
1 
 

Revision 3 1 

Oxygen-fugacity evolution of magmatic Ni-Cu sulfide deposits in 2 

East Kunlun: insights from Cr-spinel composition 3 

Lihui Jia 
a 
*, Yi Chen

a, b 
*, Bin Su

 a
, Qian Mao

 a
, Di Zhang

 a
 4 

a State Key Laboratory of Lithospheric Evolution, Institute of Geology and 5 

Geophysics, Chinese Academy of Sciences, Beijing 100029, China 6 

b University of Chinese Academy of Sciences, Beijing 100049, China 7 

* Corresponding author: Lihui Jia, Yi Chen 8 

 E-mail: jialihui@mail.iggcas.ac.cn, chenyi@mail.iggcas.ac.cn  9 

 10 

Abstract 11 

In this study, we use Cr-spinel as an efficient indicator to evaluate the oxygen 12 

fugacity evolution of the Xiarihamu Ni-Cu deposit and the Shitoukengde 13 

non-mineralized intrusion. Oxygen fugacity is calculated using olivine-spinel 14 

oxybarometer, with spinel Fe3+/ΣFe ratios determined by a secondary standard 15 

calibration method using electron microprobe. Cr-spinel Fe3+/ΣFe ratios of the 16 

Xiarihamu Ni-Cu deposit vary from 0.32±0.09 to 0.12±0.01, corresponding to magma 17 

fO2 values ranging from ΔQFM+2.2±1.0 to ΔQFM-0.6±0.2. By contrast, those of the 18 

Shitoukengde mafic-ultramafic intrusion increase from 0.07±0.02 to 0.23±0.04, 19 

corresponding to magma fO2 varying from ΔQFM-1.3±0.3 to ΔQFM+1.0±0.5. A 20 

positive correlation between fO2 and Cr-spinel Fe3+/ΣFe ratios suggests that the 21 

Cr-spinel Fe3+/ΣFe ratios can be used as an indicator for magma fO2. The high fO2 22 
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(QFM+2.2) of the harzburgite in the Xiarihamu Ni-Cu deposit suggests that the most 23 

primitive magma was characterized by relatively oxidized conditions, and then 24 

became reduced duirng magmatic evolution, causing S saturation and sulfide 25 

segregation to form the Xiarihamu Ni-Cu deposit. The evolution trend of the magma 26 

fO2 can be reasonably explained by metasomatism in mantle source by 27 

subduction-related fluid and addition of external reduced sulfur from country gneisses 28 

(1.08–1.14 wt.% S) during crustal processes. Conversely, the primitive magma of the 29 

Shitoukengde intrusion was reduced and gradually became oxidized (from QFM-1.3 30 

to QFM+1.0) during crystallization. Fractional crystallization of large amounts of 31 

Cr-spinel can reasonably explain the increasing magma fO2 during magmatic 32 

evolution, which would hamper sulfide precipitation in the Shitoukengde intrusion. 33 

We propose that the temporal evolution of oxygen fugacity of the mantle-derived 34 

magma can be used as one of the indicators for evaluating metallogenic potential of 35 

Ni-Cu sulfide deposits, and reduction processes from mantle source to shallow crust 36 

play an important role in the genesis of magmatic Ni-Cu sulfide deposits. 37 

 38 

Keywords: Oxygen fugacity; Cr-spinel; Ultramafic rocks; Ni-Cu sulfide deposit; East 39 

Kunlun 40 

 41 

1 Introduction 42 

Sulfur (S), occurring as either sulfide (S2-), sulfate (S6+) in silicate melts, or sulfite 43 

(S4+) in volcanic gases, is a complex but key element in magmatic systems (e.g., 44 
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Carroll and Rutherford, 1988; Symonds et al., 1994; Jugo et al., 2010). The behavior 45 

of chalcophile and siderophile elements (e.g., Ni, Cu, Au, Pt, and Pd) in magma is 46 

dictated by S as sulfide, and sulfide saturation exerts a primary control on the genesis 47 

of metalliferous deposits, especially for Ni-Cu-platinum group element (PGE) 48 

deposits (Imai, et al., 1993; Sillitoe, 1997; Clemente et al., 2004; Mungall et al., 2005; 49 

Li and Ripley, 2009; Taranovic et al., 2016). Jugo (2009) declared that sulfur 50 

speciation is strongly controlled by the oxidation state of magma, often expressed in 51 

terms of oxygen fugacity (fO2). Transition from sulfide to sulfate in silicate melts 52 

occurs over a narrow fO2 interval, and sulfide and sulfate in magma correspond to low 53 

(≤QFM) and high oxygen fugacity (>QFM+2) conditions, respectively, where QFM is 54 

the quartz-fayalite-magnetite buffer (e.g., Carroll and Rutherford, 1987; Mavrogenes 55 

and O'Neill, 1999; Matjuschkin et al., 2016; Jugo, 2009; Sun, 2020). The sulfur 56 

solubility under the latter condition is an order of magnitude higher than that under 57 

the former one (Jugo, 2009; Jugo et al., 2010). Therefore, sulfur saturation leading to 58 

sulfide segregation is more likely to occur in reduced magma than in oxidized magma 59 

(Liu et al., 2007; Jugo, 2009; Naldrett, 2011; Brenan and Caciagli, 2000; Tomkins et 60 

al., 2012). However, several Ni-Cu deposits appear to have formed in a relatively 61 

oxidized environment (>QFM), such as the Heishan and Mirabela deposits (Xie et al., 62 

2014; Barnes et al., 2013). In addition, from partial melting in the mantle to 63 

emplacement in the shallow crust, the redox state of the parental magma would have 64 

undergone significant changes. In this regard, the fO2 at a certain stage of magmatic 65 

evolution cannot be used as an index of Ni-Cu mineralization (Mungall et al., 2006; 66 
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Thakurta et al., 2008; Tomkins et al., 2012). Therefore, identifying the temporal 67 

changes in magma fO2 is crucial for understanding the Ni-Cu mineralization 68 

mechanism. 69 

Spinel often crystallizes throughout magmatic evolution and is relatively 70 

refractory and resistant to alteration compared to other minerals (e.g., olivine and 71 

pyroxene) (Barnes and Roeder 2001; Kamenetsky et al. 2001). Spinel oxybarometry, 72 

based on phase equilibrium between olivine, orthopyroxene, and spinel, provides one 73 

window into the oxygen fugacity of upper mantle and related mantle-derived magma 74 

(Bryndzia and Wood, 1990; Ballhaus et al., 1991). Obtaining accurate spinel Fe3+/ΣFe 75 

ratios is especially important as minor changes in the activity of magnetite in spinel 76 

can have large effects on calculating fO2 using spinel oxybarometry (e.g., Bryndzia 77 

and Wood, 1990; Birner et al., 2016). Since the development of Mössbauer 78 

spectroscopy to estimate the Fe3+ proportion in silicate melts (e.g., Mysen et al., 1985; 79 

Wood and Virgo, 1989; Canil and O’Neill, 1996; Dyar et al., 2006; McCammon et al., 80 

2009; Gaborieau et al., 2020), several studies have utilized calibration of secondary 81 

standard samples to identify different Fe species using electron microprobe (Höfer et 82 

al., 2000; Enders et al., 2000). Therefore, spinel oxybarometry can be used to 83 

systematically monitor the fO2 variation in different magmatic stages of Ni-Cu sulfide 84 

deposits. 85 

The Xiarihamu deposit, the first Ni-Cu deposit discovered in East Kunlun, is the 86 

second-largest Ni deposit in China and contains ~157 million metric tons (Mt) of 87 

sulfide ore (Li et al., 2015; Feng et al., 2016; Liu et al., 2018). Previous zircon U–Pb 88 
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studies yielded weighted-mean 206Pb/238U ages of 424 to 408 Ma (Supplemental Table 89 

S1, Jiang et al., 2015; Li et al., 2015; Peng et al., 2016; Song et al., 2016). 90 

