Revision 1

1 Word Count: 7453

2 Synthesis of Ferrian and Ferro-Saponites: Implications for the structure

3 of (Fe,Mg)-smectites synthesized in reduced conditions

- 4
- 5 Hiroshi Sakuma^{1,*}, Koki Morida², Yoshio Takahashi³, Keisuke Fukushi², Natsumi Noda
- 6 ^{3,4}, Yasuhito Sekine ^{2,4} and Kenji Tamura ¹
- 7
- ⁸ ¹National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044
- 9 ²Institute of Nature and Environmental Technology, Kanazawa University, Kakuma,
- 10 Kanazawa 920-1192, Japan
- ³Department of Earth and Planetary Science, School of Science, University of Tokyo, Tokyo

12 *113-0033, Japan*

- ⁴Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, 2-12-11E-1, Ookayama,
- 14 *Tokyo 152-8550, Japan*
- 15
- 16 Corresponding author: H. Sakuma (SAKUMA.Hiroshi@nims.go.jp)
- 17

Revision 1

Abstract

19	Clay minerals are widely distributed on the surface of Earth, Mars, and Ceres in the Solar
20	systems. Among clay minerals, smectites can record the history of the environment through
21	exchange of interlayer cations with those in water, or through redox reactions with the
22	atmosphere. Therefore, characterization of chemical compositions and crystal structures of
23	smectites is crucial for revealing paleoenvironment. For instance, the crystal structure
24	within octahedral sheets of iron-bearing smectites changes to trioctahedral sheets under
25	reduced or dioctahedral sheets under oxidized conditions. Orbital infrared and X-ray
26	diffraction (XRD) analyses by Mars orbiters/rovers revealed the presence of
27	(Fe,Mg)-smectites on the surface of Mars; however, it has been difficult to characterize the
28	properties of these (Fe,Mg)-smectites, which are rare on the surface of Earth. In this study,
29	we synthesized ferrian (ferric ion-rich) and ferrous (ferrous ion-rich) (Fe,Mg)-saponite and
30	revealed the effect of valence states and iron contents on the crystal structures. These
31	saponites were synthesized using a hydrothermal method under reduced conditions. The
32	crystal structures and valence states of iron were analyzed by XRD, Fourier-transform
33	infrared spectroscopy, transmission electron microscopy, Mössbauer spectroscopy, and
34	X-ray absorption near edge measurements. The synthesized clays were trioctahedral

35	swelling clays and were identified as saponites. The valence state of iron in these
36	synthesized saponites is altered by oxygen and a reducing agent in water; however, the
37	trioctahedral structures are maintained under both oxidizing and reduced conditions,
38	following a reversible reaction. This mechanism can be interpreted by the desorption and
39	adsorption of hydrogen in the hydroxyls of the octahedral sheets of the smectite layers. The
40	maximum basal spacing of the $(02l)$ lattice plane in the octahedral sheets was defined by
41	compiling various smectite data. When the basal spacing of $(02l)$ is larger than the
42	maximum in dioctahedral smectites, smectite can be identified as trioctahedral smectite.
43	The redox state of iron in the octahedral sheet cannot be determined from the basal spacing
44	of $(02l)$. We revealed that the iron content in the trioctahedral sheet has a linear relationship
45	with the length of the lattice parameter b . This provides a method to estimate the iron
46	content in saponite from the XRD profile. The XRD profiles of smectites found at the
47	Yellowknife Bay on Mars can be explained only by trioctahedral smectites, and the iron
48	content in the octahedral sheet is roughly estimated to be 0.5–1.7 in a half-unit cell. These
49	results indicate that the presence of (Fe,Mg)-saponite implies a reduced environment during
50	the formation and that this iron-bearing saponite has oxidation and reduction capabilities
51	depending on the environment.

Revision 1

52 **Keywords:** Reduction, oxidization, smectites, XRD, XANES, clay mineralogy, Mars

53	Introduction
54	Clay minerals are widely distributed on the surface of Earth (e.g., Fagel 2007), Mars
55	(e.g., Ehlmann et al. 2011; Carter et al. 2013; Michalski et al. 2015; Bishop et al. 2018), and
56	Ceres, the icy dwarf planet in the main belt (e.g., De Sanctis et al. 2015, 2020; Ammannito
57	et al. 2016). Among these clay minerals, (Fe,Mg)-smectites that are commonly discovered
58	play an important role in understanding the history of Mars. Owing to their high affinity for
59	water, smectites, and in particular, their chemical compositions and exchangeable interlayer
60	cations may record the history of the Martian paleoclimate (e.g., Fukushi et al. 2019).
61	Moreover, the valence state of iron in smectite is one of the key properties for revealing the
62	redox state during smectite formation.
63	Visible/near-infrared (VNIR) spectra measured by Martian orbital instruments may be
64	used to identify the valence state of iron in smectite. It has been recently revealed that the
65	VNIR spectra of the synthesized ferrous (Fe ²⁺) saponite could be distinguished from those
66	of ferric dioctahedral smectite (such as nontronite) (Chemtob et al. 2015). The oxidation
67	state of octahedral iron in smectites with a wide range of chemical compositions, including
68	Fe(III), Fe(II), Mg, and Al, can also be identified from the VNIR spectra (Fox et al. 2021).
69	These studies provide critical data for the identification of ferrous smectites in VNIR

Revision 1

70	spectra. On the current surface of Mars, however, detectable ferrous smectites are likely
71	limited possibly due to oxidative chemical weathering in sediment sources and/or during
72	fluvial transports (Bristow et al. 2018; Mangold et al. 2019), and photochemically produced
73	oxidants (Chemtob et al. 2015, 2017).
74	Nevertheless, unoxidized samples below the surface can be found by a rover. For
75	example, X-ray diffraction (XRD) data for samples below the surface were provided by the
76	Chemistry and Mineralogy (CheMin) instrument onboard the Curiosity rover at
77	Yellowknife Bay (YKB) (Vaniman et al. 2014). It is believed that the redox state can be
78	revealed for the octahedral structures of smectites, because the divalent cations fully
79	occupy these sites, called a trioctahedral sheet, while the trivalent cations, owing to the
80	charge balance, can occupy only two-thirds of these sites, called a dioctahedral sheet. This
81	difference in the structure of the octahedral sheets can be identified by X-ray diffraction
82	(XRD) of the (060) plane in the smectite. The 060 reflection, however, cannot be measured
83	by the CheMin instrument; instead, the 02l reflections were used to identify the octahedral
84	structures in the spectra obtained by the CheMin (Treiman et al. 2014; Vaniman et al. 2014;
85	Bristow et al. 2015).

