧) >1 for various compositions of melt including, basanite 293 

(Adam and Green, 2006; Latourrette et al., 1995), basalt (Green et al., 2000) and carbonatite 294 

(Sweeney et al., 1995).  295 

Whilst the behaviour of both F and Ba is coupled to pressure and temperature in a similar 296 

manner (Figure 4), their partition coefficients show opposing trends (Figure 5). Olivine 297 

lamproite experiments were conducted over a smaller pressure-temperature range than the 298 

leucite lamproite series and as a result, temperature-induced effects on the partition 299 

coefficients, whilst present in both experimental series, are more subtle in the olivine 300 

lamproites and are therefore not discussed further (Figure 5 a and c). 𝐷ி(௉௛௟/ெ௘௟௧) in leucite 301 

lamproite experiments decreases with increasing pressure from 𝐷ி(௉௛௟/௅௅ ௠௘௟௧) 2.52 at 15 kbar 302 
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to 1.42 at 30 kbar and 1100°C, whilst 𝐷஻௔(௉௛௟/௅௅  ௠௘௟௧) increases from 1.21 at 15 kbar to 3.08 at 303 

30 kbar and 1100°C (Figure 5 b and d).  304 

Increasing experimental temperature in the leucite lamproite series results in small increases 305 

in the partition coefficients across all experimental temperatures for both F and Ba within the 306 

experimental conditions investigated here. The temperature effect is much smaller than the 307 

pressure effect for both 𝐷஻௔(௉௛௟/ெ௘௟௧) and 𝐷ி(௉௛௟/ெ௘௟௧), with an increase of only 0.5 from 308 𝐷ி(௉௛௟/௅௅  ௠௘௟௧) 0.99 at 1000°C to 1.49 at 1150°C and 30 kbar, as compared to a threefold 309 

reduction due to pressure from 𝐷ி(௉௛௟/௅௅  ௠௘௟௧) 2.95 at 20 kbar to 1.45 at 30 kbar and 1150°C.   310 

Independent of pressure-temperature effects, varying fluid composition influences partition 311 

coefficients to a greater degree than either pressure or temperature alone. The effect of water 312 

activity can only be assessed for the olivine lamproite (Figure 7) series: runs 1832 (1050°C, 313 

20 kbar) and 1795 (1200°C, 30 kbar) are strongly influenced by low water activity resulting 314 

in high partition coefficients relative to runs at similar pressure-temperature conditions of 315 𝐷ி(௉௛௟/ை௅  ௠௘௟௧)1.61 and 1.06 respectively (Figure 7).  316 

 317 

Discussion 318 

The role of barium in lamproites 319 

BaO is one of the least considered components in lamproites and yet it is frequently reported 320 

in extremely high concentrations; BaO in the West Kimberley olivine and leucite lamproites 321 

average at 1.20 and 1.10 wt% respectively (Jaques et al., 1986), and similarly high BaO 322 

concentrations up to 5970 ppm are reported in Gaussberg leucite lamproites (Sheraton, 1981; 323 

Murphy et al., 2002). Whilst orogenic lamproites show modestly lower BaO contents, these 324 

are still appreciably high, ranging from an average of 1924 ppm in Western Mediterranean 325 

lamproites (Contini et al., 1993; Pérez-Valera et al., 2013), to 2092 ppm for Eastern 326 

Mediterranean lamproites (Prelević et al., 2012, 2005). 327 
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These enrichments in BaO attest to the presence of either apatite or phlogopite, or both, in the 328 

source regions of lamproitic melts (Edgar and Charbonneau, 1991; Guo and Green, 1990; 329 

Mitchell, 1995). The strong association of F with K2O (Edgar and Charbonneau, 1991) seen 330 

across F rich lamproites strongly implies phlogopite is a potential BaO source, as there is no 331 

correlation of F with P2O5 which would indicate a strong role of apatite as the F and BaO 332 

reservoir in the lamproite source (Edgar and Charbonneau, 1991). The importance of 333 

phlogopite as a BaO source is, however, complicated by the accommodation of BaO into its 334 

structure (Guo and Green, 1990; Krausz, 1974; Sheppard and Taylor, 2019). Our 335 

experimental partition coefficients demonstrate the compatible nature of BaO in phlogopite 336 

(Figure. 5 c, d & 6), but phlogopites are structurally complex and several substitution 337 

mechanisms have been proposed to incorporate barium (Guo and Green, 1990; Mitchell, 338 

1981; Sheppard and Taylor, 2019; Wendlandt, 1977). 339 

The substitution mechanism proposed by Guo and Green (1990): 340 2𝐾 + 4(𝑀𝑔, 𝐹𝑒) + 4𝑆𝑖 = 𝐵𝑎 + 3𝑇𝑖 + 4𝐴𝑙 + [ ]௏ூ.௑ூூ, 341 

an extension to Wendlandt's (1977) suggested mechanism, could explain our experimental 342 

phlogopites (Figure 8 a). However, the simplest substitution mechanism: 343 2𝐾 = 𝐵𝑎 + [ ], 344 

also defines a clear trend for our phlogopites (Figure 8 b), demonstrating the lack of 345 

understanding of barium incorporation into the phlogopite structure. Other substitution 346 

mechanisms such as the 3𝐾ା + 2(𝑀𝑔, 𝐹𝑒)௏ூଶା + 𝐴𝑙ூ௏ଷା = 𝑇𝑖௏ூସା + 𝐹𝑒ூ௏ଷା + (𝑁𝑎ା, 𝐵𝑎ଶା) + [ ]௏ூ 347 

proposed by Mitchell (1981) do not appear to be operating in our phlogopites, most likely 348 

due to the low oxygen fugacity of the experiments presented here, as oxygen fugacity and 349 

melt composition play a role in determining the substitution mechanism (Foley, 1989a). 350 

Phlogopites in this study have underfilled octahedral and interlayer cation sites (Table 3), 351 

below the ideal values of 6 and 2 respectively, strongly implying a substitution mechanism 352 
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for barium involving the generation of site vacancies. The underfilled octahedral sites may 353 

indicate that the substitution mechanism of Guo and Green (1990) is dominant in our 354 

experimental phlogopites. Whether this mechanism is favoured by the low oxygen fugacity 355 

cannot be explored further without additional experiments.  356 

The challenge in discerning which mechanism(s) is dominant is increased by the low number 357 

of reported measurements of BaO from lamproitic phlogopite and melts. Greater emphasis on 358 

the collection of BaO content in ultrapotassic and other alkaline rocks is required to further 359 

our understanding on the role BaO plays in phlogopite and the genesis lamproite melts.  360 

 361 

 362 

The generation of lamproites 363 

The geochemical characteristics of lamproites including high Mg-number, Ni and Cr content 364 

point towards a primary mantle derived melt, which has experienced minimal modification 365 

prior to eruption (Foley et al., 1987; Mitchell, 1995). In addition to these geochemical 366 

characteristics, which are used to distinguish primary melts of peridotite, lamproites are 367 

highly enriched in many incompatible elements including BaO, have high K2O/Na2O ratios, 368 

extreme potassium enrichments, as well as high F /H2O ratios (Beyer et al., 2016; Edgar et 369 

al., 1992; Edgar and Arima, 1983; Foley et al., 1987; Mitchell, 1995), all of which cannot be 370 

easily sourced from the lithospheric mantle without enrichment in melt or fluid components 371 

(Foley, 1992; Mitchell, 2021, 1995). This apparent paradox has resulted in a lively multi-372 

decadal debate as to what the mineralogy and composition of lamproite source rocks really 373 

are (Beyer et al., 2016; Edgar and Charbonneau, 1991; Foley, 1993, 1990b, 1990a, 1989; 374 

Förster et al., 2018; Jaques et al., 1986; Mitchell, 1995; Murphy et al., 2002), with broad 375 

agreement on the need for “mantle metasomatism” to deliver enrichments in volatiles, 376 
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halogens and potassium to these source lithologies (Foley, 1992, 1990b, 1989b; Mitchell, 377 