Approximately 200 km east to the Xiarihamu area, the Shitoukengde mafic-ultramafic 91 

intrusion (426–420 Ma, Li et al., 2018; Zhang et al., 2018; Jia et al., 2021) was 92 

emplaced contemporaneously in a similar extensional setting (Wang et al., 2014; Jia et 93 

al., 2021), but no economic ore bodies have been found. The similar spatial and 94 

tectonic association between the Xiarihamu Ni-Cu deposit and the Shitoukengde 95 

intrusion provides an ideal opportunity to study the relationship between magma fO2 96 

evolution and Ni-Cu mineralization in orogens.  97 

In this study, we present mineralogy, petrology, and fO2 calculations of the 98 

Xiarihamu Ni-Cu deposit and the Shitoukengde intrusion in the East Kunlun orogenic 99 

belt. Olivine-spinel pairs in different magmatic stages were chosen to estimate the 100 

magma fO2, track the changes in oxygen fugacity during magmatic evolution, and 101 

reveal its influence on the metallogenic mechanism of the Ni-Cu sulfide deposit. Our 102 

results contribute to further understanding the mechanism of Ni-Cu mineralization, 103 

and provide a new window into the study of the magmatic sulfide deposits in orogenic 104 

belts. 105 

2 Geological background 106 

2.1 East Kunlun orogenic belt 107 

The E–W trending Kunlun orogenic belt extends >2000 km from central China to 108 

eastern Pakistan, and is located in the northeastern part of the Qinghai-Tibet Plateau 109 

(Fig. 1a). It is subdivided into the East Kunlun orogenic belt and West Kunlun 110 
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orogenic belt by the NE–SW trending Altyn Tagh fault (Jiang et al., 1992). The East 111 

Kunlun orogenic belt is separated from the Qinling orogenic belt by the Wenquan 112 

fault. The Qaidam block and Songpan-Ganzi terrane are located to the north and south, 113 

respectively (Jiang et al., 1992; Xu et al., 2007; Fig. 1b). The E-W-trending faults 114 

divide the East Kunlun orogenic belt into North Kunlun Terrane, South Kunlun 115 

Terrane, and Central East Kunlun fault zone. 116 

The Xiarihamu magmatic Ni-Cu sulfide deposit is located in the Central East 117 

Kunlun fault zone (Fig. 1c), which is characterized by widespread Proterozoic 118 

metamorphic basement, comprising the Mesoproterozoic Jinshuikou Group, and a 119 

number of Paleozoic to Mesozoic granite plutons. The Jinshuikou Group is dominated 120 

by granitic gneiss, schist and marble, and is intruded by Neoproterozoic granites 121 

(Chen et al., 2006a; Lu et al., 2006; Meng et al., 2013a). The Proterozoic basement is 122 

overlain by Ordovician amphibolite- to granulite-facies metamorphic rocks (Wang et 123 

al., 2004; Chen et al., 2006b, 2007; Zhang et al., 2003; Li et al., 2006; Lu et al., 2009). 124 

The Ordovician strata are unconformably overlain by terrestrial volcanics of the Early 125 

Devonian Maoniushan Formation, which is overlain by Carboniferous and Permian 126 

sedimentary and volcanic strata (Lu et al., 2009). Voluminous Paleozoic granitoids 127 

were emplaced into Proterozoic metamorphic rocks in the Central East Kunlun fault 128 

zone during Silurian to Early Devonian (Mo et al., 2007; Xu et al., 2007; Cui et al., 129 

2011; Liu et al.,2012; Song et al., 2016).  130 

Early Paleozoic ophiolites are exposed along the Central East Kunlun zone with 131 

ages of 518–420 Ma, implying the existence of a paleo-ocean (Fig. 1b; Yang et al., 132 
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1996; Bian et al., 2004; Zhu et al., 2005; Feng et al., 2010). Previous studies 133 

suggested that the tectonic transition from oceanic subduction to continent–continent 134 

collision occurred at 438 Ma (Liu et al., 2012, 2013a; Zhang et al., 2018) and the 135 

Wenquan eclogites (~428 Ma) were formed by this collisional event (Meng et al., 136 

2013b). After 428 Ma, extensive Silurian basalts (428–419 Ma, Zhu et al., 2006) and 137 

Early Devonian-Middle Devonian mafic dikes (412–383 Ma, Sun et al., 2004; Zhang 138 

et al., 2013; Xiong et al., 2014; Yang et al., 2014) formed in the East Kunlun area, 139 

representing post-collisional products (Liu et al., 2013b; Peng et al., 2016; Song et al., 140 

2016; Zhang et al., 2018). 141 

2.2 Xiarihamu Ni-Cu sulfide ore deposit 142 

The Xiarihamu deposit contains four mafic-ultramafic intrusions, including 143 

Xiarihamu I, II, III, and IV. The magmatic sulfide ore body is hosted within the 144 

Xiarihamu I intrusion, and the metallogenic potential of the other three intrusions 145 

remains under investigation (Peng et al., 2016; Li et al., 2015; Song et al., 2016; Liu 146 

et al., 2018). All these intrusions were emplaced into the Jinshuikou Group, which 147 

mainly consists of Neoproterozoic granitic gneiss and schist, yielding zircon U-Pb 148 

ages of 924 to 915 Ma (Wang, 2014; Wang et al., 2016). 149 

The Xiarihamu I intrusion, composed of gabbroic and ultramafic rocks,  is 150 

irregularly shaped, with a length of ~1400 m, a width of ~900 m, and a depth of 300 151 

to 600 m (Fig. 2a). The western part of the intrusion is not exposed, and the southern 152 

part is covered with Quaternary clastic sediments. Observations of both surface 153 

outcrops and drill cores have confirmed no chilled margins between the gabbroic and 154 
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ultramafic portions. The orebodies are mainly found in harzburgite and olivine 155 

orthopyroxenite. Weak sulfide mineralization occurs in lherzolite and websterite. For 156 

the websterite, Li et al. (2015) and Song et al. (2016) obtained ages of 411.6 ± 2.4 Ma 157 

and 406.1 ± 2.7 Ma, respectively. 158 

The other three small mafic-ultramafic intrusions, with lengths less than 1,000 m 159 

and widths of 80 to 500 m, are located to the south of the Xiarihamu I intrusion. All of 160 

them are E-W trending and have rock assemblages similar to those of the Xiarihamu I 161 

intrusion, consisting mainly of pyroxenite with very weak sulfide mineralization. 162 

Zircon U-Pb dating indicated that the Xiarihamu II intrusion formed at 424 ± 1 Ma 163 

(Peng et al., 2016). 164 

2.3 Shitoukengde mafic-ultramafic intrusion 165 

The Shitoukengde I and II mafic-ultramafic intrusions are oval shaped at 166 

approximately 2.5×1.2 km2 and 1.2×1.0 km2 in size, respectively (Fig. 2b). These 167 

intrusions are emplaced into the Jinshuikou Group, which consists of the 168 

Neoproterozoic granitic gneiss and schist. This study focuses on the number I 169 

mafic-ultramafic intrusion, mainly consisting of the ultramafic portion and mafic 170 

portion. From field geological observations, the ultramafic rocks are irregularly 171 

distributed as autoliths in the gabbroic rocks, suggesting that they formed earlier than 172 

the gabbroic rocks. Jia et al. (2021) obtained zircon U-Pb ages of 420.6 ± 2.2 Ma for 173 

the gabbronorite and 420.4 ± 5.9 Ma for the olivine websterite, almost coeval with the 174 

Xiarihamu Ni–Cu sulfide deposit. 175 
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3 Petrology 176 

3.1 Xiarihamu Ni-Cu deposit 177 

The Xiarihamu intrusion is mainly composed of harzburgite, lherzolite, olivine 178 

orthopyroxenite, websterite, and mafic rocks, predominantly norites (Figs. 3a-g). 179 