86 A natural trioctahedral smectite (ferrian saponite) on Earth can be used as equivalent to

87	explain the 02l peak position of clays at YKB; however, surprisingly, most iron in natural
88	saponite was characterized as ferric (Fe ³⁺) (Treiman et al. 2014), which is expected to be
89	unstable in the trioctahedral sheet. The synthesized ferrous (Fe ²⁺) saponite can also be a
90	candidate for understanding the structure of YKB smectites (Chemtob et al. 2015; Fox et al.
91	2021) from XRD profiles. These results imply that the structure of the octahedral sheet may
92	not be used to identify the oxidation state of iron; however, it is unclear why the ferric ions
93	are stable in the trioctahedral sheet. These studies were conducted on highly oxidized or
94	reduced saponites. The results imply that the intermediate ratio of ferric and ferrous ion
95	may also explain the smectites at YKB.
96	In this study, we attempted to synthesize ferrian (ferric-ion-rich) and ferro (ferrous
97	ion-rich) saponites. These saponites were used to reveal the possibility of constraining the
98	oxidation state of iron in saponite from the XRD profile and to interpret the mechanism of
99	stabilization of ferric ion in trioctahedral smectite. Two hydrothermal synthetic methods
100	have been proposed for obtaining ferrous saponite under reduced conditions. One is a
101	sol-gel method in an anoxic chamber (Chemtob et al. 2015, 2017; Fox et al. 2021), while
102	the other method used a reducing agent in aqueous solutions (Baldermann et al. 2014). In
103	this study, we employed the latter method. The difference with the previous work

104	(Baldermann et al. 2014) is the presence of Al in the reactants; therefore, the details of the
105	method were slightly modified. The Fe/Mg ratio in the starting materials was fixed at one
106	as the upper limit of the trioctahedral smectite measured by the Curiosity rover (Vaniman et
107	al. 2014). The ratio of ferric/ferrous ion in the saponite was controlled by oxidation and
108	reduction of synthesized saponite, as reported for dioctahedral smectites (Stucki et al. 1984;
109	Fialips et al. 2002; Lee et al. 2006).
110	
111	Materials and Methods
112	Synthesis of iron saponite
113	The synthetic method was similar to that of ferrous saponite synthesis proposed by
113 114	The synthetic method was similar to that of ferrous saponite synthesis proposed by Baldermann et al. (2014). The reducing agent was prepared by adding 0.025 g sodium
113114115	The synthetic method was similar to that of ferrous saponite synthesis proposed by Baldermann et al. (2014). The reducing agent was prepared by adding 0.025 g sodium dithionite (Na ₂ S ₂ O ₄) to 50 mL ultrapure water (resistivity of 18.2 M Ω cm). Initial solutions
 113 114 115 116 	The synthetic method was similar to that of ferrous saponite synthesis proposed by Baldermann et al. (2014). The reducing agent was prepared by adding 0.025 g sodium dithionite (Na ₂ S ₂ O ₄) to 50 mL ultrapure water (resistivity of 18.2 M Ω cm). Initial solutions were obtained by adding 2 g of sodium orthosilicate (Na ₄ SiO ₄), iron (II) sulfate (FeSO ₄
 113 114 115 116 117 	The synthetic method was similar to that of ferrous saponite synthesis proposed by Baldermann et al. (2014). The reducing agent was prepared by adding 0.025 g sodium dithionite (Na ₂ S ₂ O ₄) to 50 mL ultrapure water (resistivity of 18.2 M Ω cm). Initial solutions were obtained by adding 2 g of sodium orthosilicate (Na ₄ SiO ₄), iron (II) sulfate (FeSO ₄ 7H ₂ O), magnesium chloride (MgCl ₂ 6H ₂ O), and AlCl ₃ (AlCl ₃ 6H ₂ O) powders of reagent
 113 114 115 116 117 118 	The synthetic method was similar to that of ferrous saponite synthesis proposed by Baldermann et al. (2014). The reducing agent was prepared by adding 0.025 g sodium dithionite (Na ₂ S ₂ O ₄) to 50 mL ultrapure water (resistivity of 18.2 M Ω cm). Initial solutions were obtained by adding 2 g of sodium orthosilicate (Na ₄ SiO ₄), iron (II) sulfate (FeSO ₄ 7H ₂ O), magnesium chloride (MgCl ₂ 6H ₂ O), and AlCl ₃ (AlCl ₃ 6H ₂ O) powders of reagent grade to the reducing agent to meet the desired stoichiometry (Table 1). The difference
 113 114 115 116 117 118 119 	The synthetic method was similar to that of ferrous saponite synthesis proposed by Baldermann et al. (2014). The reducing agent was prepared by adding 0.025 g sodium dithionite (Na ₂ S ₂ O ₄) to 50 mL ultrapure water (resistivity of 18.2 M Ω cm). Initial solutions were obtained by adding 2 g of sodium orthosilicate (Na ₄ SiO ₄), iron (II) sulfate (FeSO ₄ 7H ₂ O), magnesium chloride (MgCl ₂ 6H ₂ O), and AlCl ₃ (AlCl ₃ 6H ₂ O) powders of reagent grade to the reducing agent to meet the desired stoichiometry (Table 1). The difference among samples is the concentrations of Al and Si in the initial solutions. The concentrations

121	and 0 (/O ₁₂ in the chemical formula of saponite), respectively. The Si concentrations in
122	these samples were determined to satisfy the sum of Al and Si concentrations to be four
123	(/O ₁₂). The pH of the initial solutions was 12.7, which was higher than that of the previous
124	method (Baldermann et al. 2014). This high pH prevents the precipitation of Al hydroxide
125	from the solution. The solutions were transferred to Teflon-lined stainless-steel autoclaves
126	and heated in an oven at 180 °C for five days. The solutions were cooled to room
127	temperature within a few hours, and precipitates were obtained by vacuum filtration on a
128	0.45 μ m PTFE membrane filter. The precipitates on the filter were rinsed with ultrapure
129	water to remove residual salts and dried at 40 °C in an oven.
130	To obtain ferro-saponite, the reduction was attempted using a method similar to
131	that proposed for di-octahedral smectites (Stucki et al. 1984; Fialips et al. 2002; Lee et al.
132	2006). The recovered sample (150 mg) was dispersed in 100 mL of ultrapure water for
133	one-five days. The suspension (40 mL) was mixed with 20 mL of buffer solution by
134	combining 2 parts of 1.2 M sodium citrate with 1 part of 1 M sodium bicarbonate. This
135	suspension was moved to a glove box, and the air was replaced with $N_{\rm 2}$ gas. Then, 300 mg
136	sodium dithionite was added to the suspension and heated at 70 °C for 1 h or 24 h. The
137	suspension was transferred to a centrifuge tube and centrifuged at 18,000 rpm for 15 min,

T1

Revision 1

C 11

120

138	followed by one wash with methanol under centrifugation. Then, the supernatant was
139	discarded, and the precipitate was dried in a vacuum desiccator.
140	Chemical analysis
141	The synthesized sample (25 mg) was dissolved in a mixture of 5 mL of 35% nitric
142	acid and 0.5 mL of hydrofluoric acid at 120 °C for 16 h, allowed to cool, and diluted to 250

143 mL with Milli-Q water. The concentrations of elements (Na, Mg, Al, Si, S, K, Ca, and Fe)

144 were measured using an SPS3520UV-DD-type inductively coupled plasma optical emission

145 spectrometry (ICP-OES) instrument (Hitachi High-Tech Corp.). The chemical composition of

146 the synthesized samples was also analyzed using a field-emission electron microscope

147 (JEM-3100FEF, JEOL Ltd.) in scanning mode equipped with an SDD detector for energy

148 dispersive X-ray spectroscopy (STEM-EDS). The samples were prepared on carbon grids. An

149 accelerating voltage of 300 kV was applied for electron microscopy.