2021, 1995).  378 

There are three main source lithologies discussed in the literature for the production of 379 

lamproitic melts: “exotic” rocks which do not significantly interact with the surrounding 380 

lherzolite mantle, such as (i) phlogopite harzburgites (Foley, 1992; Mitchell, 1995), (ii) 381 

variably metasomatismed garnet lherzolite (Condamine et al., 2016; Mitchell, 2021), and (iii) 382 

hydrous pyroxenites or glimmerites (Fitzpayne et al., 2018a; Konzett et al., 1997; Waters, 383 

1987).  In order to constrain the source lithology of lamproites, the extreme K2O contents 384 

have been the primary focus, as it has been demonstrated melts of dry garnet lherzolite 385 

cannot provide the K2O enrichment required for ultrapotassic magmas (Laporte et al., 2014; 386 

Novella and Frost, 2014). Therefore, to generate high K2O magmas all the aforementioned 387 

sources of lamproites contain phlogopite, as this is expected to be the main K-bearing 388 

hydrous phase in the upper mantle (Condamine et al., 2016; Condamine and Médard, 2014; 389 

Edgar and Arima, 1983; Foley, 1989b; Förster et al., 2018; Mitchell, 1995; Safonov et al., 390 

2019; Thibault et al., 1992). In addition to its high K2O content phlogopite has the potential 391 

to hold several weight percent F and BaO within its structure, which would generate melts 392 

enriched in F, K2O, BaO and H2O upon melting.  393 

 394 

Partial melting of phlogopite-bearing sources  395 

Using the partition coefficients for fluorine experimentally determined here, partial melting 396 

models were constructed to assess the viability of three potential source lithologies in 397 

generating F/H2O ratios consistent with lamproitic melts. Partial melting was modelled using 398 

numerical solutions after Stracke et al. (2003) and Zou (1998) for dynamic non-modal 399 

melting with small melt increments. F/H2O ratios in melts were calculated for partial melt 400 

fractions of 1, 5, 10, and 15%. The modelled source composition and melting reactions of 401 
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Condamine et al. (2016) were used for metasomatized garnet phlogopite lherzolite (Phl – 402 

lherz) and phlogopite harzburgite (Phl – harz) assemblages. Melting reactions for a hydrous 403 

phlogopite pyroxenite (Phl – pyrox) assemblage of orthopyroxene, phlogopite, K-richterite 404 

and garnet, without additional accessory phases were determined from Foley et al. (in prep.). 405 

Fluorine and H2O mineral/melt partition coefficients for the nominally anhydrous and 406 

halogen-free minerals, olivine, orthopyroxene, clinopyroxene and garnet were taken from 407 

Beyer et al. (2016), Dalou et al. (2012), Flemetakis et al. (2021), and Hauri et al. (2006). 408 

Partition coefficients for phlogopite were our newly determined 𝐷ி(௉௛௟/ெ௘௟௧) with an average 409 

value of 1.66, and 𝐷ுଶை(௉௛௟/ெ௘௟௧) of 0.53 from Hauri et al. (2006). Finally, a value of 410 𝐷ி(ெ௜௡௘௥௔௟/ெ௘௟௧) 1.36 and  𝐷ுଶை(ெ௜௡௘௥௔௟/ெ௘௟௧) 0.243 was used for potassium richterite (Foley et 411 

al., in prep.; Hauri et al., 2006). Bulk F and H2O contents for each of the three sources was 412 

assumed to be: 0.4 wt% H2O and 700ppm F for both Phl - lherz and Phl - harz (Condamine et 413 

al., 2016), whilst values of 0.5 wt% H2O and 2500 ppm F for the Phl - pyrox assemblage 414 

were assumed following measurements on natural phlogopite pyroxenites (Funk and Luth, 415 

2013; Waters, 1987). Full details of the modelling including mineral modes, reactions and 416 

partition coefficients are provided in Supplementary Table 3. 417 

Our partial melting models (Figures 9 & 10) demonstrate that Phl - lherz and Phl - pyrox 418 

mantle assemblages generate F/H2O ratios in the range expected for lamproites (0.1 - 0.56 419 

F/H2O: Edgar et al., 1992; Edgar and Arima, 1983; Mitchell, 1995). at small partial melt 420 

fractions between 1 – 15%. Phlogopite harzburgite sources require exhaustion of the only 421 

fluorine bearing mineral, phlogopite, to produce F/H2O ratios characteristic of lamproites. 422 

Despite this exhaustion in phlogopite it initially appears that the partial melting models 423 

cannot decide which of the mantle assemblages, if any, uniquely contributes to lamproitic 424 

melts. However, further assessment of F content (Figure 10) demonstrates the varying 425 

geochemical behaviour of melts generated by the three mantle lithologies. 426 
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Melts of the phlogopite harzburgite assemblage have the highest F content even after 1% 427 

partial melting: despite the similar mineral compositions to phlogopite garnet lherzolite, the 428 

melting reactions differ significantly and the initially high contribution of phlogopite to the 429 

phlogopite harzburgite melts results in the highest F content (Condamine et al., 2016). The 430 

incongruent growth of olivine and clinopyroxene further increases the F content of the melt 431 

with increased degrees of partial melting (Condamine et al., 2016; Condamine and Médard, 432 

2014). After exhaustion of phlogopite as the main contributing mineral to the melt, the F 433 

content will begin to decrease through dilution. Phlogopite is exhausted at melt fractions of 434 

10% and to model higher degrees of partial melting a change in reaction and either pressure 435 

or temperature is required to continue melting. It appears unlikely that primary melts 436 

generated from phlogopite harzburgite alone can produce both the F/H2O ratios and F 437 

contents characteristic of lamproites.  438 

Melts of metasomatised garnet phlogopite lherzolite and hydrous phlogopite pyroxenite fall 439 

within the F range expected for lamproites but show opposing trends with increasing degree 440 

of partial melting (Figure 10). A melt fraction of at least 10% of garnet lherzolite is required 441 

to enrich melts to the required F/H2O ratios, but F contents may be expected to decrease at 442 

higher degrees of partial melting due to dilution following the exhaustion of phlogopite and 443 

the subsequent melting of orthopyroxene and garnet. A reduction in F content is not 444 

supported by our modelling, as the incongruent growth of olivine and clinopyroxene retains 445 

high levels of F in the melt which remain unchanged to even larger melt fractions  446 

(Condamine et al., 2016). Whilst melting of Phl - lherz appears to be an attractive solution in 447 

terms of F/H2O and F content for the genesis of lamproite melts, the major element chemistry 448 

of garnet lherzolite melts, hydrous and anhydrous, has been rigorously constrained by 449 

experiments (Balta et al., 2011; Brey et al., 2009; Condamine et al., 2016; Foley, 1992; 450 

Girnis et al., 1995; Green, 2015; Kinzler, 1997; Walter, 1998) and cannot produce the high 451 
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K2O/Na2O > 2, low Ca and high K2O > 8 wt% required for parental melts of lamproites 452 

(Condamine et al., 2016; Foley, 1992; Foley et al., 1987; Mitchell, 1995). 453 

Previous studies have been used to suggest that hydrous, fluorine rich minerals such as 454 

phlogopite do not need to play a significant role in generating ultrapotassic volcanism, and 455 

that the high F/H2O ratios may instead be reconciled by multiple episodes (at least 6) of small 456 

degree (1-2%) partial melting of an eclogite assemblage with clinopyroxene as the main 457 

contributor to melts (Beyer et al., 2016). However, the role of clinopyroxene in generating 458 

potassic volcanism is problematic as the dissolution of large volumes of clinopyroxene will 459 

also enrich melts in CaO and Na2O, in contrast to the low Ca and Na2O content of lamproites 460 