Observations from outcrops and boreholes suggest that the mafic portion is in sharp 180 

contact with the ultramafic portion, and the cumulate peridotites were emplaced 181 

within the orthopyroxenite with sharp contacts (Song et al., 2020; Chen et al., 2021).  182 

The harzburgite typically contains subhedral to euhedral olivine (40–50 vol.%), 183 

orthopyroxene (35–40 vol.%), clinopyroxene (< 5 vol.%), with minor Cr-spinel and 184 

amphibole. Cr-spinel occurs in the matrix or as fine-grained inclusions in 185 

orthopyroxene and olivine. No crosscutting relationships exist between the 186 

harzburgite and lherzolite, and they have similar petrographic features, except that the 187 

latter contains more clinopyroxene and less orthopyroxene than the former. The 188 

harzburgite grades into olivine orthopyroxenite, with the orthopyroxene increasing to 189 

more than 60 vol.%. The orthopyroxenite is composed of 60–80 vol.% cumulus 190 

euhedral orthopyroxene, 5–10 vol.% olivine, <10 vol.% clinopyroxene, and 191 

plagioclase, with minor amphibole and Cr-spinel (Fig. 3e). Orthopyroxene occurs as 192 

granular and poikilitic crystals, or as large oikocrysts enclosing fine-grained olivine. 193 

The websterite also shows cumulate texture and contains 50–70 vol.% orthopyroxene, 194 

20–30 vol.% clinopyroxene, and <10 vol.% olivine, Cr-spinel, plagioclase, amphibole, 195 

and phlogopite (Fig. 3f). Clinopyroxene occurs as oikocrysts containing olivine or as 196 

granular crystals, whereas plagioclase, amphibole, and phlogopite are interstitial 197 

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. 
 The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. 

DOI: https://doi.org/10.2138/am-2022-8050.  http://www.minsocam.org/

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld



10 
 

phases. Sulfides occur locally as fine-grained, anhedral, interstitial phase (Figs. 3a-d). 198 

Nickel minerals are mainly pentlandite, while copper minerals consist dominantly of 199 

chalcopyrite, and iron minerals are mainly pyrrhotite. 200 

The mafic portion is dominated by medium-grained norite with limited 201 

lithological changes. The norite contains mm-sized euhedral plagioclase (~35 vol.%), 202 

orthopyroxene (30–40 vol.%), and clinopyroxene (10–15 vol.%) (Fig. 3g), with less 203 

than 5 vol.% olivine, Cr-spinel, amphibole, and phlogopite.  204 

3.2 Shitoukengde mafic-ultramafic rocks 205 

The lithologies in the Shitoukengde intrusion are harzburgite, lherzolite, wehrlite, 206 

olivine websterite, clinopyroxenite, and gabbroic rocks (gabbro and gabbronorite). 207 

The ultramafic rocks are distributed in the gabbroic rocks. The boundary between the 208 

peridotites and pyroxenites is not obvious, indicating that these units formed during 209 

the same stage of magmatic evolution. 210 

The harzburgite contains 50–55 vol.% olivine, 40–50 vol.% orthopyroxene, 3–5 211 

vol.% clinopyroxene, and 1–2 vol.% Cr-spinel (Fig. 3h). The lherzolite is composed 212 

of 45–60 vol.% olivine, 15–20 vol.% orthopyroxene, 10–15 vol.% clinopyroxene, 5–213 

10 vol.% plagioclase and minor amounts of Cr-spinel and phlogopite (Fig. 3i). The 214 

olivine grains are commonly enclosed in poikilitic orthopyroxene, and clinopyroxene, 215 

plagioclase, and amphibole are interstitial between olivine and orthopyroxene. The 216 

olivine websterite contains 15–20 vol.% olivine, 25–35 vol.% clinopyroxene, and 15–217 

30 vol.% orthopyroxene, with minor (<5 vol.%) plagioclase, Cr-spinel, and 218 

phlogopite (Fig. 3k). Clinopyroxenite contains ~90 vol.% clinopyroxene, 5 vol.% 219 
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olivine, < 5 vol.% orthopyroxene, and plagioclase (Fig. 3l). Notably, the 220 

Shitoukengde ultramafic rocks have higher Cr-spinel proportions (~2.32 vol.%) than 221 

that of the Xiarihamu Ni–Cu deposit (~0.05 vol.%, Supplemental Fig. S1). Sulfides 222 

occur as fine-grained inclusions in olivine and orthopyroxene (Figs. 3h-k). 223 

The gabbronorite contains 25–35 vol.% plagioclase, 30–40 vol.% orthopyroxene, 224 

5–15 vol.% clinopyroxene, 2–5 vol.% olivine, and less than 5 vol.% amphibole, 225 

Cr-spinel, and phlogopite. Orthopyroxene occurs as prismatic euhedral to subhedral 226 

crystals, whereas clinopyroxene occurs as larger subhedral crystals. Gabbro comprises 227 

45–55 vol.% clinopyroxene, 25–35 vol.% plagioclase, and minor amounts of 228 

phlogopite and Fe-Ti oxides. 229 

3.3 Country gneisses 230 

The Xiarihamu Ni-Cu deposit is surrounded by amphibole plagiogneiss, which is 231 

composed of plagioclase (35–45 vol.%), quartz (20–25 vol.%), amphibole (10–15 232 

vol.%), and minor biotite (Supplemental Fig. S2). Fine-grained (10–30 μm) pyrite is 233 

commonly observed in the country gneiss. The country gneisses of the Shitoukengde 234 

intrusion include amphibole gneiss and biotite plagiogneiss in the Baishahe Formation 235 

of the Jinshuikou Group. The amphibole gneiss displays a gneissic structure and 236 

mainly consists of plagioclase, quartz, amphibole, and biotite. The biotite plagiogneiss 237 

consists of quartz (35–40 vol.%), plagioclase (25–30 vol.%), biotite (10–15 vol.%), 238 

and amphibole (<10 vol.%). No sulfide crystals were found in either type of the 239 

country gneisses. 240 
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3.4 Cr-spinel characteristics 241 

Cr-spinel crystals are widely developed as accessory minerals in the Xiarihamu 242 

and Shitoukengde mafic-ultramafic rocks, and their main characteristics are as 243 

follows: 1) the proportion of Cr-spinel in the Shitoukengde intrusion is much higher 244 

than that in the Xiarihamu ore-bearing mafic-ultramafic rocks (~2.32 vol.% and ~0.05 245 

vol.%, respectively, Supplemental Fig. S1); 2) Cr-spinel appears in the peridotites, 246 

pyroxenites, and gabbroic rocks, suggesting that Cr-spinel crystallized at different 247 

stages during magma evolution (Fig. 3); 3) Cr-spinel crystals commonly occur in the 248 

matrix or as fine-grained inclusions in olivine, pyroxenes and plagioclase. A small 249 

amount of Cr-spinel occurs as a cumulus phase; 4) although the olivine hosting 250 

Cr-spinel inclusions has been variably serpentinized along fractures, most Cr-spinel 251 

crystals are likely to be chemically homogeneous (Fig. 3f); and 5) some Cr-spinel 252 

grains enclosed in tschermakite and serpentine have clear compositional zoning (Figs. 253 

3n-o), showing Mg-Al-rich core and Cr-Fe2+-rich rim. 254 

4 Methods 255 

We analyzed the major elemental compositions of olivine and Cr-spinel at the 256 

Institute of Geology and Geophysics, Chinese Academy of Sciences using a JEOL 257 

JXA8100 electron microprobe. SiO2, TiO2, Al2O3, Cr2O3, V2O3, FeO, MnO, CaO, 258 

MgO, NiO, Na2O, and K2O were analyzed using a voltage of 15 kV, a beam current of 259 

20 nA, a spot size of 1 μm and a 10–30 s peak counting time. The detection limits 260 

were 182 ppm for Na, 168 ppm for Si, 209 ppm for Cr, 132 ppm for K, 144 ppm for 261 