The structural formulas for the synthesized smectites were calculated as follows: (1) The sum of positive charges was calculated from the molar ratio of the cations. (2) The number of cations in the half-unit cell was calculated by normalizing the total positive charge to compensate for 22 units of negative charge. (3) Based on the number of cations, cations were assigned to smectite structures. All Na atoms were assigned to the interlayer. All Si and

155	Al atoms were assigned to the tetrahedral sheet, because Al ³⁺ preferentially occupy
156	tetrahedral sites in saponite (He et al. 2014). All Mg atoms were assigned to the octahedral
157	sheet. Fe was assigned to the octahedral sheet as ferrous ions until the full occupancy of three
158	ions per half-unit cell was reached. Residual Fe was assigned to the tetrahedral sheet as ferric
159	ions. In this procedure, the sum of positive charge changes depended on the ratio of
160	ferrous/ferric ions; therefore, the ratio was determined iteratively to satisfy the full occupancy
161	of the octahedral sheets by Mg and Fe ions.
162	The valence states of Fe ions in the samples were analyzed by X-ray absorption near
163	edge structure (XANES) measurements. Iron K-edge XANES spectra were measured at
164	beamline BL12C at the Photon Factory (PF), Institute of Materials Structure Science, High
165	Energy Accelerator Research Organization (KEK), Tsukuba, Japan. Incident X-ray beam was
166	monochromatized with a Si-111 double-crystal monochromator and focused to $0.5 \times 0.5 \ \text{mm}^2$
167	with a bent cylindrical mirror. Energy calibration was performed by defining the pre-edge
168	peak maximum of hematite fixed at 7.110 keV. The measurements were performed at room
169	temperature under ambient air conditions. All spectra were recorded in the transmission mode
170	using two ion chamber detectors. All spectra were normalized to a unit step in the absorption
171	coefficient. No radiation damage that caused a change in the valence of Fe was found during

172	the data acquisition based on the repeated scans for the XANES analysis. The XANES
173	spectra of two typical clay minerals were measured for a comparison. Pure biotite was
174	purchased from Nichika Inc. and the ratio of ferric ions is low (Fe ³⁺ / Σ Fe = 0.03). Nontronite
175	(NAu-1) is a source clay of the Clay Minerals Society.
176	Iron speciation in some of the saponite and biotite samples were also conducted by
177	Mössbauer (MB) spectroscopy. The powdered sample without any chemical pretreatment
178	was gently pressed into a brass sample holder (16 mm in diameter, 1 mm thick) for the
179	measurement. MB spectra were measured using a Topologic Systems MFD-110D
180	spectrometer with a 57Co/Rh source at room temperature. The Doppler velocity was set to
181	the range between -10 to 10 mm/s to cover sextet peaks. Isomer shifts were defined with
182	respect to the centroid of the spectrum of a metallic iron foil. The obtained spectra were
183	fitted to Lorentzian line shapes using a least-squares method with restrictions of half-width
184	(HW) and peak intensity of each quadruple doublet constrained to be equal. The range of
185	fitting parameters were constrained to be consistent with those reported for clay minerals
186	(Johnston and Cardlie. 1978; Vandenberghe and Grave. 2013). A least squares fitting was
187	conducted by using the program MossA (Prescher et al. 2012). The relative content of each
188	iron species was calculated from the peak area determined by the fitting of three doublets

189	corresponding to the ferrous ion, ferric ion in octahedral and tetrahedral sites. These areas
190	were corrected by a recoilless fraction ratio of 1.21 as the ferric to ferrous ions (De Grave
191	and Van Alboom. 1991; Morris et al. 1995).
192	Identification of mineral species
193	The mineral species of the samples were analyzed by X-ray diffraction (XRD) and
194	Fourier-transform infrared (FT-IR) methods. The XRD profiles were measured under dry
195	conditions (relative humidity <2%) in a chamber filled with N_2 gas using an Ultima IV
196	instrument (Rigaku). X-rays were emitted from a Cu K α source (wavelength: 0.15418 nm) at
197	40 kV and 30 mA. The scanning speed was 4 °/min with a step size of 0.02 °. The XRD
198	profiles of some typical smectites were measured for a comparison. Montmorillonite
199	(Kunipia-F) and saponite (Smecton SA) were the source clays of the Clay Science Society of
200	Japan and these were purchased from Kunimine Industries Co., Ltd. The FT-IR spectra were
201	obtained in the attenuated total reflectance (ATR) mode using an IRAffinity-1 instrument
202	(Shimadzu Corp.) over the range of 400–4000 cm ⁻¹ . The morphology and crystal structures
203	of the samples were analyzed by transmission electron microscopy (TEM) and electron
204	diffraction (ED) using a JEM-3100FEF JEOL microscope. The samples were prepared on
205	carbon grids. An accelerating voltage of 300 kV was applied.

Revision 1

206

207

Results and discussion

208 Mineral species in precipitates

209	The XRD profiles of the precipitates are shown in Figure 1. Typical smectites are
210	also plotted for comparison. These precipitates show characteristic reflections of 2:1-type
211	clay minerals as 001 at d-spacings (d) of ~11–15 Å, for 02l and 11l reflection $d = 4.57-4.59$
212	Å, for 20 <i>l</i> and 13 <i>l</i> $d = 2.59-2.63$ Å, and for 060 $d = 1.54$ Å. The shift in the 00 <i>l</i> peaks as a
213	function of relative humidity (not shown here) indicates that these minerals are smectite.
214	The 060 reflection at $d = 1.54$ Å is clearly larger than those of dioctahedral smectites
215	(nontronite and montmorillonite); therefore, these synthesized smectites are categorized as
216	trioctahedral smectite such as Mg-saponite. No clear difference was observed among the
217	synthesized samples (FS007, 009, and 010), although some impurities of hematite were
218	identified in the FS007 sample. Such impurities can be formed because of the insufficient
219	removal of oxygen from the initial solution. The difference in the 001 peak position
220	depended on the dry state before the XRD measurements. The swelling behavior will be
221	studied in future work.

222

The FT-IR spectra of the precipitates are shown in Figure 2. The low frequency of

Revision 1

223	the Si-O stretching band at 950 cm^{-1} , the O-H bending band at 650 cm^{-1} , and a single main
224	maximum at ~420 cm ^{$^{-1}$} indicate that the precipitants are typical trioctahedral clays (Russell
225	and Fraser 1994). The position of the Si-O stretching band was lower than that of a
226	common saponite (~1000 cm ^{-1}). This can be interpreted as the presence of Fe ³⁺ tetrahedral
227	sites substituted for Si (Goodman et al. 1976). The difference in Al content can be identified
228	by the absorbance at \sim 740 cm ⁻¹ . This wavenumber has been interpreted by tetrahedral
229	Al-O-Si in-plane vibrations (Russell and Fraser 1994) indicating that the Al ions substitute
230	for Si in tetrahedral sheets. The absorptions at 1640 and \sim 3400 cm ⁻¹ correspond to the
231	bending and stretching modes of the interlayer water, respectively. The IR band at \sim 3600
232	cm^{-1} can be attributed to the stretching mode of the octahedral metal (M = Mg or Fe) ions
233	and the OH group (M_3OH). The frequency can be interpreted by the presence of Fe ions in
234	the trioctahedral sheets as observed for iron-rich biotite. The broad and low frequency of
235	the band may be interpreted as the presence of some OH groups in a locally dioctahedral
236	environment such as vermiculite (Russell and Fraser 1994).
237	Chemical compositions of trioctahedral smectites

The chemical compositions of the precipitates analyzed by ICP-OES are listed in Table S1. The chemical compositions of the oxides are listed in Table 2. The calculated

240	chemical formulas of the trioctahedral smectites are listed in Table 3. The chemical formula
241	of FS007 was not calculated because of the presence of hematite and magnetite in the
242	sample. The layer charge of FS009 (-0.86) calculated from the summation of charge
243	without Na ions is larger than the charge of interlayer Na ions $(+0.54)$ to neutralize the
244	charge. This may be attributed to the presence of ferric ions in the octahedral sheets. Based
245	on the XRD and FT-IR analyses, as well as on the chemical compositions of the precipitates,
246	the synthesized crystals were identified as trioctahedral iron saponites.
247	Oxidation and reduction
248	To obtain ferrian saponite, trioctahedral iron saponite (FS009) was oxidized by
249	dispersing it in water for one day. The XRD patterns of the dried samples (FS009O) are
250	shown in Figure 3. There is no clear difference from the original saponite (FS009) in the
251	reflections assigned to smectite by oxidation. Some reflections from magnetite and hematite
252	in the sample (FS009O) appeared after oxidation. The <i>d</i> -spacing of the 060 reflection was
253	1.54 Å, indicating that the smectite was still trioctahedral saponite after oxidization. The
254	TEM images and ED patterns of FS009O are shown in Fig. 4(a)–(c). The ED patterns of the
255	low-resolution TEM area are characterized by diffraction from smectites. A clear layered
256	structure was observed with a thickness of ~ 1 nm. These analyses indicate that the major

Revision 1

257 mineral in FS009O is trioctahedral smectite.