(Dasgupta et al., 2006; Edgar and Vukadinovic, 1993; Foley et al., 1987). Eclogite is not 461 

considered important here for generating lamproite melts. 462 

Hydrous pyroxenites of varying lithology are widespread as ultramafic xenoliths from 463 

cratonic areas. These include MARID (Mica-Amphibole-Rutile-Ilmenite-Diopside) and PIC 464 

(Phlogopite-Ilmenite-Clinopyroxene) assemblages entrained in kimberlites (Fitzpayne et al., 465 

2018b; Grégoire et al., 2002). The possible contribution of MARID or MARID-like 466 

assemblages to lamproitic melts has been the subject of experimental studies elsewhere 467 

(Förster et al., 2018; Konzett et al., 1997; Sweeney et al., 1993). Our partial melting models 468 

(Figures 9 and 10) additionally demonstrate that melts from a hydrous pyroxenite assemblage 469 

with similar minerals to MARID can reproduce both the high bulk F content, and the F/H2O 470 

ratios characteristic of lamproites. Unlike their anhydrous counterparts, of which partial melts 471 

chemically resemble ocean island basalts (Lambart et al., 2016, 2013), melts of MARID-like 472 

hydrous pyroxenites have low CaO and high K2O due to the major initial contribution of K-473 

richterite followed by phlogopite to the initial melts (Foley et al., in prep.) and the expansion 474 

of the phase field of clinopyroxene in potassic systems (Melzer and Foley, 2000). 475 

 476 
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Implications for lamproite melt generation 477 

Partition coefficients for F and Ba have been experimentally determined for phlogopite/melt 478 

pairs in a lamproitic system at various pressures, temperatures, and fluid compositions. Our 479 

experimental results demonstrate that both F and Ba are compatible in phlogopite across a 480 

wide pressure-temperature range, and that the composition of a mixed fluid (CH4 or H2O 481 

rich) appears to affect the partition coefficients to a greater degree than either pressure or 482 

temperature. CH4-rich fluids are likely to be important in the source regions of lamproite 483 

melts, where high F concentrations may result from low water activity and oxygen fugacity, 484 

indicating that important variations in the partitioning of F do not depend on just pressure or 485 

temperature.  486 

The experiments also show barium to be compatible in phlogopite, but the behaviour and role 487 

of BaO was not considered in our partial melting models at this stage. It requires further 488 

exploration and improved reporting of BaO concentrations in phlogopite, matrices and whole 489 

rocks. Current data is insufficient to clarify the incorporation mechanism governing Ba 490 

uptake. The substitution mechanisms involving barium may also be influenced by oxygen 491 

fugacity conditions (Foley, 1989a; Mitchell, 1981): our experiments were conducted under 492 

reduced conditions and additional experiments in other conditions are required to investigate 493 

this further.  494 

Utilising our newly determined partition coefficients, partial melting of possible mantle 495 

sources with varying phlogopite content were investigated to decipher which mantle 496 

compositions could produce lamproitic signatures. All three of the potential sources, 497 

phlogopite garnet lherzolite, phlogopite harzburgite and hydrous phlogopite pyroxenite can 498 

produce F/H2O ratios in the range expected for lamproites at modest melt fractions of 499 

between 5 – 10%. However, only hydrous phlogopite pyroxenite and phlogopite garnet 500 

lherzolite can generate melts with both F content and F/H2O ratios in the range of natural 501 
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lamproites. Not only are lamproites enriched in F and H2O, but they have high concentrations 502 

of incompatible elements such as BaO, which must be accounted for in discussions of source 503 

mineralogy.  504 

Partial melting models in conjunction with carefully determined partition coefficients are 505 

only the first step in determining the source of lamproite melts. There are geochemical 506 

differences between cratonic and orogenic lamproites, which have not been discussed as part 507 

of this contribution as the lamproitic compositions in our experiments represent only those 508 

from cratonic regions. These geochemical differences are, however, probably due to 509 

differences in source mineralogy and or interactions between metasomatic melts and 510 

peridotite, which may involve different kinds of hydrous pyroxenite. The sources of many 511 

orogenic lamproites are believed to be much shallower (60-100km) and to involve subducted 512 

sedimentary materials which greatly complicate the palette of possible minerals in their 513 

sources (Prelević et al., 2013). SiO2-rich orogenic lamproites may even be generated without 514 

phlogopite in the source (Wang et al., 2017). 515 

The validity of our modelling and clarification of source compositions requires further partial 516 

melting experiments on potential hydrous pyroxenite sources. Equally desirable are reaction 517 

experiments between the peridotitic mantle and melts of hydrous pyroxenite as the latter are 518 

unlikely to traverse the lithospheric mantle in unmodified and unreacted form (Foley, 1992). 519 

With increased emphasis on understanding ultramafic rocks other than peridotite in the 520 

mantle, the role of metasomatism and accessory phases in the generation of lamproites is 521 

becoming clearer and our study now confirms the essential role phlogopite plays in 522 

generating F and H2O rich lamproite melts. 523 

 524 
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Table 1. Compositions of starting materials in oxide weight percent. 881 
 882 

OL LL WK1 Gauss
SiO2 43.8 51.4 46.71 50.7
TiO2 3.9 3.45 7.15 2.38
Al2O3 4.5 9.95 5.29 9.9
FeO 8.67 6.1 7.88 5.97
MnO 0.17 0.09 0.11 0.09
MgO 23.8 8.03 9.31 8.12
CaO 5.08 4.67 3.42 4.75
Na2O 0.58 1.67 0.72 1.71
K2O 5.08 11.76 7.84 11.52
P2O5 1.64 1.5 1.62 1.45
BaO 1.75 0.63 1.49 0.66
SrO 0.15 0.23 0.2 0.09
ZrO2 0.15 0.14 0.27 0.1
Cr2O3 0.17 0.1 0.07 0.08
NiO 0.13 0.03 0.04 0.03
F 0.53 0.33 0.39
 883 
 884 
OL: olivine lamproite, LL: leucite lamproite, WK1: West Kimberley, Australian lamproite, Gauss: Gaussberg, Antarctican leucite lamproite.  885 
 886 
 887 
 888 
 889 
 890 
 891 
 892 
 893 
 894 
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Table 2. Experimental run conditions and products; experiments are ordered by increasing experimental temperature. 895 
 896 

Run No.  Starting mix P (kbar) T (°C) t (hr) Fluid H2O # CO2 Fluid H2O # CH4 Phases present
T-1835 Olivine Lamproite 20 1050 10 82 Phl, Ol, L 
T-1832 Olivine Lamproite 20 1050 10 55 PHl, Ol, L 
T-1711 Olivine Lamproite 20 1100 10 75 Phl, Ol, L 
T-1695 Olivine Lamproite 30 1100 2 81 Phl, Ol, L 
T-1885 Olivine Lamproite 35 1100 3.5 75 Phl, Opx, Ru, L 
T-1663 Olivine Lamproite 20 1150 2 82 Phl, Ol, L 
T-1645 Olivine Lamproite 30 1150 2 86 Phl, Ol, L 
T-1888 Olivine Lamproite 35 1150 2.5 * Phl, Opx, Ru, L 
T-1795 Olivine Lamproite 30 1200 6 51 Phl, Ol, L 
T-1951 Leucite lamproite 5 1050 3.5 41 Phl, Ol, Cpx, L 
T-1940 Leucite Lamproite 10 1100 2 82 Phl, L 
T-1947 Leucite Lamproite 10 1120 2 80 PHL, L 
MO21-61 W. Kimberley + 5 wt% H2O 15 1050 15 Phl, L 
T-1918 Leucite Lamproite 15 1100 2 80 Phl, L 
MO21-59 Gaussberg Lamproite + 10 wt% H2O 15 1100 24 Phl, Cpx, L
MO21-59 Gaussberg Lamproite + 5 wt% H2O 15 1100 24 Phl, Cpx, L 
T-1731 Leucite Lamproite 20 1100 2 78 PhL, L
T-1857 Leucite Lamproite 20 1150 2 15 Phl, Opx, Cpx, L 
T-1860 Leucite Lamproite 20 1150 2 86 Phl, Cpx, L 
T-1869 Leucite Lamproite 25 1050 5 78 Phl, Ru, L 
T-1738 Leucite Lamproite 25 1100 2 67 PhL, L 
T-1863 Leucite Lamproite 25 1150 2.7 80 Phl, Opx, L 
T-1866 Leucite Lamproite 25 1150 2 78 Phl, Ru, L 
T-1879 Leucite Lamproite 30 1000 6.5 83 Phl, Ru, L 
T-1716 Leucite Lamproite 30 1100 2 68 PhL, L 
T-1715 Leucite Lamproite 30 1150 2 62 Phl, L 
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Fluid compositions are described by molar % water in either a methane-water fluid or carbon dioxide-water fluid; where * is denoted it was not 897 
possible to determine the composition of the fluid. Phases present are Phl: phlogopite, Ol: olivine, Cpx: clinopyroxene, Ru: rutile, Opx: 898 
orthopyroxene and L: liquid. Experiment MO21-59 and MO21-61 were conducted without a fluid phase.  899 
 900 
 901 
 902 
 903 
 904 
 905 
 906 
 907 
 908 
 909 
 910 
 911 
 912 
 913 
 914 
 915 
 916 
 917 
 918 
 919 
 920 
  921 
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 1000 
Table 3. Mineral chemistry of 
phlogopite 