Mg, 215 ppm for Mn, 173 ppm for Ca, 152 ppm for Al, 204 ppm for Fe, 240 ppm for 262 
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Ti, and 257 ppm for Ni, respectively. The natural minerals and synthetic oxides used 263 

for calibration are as follows: diopside (Ca, Si, and Mg), albite (Na and Al), rutile (Ti), 264 

bustamite (Mn), K-feldspar (K), NiO (Ni), Fe2O3 (Fe), Cr2O3 (Cr), and V2O5 (V). A 265 

program based on the ZAF procedure was used for data correction (CITIZAF, 266 

Armstrong, 1995). The estimated precisions for major elements and trace elements are 267 

±2% and ±10%, respectively. 268 

Spinel Fe3+/ΣFe ratios are commonly determined by the charge imbalance 269 

method with electron probe microanalysis (EPMA) data, which would lead to large 270 

uncertainties in the Fe3+/ΣFe ratios. Wood and Virgo (1989) presented a correction 271 

procedure for increasing the accuracy of EPMA measurements involving the analysis 272 

of a spinel standard set previously characterized for Fe3+/ΣFe ratios by Mössbauer 273 

spectroscopy. They reported a linear correlation between the difference in the 274 

Fe3+/ΣFe ratio measured by Mössbauer and that calculated by EPMA analysis. Davis 275 

et al. (2017) systematically assessed this correction method, and suggested that it can 276 

improve the precision of the spinel Fe3+/ΣFe ratios determined by EPMA. While 277 

creating the secondary standard calibration method, we tested the reproducibility of 278 

this method (Supplemental Table S2 and Fig. S3). A total of 8 Cr-spinel standard 279 

samples from a wide range of geographic and tectonic environments (MBR8307, 280 

HR04-08, SC1-27, BAR8601-9, MHP79-4, IM8703, VI314-58, and MO4500-24) 281 

with known Fe3+/ΣFe ratios were tested (Wood and Virgo, 1989), and each sample 282 

was tested at 10 points by EPMA (Supplemental Table S3). Meanwhile, the spinel 283 

Fe3+/ΣFe ratios were calculated based on the perfect stoichiometry. The average ratios 284 
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of spinel standard samples were compared with those obtained by Mössbauer 285 

spectrometry, and a linear correction relationship was established. After correction, 286 

the spinel Fe3+/ΣFe ratios by EPMA were nearly identical to those by Mössbauer 287 

spectroscopy (Fig. 4). The precision of the Fe3+/ΣFe ratios averages within 0.04 (2σ). 288 

Then, this equation was used to accurately correct the Fe3+/ΣFe of the unknown 289 

Cr-spinel samples.  290 

Whole-rock S concentrations were determined by high frequency 291 

combustion-infrared absorption using an HIR-944B carbon-sulfur analyzer at the 292 

National Research Center of Geoanalysis in Beijing, China. The analytical uncertainty 293 

was within ±10% of the accepted values, based on the results from the national 294 

standard (GBW07306) analyzed together with our samples. The detection range 295 

varies from 0.0013 to 2.0 wt.%. 296 

5 Results 297 

Olivine from different rock units in the Xiarihamu deposit forms a fractional 298 

crystallization trend, showing that forsterite (Fo) values decrease from 89.8±0.4–299 

86.6±0.0 in harzburgite to 87.6±0.3–87.2±0.1 in olivine orthopyroxenite, 87.4±0.5–300 

86.7±0.1 in lherzolite, 85.2±0.5–83.6±0.1 in websterite and 83.9±0.1–83.3±0.0 in 301 

norite, respectively (Supplemental Table S4). Olivine contains 43.5–48.8 wt.% MgO, 302 

9.72–15.9 wt.% FeO, 0.13–0.36 wt.% NiO, and 0.13–0.22 wt.% MnO. The average 303 

olivine Fo values of the Shitoukengde intrusion decrease systematically from 304 

88.9±0.1 in harzburgite to 85.2±0.3 in lherzolite, 84.5±0.4 in olivine websterite, 305 

81.8±0.3 in clinopyroxenite and 77.6±0.3 in gabbronorite. The olivines have MgO 306 
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contents of 38.9±0.5 to 48.5±0.4 wt.%, FeO contents of 10.5±0.0 to 22.0±4.3 wt.% 307 

NiO contents of 0.14±0.03 to 0.27±0.04 wt.%, and MnO contents of 0.15±0.00 to 308 

0.30±0.07 wt.%. 309 

Cr-spinel grains are rare in the Xiarihamu mafic-ultramafic rocks. The Cr-spinels 310 

from both the harzburgite and olivine orthopyroxenite have similar Cr# [molar, 100×311 

Cr/(Cr+Al)] (42.8±1.5–52.5±5.4 and 41.3±3.1–45.6±5.6, respectively), which are 312 

higher than those in the lherzolite (38.5±2.3–39.6±12.5), websterite (11.1±0.6–313 

30.7±7.4) and norite (17.5±0.1–22.1±10.2), decreasing with the decrease of Fo value 314 

in coexisting olivine. The decrease of spinel Cr# values in these rocks is coupled with 315 

decreasing FeO (16.6–33.3 wt.%), Cr2O3 (7.18–42.2 wt.%), and increasing Al2O3 316 

(22.1–57.1 wt.%) and MgO (7.53–16.0 wt.%). The Fe3+/ΣFe ratios in Cr-spinel vary 317 

from 0.12±0.01 to 0.32±0.09, showing a positive correlation with spinel Cr#. The 318 

studied Cr-spinel grains appear homogenous under backscattered electron images, but 319 

the cores exhibit overall higher Fe3+/ΣFe ratios than those of rims in some Cr-spinel 320 

grains (Figs. 5a-b). In addition, the Fe3+/ΣFe ratios also decrease from the core to rim 321 

in the individual Cr-spinel grains (Figs. 5c-d). 322 

Cr-spinel grains are common in the Shitoukengde intrusion and contain 34.1±0.4–323 

42.0±5.2 wt.% Al2O3, 17.5±0.6–33.4±12.2 wt.% Cr2O3, and 8.13±0.32–14.9±3.6 wt.% 324 

MgO, with Cr# varying between 22.7±1.2 and 39.6±15.2 (Supplemental Table S5). 325 

The FeO concentrations vary between 16.2±0.5 wt.% and 30.4±1.9 wt.%, and display 326 

a negative correlation with the coexisting olivine Fo value, which is different from the 327 

positive correction between Cr-spinel FeO and olivine Fo in the Xiarihamu intrusion. 328 
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The Fe3+/ΣFe ratios in Cr-spinel vary from 0.07±0.02 to 0.23±0.04, increasing as the 329 

olivine Fo values decrease. No systematic variation is observed with Fe3+/ΣFe ratios 330 

of core-to-rim in the individual Cr-spinel grain. 331 

The country rocks of the Xiarihamu Ni-Cu deposit are Neoproterozoic granitic 332 

gneisses and have high whole-rock S contents (1.08–1.14 wt.%). In contrast, the 333 

whole-rock S contents of the country rocks of the Shitoukengde intrusion are 334 

relatively low, varying from 0.005 to 0.018 wt.% (Supplemental Table S6). 335 

6 Discussion 336 

6.1 Calculation of the oxygen fugacity 337 

Before using olivine-spinel oxybarometry to calculate the magma fO2, it is 338 

necessary to estimate the temperature and pressure of the corresponding magma. We 339 

calculated the temperature for each sample using the olivine-spinel thermometer of Li 340 

et al. (1995). The calculated temperatures of the Xiarihamu and Shitoukengde 341 

mafic-ultramafic intrusions vary from 1016 to 869°C and 1038 to 702°C, respectively, 342 

which represent the equilibrium temperatures between olivine and Cr-spinel. A 343 

positive correlation is observed between the calculated temperatures and olivine Fo 344 

values (Supplemental Fig. S4). As mafic-ultramafic cumulate rocks lack a good 345 

barometer, we assumed a pressure of 100 MPa for all calculations following previous 346 

estimates for the Xiarihamu and Shitoukengde mafic-ultramafic intrusions (Li et al., 347 