258	Iron saponite was reduced to obtain ferro-saponite. The XRD profiles in Fig. 3 show no
259	difference from FS009O in the reflections assigned to saponite, but the reflections from
260	magnetite and hematite disappeared. No significant difference in the reduction time was
261	observed between 1 and 24 h. The TEM images and the ED patterns of FS009R1h, as
262	shown in Figure 4 (d) –(f), indicate that the reduction did not change the morphology. The
263	difference compared to the FS009O sample was the disappearance of impurities observed
264	in the ED profiles of FS009O, as expected from the XRD profiles.
265	The XANES spectra of reduced (FS009R24h and FS009R1h) and oxidized (FS009O)
266	FS009 samples are shown in Figure 5 with biotite and nontronite (NAu-1) as endmembers
267	of ferrous and ferric clay minerals for a comparison. Most iron in biotite and nontronite can
268	be assigned to ferrous and ferric ion, respectively. The shape of FS009O was similar to that
269	of NAu-1, while those of FS009R24h and FS009R1h were similar to that of biotite,
270	indicating that the valence and coordination environment of iron changed by reduction from
271	ferric to ferro-saponites. The edge position defined at the normalized absorbance of 0.5
272	roughly corresponds to the ratio of ferric and ferrous ions (Chemtob et al. 2015, 2017). The
273	edge positions shown as open circles in Figure 5 change from high to low energy by

274	reduction. The energies in the spectra of the reduced saponites (FS009R1h and FS009R24h)
275	were clearly higher than that of biotite, indicating that these saponites are not perfect
276	ferrous saponite but rather ferro-saponite. A rough estimation of Fe^{3+}/Σ Fe was conducted,
277	as listed in Table 4, following the previous linear fitting method (Chemtob et al. 2015,
278	2017) under the assumptions that Fe ³⁺ / Σ Fe = 1 for NAu-1 and 0 for biotite. The estimation
279	of uncertainty in this linear fitting method is difficult, but the uncertainty can be ± 0.06 from
280	the difference in two spectra of biotite measured on different days; therefore, the difference
281	between FS009R1h and FS009R24 (0.06) may not be significant, indicating that the 1-h
282	reduction is sufficient to reach equilibrium in the reduction state.
283	The MB spectra of reduced (FS009R24 and FS009R1h) and oxidized (FS009O) FS009
284	samples are presented in Figure 6 with biotite for a comparison. The fitting parameters are
285	listed in Table 5. The measurements were conducted for a small amount of available
286	samples of saponites after several months since these saponites were synthesized; therefore,
287	oxidation may progress more than the samples analyzed by the XANES spectra. The signal
288	to noise (S/N) ratio in the MB spectrum of FS009O was low; therefore, the two doublets
289	representing octahedral ferric and ferrous ion were used for the fit. The spectra of fresh
290	biotite showed sufficient S/N ratio and it can be explained by ferrous ions. Estimated $\mathrm{Fe}^{3+}/$

291	Σ Fe ratio (0.09±0.04) is consistent with the 0.03 estimated by a titration measurement
292	reported by Nichika Inc. Reduced saponites (FS009R1h and FS009R24h) can be explained
293	by the mixed sites of ferrous ion, ferric ion in octahedral and tetrahedral sites. Uncertainties
294	are large, but approximately 10% tetrahedral ferric ion can be present in both saponites.
295	The spectrum of oxidized saponite (FS009O) was mostly explained by the ferric ion. The
296	presence of tetrahedral Fe^{3+} can be interpreted by the high pH (12.7) of the initial solutions
297	as reported in Baron et al. (2016). They confirmed that the Fe^{3+} content in tetrahedral sheet
298	in smectite increases with increasing the pH at the end of the synthesis. In our experimental
299	conditions, perfect reduced conditions may not be hold during synthesis and the Fe^{3+} ion
300	were incorporated in the tetrahedral sheets.
301	A comparison of estimated Fe ³⁺ / Σ Fe ratio between XANES and MB spectra is presented
302	in Figure 7. Note that the error bars of XANES results would be a minimum because the
303	error was estimated from the variation of two biotite samples. There is a difference in
304	absolute values between the XANES and MB results; however, the tendency is similar.
305	Several reasons of the difference in the absolute values can be considered such as the linear
306	fitting in XANES spectra, the empirical value of recoilless fraction ratio in MB spectra, and
307	oxidation of saponite samples before the MB measurements. Here we assume that the

Revision 1

308 estimates by XANES and MB spectra are the minimum and maximum estimates in the309 synthesized saponites, respectively.

310 The estimates for FS009R24h and FS009R1h indicate that 30% of the ferric ions cannot 311 be reduced by the reduction method in this study. These ferric ions may be stable in tetrahedral sheets, because the pre-edge peaks at ~7112 eV, the typical peak of iron in 312 313 tetrahedral sites, were clearly observed in these samples (Wilke et al. 2001). From the 314 analysis of MB spectra, approximately 10% of ferric ion can be present in the tetrahedral 315 sites. In FS009O, 15-30% of the ferrous ions cannot be oxidized which is consistent with 316 the oxidation of ferrous saponite in air oxidation experiments (Chemtob et al. 2017). These ferrous ions may be stable in the trioctahedral sheets stabilized by Mg ions. Further 317 318 oxidation can occur in H₂O₂ solutions which has a higher redox potential than O₂; however, 319 this oxidation makes the ejection of ferric ions from the octahedral sheets and the 320 octahedral sheets transforms to a dioctahedral structure (Chemtob et al. 2017). 321 We attempted to measure the valence state of iron in our small samples using electron 322 energy loss spectroscopy (EELS) in TEM; however, it was impossible to remove the effect

- 323 of electron irradiation-induced oxidation, as confirmed for silicate perovskite (Lauterbach
- et al. 2000). Most clay samples, including biotite, were damaged by the electron beam, and

325	the peaks of the EELS spectra shifted to that of Fe^{3+} , similar to that observed in the
326	previous work. Such a change did not occur in the synthesized ilmenite ($Fe^{2+}TiO_3$) samples.
327	
328	Implications
329	Possibility to identify the smectite species and Fe content by 02 <i>l</i> reflection
330	The detailed XRD profiles around 021 reflections of the synthesized ferrian
331	(FS009O) and ferro-saponites (FS009R24h) are presented in Figure 8. To compare our
332	samples with those measured at the YKB in the Gale crater (Vaniman et al. 2014), the 2θ
333	angle was recalculated using the wavelength of a Co-K α X-ray source. These ferrian and
334	ferro-saponites can explain the 02l reflections of smectites found at the YKB, as reported
335	for Griffith Park ferrian saponite (Treiman et al. 2014). This indicates that the current
336	oxidation states of iron in the octahedral sheet could not be determined from the XRD
337	profile. The question remains whether the Fe content in the smectite can be determined
338	from the XRD profile.
339	A linear correlation between the lattice parameter b and Fe content has been
340	confirmed in octahedral sheets of dioctahedral smectites (Eggleton 1977; Brigatti 1983). In
341	most cases, the b values were calculated from the 060 reflections; therefore, the linear