Run No.  T-1835 T-1832 T-1711 T-1695 T-1885 T-1663 T-1645 

Starting mix 
Olivine 
Lamproite 

Olivine 
Lamproite 

Olivine 
Lamproite 

Olivine 
Lamproite 

Olivine 
Lamproite 

Olivine 
Lamproite 

Olivine 
Lamproite 

n 5 5 5 4 4 3 5

SiO2 37.93 (0.21) 40.41 (0.32) 39.84 (0.32) 40.04 (0.28) 40.25 (0.13) 38.73 (0.15) 40.51 (0.24) 
TiO2 1.92 (0.05) 1.94 (0.04) 1.79 (0.10) 1.13 (0.07) 1.55 (0.08) 2.28 (0.01) 1.13 (0.06) 
Al2O3 16.28 (0.26) 13.83 (0.20) 14.29 (0.16) 14.27 (0.20) 15.38 (0.16) 15.54 (0.11) 13.77 (0.17) 
Cr2O3 0.21 (0.04) 0.26 (0.05) 0.39 (0.30) 0.48 (0.10) 0.22 (0.02) 0.71 (0.10) 0.27 (0.05) 
FeO 2.97 (0.15) 3.49 (0.12) 3.6 (0.10) 2.97 (0.07) 4.52 (0.07) 3.00 (0.05) 3.72 (0.10) 
NiO - - - - 0.27 (0.02) 0.14 (0.01) - 
MgO 22.52 (0.15) 23.56 (0.23) 23.75 (0.10) 24.49 (0.11) 22.01 (0.09) 23.03 (0.13) 23.81 (0.13) 
Na2O - - - - 0.10 (0.02) 0.15 (0.01) - 
K2O 9.21 (0.16) 9.46 (0.11) 9.62 (0.16) 9.84 (0.08) 9.5 (0.06) 9.55 (0.06) 9.83 (0.16) 
BaO 3.18 (0.13) 2.46 (0.10) 1.84 (0.08) 1.75 (0.08) 1.7 (0.13) 2.65 (0.12) 1.80 (0.12)
F 0.476 (0.08) 0.638 (0.05) 0.66 (0.04) 0.492 (0.05) 0.43 (0.01) 0.71 (0.01) 0.59 (0.05) 
Total 94.75 (0.37) 96.05 (0.82) 95.77 (0.49) 95.46 (0.15) 95.95 (0.14) 96.54 (0.37) 95.43  (0.29) 
Mg# 93.11 (0.35) 92.32 (0.24) 92.17 (0.23) 93.63 (0.15) 89.67 (0.11) 93.18 (0.14) 91.94 (0.21) 
K/Al 0.612 (0.02) 0.741 (0.01) 0.729 (0.02) 0.747 (0.01) 0.67 (0.01) 0.67 (0.01) 0.773 (0.02) 

On the basis of 22 O 
Si 5.47 5.72 5.64 5.68 5.70 5.47 5.76 
Ti 0.21 0.21 0.19 0.12 0.16 0.24 0.12 
Al 2.77 2.31 2.38 2.39 2.57 2.59 2.31 
Cr 0.02 0.03 0.04 0.05 0.02 0.08 0.03 
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Fe 0.36 0.41 0.43 0.35 0.54 0.35 0.44 
Ni 0.03 0.02 
Mg 4.84 4.97 5.01 5.18 4.65 4.85 5.04 
Na 0.02 0.00 0.00 0.00 0.03 0.04 0.00 
K 1.69 1.71 1.74 1.78 1.72 1.72 1.78

Ba 0.18 0.14 0.10 0.10 0.09 0.15 0.10 
F 0.22 0.29 0.30 0.22 0.19 0.32 0.27

SUM 15.78 15.76 15.83 15.87 15.71 15.83 15.85

Total Z - Tetrahedral site 8.24 8.03 8.02 8.07 8.27 8.06 8.07 
Total Y - Octahedral site 5.43 5.62 5.67 5.70 5.40 5.54 5.63 
Total X  - Interlayer site 1.89 1.85 1.84 1.88 1.84 1.91 1.88 
 1001 
 1002 
 1003 
 1004 
 1005 
 1006 
 1007 
 1008 
 1009 
 1010 
 1011 
 1012 
 1013 
 1014 
 1015 
 1016 
 1017 
 1018 
 1019 
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 1020 
 1021 
Table 3 continued  1022 

T-1888 T-1795 T-1879 T-1951 T-1869 T-1940 T-1918 T-1731 
Olivine 
Lamproite 

Olivine 
Lamproite 

Leucite 
Lamproite

Leucite 
lamproite

Leucite 
Lamproite

Leucite 
Lamproite

Leucite 
Lamproite

Leucite 
Lamproite

2 4 2 4 5 4 5 3 

40.985 (0.30) 41.38 (0.46) 38.65 (0.58) 40.74 (0.44) 41.02 (0.84) 40.58 (0.28) 40.8 (0.52) 40 (0.28) 
2.38 (0.07) 2.58 (0.29) 2.185 (0.04) 3.66 (0.26) 3.48 (0.59) 3.22 (0.13) 2.98 (0.19) 3.02 (0.13) 
14.66 (0.06) 13.2 (0.46) 18.15 (0.49) 12.88 (0.17) 13.08 (0.63) 14.09 (0.49) 13.65 (0.22) 13.78 (0.49) 
0.086 (0.04) 0.05 (0.01) 0.25(0.02) 0.36 (0.04) 0.56 (0.21) 1.45 (0.28) 0.6 (0.10) 0.32 (0.03) 
6.185 (0.19) 4.44 (0.45) 7.87  (0.29) 4.16 (0.17) 4.9 (0.28) 3.89 (0.48) 4.07 (0.24) 5.47 (0.22) 
0.10 (0.01) - 0.03 (0.02) - - 0.23 (0.04) - - 
19.08 (0.30) 21.56 (1.02) 17.11 (0.28) 22.69 (0.28) 19.68 (0.48) 21.96 (0.46) 22.74 (0.22) 20.95 (1.04) 
0.12 (0.01) 0.2 (0.02) 0.087 (0.02) 0.18 (0.12) - 0.122 (0.03) - 0.133 (0.05) 
8.43 (0.05) 9.44 (0.28) 9.94 (0.04) 10.16 (0.19) 10.04 (0.32) 10.17 (0.15) 10.22 (0.18) 10 (0.31)
2.14 (0.06) 2.77 (0.13) 0.90 (0.19) 0.71 (0.08) 0.45 (0.06) 0.45 (0.04) 0.57 (0.06) 0.59 (0.02) 
0.39 (0.01) 0.398 (0.05) 0.19 (0..02) 0.558 (0.09) 0.296 (0.02) 0.32 (0.01) 0.462 (0.05) 0.23 (0.03)
94.68 (0.96) 96.02 (1.48) 95.46 (0.12) 96.07 (0.85) 93.51 (1.14) 96.55 (0.51) 96.10 (0.42) 94.66 (2.87) 
84.61 (0.19) 89.61 (1.27) 79.50 (0.12) 90.68 (0.38) 87.73 (0.64) 90.96 (1.19) 90.87 (0.54) 87.21 (0.21)
0.62 (0.01) 0.774 (0.03) 0.59 (0.02) 0.854 (0.01) 0.831 (0.03) 0.78 (0.02) 0.811 (0.01) 0.79 (0.01) 