2015; Liu et al., 2018). The pressure effects on the calculated temperature and oxygen 348 

fugacity are approximately 2°C and 0.03 log units per 100MPa, respectively.  349 

A difficulty sometimes encountered when calculating fO2 is lacking an 350 
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appropriate phase assemblage required for oxybarometry. Critically, Ballhaus et al. 351 

(1991) simplified the equation used to calculate fO2 by assuming that the effect of 352 

ferrosilite activity in orthopyroxene was canceled by the effect of fayalite activity in 353 

olivine for samples with high Mg#. In this case, the oxybarometer can give reasonable 354 

results for orthopyroxene-undersaturated ultramafic rocks because the corrections 355 

rarely exceed a shift in fO2 of -0.2 log units (Bucholz and Kelemen, 2019). Except for 356 

gabbro, all the studied samples contain olivine, orthopyroxene, and Cr-spinel, and 357 

thus are suitable for the olivine-spinel oxybarometer (Ballbaus et al., 1991; Davis et 358 

al., 2017). For gabbroic rocks, we ignore the effect of ferrosilite activity in 359 

orthopyroxene. In order to verify the accuracy of Ballhaus’ equation, the fO2 values of 360 

sulfide-mineralized ultramafic rocks from Xiarihamu Ni-Cu deposit calculated by the 361 

other Ol-Opx-Spl oxybarometer from Wood (1990) are consistent with our results, as 362 

shown in Fig. 6a and Supplemental Table S7. 363 

Of particular concern for this study is the potential that subsolidus cooling may 364 

drive a change in fO2 and variations in mineral chemistry in magmatic rocks (Roeder 365 

and Campbell, 1985; Lindsley and Frost, 1992; Birner et al., 2018; Hou et al., 2021). 366 

Subsolidus equilibration between olivine and spinel was first considered by Irvine 367 

(1965), who described Mg2+ diffusion from spinel to olivine and Fe2+ diffusion from 368 

olivine to spinel. Bucholz and Kelemen (2019) found that subsolidus exchange 369 

reactions increased calculated fO2 by 0.3–0.35 log units over 300℃ of cooling. 370 

However, assuming constant modal percentages of minerals, subsolidus cooling 371 

would decrease the Fe2+ content of olivine and increase Fe2+ content of spinel, which 372 
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is not observed in the Shitoukengde and Xiarihamu ultramafic intrusions 373 

(Supplemental Figs. S5a-b). In addition, the compositional profiles from core to rim 374 

of the Cr-spinel grains in the Xiarihamu intrusion reveal decrease in FeO 375 

(Supplemental Figs. S5c-d). These lines of evidence argue against the trend of the 376 

Mg-Fe exchange between olivine and spinel.  Furthermore, almost 80% EPMA 377 

analysis spots of the spinel and olivine grains were analyzed in the cores, which 378 

represent the most primitive compositional information. Therefore, we believe that 379 

subsolidus exchange of Fe-Mg between olivine-spinel pairs has negligible influence 380 

on the calculated fO2 of the Shitoukengde mafic-ultramafic intrusion and Xiarihamu 381 

Ni-Cu deposit. 382 

Several Cr-spinel grains with clear chemical zoning (Figs. 3n-o) were not used 383 

for calculations, as they might be modified by late-stage interstitial melts (e.g., 384 

Henderson and Wood, 1981; Candia and Gaspar, 1997; Ahmed et al. 2008; 385 

Mukherjee et al., 2010). Cr-spinel grains showing no visible zoning under BSE 386 

imaging were chosen to calculate the magma fO2 (Figs. 3a-j). The Cr-spinel Fe3+/ΣFe 387 

ratios of the Xiarihamu Ni-Cu deposit vary from 0.32±0.09 to 0.12±0.01, 388 

corresponding to magma fO2 values from ΔQFM+2.2±1.0 to ΔQFM-0.6±0.2. By 389 

contrast, those of the Shitoukengde mafic-ultramafic intrusion increase from 390 

0.07±0.02 to 0.23±0.04, corresponding to magma fO2 varying from ΔQFM-1.3±0.3 to 391 

ΔQFM+1.0±0.5. Notably, the calculated magma fO2 and Cr-spinel Fe3+/ΣFe ratios 392 

show a positive correlation (Supplemental Fig. S6). Therefore, we suggest that the 393 

Cr-spinel Fe3+/ΣFe ratios can be used as an indicator for magma fO2. The large 394 
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variations in fO2 values enable us to evaluate the redox changes during magmatic 395 

fractionation and related sulfide mineralization. 396 

6.2 Temporal evolution of the magma fO2 397 

When sulfur is saturated in mafic magma, immiscible droplets of sulfide melt 398 

exsolve, and the chalcophile elements partition from the silicate melt into the sulfide 399 

liquid (Goldschmidt, 1937; Naldrett, 2004; Tomkins et al., 2012; Kiseeva et al., 2017). 400 

Oxygen fugacity controls sulfur speciation and hence sulfur concentrations during 401 

both partial melting in the mantle source and sulfide segregation in the shallow crust 402 

(Jugo, 2009; Mungall et al., 2006; Thakurta et al., 2008; Tomkins et al., 2012). This 403 

variable has received little attention and may be crucial for understanding the Ni-Cu 404 

mineralization mechanism. 405 

From the harzburgite, olivine orthopyroxenite, lherzolite, websterite to norite in 406 

the Xiarihamu Ni-Cu deposit, olivine-spinel pairs were selected to calculate the fO2 in 407 

different magmatic stages. The oxygen fugacity characteristics are summarized as 408 

follows: 1) the relatively high fO2 (ΔQFM>+1.00) recorded in the harzburgites, 409 

containing the most primitive olivines (Fo>88), suggests that the primitive magma of 410 

the Xiarihamu deposit was characterized by an oxidized environment. The fO2 411 

decreased with lowing olivine Fo values and shifted to a reduced environment (Fig. 6). 412 

2) The Cr-spinel cores have slightly higher Fe3+/ΣFe ratios and fO2 than the rims (Figs. 413 

5a-b). In addition, the Fe3+/ΣFe ratios become lower from core to rim in the individual 414 

Cr-spinel grain (Figs. 5c-d). These phenomena suggest that the Ni-Cu bearing magma 415 

became reduced during crystallization. Compared to that of the Xiarihamu Ni-Cu 416 
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deposit, the fO2 of the Shitoukengde intrusion exhibits a significantly different trend. 417 

The calculated results show that the initial crystallization products formed in a 418 

reduced environment (Fo=88.9±0.1, ΔQFM=-0.9±0.5), with fO2 gradually increasing 419 

during crystallization (Fig. 6). 420 

In summary, the primitive magma of the Xiarihamu Ni-Cu deposit progressively 421 

changed from an oxidized to a reduced state, with fO2 varying from ΔQFM+2.2±1.00 422 

to ΔQFM-0.6±0.2, being reduced into the sulfide stability field, which would have 423 

caused sulfide segregation and ultimately ore deposit formation. Comparably, several 424 

typical Ni-Cu deposits in Central Asian Orogenic Belt also show a positive relation 425 

between magma fO2 calculated by different oxybarometers and olivine Fo values (Fig. 426 

6a, Xie et al., 2014; Li et al., 2015; Xue et al., 2016, 2021; Mao et al., 2017). The 427 

temporal evolution of magma fO2 is consistent with the previous study of Tomkins et 428 

al. (2012), proposing that reduction-induced sulfide saturation can drive the formation 429 

of magmatic sulfide deposits. In contrast, the primitive magma fO2 of the 430 

Shitoukengde intrusion was reduced and then became oxidized (from ΔQFM-1.3±0.3 431 

to ΔQFM+1.0±0.5, Fig. 6b), which inhibited S saturation and sulfide segregation. This 432 

may be one of the most compelling reasons for the weak Ni-Cu mineralization of the 433 