Revision 1

342	correlation holds between the <i>d</i> spacings of the 060 reflections (d_{060}) and the Fe contents
343	(Köster et al. 1999). The question is whether this relationship still holds for d_{02l} values
344	because there is no data for d_{060} for the YKB samples. Moreover, this correlation was not
345	confirmed for trioctahedral smectites.
346	The relationships between d_{060} and d_{02l} in our results and those of previous studies
347	(Nagelschmidt 1938; Earley et al. 1952; Sudo 1954; Weir and Greene-Kelly 1962; Eggleton
348	1977; Brigatti 1983; Köster et al. 1999; Miyawaki et al. 2010; Baldermann et al. 2014;
349	Treiman et al. 2014; Chemtob et al. 2015; Fox et al. 2021) are shown in Figure 9. A linear
350	relationship was confirmed between d_{060} and d_{02l} , although the d_{02l} value is slightly smaller
351	than that calculated by $3d_{060}$, which is shown as a solid line. This trend was reported for the
352	synthesized iron smectite, with the small values of d_{02l} interpreted as a result of turbostratic
353	disorder in smectites (Fox et al. 2021). In these smectites, the maximum intensity of 020
354	does not necessarily coincide with that of d_{020} (Moore and Reynolds, Jr 1997). Even after
355	considering the effects of turbostratic disorder in smectites, the shaded d_{02l} of smectite at
356	YKB can only be explained by trioctahedral smectite.
357	The Fe contents in the octahedral sheets are plotted in Figure 10 as a function of

the lattice parameter *b* calculated from d_{060} . As reported in previous studies (Eggleton 1977;

Revision 1

359	Brigatti 1983), a linear relationship can be confirmed for dioctahedral smectites (dashed
360	lines fitted to open symbols), although the deviation is large for iron-rich montmorillonite
361	(Fox et al. 2021). This deviation can be attributed to the presence of Mg ions in the
362	octahedral sheets. The ionic radius of a Mg ion in a six-coordinated state (0.72 Å) is larger
363	than that of a ferric ion (0.65 Å), and both are larger than that of an Al ion (0.53 Å)
364	(Shannon and Prewitt 1969); therefore, the increased fraction of Mg ions in the dioctahedral
365	sheets of these minerals increases the b value, though the Fe content is low.
366	Such a linear relationship seems to hold for trioctahedral smectites (solid line fitted
367	to solid symbols in Fig. 10). The deviation of di-trioctahedral Fe smectite and Fe saponite
368	(Fox et al. 2021) can be explained by the presence of small Al ions in the octahedral sheet.
369	As the <i>b</i> value of smectites at the YKB can be estimated to be 9.18–9.27 Å from the
370	plausible d_{060} values (1.53–1.545 Å) in Figure 9, the Fe content in the octahedral sheets can
371	be 0.5–1.7 in a half unit cell, as calculated by the solid line. This is a rough estimate, and
372	the range should be refined by constraining the chemical compositions in octahedral sheets
373	and by increasing the statistical confidence level by collecting more data on synthesized
374	trioctahedral samples.

376	A plausible mechanism of stable trioctahedral sheets occupied by trivalent ferric ions
377	The high d_{060} values of oxidized and reduced smectites indicate that the octahedral
378	sheet keeps the trioctahedral structure through these redox states and most octahedral sites
379	are occupied by cations. From the point of charge neutralization, the substitution of O^{2-} for
380	OH ⁻ in the structure may occur during oxidization (Treiman et al. 2014). From the ideal
381	chemical composition of ferrous saponite $(Na_{0.5}(Mg_{2.0}Fe_{1.0})(Si_{3.5}Al_{0.5})O_{10}(OH)_2)$, we
382	consider the following oxidation reaction:
383	$2Na_{0.5}(Mg_{2.0}Fe_{1.0}(II))(Si_{3.5}Al_{0.5})O_{10}(OH)_2 + 0.5O_2 \rightarrow$
384	$2Na_{0.5}(Mg_{2.0}Fe_{1.0}(III))(Si_{3.5}Al_{0.5})O_{11}(OH) + H_2O$
385	If this reaction is possible, desorption of hydrogen should occur without destruction of the
386	octahedral sheets during oxidization. On the other hand, the incorporation of hydrogen in
387	the structure may occur during the reduction process; therefore, the reaction can be
388	reversible. This reaction occurs in trioctahedral biotite and vermiculite (Farmer et al., 1971).
389	The synthesized ferrous saponite can be oxidized in water as FS009O, and this ferrian
390	saponite can be reduced to FS009R1h. The reaction is reversible, which supports the
391	hypothesis. The maximum number of hydrogen atoms in this formula is two; therefore, this
392	limits the maximum number of ferrous ions in the octahedral sheet to two in this formula.

Revision 1

393	The Fe content in the octahedral sheet of the studied samples is less than the maximum;
394	therefore, all ferrous ions in the octahedral sheet can be oxidized.
395	To verify the above discussion, the chemical compositions of FS009O and
396	FS009R1 were estimated using STEM-EDS and the Fe ³⁺ / Σ Fe ratios listed in Table 4.
397	Selected chemical compositions of these smectites (FS009O and FS009R1h) estimated by
398	STEM-EDS are listed in Table S2. This analysis can omit impurities such as magnetite and
399	hematite due to a small beam spot, and it may reflect the local composition if the
400	composition is heterogeneous. Here, the average chemical compositions from three
401	analyzed points were used for the following discussion. The chemical formula of these
402	saponites was determined as follows: (1) The initial chemical formula was determined
403	using the STEM-EDS data, similar to the procedure described for the ICP-OES data. (2) All
404	ferrous ions estimated from Table 4 were assigned as octahedral iron. The residual iron in
405	the octahedral sheet is assigned to ferric ions. (3) To neutralize the charge, the number of H
406	atoms was adjusted. The calculated chemical formulae are presented in Table 6. The
407	number of H atoms in FS009O was clearly smaller than that in FS009R1h. This may
408	support the mechanism of the oxidation reaction through desorption of H.

Revision 1

410	Acknowledgements and Funding
411	We would like to thank M. Mitome, K. Kurashima, and Y. Owada (NIMS) for operating
412	and interpreting the TEM observations, and A. Iwanade (NIMS) for his assistance with the
413	wet chemical analysis. Comments on the experiments by K. Hashi (NIMS) were also
414	appreciated. This work was supported by JSPS KAKENHI (Grant Number JP17H06458).
415	
416	References
417	Ammannito, E., DeSanctis, M.C., Ciarniello, M., Frigeri, A., Carrozzo, F.G., Combe, JP.,
418	Ehlmann, B.L., Marchi, S., McSween, H.Y., Raponi, A., and others (2016)
419	Distribution of phyllosilicates on the surface of Ceres. Science, 353, aaf4279, 7pp.
420	Baldermann, A., Dohrmann, R., Kaufhold, S., Nickel, C., Letofsky-Papst, I., and Dietzel, M.
421	(2014) The Fe-Mg-saponite solid solution series – a hydrothermal synthesis study.
422	Clay Minerals, 49, 391–415.
423	Baron, F., Petit, S., Tertre, E., and Decarreau, A. (2016) Influence of aqueous Si and Fe
424	speciation on tetrahedral Fe(III) substitution in nontronites: A clay synthesis approach.
425	Clays and Clay Minerals, 64, 230-244.
426	Bishop, J.L., Fairén, A.G., Michalski, J.R., Gago-Duport, L., Baker, L.L., Velbel, M.A.,