5.89 5.89 5.57 5.74 5.94 5.70 5.74 5.76 
0.26 0.28 0.24 0.39 0.38 0.34 0.32 0.33 
2.48 2.22 3.09 2.14 2.23 2.33 2.26 2.34 
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0.01 0.01 0.03 0.04 0.06 0.16 0.07 0.04 
0.74 0.53 0.95 0.49 0.59 0.46 0.48 0.66 
0.01 0.01 0.03 0.01 
4.09 4.58 3.68 4.76 4.25 4.60 4.77 4.50 
0.03 0.06 0.02 0.05 0.00 0.03 0.00 0.04
1.54 1.72 1.83 1.83 1.85 1.82 1.83 1.84 
0.12 0.15 0.05 0.04 0.03 0.02 0.03 0.03
0.18 0.18 0.08 0.25 0.14 0.14 0.21 0.10 

15.38 15.60 15.56 15.72 15.46 15.64 15.70 15.66 

8.37 8.11 8.66 7.88 8.17 8.03 8.00 8.10 
5.11 5.40 4.91 5.68 5.28 5.59 5.64 5.54 
1.69 1.93 1.90 1.92 1.88 1.87 1.86 1.91 
 1023 
 1024 
 1025 
 1026 
 1027 
 1028 
 1029 
 1030 
 1031 
 1032 
 1033 
 1034 
 1035 
 1036 
 1037 
 1038 
 1039 
 1040 
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Table 3 continued 1041 

T-1738 T-1716 T-1870 T-1947 T-1857 T-1860 T-1863 T-1715 
Leucite  
Lamproite 

Leucite  
Lamproite 

Leucite 
Lamproite 

Leucite  
Lamproite 

Leucite  
Lamproite 

Leucite  
Lamproite 

Leucite  
Lamproite 

Leucite  
Lamproite 

5 5 4 6 4 5 5 5 

39.2 (0.77) 41.17 (0.66) 43.3 (0.77) 41.13 (0.40) 41.14 (0.52) 41.62 (0.20) 41.75 (0.46) 40.43 (0.49)
2.38 (0.20) 2.37 (0.15) 4.05 (0.72) 2.73 (0.20) 5.72 (0.24) 4.12 (0.11) 3.71 (0.50) 2.47 (0.07) 
16.58 (0.71) 14.55 (064) 14.82 (0.61) 13 (0.52) 13.06 (0.35) 13.03 (0.26) 13.00 (0.20) 15.45 (0.45) 
0.76 (0.28) 0.61 (0.05) 0.49 (0.21) 0.9 (0.18) 0.37 (0.12) 0.33 (0.04) 0.62 (0.19) 0.6 (0.13) 
4.53 (1.97) 4.28 (0.25) 5.66 (0.26) 3.24 (0.12) 5.51 (0.18) 5.71 (0.20) 4.55 (0.33) 5.39 (0.10)
0.11 (0.06) 0.15 (0.03) - - - - 0.12 (0.01) 
21.34 (1.79) 22.29 (0.12) 17.23 (0.13) 22.62 (0.31) 19.32 (0.18) 21.21 (0.05) 20.99 (0.62) 21.08 (0.41) 
0.10 (0.01) 0.084 (0.01) - - - - - 0.146 (0.03) 
10.25 (0.10) 10.29 (0.03) 10.26 (0.13) 10.08 (0.21) 10.09 (0.08) 10.06 (0.33) 10.26 (0.25) 10.26 (0.12) 
0.8 (0.09) 0.41 (0.11) 0.55 (0.16) 0.58 (0.04) 1.02 (0.22) 0.68 (0.05) 0.53 (0.09) 0.51 (0.03) 
0.18 (0.03) 0.21 (0.01) 0.275 (0.02) 0.478 (0.04) 0.423 (0.03) 0.438 (0.04) 0.426 (0.04) 0.19 (0.03) 
96.27 (0.18) 96.46 (0.38) 96.78 (1.02) 94.74 (1.11) 96.65 (0.61) 97.21 (0.16) 95.82 (0.69) 96.68 (0.67)
89.23 (5.04) 90.28 (0.52) 84.43 (0.64) 92.56 (0.23) 86.21(0.28) 86.87 (0.39) 89.15 (0.96) 87.45 (0.16) 
0.67 (0.67) 0.77 (0.04) 0.749 (0.04) 0.839 (0.03) 0.836 (0.03) 0.835 (0.04) 0.854 (0.03) 0.72 (0.03 

5.55 5.78 6.05 5.84 5.80 5.82 5.89 5.70 
0.25 0.25 0.43 0.29 0.61 0.43 0.39 0.26 
2.77 2.41 2.44 2.17 2.17 2.15 2.16 2.57 
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0.09 0.07 0.05 0.10 0.04 0.04 0.07 0.07 
0.54 0.50 0.66 0.38 0.65 0.67 0.54 0.64 
0.01 0.02 0.01
4.50 4.66 3.59 4.79 4.06 4.42 4.41 4.43 
0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.04 
1.85 1.84 1.83 1.83 1.82 1.79 1.85 1.84
0.04 0.02 0.03 0.03 0.06 0.04 0.03 0.03 
0.08 0.09 0.12 0.21 0.19 0.19 0.19 0.09 

15.71 15.67 15.21 15.65 15.39 15.55 15.53 15.67

8.32 8.19 8.49 8.01 7.97 7.97 8.05 8.27 
5.39 5.50 4.73 5.56 5.36 5.56 5.41 5.41 
1.92 1.88 1.86 1.86 1.88 1.83 1.88 1.91
  1042 
 1043 
 1044 
 1045 
 1046 
 1047 
 1048 
 1049 
 1050 
 1051 
 1052 
 1053 
 1054 
 1055 
 1056 
 1057 
 1058 
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Table 3 continued  1059 

T-1866 MO21-61 MO21-59 MO21-59 
Leucite  
Lamproite 

West Kimberley 
 + 5wt% H2O 

Gaussberg  
+ 5 wt% H2O 

Gaussberg  
+ 10wt% H2O

3 3 5 5 

45.92 (0.68) 43.66 (0.23) 42.09 (0.24) 42.25 (0.23)
2.99 (0.37) 2.20 (0.14) 3.31 (0.24) 3.89 (0.19) 
16.28 (0.50) 11.77 (0.24) 12.23 (0.08) 12.67 (0.19) 
0.05 (0.02) 0.16 (0.01) 0.11 (0.03) 0.31 (0.12) 
7.8 (0.53) 1.06 (0.07) 3.39 (0.16) 2.46 (0.08)
- 0.03 (0.02) 0.04 (0.02) 0.02 (0.02) 
11.75 (0.83 26.02 (0.22) 24.11 (0.27) 24.03 (0.05) 
- 0.07 (0.01) 0.15 (0.03) 0.14 (0.01) 
9.69 (0.40) 10.73 (0.03) 10.57 (0.04) 10.62 (0.03) 
0.46 (0.04) 0.40 (0.03) 0.23 (0.01) 0.25 (0.02) 
0.335 (0.19) 3.16 (0.11) 0.56 (0.04) 0.73 (0.02) 
95.16 (0.31) 99.28 (0.03) 96.85 (0.18) 97.41 (0.21)
72.83 (2.19) 97.76 (0.16) 92.68 (0.39) 94.57 (0.17) 
0.644 (0.02) 0.99 (0.02) 0.94 (0.01) 0.91 (0.01) 