Shitoukengde mafic-ultramafic intrusion. 434 

6.3 Response of magma fO2 to the Ni-Cu mineralization 435 

The redox state of mantle-derived magma may be inherited from the nature of the 436 

mantle source. For instance, island arc magma always has higher magma fO2 437 

(ΔQFM+1–ΔFMQ+3) than mid-ocean ridge basalt (MORB, ΔQFM-2–ΔFMQ), which 438 
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is generally interpreted as the mantle source of arc magma having been 439 

metasomatized by an oxidizing subduction-zone fluid (Brandon and Draper, 1996; 440 

Cottrell and Kelley, 2011; Berry et al., 2018; Evans and Tomkins, 2011; Evans, 2012; 441 

Brounce et al., 2014; Zhang et al., 2006). In addition, magma fO2 can also be affected 442 

by later shallow processes such as crystallization differentiation (Lee et al., 2005; 443 

Jenner et al., 2010), crustal contamination (e.g., Deng et al., 2017; Tao et al., 2008; 444 

Mao et al., 2018; Zhang et al., 2009a, 2009b), and degassing (Kelley and Cottrell, 445 

2012; Moussallam et al., 2016). Therefore, the primitive magma could have 446 

undergone a series of changes in oxygen fugacity from the mantle source to intrusion 447 

in the crust. How the evolution of magmatic oxygen fugacity controls Ni-Cu 448 

mineralization processes is poorly understood and worthy of thorough exploration. 449 

We therefore hypothesize that if the oxidized primitive magma, with high 450 

concentrations of dissolved sulfur as sulfate, could be reduced into the sulfide stability 451 

field, it would cause sulfide saturation, would lead to ore deposition.  452 

The fO2 values recorded by spinel-olivine pairs in the most primitive ultramafic 453 

rocks from the Shitoukengde intrusion are estimated to be ΔQFM-1.3±0.3, suggesting 454 

that the primitive magma was likely derived from a reduced mantle source. The 455 

fine-grained sulfide inclusions in olivine and orthopyroxene (Figs. 3h-i) are consistent 456 

with the reduced conditions in the magma during the early stage of crystallization. 457 

However, the fO2 values of most primitive magma from Xiarihamu Ni-Cu deposit 458 

(ΔQFM+2.2±1.0) is much higher than that of the Shitoukengde intrusion (Fig. 6), and 459 

olivine crystals with high Fo values contain no sulfide inclusions, suggesting the 460 
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primitive magma was likely derived from an oxidized mantle source. Orthopyroxenes 461 

from the Xiarihamu harzburgites have low δ26Mg (–0.49 to –0.34‰, Chen et al., 462 

2021), which is proposed to be genetically related to carbonated mantle source that 463 

probably formed by incorporation of recycled carbonates (e.g., Yang et al., 2012; Teng, 464 

2017; Li et al., 2017). The slab-derived fluids would deliver soluble components of 465 

subducted carbonates and deliver them into the mantle source, resulting in the light 466 

Mg isotopes (Shen et al., 2018; Tian et al., 2018; Chen et al., 2021), as the unmodified 467 

mantle has a homogeneous δ26Mg of –0.25±0.04‰ (Teng et al., 2010). Previous 468 

studies suggest that the mantle source of the Xiarihamu Ni-Cu deposit experienced 469 

metasomatism by subduction-related fluids, as the evidence of high Ba/Th ratios 470 

(12.3–453.6) and low (Ta/La)N ratios (0.06–0.55) (Jiang et al., 2015; Peng et al., 2016; 471 

Jia et al., 2021), giving rise to the oxidized primitive magma of the Xiarihamu 472 

ultramafic intrusion. The whole-rock εNd(t) values of the Shitoukengde intrusion are 473 

higher than those of the Xiarihamu ultramafic rocks (-4.46–2.83 and -7.59–-0.74, 474 

respectively, Jia et al., 2021; Jiang et al., 2015; Peng et al., 2016), consistent with the 475 

mantle source of the former having experienced weaker metasomatism than the latter. 476 

This is also supported by the lower Ba/Th ratios (14.9–219.2) and higher (Ta/La)N 477 

ratios (0.54–2.84) of the Shitoukengde ultramafic rocks (Jia et al., 2021). Therefore, 478 

the degree of metasomatism of the mantle source may be the most convincing reason 479 

for the different primitive magma fO2 of two coeval mafic-ultramafic intrusions in 480 

East Kunlun. Oxidation of the mantle source by metasomatism converts some sulfide 481 

into sulfate, which would increase the solubility of sulfur and chalcophile elements in 482 
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the primitive magma (Mungall, 2002; Tomkins et al., 2012), and provide for higher 483 

concentrations of ore-forming components in the magmatic precursors to the 484 

Xiarihamu Ni-Cu deposit. 485 

The most striking feature between the Xiarihamu and Shitoukengde intrusions is 486 

their different evolution trends of oxygen fugacity during magma emplacement at the 487 

shallow crustal level (Fig. 6). Crustal sulfur contamination is crucial for most 488 

magmatic Ni-Cu ore deposits (e.g., Holwell et al., 2007; Lesher and Barnes, 2008; 489 

Keays and Lightfoot, 2010; Fiorentini et al., 2012; Ripley and Li, 2017). The country 490 

gneisses of the Xiarihamu ore-bearing bodies contain considerable sulfide 491 

(Supplemental Figs. S2a-b), with whole-rock S contents reaching up to 1.14 wt.%. 492 

The in-situ δ34S values of the Xiarihamu sulfide ores range from 2.4 to 7.7‰ (Li et al., 493 

2015; Liu et al., 2018) and fall between those of the country gneiss (11.2‰, Liu et al., 494 

2018) and mantle (0±2‰, Chaussidon et al., 1989), permitting the gneisses to have 495 

contributed S in the formation of the Xiarihamu sulfide ores. In addition, the δ26Mg 496 

values of orthopyroxene increased progressively from harzburgites to websterites and 497 

gabbronorites (-0.49 to -0.21‰, Chen et al., 2021), which was interpreted to be due to 498 

variable degrees of crustal contamination (Brewer et al., 2018). Therefore, the 499 

oxidized primitive magma of the Xiarihamu deposit gradually became reduced with 500 

continuous addition of the external reduced sulfur from the country gneisses during 501 

emplacement, which lowered the sulfur solubility of the magma, causing S saturation 502 

and precipitation of sulfides to form the Xiarihamu Ni-Cu deposit. Coincidentally, 503 

previous studies suggested that the Ni-Cu deposits (e.g., Poyi, Huangshannan) in the 504 
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Central Asian Orogenic Belt (Zhang et al., 2009a, 2009b; Mao et al., 2018; Xue et al., 505 

2021) could also be result from a relatively oxidized mantle source that gradually 506 

became more reduced during crustal processes (Fig. 6a). The mineralization process 507 

of the Xiarihamu Ni-Cu deposit was also documented by sulfide microtextures. 508 

Sulfides commonly occur as interstitial phases in the matrix (Figs. 3a, b, e), 509 

suggesting they crystallized after olivine and orthopyroxene. This could be the result 510 

of the decreasing fO2 which was caused by the input of external sulfur during late 511 

magmatic evolution. 512 

Although the country rocks of the Shitoukengde intrusion are also granitic 513 

gneisses, no sulfides were observed in thin sections (Supplemental Figs. S2c-d). Their 514 

whole-rock S contents (0.005–0.018 wt.%) are significantly lower than those of the 515 

Xiarihamu granitic gneisses (1.08–1.14 wt.%). Therefore, crustal sulfur contamination 516 

was likely very limited in the Shitoukengde intrusion. In this regard, the observed 517 

increase in magma fO2, as shown in Fig. 6b, may have instead been driven by 518 

fractional crystallization. Previous studies have shown limited increases in Fe3+/ΣFe 519 

ratios with the crystallization of olivine and pyroxenes, which cannot significantly 520 

change the magma oxygen fugacity (Cottrell and Kelley, 2011; Crabtree and Lange, 521 