427	Gross, C., and Rampe, E.B. (2018) Surface clay formation during short-term warmer
428	and wetter conditions on a largely cold ancient Mars. Nature Astronomy, 2, 206–213.
429	Brigatti, M.F. (1983) Relationships between composition and structure in Fe-rich smectites.
430	Clay Minerals, 18, 177–186.
431	Bristow, T.F., Bish, D.L., Vaniman, D.T., Morris, R. V., Blake, D.F., Grotzinger, J.P.,
432	Rampe, E.B., Crisp, J.A., Achilles, C.N., Ming, D.W., and others (2015) The origin
433	and implications of clay minerals from Yellowknife Bay, Gale crater, Mars. American
434	Mineralogist, 100, 824–836.
435	Bristow, T.F., Rampe, E.B., Achilles, C.N., Blake, D.F., Chipera, S.J., Craig, P., Crisp, J.A.,
436	Des Marais, D.J., Downs, R.T., Gellert, R., and others (2018) Clay mineral diversity
437	and abundance in sedimentary rocks of Gale crater, Mars. Science Advances, 4,
438	eaar3330, 8 pp.
439	Cahoon, H.P. (1954) Saponite near Milford, Utah. American Mineralogist, 39, 222–230.
440	Carter, J., Poulet, F., Bibring, J.P., Mangold, N., and Murchie, S. (2013) Hydrous minerals
441	on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global
442	view. Journal of Geophysical Research E: Planets, 118, 831-858.
443	Chemtob, S.M., Nickerson, R.D., Morris, R. V, Agresti, D.G., and Catalano, J.G. (2015)

444	Synthesis and structural characterization of ferrous trioctahedral smectites:
445	Implications for clay mineral genesis and detactability on Mars. Journal of
446	Geophysical Research: Planets, 120, 1119–1140.
447	Chemtob, S.M., Nickerson, R.D., Morris, R. V., Agresti, D.G., and Catalano, J.G. (2017)
448	Oxidative Alteration of Ferrous Smectites and Implications for the Redox Evolution of
449	Early Mars. Journal of Geophysical Research: Planets, 122, 2469–2488.
450	De Grave, E., and Van Alboom, E. (1991) Evaluation of ferrous and ferric Mössbauer
451	fractions. Physics and Chemistry of Minerals, 18, 337-342.
452	De Sanctis, M.C., Ammannito, E., Raponi, A., Marchi, S., McCord, T.B., McSween, H.Y.,
453	Capaccioni, F., Capria, M.T., Carrozzo, F.G., Ciarniello, M., and others (2015)
454	Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres.
455	Nature, 528, 241–244.
456	De Sanctis, M.C., Mitri, G., Castillo-Rogez, J., House, C.H., Marchi, S., Raymond, C.A.,
457	and Sekine, Y. (2020) Relict Ocean Worlds: Ceres. Space Science Reviews, 216, 60,
458	33 pp.
459	Earley, J.W., Osthaus, B.B., and Milne, I.H. (1952) Purification and properties of
460	montmorillonite. American Mineralogist, 38, 707–724.

- 461 Eggleton, R.A. (1977) Nontronite: chemistry and x-ray diffraction. Clay Minerals, 12,
- 462 181–194.
- 463 Ehlmann, B.L., Mustard, J.F., Murchie, S.L., Bibring, J.P., Meunier, A., Fraeman, A.A.,
- 464 and Langevin, Y. (2011) Subsurface water and clay mineral formation during the early
- 465 history of Mars. Nature, 479, 53–60.
- 466 Fagel, N. (2007) Chapter Four Clay Minerals, Deep Circulation and Climate.
- 467 Developments in Marine Geology, 1, 139–184.
- 468 Farmer, V.C., Russell, J.D., McHardy, W.J., Newman, A.C.D., Ahlrichs, J.L., and Rimsaite,
- 469 J.Y. (1971) Evidence for loss of protons and octahedral iron from oxidized biotites and
- 470 vermiculites. Mineralogical Magazine, 38, 121–137.
- 471 Fialips, C.I., Huo, D., Yan, L., Wu, J., and Stucki, J.W. (2002) Effect of Fe oxidation state
- 472 on the IR spectra of Garfield nontronite. American Mineralogist, 87, 630–641.
- 473 Fox, V.K., Kupper, R.J., Ehlmann, B.L., Catalano, J.G., Razzell-hollis, J., Abbey, W.J.,
- 474 Schild, D.J., Nickerson, R.D., Peters, J.C., Katz, S.M., and others (2021) Synthesis and
- 475 characterization of Fe(III)-Fe(II)-Mg-Al smectite solid solutions and implications for
- 476 planetary science. American Mineralogist, 106, 964–982.
- 477 Fukushi, K., Sekine, Y., Sakuma, H., Morida, K., and Wordsworth, R. (2019) Semiarid

478	climate and hyposaline lake on earty Mars inferred from reconstructed water
479	chemistry at Gale. Nature Communications, 10, 4896.
480	Goodman, B.A., Russell, J.D., Fraser, A.R., and Woodhams, F.W.D. (1976) A Mössbauer
481	and I.R. spectroscopic study of the structure of nontronite. Clays and Clay Minerals,
482	24, 53-59.
483	He, H., Li, T., Tao, Q., Chen, T., Zhang, D., Zhu, J., Yuan, P., and Zhu, R. (2014)
484	Aluminum ion occupancy in the structure of synthetic saponites: Effect on crystallinity.
485	American Mineralogist, 99, 109–116.
486	Johnston, J.H., and Cardile, C.M. (1987) Iron substitution in montmorillonite, illite, and
487	glauconite by ⁵⁷ Fe Mössbauer spectroscopy. Clays and Clay Minerals, 35, 170-176.
488	Köster, H.M., Ehrlicher, U., Gilg, H.A., Jordan, R., Murad, E., and Onnich, K. (1999)
489	Mineralogical and Chemical Characteristics of Five Nontronites and Fe-rich Smectites.
490	Clay Minerals, 34, 579–599.
491	Lauterbach, S., McCammon, C.A., Van Aken, P., Langenhorst, F., and Seifert, F. (2000)
492	Mössbauer and ELNES spectroscopy of (Mg,Fe)(Si,Al)O3 perovskite: A highly
493	oxidised component of the lower mantle. Contributions to Mineralogy and Petrology,
494	138, 17-26.

495	Lee, K., Kostka, J.E., and Stucki, J.W. (2006) Comparisons of structural Fe reduction in
496	smectites by bacteria and dithionite: An infrared spectroscopic study. Clays and Clay
497	Minerals, 54, 195–208.
498	Mangold, N., Dehouck, E., Fedo, C., Forni, O., Achilles, C., Bristow, T., Downs, R.T.,
499	Frydenvang, J., Gasnault, O., L'Haridon, J., and others (2019) Chemical alteration of
500	fine-grained sedimentary rocks at Gale crater. Icarus, 321, 619-631.
501	Michalski, J.R., Cuadros, J., Bishop, J.L., Darby Dyar, M., Dekov, V., and Fiore, S. (2015)
502	Constraints on the crystal-chemistry of Fe/Mg-rich smectitic clays on Mars and links
503	to global alteration trends. Earth and Planetary Science Letters, 427, 215–225.
504	Miyawaki, R., Sano, T., Ohashi, F., Suzuki, M., Kogure, T., Okumura, T., Kameda, J.,
505	Umezome, T., Sato, T., Chino, D., and others (2010) Some reference data for the JCSS
506	clay specimens. Nendokagaku, 48, 158–198.
507	Moore, D.M., and Reynolds, Jr, R.C. (1997) X-ray diffraction and the identification and
508	analysis of clay minerals, second., 378 p. Oxford University Press, Oxford.
509	Morris, R.V., Golden, D.C., Bell III, J.F., and Lauer Jr., H.V. (1995) Hematite, pyroxene,
510	and phyllosilicates on Mars: Implications from oxidized impact melt rocks from
511	Manicouagan Crater, Quebec, Canada. Journal of Geophysical Research, 100(E3),

Revision 1

512 5319-5328.