6.45 6.38 5.84 5.80 
0.32 0.24 0.35 0.40 
2.69 2.03 2.00 2.05 
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0.01 0.02 0.01 0.03 
0.92 0.13 0.39 0.28 

2.46 3.06 4.99 4.92 
0.00 0.02 0.04 0.04 
1.74 2.00 1.87 1.86
0.03 0.02 0.01 0.01 
0.15 1.46 0.25 0.32 

14.75 15.36 15.76 15.71

9.14 8.41 7.84 7.85 
3.71 3.45 5.74 5.63 
1.77 2.04 1.92 1.91
 1060 
Chemical composition of experimental phlogopite in oxide weight percent. n = number of analyses per sample, numbers in parentheses represent 1061 
1 standard deviation. Cations on the basis on 22 oxygens. 1062 
  1063 
 1064 
 1065 
  1066 
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Table 4. Melt 
compositions 
Run No.  T-1835 T-1832 T-1711 T-1695 T-1885 T-1663 T-1645 

Starting mix 
Olivine 
Lamproite 

Olivine 
Lamproite 

Olivine 
Lamproite 

Olivine 
Lamproite 

Olivine 
Lamproite 

Olivine 
Lamproite 

Olivine 
Lamproite 

n 9 25 9 10 5 7 10 

SiO2 34.45 (1.60) 33.82 (0.78) 38.47 (1.94) 33.69 (2.59) 31.34 (2.69) 39.32 (2.03) 35.6 (2.10) 
TiO2 4.56 (1.34) 3.16 (0.34) 3.95 (0.36) 2.11 (1.51) 3.14 (0.52) 4.70 (0.92) 4.07 (1.16) 
Al2O3 9.26 (0.83) 16.98 (0.49) 11.51 (1.52) 10.28 (1.34) 10.44 (0.48) 11.65 (1.69) 8.44 (0.77) 
Cr2O3 0.03 (0.02) 0.03 (0.02) 0.02 (0.02) 0.02 (0.02) 0.05 (0.02) 0.10 (0.04) 0.11 (0.03) 
FeO 7.05 (0.64) 5.01 (0.19) 7.75 (0.82) 6.21 (0.70) 8.58 (0.59) 7.46 (1.22) 8.52 (1.01) 
MnO 0.15 (0.04) 0.11 (0.02) 0.12 (0.02) 0.09 (0.03) 0.14 (0.07) 0.12 (0.04) 0.10 (0.03) 
NiO 0.02 (0.02) 0.03 (0.02) 0.03 (0.01) 0.02 (0.03) 0.03 (0.02) 0.02 (0.03) 0.02 (0.02)
MgO 9.31 (3.36) 13.08 (0.96) 9.9 (2.36) 8.95 (3.39) 14.18 (0.70) 11.16 (4.91) 12.3 (1.97) 
CaO 8.47 (2.82) 4.19 (0.89) 7.24 (1.19) 4.5 (2.28) 4.93 (1.93) 6.61 (3.34) 4.70 (1.37)
Na2O 0.81 (023) 0.65 (0.08) 0.9 (0.16) 0.79 (0.14) 0.42 (0.16) 0.82 (0.31) 0.6 (0.20) 
K2O 1.82 (0.71( 2.77 (0.37) 2.96 (0.46) 3.20  (0.76) 3.14 (0.37) 5.2 (1.77) 4.71 (0.78)
P2O5 2.79 (0.98) 1.77 (0.34) 2.28 (0.42) 1.81 (1.32) 1.93 (1.31) 2.82 (1.01) 1.38 (0.52) 
BaO 1.21 (0.24) 0.98 (0.16) 1.48 (0.16) 1.74 (0.33) 1.28 (0.20) 2.04 (0.72) 1.67 (0.15)
Cl 0.034 (0.02) 0.05 (0.01) 0.03 (0.01) 0.09 (0.02) 0.03 (0.01) 0.02 (0.01) 0.06  (0.01) 
F 0.47 (0.09) 0.40 (0.04 0.57 (0.07) 0.49 (0.07) 0.50 (0.13) 0.75 (0.12) 0.46 (0.04) 
Total 80.44 (2.82) 83.04 (1.26) 87.22 (3.24) 73.97 (3.45) 80.14 (2.67) 92.14 (2.57) 82.74 (3.11) 
Mg# 68.05 (10.19) 82.25 (1.37) 68.78 (4.45) 70.63 (6.38) 74.64 (1.75) 70.61 (9.64) 71.69 (4.53) 
K/Al 0.21 (0.08) 0.18 (0.03) 0.28 (0.04) 0.33 (0.05) 0.33 (0.03) 0.4 (0.22) 0.60 (0.06) 
  1067 
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Table 4 continued 1068 
 1069 
T-1888 T-1795 T-1879 T-1951 T-1869 T-1940 T-1918 T-1731 
Olivine 
Lamproite 

Olivine 
Lamproite 

Leucite 
Lamproite 

Leucite 
lamproite 

Leucite 
Lamproite 

Leucite 
Lamproite 

Leucite 
Lamproite 

Leucite 
Lamproite 

8 25 6 10 25 25 24 8 

33.07 (3.59) 31.94 (1.07) 43.83 (2.96) 51.80 (1.14) 42.21 (2.74) 45.28 (2.6) 46.35 (1.24) 56.51 (2.29) 
2.84 (1.15) 2.63 (0.20) 0.07 (0.03) 3.50 (0.39) 2.73 (0.30) 3.77 (0.18) 3.35 (0.17) 2.13 (0.67) 
10.62 (0.94) 11.79 (0.46) 9.32 (1.77) 9.52 (0.63) 12.23 (1.04) 11.2 (0.65) 10.82 (0.39) 14.09 (0.46) 
0.07 (0.02) 0.06 (0.02) 0.01 (0.01) 0.04 (0.05) 0.05 (0.02) 0.11 (0.03) 0.09  (0.02) 0.02 (0.02) 
5.87 (0.84) 18.87 (1.14) 0.22 (0.04) 5.86 (0.61) 5.27 (0.85) 5.98 (0.79) 5.52 (0.59) 1.28 (0.55) 
0.07 (0.03) 0.07 (0.02) 0.02 (0.02) 0.10 (0.03) 0.07 (0.02) 0.09 (0.03) 0.08 (0.02) 0.07 (0.02) 
0.06 (0.02) 0.01 (0.01) - 0.02 (0.02) 0.02 (0.02) 0.03 (0.02) 0.03 (0.02) -
15.26 (1.41) 13.73 (0.78) - 5.07 (2.24) 6.37 (1.46) 7.73 (2.66) 6.97 (1.16) 0.21 (0.29) 
2.24 (1.85) 4.18 (0.53) 2.75 (2.16) 6.96 (1.88) 3.56 (1.53) 4.59 (0.3) 4.38 (1.47) 5.27 (0.60)
0.24 (0.08) 0.7 (0.08) 0.74 (0.11) 1.49 (0.40) 0.65 (0.16) 1.12 (0.06) 1.05 (0.15) 2.02 (0.09) 
4.89 (1.01) 3.18 (0.56) 5.52 (0.59) 4.54 (1.16) 6.87 (0.66) 7.01 (0.11) 7.74 (0.42) 8.88 (0.26)
0.76 (0.59) 1.43 (0.25) 1.82 (1.59) 2.25 (0.19) 1.67 (0.43) 1.78 (0.07) 1.66 (0.34) 1.05 (0.70) 
1.34 (0.17) 1.31 (0.16) 0.22 (0.09) 0.72 (0.14) 0.47 (0.16) 0.5 (0.07) 0.56 (0.11) 0.49 (0.11)
0.03 (0.01) 0.02 (0.01) 0.08 (0.01) - 0.04 (0.01) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01) 
0.39 (0.08) 0.38 (0.04) 0.19 (0.09) 0.15 (0.04) 0.17 (0.03) 0.19 (0.02) 0.18 (0.02) 0.12 (0.02) 
77.44 (4.18) 90.29 (1.43) 64.78 (3.40) 92.02 (1.39) 82.39 (3.50) 89.48  (0.92) 88.80 (1.36) 92.14 (1.01) 
82.15 (2.84) 56.44 (2.57) 10.52 (8.45) 57.40 (13.10) 68.01 (1.51) 71.72 (0.37) 69.01 (1.75) 17.96 (12.60) 
0.50 (0.08) 0.29 (0.04) 0.65 (0.06) 0.51 (0.12) 0.61 (0.06) 0.69  (0.02) 0.78 (0.05) 0.68 (0.02) 
 1070 
 1071 
 1072 
 1073 
 1074 
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 1075 
Table 4 continued 1076 
 