2012; Kelley and Cottrell, 2012). However, the FeO contents of Cr-spinel increase 522 

with decreasing olivine Fo values, suggesting that the crystallization of Cr-spinel 523 

would have depleted the FeO in liquid if the magma was a closed system (Cottrell and 524 

Kelley, 2011; Wykes et al., 2015). Our data show that the Fe3+/ΣFe ratio increases 525 

with increasing FeO contents in Cr-spinel (Fig. 7), suggesting that the Shitoukengde 526 
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magma fO2 likely increased with the fractional crystallization of large amounts of 527 

Cr-spinel. The increase of oxygen fugacity during crystallization, as well as lack of 528 

crustal sulfur contamination, probably hampered the formation of sulfide ores in the 529 

Shitoukengde intrusion. 530 

6.4 A genetic model for the mafic-ultramafic intrusions and the related Ni-Cu 531 

deposits in East Kunlun 532 

Magmatic oxygen fugacity of Ni-Cu sulfide deposits has been studied extensively 533 

for decades but remains controversial (Mungall et al., 2006; Thakurta et al., 2008; 534 

Tomkins et al., 2012; Jugo, 2009; Brenan and Caciagli, 2000; Ballhaus et al., 1991). 535 

For example, the Voisey's Bay Cu-Ni deposit formed in a reduced environment 536 

(Brenan and Caciagli, 2000; Tomkins et al., 2012), but the Mirabela deposit formed in 537 

a relatively oxidized magma (Barnes et al., 2013). A likely contributor to this 538 

controversy is the impact of the different oxybarometers used, which reflect different 539 

redox states in the magmatic evolution process. For example, the magma fO2 of the 540 

Huangshandong and Huangshanxi Cu-Ni deposits based on olivine-spinel pairs 541 

(ΔQFM+1–ΔQFM+2.6, Cao et al., 2019) is higher than that calculated by 542 

olivine-sulfide pairs (ΔQFM-1–ΔQFM+1, Mao et al., 2018), which may represent the 543 

fO2 of the magmas before sulfide saturation and concurrent with sulfide saturation, 544 

respectively. A genetic model of the second largest Ni-Cu deposit and other 545 

comparable intrusions in China is built to reveal the relationship of magma fO2 and 546 

Ni-Cu sulfide deposits. 547 

The ophiolite fragments (e.g., Heishan and Qingshuiquan) in East Kunlun 548 
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preserve a record of Proto-Tethys Ocean formed in the Early Paleozoic (Jiang et al., 549 

1992; Yang et al., 1996; Cui et al., 2011; Meng et al., 2015). The Huxiaoqin mafic 550 

rocks (438 Ma, Liu et al., 2013a) and Qingshuiquan diabase-dikes (436 Ma, Ren et al., 551 

2009) may represent the latest magmatism related to the Early Paleozoic ocean 552 

subduction (Liu et al., 2013b). The Wenquan eclogite with the peak metamorphic age 553 

of ~428 Ma in East Kunlun suggests a deep subduction during continent-continent 554 

collision (Meng et al., 2013b; Jia et al., 2014). After 428 Ma, extensive Silurian 555 

basalts (428–419 Ma, Zhu et al. 2006) and Early Devonian-Middle Devonian mafic 556 

dikes (412–383 Ma, Sun et al. 2004; Zhang et al. 2013; Xiong et al., 2014; Yang et al. 557 

2014) in the East Kunlun area intruded, which represent the product of an extensional 558 

environment (Liu et al. 2013b; Peng et al. 2016; Song et al. 2016; Zhang et al. 2018). 559 

Therefore, the Xiarihamu and Shitoukengde intrusions (420–424 Ma) were emplaced 560 

in a post-collisional setting (Jia et al., 2021).  561 

During this period, the cessation of subduction may cause break-off of the dense 562 

subducted slab, triggering upwelling of the hot asthenosphere mantle (Peng et al., 563 

2016; Liu et al., 2018; Jia et al., 2021). The subducted slab experienced metamorphic 564 

dehydration and partial melting, and produced subduction-related aqueous fluids and 565 

hydrous melts (Zhao et al., 2007; Zheng, 2012), which metasomatized the overlying 566 

lithospheric and/or depleted asthenosphere mantle (Fig. 8a). Previous studies have 567 

suggested that metasomatic enrichment would increase the oxygen fugacity of the 568 

mantle wedge (McCammon et al., 2001; Creighton et al., 2008), which produced 569 

relatively oxidized primary magma. With the proceeding of emplacement, the magma 570 
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became reduced progressively due to contamination of the external reduced crustal 571 

sulfur, which directly led to S saturation and sulfide segregation. The sulfide-loaded 572 

magmas produced the Xiarihamu deposit, with gradually decreasing magma fO2 (Fig. 573 

8b, ΔQFM+2.2±1.0 to ΔQFM-0.6±0.2). 574 

The Shitoukengde intrusion in East Kunlun probably belongs to a different 575 

system comparing to the Xiarihamu Ni-Cu deposit. Without metasomatism of the 576 

subduction-related fluids, a relatively low-fO2 primitive magma was generated in a 577 

mantle source with a limited capacity to dissolve sulfur. Fractional crystallization of a 578 

large amount of Cr-spinel elevated the magma fO2, while there was no supplement of 579 

external reduced materials. The insufficient contents of sulfur in the primitive magma, 580 

coupled with increasing sulfur solubility of the magma caused by elevated fO2 during 581 

crystallization, hampered sulfide precipitation in the Shitoukengde mafic-ultramafic 582 

intrusion. 583 

7 Implications 584 

 Our study presents the first comparison of the magma fO2 calculated by 585 

olivine-spinel oxybarometry for the Xiarihamu Ni-Cu sulfide deposit and 586 

Shitoukengde mafic-ultramafic intrusion in East Kunlun, and provides new insights 587 

into the relationship between magmatic oxygen fugacity and Ni-Cu mineralization. 588 

The second standard calibration method can effectively improve the accuracy of the 589 

Cr-spinel Fe3+/ΣFe ratios by EPMA. A strong positive correlation is displayed 590 

between the magma fO2 and Cr-spinel Fe3+/ΣFe ratios, indicating that Cr-spinel 591 

Fe3+/ΣFe ratios can be used as an indicator of magma fO2. The evolution trend of the 592 
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magma fO2, from ΔQFM+2.2±1.0 to ΔQFM-0.6±0.2 with decreasing olivine Fo 593 

values, can reasonably explain the metallogenesis of the Xiarihamu deposit. 594 

Metasomatism happened in the mantle source by subduction-related fluid, generating 595 

the oxidized primary magmas, capable to transporting sulfur efficiently. Addition of 596 

external reduced sulfur from gneisses country rocks (1.08–1.14 wt.% S) during crustal 597 

processes led to deposition of sulfides and formation of the Xiarihamu Ni-Cu deposit. 598 

Conversely, the Cr-spinel Fe3+/ΣFe ratios of the Shitoukengde intrusion increase 599 

from 0.07±0.02 to 0.23±0.04, corresponding to fO2 varying from ΔQFM-1.3±0.3 to 600 

ΔQFM+1.0±0.5. The fractional crystallization of large amounts of Cr-spinel can 601 

reasonably explain the increasing magma fO2 during magmatic evolution, which 602 

would hamper sulfide precipitation in the Shitoukengde intrusion.  603 

As a consequence, reduction processes of the oxidized primitive magma from 604 

mantle source to shallow crust are crucial for the Ni-Cu sulfide deposits. We propose 605 

that monitoring the temporal evolution of the magma fO2 calculated by olivine-spinel 606 

oxybarometry can be a key indicator of metallogenic potential of Ni-Cu sulfide 607 

deposits. 608 
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Fig. 1 (a) Tectonic sketch map of China; (b) Simplified tectonic units of the East Kunlun Orogenic Belt 1055 