513	Nagelschmidt, G.	. (1938)	On the atomic arrangeme	ent and variability of	the members of the
-----	------------------	----------	-------------------------	------------------------	--------------------

- 514 montmorillonite group. Mineralogical Magazine and Journal of the Mineralogical
- 515 Society, 25, 140–155.
- 516 Prescher, C., McCammon, C., and Dubrovinsky, L. (2012) *MossA*: a program for analyzing
- 517 energy-domain Mössbauer spectra from conventional and synchrotron sources. Journal
- of Applied Crystallography, 45, 329-331.
- 519 Russell, J.D., and Fraser, A.R. (1994) Infrared methods. In M.J. Wilson, Ed., Clay
- 520 Mineralogy: Spectroscopic and Chemical Determinative Methods pp. 11–67.
- 521 Chapman & Hall, London.
- 522 Shannon, R.D., and Prewitt, C.T. (1969) Effective ionic radii in oxides and fluorides. Acta
- 523 Crystallographica Section B Structural Crystallography and Crystal Chemistry, 25,
- 524 <u>925–946</u>.
- 525 Stucki, J.W., Golden, D.C., and Roth, C.B. (1984) Preparation and Handling of
- 526 Dithionite-Reduced Smectite Suspensions. Clays and Clay Minerals, 32, 191–197.
- 527 Sudo, T. (1954) Iron-rich saponite found from Tertiary iron sand beds of Japan
- 528 (Reexamination on "Lembergite"). J. Geol. Soc. Japan, 60, 18–27.

Revision 1

529	Treiman, A.H., Morris, R. V., Agresti, D.G., Graff, T.G., Achilles, C.N., Rampe, E.B.,
530	Bristow, T.F., Blake, D.F., Vaniman, D.T., Bish, D.L., and others (2014) Ferrian
531	saponite from the Santa Monica Mountains (California, U.S.A., Earth):
532	Characterization as an analog for clay minerals on Mars with application to
533	Yellowknife Bay in Gale Crater. American Mineralogist, 99, 2234–2250.
534	Vandenberghe, R.E., and De Grave, E. (2013) Application of Mössbauer Spectroscopy in
535	Earth Sciences. In Y. Yoshida and G. Langouche, Eds., Mössbauer Spectroscopy pp.
536	91–185. Springer-Verlag, Berlin Heidelberg.
537	Vaniman, D.T., Bish, D.L., Ming, D.W., Bristow, T.F., Morris, R. V, Blake, D.F., Chipera,
538	S.J., Morrison, S.M., Treiman, A.H., Rampe, E.B., and others (2014) Mineralogy of a
539	Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 343, 1243480.
540	Weir, A.H., and Greene-Kelly, R. (1962) Beidellite. American Mineralogist, 47, 137–145.
541	Wilke, M., Farges, F., Petit, P.E., Brown, G.E., and Martin, F. (2001) Oxidation state and
542	coordination of Fe in minerals: An Fe K-XANES spectroscopic study. American
543	Mineralogist, 86, 714–730.
544	
545	

Revision 1

546	
547	List of figure captions
548	Fig. 1. XRD profiles of precipitates (FS007, 009, and 010) and typical standard samples of
549	synthetic saponite (Smecton SA), nontronite (NAu-1), and montmorillonite (Kunipia-F).
550	The numbers indicate the <i>d</i> -spacing of smectite in Å. The Bragg reflections from basal
551	planes were labeled as $00l$ without showing the <i>d</i> -spacing value, because the values vary
552	depending on the humidity. Reflections originating from minor minerals were labeled as
553	quartz (Qz), magnetite (Mag), and hematite (Hm).
554	
555	Fig. 2. FTIR spectra of precipitates from three solutions with different Al contents. The
556	arrows indicate the absorbance which is possibly related to the tetrahedral Al-O-Si
557	vibrations (Russell and Fraser 1994).
558	
559	Fig. 3. XRD profiles of FS009 and samples that were oxidized (FS009O), reduced for one
560	hour (FS009R1h), and for 24 hours (FS009R24h). The reflections from magnetite and
561	hematite were indicated by Mag and Hm, respectively.

Revision 1

563

564	Fig. 4	. Low-resolution	TEM	images,	ED	patterns,	and	high-resolution	TEM	images	of
	0			0,				0		0	

- 565 FS009O (a, b, c) and FS009R1h saponites (d, e, f). The ED patterns (b and e) were
- 566 measured based on the TEM images (a and d).

567

568	Fig.	5.	Fe	K-edge	XANES	spectra	of	biotite,	FS009R24h,	FS009R1h,	FS009O,	and
	<u> </u>			0		1						

569 nontronite (NAu-1). Open circles indicate the energy of edge at the normalized absorbance

570 of 0.5. Dashed lines indicate the minimum and maximum energies of edges in the measured

571 samples. Low energy of edge corresponds to the high ratio of ferrous ion in the sample.

572

573 Fig. 6. Mössbauer spectra of (a) biotite, (b) FS009R24h, (c) FS009R1h, and (d) FS009O.

574 Open circles are measured data. Solid line indicates the sum of each component from ferric

575 and ferrous ions.

576

577 Fig. 7. Ferric iron/total iron (Fe³⁺/ Σ Fe) ratios in biotite and saponites estimated from the 578 K-edge XANES spectra (open symbols) and from the Mössbauer spectra (solid symbols). 579

Revision 1

580	Fig. 8. A comparisor	of XRD profiles	around 02 <i>l</i> and 1	1 <i>l</i> reflections an	mong FS009O,
-----	----------------------	-----------------	--------------------------	---------------------------	--------------

581 FS009R24h, NAu-1, and two samples (John Klein and Cumberland) from the Yellowknife

582 Bay in Gale crater (Vaniman et al. 2014).

583

584	Fig. 9. Relationship between d_{02l} and d_{060} for smectites (Mnt: montmorillonite
585	(Nagelschmidt 1938; Earley et al. 1952; Miyawaki et al. 2010), Fe-rich Mnt (Fox et al.
586	2021), Bei: beidellite (Nagelschmidt 1938; Weir and Greene-Kelly 1962), Non: nontronite
587	(Nagelschmidt 1938; Eggleton 1977; Our sample), Mg-Sap: Mg-saponite (Nagelschmidt
588	1938; Cahoon 1954; Miyawaki et al. 2010), Di-trioctahedral Fe-Sme: Di-trioctahedral
589	Fe-smectite (Fox et al. 2021), Fe-Sap: Fe-saponite (Sudo 1954; Baldermann et al. 2014;
590	Chemtob et al. 2015; Fox et al. 2021). Open and solid symbols are categorized to
591	di-octahedral and tri-octahedral smectites, respectively. Solid line indicates the ideal
592	correlation described as $d_{02l} = 3d_{060}$. Shaded zone indicates the d_{02l} values of smectites
593	found in the Yellowknife Bay. Our data includes several synthesized samples of Fe-Sap in
594	addition to FS007, FS009, and FS010.

595

596 Fig. 10. Iron content in octahedral sheets (Fe_{Oct}) in a half-unit cell versus lattice parameter *b*.

Revision 1

- 597 The abbreviations of mineral names are the same as those in Fig. 9. Dashed and solid lines
- 598 indicate the fitted linear lines to open and solid symbols, respectively. Shaded zone
- 599 indicates the estimated range in the *b* parameter of smectites found in Yellowknife Bay.