T-1738 T-1716 T-1870 T-1857 T-1860 T-1863 T-1715 T-1866 
Leucite 
Lamproite 

Leucite 
Lamproite 

Leucite 
Lamproite

Leucite 
Lamproite

Leucite 
Lamproite

Leucite 
Lamproite

Leucite 
Lamproite

Leucite 
Lamproite

9 9 10 26 9 25 10 10 

43.77 (3.17) 53.4 (3.9) 49.25 (4.52) 49.05 (0.59) 44.44 (1.45) 50.88 (0.42) 58.42 (3.43) 39.54 (3.94)
2.32 (0.44) 3.0 (0.70) 1.52 (0.08) 3.16 (0.07) 3.42 (0.62) 3.16 (0.07) 0.92 (0.64) 1.25 (0.62) 
17.44 (1.03) 14.6 (1.2) 11.88 (1.3) 9.8 (0.09) 10.11 (0.94) 10.20 (0.18) 16.53 (0.64) 9.98 (1.80) 
- - 0.04 (0.04) 0.08 (0.02) 0.16 (0.13) 0.09 (0.02) 0.01 (0.02) 0.03 (0.02) 
4.01 (2.47) 0.40 (0.1) 2.80 (1.43) 5.57 (0.16) 6.10 (0.31) 5.17 (0.22) 0.44 (0.48) 2.15 (1.00) 
0.04 (0.01) - 0.07 (0.03) 0.08 (0.02) 0.08 (0.03) 0.07 (0.01) 0.03 (0.02) 0.07 (0.06) 
- - 0.02 (0.02) 0.02 (0.02) 0.04 (0.03) 0.02 (0.02) 0.01 (0.01) 0.01 (0.01) 
1.96 (1.76) 0.10 (0.10) 2.32 (2.59) 6.41  (0.36) 8.38 (3.48) 6.59  (0.40) 0.07 (0.15) 1.75 (0.99) 
5.65 (2.16) 7.06 (3.2) 3.72 (2.13) 3.91 (0.11) 3.40 (1.16) 4.24 (0.32) 3.46 (0.92) 4.77 (3.25) 
2.03 (0.44) 2.23 (0.33) 1.51 (0.44) 1.47 (0.18) 1.77 (0.59) 0.70 (0.14) 2.22 (0.77) 1.27 (0.21) 
8.19 (0.51) 5.97 (0.84) 7.20 (0.86) 8.69 (0.43) 10.04 (0.76) 7.78 (0.46) 5.34 (1.75) 5.04 (0.75) 
2.21 (0.94) 2.08 (2.22) 1.68 (0.55) 1.59 (0.06) 1.21 (0.34) 1.64 (0.07) 0.29 (0.49) 1.92 (0.71) 
0.34 (0.13) 0.10 (0.04) 0.91 (0.37) 0.57 (0.06) 0.58 (0.11) 0.50 (0.06) 0.14 (0.08) 0.69 (0.21) 
0.03 (0.01) 0.02 (0.01) 0.03 (0.01) 0.01 (0.010 0.02 (0.01) 0.01 (0.01) 0.02 (0.02) 0.06 (0.02)
0.21 (0.05) 0.02 (0.01) 0.12 (0.02) 0.19 (0.02) 0.20 (0.07) 0.18 (0.02) 0.12 (0.04) 0.14 (0.04) 
88.24 (3.17) 89.20 (1.49) 83.06 (3.87) 90.61 (0.37) 89.94 (1.83) 91.24 (0.37) 88.02 (1.16) 68.7 (5.77)
34.69 (19.57) 13.97 (17.12) 50.42 (13.77) 67.18 (1.09) 68.99 (7.32) 69.43 (0.60) 13.76 (12.35) 56.92 (6.14) 
0.51 (0.04) 0.45 (0.08) 0.66 (0.04) 0.96 (0.05) 1.09 (0.16) 0.83 (0.05) 0.35 (0.13) 0.56 (0.12)
 1077 
 1078 
 1079 
 1080 
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 1081 
 1082 
Table 4 continued  1083 
MO21-61 MO21-59 MO21-59 
West Kimberley  
+ 5wt% H2O 

Gaussberg  
+ 5 wt% H2O 

Gaussberg  
+ 10wt% H2O

4 5 5 

40.70 (0.51) 51.58 (0.14) 52.78 (0.19) 
7.60 (0.40) 3.30 (0.04) 3.24 (0.01) 
3.78 (0.36) 9.02 (0.09) 9.67 (0.04) 
0.03 (0.01) - - 
1.20 (0.09) 3.33 (0.03) 2.48 (0.02) 
0.12 (0.02) 0.11 (0.01) 0.10 (0.01) 
- 0.01 (0.01) - 
11.54 (0.31) 4.81 (0.11) 4.63 (0.03) 
14.98 (0.24) 3.56 (0.05) 2.84 (0.04) 
0.86 (0.04) 1.72 (0.05) 2.10 (0.04)
6.59 (0.21) 9.21 (0.12) 9.89 (0.04) 
2.34 (0.49) 1.82 (0.04) 1.76 (0.06)
1.44 (0.18) 0.78 (0.04) 0.74 (0.03) 
- 0.11 (0.01) 0.14 (0.01)
5.19 (0.11) 0.2 (0.02) 0.17 (0.01) 
96.36 (0.14) 89.55 (0.16) 90.55 (0.14) 
94.5 (0.36) 71.99 (0.37) 76.91  (0.14) 
1.9 (0.15) 0.11 (0.01) 1.11 (0.01) 
 1084 
Chemical composition of experimental melts in oxide weight percent. n = number of analyses per sample, numbers in parentheses represent 1 1085 
standard deviation. 1086 
 1087 
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 1121 
Table 5. Experimentally determined partition coefficients of F and Ba in phlogopite/melt pairs. 1122 

Composition Experiment Pressure (kbar) T (deg C) D F (Phl/Melt) 1 S.E D Ba(Phl/Melt) 1 S.E
        
Olivine Lamproite T-1835 20 1050 0.96 0.02 2.41 0.14 
Olivine Lamproite T-1832 20 1050 1.61 0.14 2.49 0.24
Olivine Lamproite T-1711 20 1100 1.26 0.07 1.33 0.07 
Olivine Lamproite T-1695 30 1100 1.05 0.08 0.99 0.11
Olivine Lamproite T-1885 35 1100 1.07 0.16 1.49 0.06 
Olivine Lamproite T-1663 20 1150 1.11 0.13 1.10 0.04
Olivine Lamproite T-1645 30 1150 1.31 0.08 1.12 0.03 
Olivine Lamproite T-1888 35 1150 1.10 0.09 1.48 0.18 
Olivine Lamproite T-1795 30 1200 1.06 0.07 2.05 0.13 
Average olivine lamproite  1.17 0.09 1.61 0.11 
 