(modified after Feng et al., 2009 and Meng et al., 2015). (c) Simplified geologic map of the eastern 1056 

portion of the East Kunlun Orogenic Belt (modified after Zhang et al., 2015). Zircon U-Pb 1057 

geochronology data are listed in Supplemental Table S1. 1058 

 1059 

Fig. 2 Geological map of the Xiarihamu I mafic-ultramafic intrusion (a) and cross-section (b) for the 1060 

Xiarihamu magmatic sulfide deposit (modified after Song et al., 2016). (c) Simplified geological map 1061 

of the Shitoukengde intrusion (modified after Jia et al., 2021). Zircon U–Pb age data of the 1062 

Shitoukengde mafic-ultramafic rocks are from Zhou (2016), Li et al. (2018), Zhang et al. (2018). 1063 

 1064 

Fig. 3 Photomicrographs in cross-polarized light and reflected light (b, d, j) and BSE images (h, n, o) of 1065 

Cr-spinel characteristics from the Xiarihamu Ni-Cu deposit and Shitoukengde intrusion. Xiarihamu: 1066 

(a-c) harzburgite; (d) lherzolite; (e) olivine orthopyroxenite; (f) websterite; (g) norite; Shitoukengde: 1067 

(h) harzburgite; (i-j) lherzolite; (k) olivine websterite; (l) clinopyroxenite; (m) gabbro; (n-o) 1068 

heterogeneous Cr-spinel grains. Mineral abbreviations: Ol olivine, Opx orthpyroxene, Cpx 1069 

clinopyroxene, Pl plagioclase, Ts tschermakite, Spl Cr-spinel, Ap apatite, Sul sulfide, Po pyrrhotite, Pn 1070 

pentlandite, Ccp chalcopyrite, Ilm ilmenite. 1071 

 1072 

Fig. 4 Comparison of Fe3+/ΣFe ratios measured by Mössbauer spectroscopy and EPMA modified by 1073 

second standard calibration. The corrected Fe3+/ΣFe ratios by EPMA are nearly identical to those by 1074 

Mössbauer spectroscopy (Wood and Virgo, 1989). See text for details. 1075 

 1076 
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Fig. 5 Plots of Fe3+/ΣFe ratios and log fO2(ΔQFM) of Cr-spinels from the Xiarihamu Ni-Cu deposit. (a) 1077 

and (b) show that Fe3+/ΣFe ratios and log fO2(ΔQFM) of Cr-spinel cores are slightly higher than those 1078 

of Cr-spinel rims in different grains, (c) and (d) show that the Fe3+/ΣFe ratios become lower from core 1079 

to rim in individual Cr-spinel grain. 1080 

 1081 

Fig. 6 Plots of oxygen fugacity shown as Fo values in olivine versus log fO2(ΔQFM) for the Xiarihamu 1082 

Ni-Cu deposit and Shitoukengde intrusion in East Kunlun, and several Ni-Cu deposits in Central Asian 1083 

Orogenic Belt. (a) The most primitive magma of the Xiarihamu Ni-Cu deposit changed progressively 1084 

from an oxidized to a reduced state, being reduced into the sulfide stability field, which would have 1085 

caused sulfide segregation and ultimately ore deposit formation. Several typical Ni-Cu deposits in 1086 

Central Asian Orogenic Belt also show a positive relation between magma fO2 and olivine Fo values. (b) 1087 

The most primitive magma fO2 of the Shitoukengde intrusion was reduced and then became oxidized, 1088 

which inhibited S saturation and sulfide segregation. Data source of Ol-Opx-Spl-Wood method: 1089 

Huangshannan (HSN), Poyi (PY), Heishan (HS), and Xiarihamu (XRHM) from Xue et al. (2021); data 1090 

source of Ol-Sul-Barnes method: HSN from Mao et al. (2017), PY from Xue et al. (2016), HS from Xie 1091 

et al. (2014), and XRHM from Li et al. (2015). 1092 

 1093 

Fig. 7 Plots of FeO concentration versus Fe3+/ΣFe ratio in Cr-spinel for the Shitoukengde 1094 

mafic-ultramafic intrusion. The trend line shows that the Fe3+/ΣFe ratio increases with increasing FeO 1095 

contents in Cr-spinel, suggesting that the Shitoukengde magma fO2 likely increased with the fractional 1096 

crystallization of large amounts of Cr-spinel. 1097 

 1098 
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Fig. 8 A genetic model for the Xiarihamu Ni-Cu deposit and Shitoukengde mafic-ultramafic intrusion 1099 

in East Kunlun. See text for details.  1100 

 1101 

Supplemental Fig. S1 The BSE images by TIMA of the Shitoukengde and Xiarihamu intrusions, 1102 

showing the volume content of the Cr-spinel of the Shitoukengde (~2.32 vol.%) is higher than that of 1103 

the Cr-spinel in the Xiarihamu lherzolite (~0.05 vol.%). 1104 

 1105 

Supplemental Fig. S2 Photomicrographs images of country rocks from the Xiarihamu Ni-Cu deposit 1106 

and Shitoukengde intrusion. Xiarihamu: a-Amphibole plagiogneiss; b-Amphibole plagiogneiss contains 1107 

sulfide grain; Shitoukengde: c-Amphibole gneiss; d-Biotite plagiogneiss. Mineral abbreviations: Pl 1108 

plagioclase, Amp amphibole, Bt biotite, Grt garnet, Qtz quartz, Sul sulfide. 1109 

 1110 

Supplemental Fig. S3 Comparison of Cr-spinel Fe3+/ΣFe ratios measured by Mössbauer spectroscopy 1111 

and EPMA modified by second standard calibration, showing the reproducibility of this method. 1112 

 1113 

Supplemental Fig. S4 Plots of Fo values in olivine versus TOl-Spl (℃) for the Xiarihamu Ni-Cu deposit 1114 

and Shitoukengde intrusion. 1115 

 1116 

Supplemental Fig. S5 Correlation diagrams of (a) FeO in Cr-spinel and FeO in olivine and (b) MgO in 1117 

Cr-spinel and MgO in olivine for the Shitoukengde intrusion. (c) and (d) show that the FeO contents 1118 

become lower from core to rim in the individual Cr-spinel grain. 1119 

 1120 
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Supplemental Fig. S6 Correlation between log fO2(ΔQFM) and Cr-spinel Fe3+/ΣFe ratio, showing a 1121 

strong positive correlation between the fO2 and Cr-spinel Fe3+/ΣFe ratios from the Xiarihamu Ni-Cu 1122 

deposit and Shitoukengde mafic-ultarmafic intrusion. 1123 

 1124 

Table captions 1125 

Supplemental Table S1 1126 

Summary of geochronology for the mafic-ultramafic intrusions and eclogites in the East Kunlun 1127 

Orogenic belt. 1128 

 1129 

Supplemental Table S2 1130 

Composition of Cr-spinel standards determined by EPMA, to test the reproducibility of the secondary 1131 

standard calibration method. 1132 

 1133 

Supplemental Table S3 1134 

Electron microprobe results (in wt.%) of the secondary Cr-spinel standard samples. 1135 

 1136 

Supplemental Table S4 1137 

Electron microprobe results (in wt.%) of Cr-spinel and olivine from the Xiarihamu deposit. 1138 

 1139 

Supplemental Table S5 1140 

Electron microprobe results (in wt.%) of Cr-spinel and olivine from the Shitoukengde mafic-ultramafic 1141 

rocks 1142 
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 1143 

Supplemental Table S6 1144 

Whole-rock S concentrations (in wt.%) of the country rocks of the Xiarihamu Ni-Cu deposit and 1145 

Shitoukengde mafic–ultramafic intrusion. 1146 

 1147 

Supplemental Table S7 1148 

Representive whole-rock trace elements, Sr-Nd isotopes, orthopyroxene Mg isotope, and sulfide S 1149 

isotope of the Xiarihamu Ni-Cu deposit and Shitoukengde mafic–ultramafic intrusion, and fO2 values 1150 

estimated using the Ol-Opx-Spl and Ol-Sul oxybarometers of several magmatic Ni-Cu deposits in 1151 

China. 1152 
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