Leucite lamproite T-1951 5 1050 3.44 0.33 1.20 0.15 
Leucite Lamproite T-1940 10 1100 1.62 0.07 1.03 0.10
Leucite Lamproite T-1947 10 1120 2.65 0.17 1.19 0.11 
Leucite Lamproite T-1918 15 1100 2.52 0.24 1.21 0.08 
Leucite Lamproite T-1731 20 1100 2.01 0.10 1.10 0.07 
Leucite Lamproite T-1857 20 1150 2.17 0.10 1.85 0.13
Leucite Lamproite T-1860 20 1150 2.95 0.30 1.10 0.07 
Leucite Lamproite T-1869 25 1050 1.89 0.07 1.06 0.13 
Leucite Lamproite T-1738 25 1100 0.92 0.14 1.95 0.26
Leucite Lamproite T-1863 25 1150 1.90 0.26 0.52 0.05 
Leucite lamproite T-1866 25 1150 2.97 0.29 0.65 0.01
Leucite Lamproite T-1879 30 1000 0.99 0.07 3.68 0.43 
Leucite Lamproite T-1716 30 1100 1.42 0.26 3.08 0.42
Leucite Lamproite T-1715 30 1150 1.49 0.25 3.41 0.48 
Average leucite lamproite 1.30 0.19 3.39 0.44
Partition coefficients determined from phlogopite/melt pairs with 1 standard deviation errors reported.  1123 
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 922 
 923 
 924 
 925 
 926 
 927 
 928 
 929 
 930 
 931 
 932 
 933 
Figure 1. Fluid compositions and oxygen fugacity conditions in the lamproite 934 
experiments of Foley, (1989 a,b). The graphite saturation curves for 20 kbar (red) 935 
and 40 kbar (blue) show a water maximum at intermediate fO2, which lies 2-3 log 936 
units fO2 (depending on pressure and temperature) higher than the iron-wüstite 937 
buffer (dotted lines). Fluid compositions measured for individual experiments at 938 
20 kbar are shown to illustrate the range of fO2 in the experiments, which spans 939 
around 2 log units. Fluid compositions are listed in Table 2. 940 
 941 
 942 
 943 
 944 
 945 
 946 
 947 
 948 
 949 
 950 
 951 
 952 
 953 
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Figure 2. Example images of experiments. Primary phlogopites are large, elongated laths free of chemical zonation and are surrounded by quench 954 
crystals of melt and phlogopite. (a) Leucite lamproite run T1863, 25kbar at 1150°C, with molar fluid composition 80% water (b) enlarged 955 
photomicrograph of quench texture in (a), highlighted by white box. (c) Leucite lamproite run T1866, 25kbar at 1150°C, with molar fluid composition 956 
78% water, (d) enlarged photomicrograph of quench texture in (c), highlighted by white box. (e) Olivine lamproite run T1645 30kbar 1150°C, with a 957 
molar fluid composition 86% water, (f) enlarged photomicrograph of quench texture in (e), highlighted by white box.  958 
 959 
 960 
 961 
 962 
 963 
 964 
 965 
  966 
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Figure 3. Scanning electron micrograph of run MO21-059, 967 
Gaussberg lamproite + 10 wt% H2O from the GUKO rapid 968 
quench piston-cylinder apparatus at Macquarie University. 969 
Primary phlogopites are large laths, free from chemical 970 
zonation and overgrowth, minor clinopyroxene is observed in 971 
this run. Quenched melts produced from the rapid quench 972 
piston cylinder are homogenous and free of large quench 973 
crystals: enlarged inset shows the presence of tiny phlogopite 974 
quench crystals (<2µm), far smaller than those observed using a 975 
traditional piston cylinder apparatus.  976 
 977 
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 1088 
 1089 
 1090 
Figure 4. F and BaO content in weight percent in experimental phlogopite from olivine lamproite (a & c) and leucite lamproite (b & d) series 1091 
experiments. There is a general decrease in both F and BaO content with increasing experimental pressure and temperature. Higher BaO and F are 1092 
observed in olivine lamproite experiments due to the higher concentrations in the starting materials.  1093 
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Figure 5. Phlogopite/melt partition coefficients for F and Ba in olivine lamproite (a & c) and leucite lamproite (b & d) experiments.  F and Ba are 1124 
compatible in phlogopite for both melt compositions and generally show increasing partition coefficients with increasing temperature.  1125 
The wider PT range of leucite lamproite experiments provides more detailed information on the behaviour of F and B partition coefficients, including 1126 
the opposing pressure effect, whereby F mineral/melt partition coefficients decrease with increasing pressure whilst Ba mineral/melt partition 1127 
coefficients increase with increasing pressure. Experiments with methane rich fluids (>40% CH4:H2O mixtures) are indicated by triangle symbols, all 1128 
other experiments are circles and have water rich fluids. 1129 
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 1157 
Figure 6. Phlogopite/melt partition coefficients for F and Ba for olivine 1158 
and leucite lamproite experiments presented here (black symbols) and 1159 
literature values: pink symbols in (a) are 𝐷ி(௉௛௟/ெ௘௟௧) from Edgar and 1160 
Pizzolato, (1995) for a K-richterite – apatite – phlogopite – melt system. 1161 
Red symbols in (b) are 𝐷஻௔(௉௛௟/ெ௘௟௧) from Fabbrizio et al., (2010), pink 1162 
symbols: Schmidt et al., (1999) and green symbols: Guo and Green, 1163 
(1990), all of which were determined from leucite lamproite 1164 
compositions.  1165 
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 1189 
 1190 
 1191 
 1192 
Figure 7. F mineral/melt partition coefficient against fluid composition in the olivine lamproite series. The effect of water activity is most noticeable in 1193 
the 1050°C series, with high partition coefficients associated with water-poor (methane-rich) fluids; the strong decreases result from increased water 1194 
activity.  1195 
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 1201 
 1202 
 1203 
 1204 
Figure 8. Substitution mechanisms for barium incorporation into 1205 
phlogopite. (a) The substitution mechanism proposed by Guo and 1206 
Green, (1990) 2𝐾 + 4(𝑀𝑔, 𝐹𝑒) + 4𝑆𝑖 = 𝐵𝑎 + 3𝑇𝑖 + 4𝐴𝑙 +1207 [ ]௏ூ.௑ூூ. (b) Simple substitution of 2𝐾 = 𝐵𝑎 + [ ]. Both 1208 
substitution mechanisms appear to be operating in the 1209 
experimental phlogopites. Underfilled octahedral and interlayer 1210 
cation sites (see Table 3) favour the substitution mechanism in 1211 
(a).  1212 
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 1233 
Figure 9.  Modelled partial melting of three mantle sources for lamproites: Phl - Lherz = phlogopite garnet lherzolite, Phl -Harz = phlogopite harzburgite, 1234 
Phl - Pyrox = hydrous phlogopite pyroxenite. Melt fraction (x) vs. F/H2O ratios are presented here, with melt fractions at 1, 5, 10 and 15% for the 1235 
modelled mantle sources. The purple background represents the range of F/H2O ratios considered representative of natural lamproites: at melt 1236 
fractions greater than 5% all three sources are able to reproduce F/H2O ratios in the range of natural lamproites. For full details of the modelling 1237 
parameters see discussion and supplementary table 1.  1238 
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Figure 10. Partial melting model for F/H2O vs. F content, with the purple background representing the compositional range of natural lamproites. 1265 
Mantle sources as described in Figure 7.  Phl - harzburgite sources produce melts too enriched in F to be representative of lamproites, following 1266 
exhaustion of phlogopite. Phlogopite garnet lherzolite and hydrous pyroxenites fall within the range expected for natural lamproites at small melt 1267 
fractions.  1268 
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