600

Revision 1

Table 1. Molar ratio of elements in the initial solutions.

602 603

Element	FS007	FS009	FS010
Si	3.49	3.69	4.00
Mg	1.51	1.51	1.49
Fe	1.51	1.50	1.50
Al	0.50	0.30	0.00

604

605

 Table 2. Estimated oxide concentration in trioctahedral smectites.

Oxide (wt%)	FS007	FS009	FS010
Na ₂ O	4.2	3.2	2.8
MgO	11.4	11.9	11.8
Al ₂ O ₃	9.8	5.7	0.0
SiO ₂	35.7	37.4	38.3
FeO	22.8	20.5	17.9
Fe ₂ O ₃	3.0	4.4	6.9
H ₂ O	13.1	16.8	22.4

606

607

608

Revision 1

610 **Table 3. Calculated chemical formula of trioctahedral smectites.**

Sample	Chemical formula
FS009	$Na_{0.54}(Mg_{1.53}Fe_{1.47})(Si_{3.22}Al_{0.57}Fe_{0.29})O_{10}(OH)_2$
FS010	$Na_{0.50}(Mg_{1.61}Fe_{1.38})(Si_{3.52}Fe_{0.48})O_{10}(OH)_2$

611

612 Table 4. Estimated Fe^{3+}/Σ Fe by XANES spectra. The range in biotite was obtained by

613 measuring several samples.

Sample	$\mathrm{Fe}^{3+}/\Sigma\mathrm{Fe}$
Biotite	0.09 ± 0.06
FS009R24h	0.35 ± 0.06
FS009R1h	0.29 ± 0.06
FS009O	0.69 ± 0.06

616

614

615

617

619	Та	ble 5. Mössbauer	parameters at re	oom temperati	ıre	
Sample	Cation	IS ^a	QS ^b	FWHM ^c	Area (%) ^d	$\mathrm{Fe}^{3+}/\Sigma\mathrm{Fe}^{\mathrm{e}}$
		(mm/s)	(mm/s)	(mm/s)		
E50000	Fe ²⁺	$1.00(7)^{\rm f}$	2.70 (14)	0.27 (21)	12 (7)	0.86 (8)
F80090	Fe ³⁺	0.32 (3)	0.82 (5)	0.48 (7)	88 (7)	
	Fe ²⁺	1.10 (2)	2.62 (4)	0.25 (5)	34 (7)	0.62 (21)
FS009R1h	$\mathrm{Fe}^{3+}(\mathrm{Oct})^{\mathrm{g}}$	0.35 (5)	0.77 (8)	0.45 (11)	53 (9)	
	Fe ³⁺ (Tet) ^h	0.05 (14)	0.30 (28)	0.36 (38)	13 (10)	
	Fe ²⁺	1.13 (3)	2.51 (6)	0.33 (6)	23 (4)	0.73 (15)
FS009R24h	Fe ³⁺ (Oct)	0.34 (2)	1.02 (7)	0.57 (6)	69 (6)	
	Fe ³⁺ (Tet)	0.27 (6)	0.35 (11)	0.31 (23)	8 (7)	
	Fe ²⁺	1.11 (1)	2.51 (1)	0.47 (1)	90 (2)	0.09 (4)
Biotite	Fe ³⁺ (Oct)	0.50 (11)	0.60 (15)	0.48 (22)	6 (2)	
	Fe ³⁺ (Tet)	-0.04 (3)	0.35 (7)	0.20 (7)	4 (1)	
Construints ⁱ	Fe ²⁺	1-1.2	1.6-3.2	0.2-1		
Constraints	Fe ³⁺	-0.2-0.5	0.2-1.3	0.2-1		

	$\mathrm{Fe}^{3+}(\mathrm{Oct})$	0.25-0.5	0.2-1.3	0.2-1
	Fe ³⁺ (Tet)	-0.2-0.3	0-0.35	0.2-1
620	^a IS = isome	er shift. ^b QS	= quadrupole sp	blitting. ^c FWHM = full width at a
621	half-maximum	n. ^d Uncorrected	Area by the reco	lless fraction. ^e Calculated by using the
622	recoilless fract	tion ratio of 1.21	. ^f Number in par	entheses represent fitting uncertainty for
623	final digit(s). [§]	³ Ferric ion in oc	ctahedral site. ^h Fe	erric ion in tetrahedral site. ⁱ Constraints
624	in the fit range	e of parameters.		
625				
626	Table 6.	Calculated cher	mical formula of	oxidized and reduced FS009.
626	Table 6. Sample	Calculated cher	mical formula of nula	oxidized and reduced FS009.
626	Table 6.SampleFS009O	Calculated cher Chemical forn Na _{0.43} (Mg _{1.70} Fe	mical formula of nula e(II) _{0.54} Fe(III) _{0.76})	oxidized and reduced FS009. 0(Si _{3.27} Al _{0.39} Fe _{0.43})O _{10.80} (OH) _{1.20}
626	Table 6.SampleFS009OFS009R1h	Calculated cher Chemical forn Na _{0.43} (Mg _{1.70} Fe Na _{0.51} (Mg _{2.01} Fe	mical formula of nula e(II) _{0.54} Fe(III) _{0.76}) e(II) _{0.85} Fe(III) _{0.14})	oxidized and reduced FS009. (Si _{3.27} Al _{0.39} Fe _{0.43})O _{10.80} (OH) _{1.20} (Si _{3.36} Al _{0.47} Fe _{0.21})O _{10.18} (OH) _{1.82}
626	Table 6.SampleFS009OFS009R1h	Calculated cher Chemical forn Na _{0.43} (Mg _{1.70} Fe Na _{0.51} (Mg _{2.01} Fe	mical formula of nula e(II) _{0.54} Fe(III) _{0.76}] e(II) _{0.85} Fe(III) _{0.14}]	oxidized and reduced FS009. 0(Si _{3.27} Al _{0.39} Fe _{0.43})O _{10.80} (OH) _{1.20} 0(Si _{3.36} Al _{0.47} Fe _{0.21})O _{10.18} (OH) _{1.82}
626 627 628	Table 6.SampleFS009OFS009R1h	Calculated cher Chemical forn Na _{0.43} (Mg _{1.70} Fe Na _{0.51} (Mg _{2.01} Fe	mical formula of nula e(II) _{0.54} Fe(III) _{0.76}) e(II) _{0.85} Fe(III) _{0.14})	oxidized and reduced FS009. 0(Si _{3.27} Al _{0.39} Fe _{0.43})O _{10.80} (OH) _{1.20} 0(Si _{3.36} Al _{0.47} Fe _{0.21})O _{10.18} (OH) _{1.82}
626 627 628 629	Table 6.SampleFS009OFS009R1h	Calculated cher Chemical forn Na _{0.43} (Mg _{1.70} Fe Na _{0.51} (Mg _{2.01} Fe	mical formula of nula e(II) _{0.54} Fe(III) _{0.76}) e(II) _{0.85} Fe(III) _{0.14})	oxidized and reduced FS009. (Si _{3.27} Al _{0.39} Fe _{0.43})O _{10.80} (OH) _{1.20} (Si _{3.36} Al _{0.47} Fe _{0.21})O _{10.18} (OH) _{1.82}

Revision 1

Figure 1

Figure 1 XRD profiles of precipitates (FS007, 009, and 010) and typical standard samples of synthetic saponite (Smecton SA), nontronite (NAu-1), and montmorillonite (Kunipia-F). The numbers indicate the *d*-spacing of smectite in Å. The Bragg reflections from basal planes were labeled as 00*l* without showing the *d*-spacing value, because the values vary depending on the humidity. Reflections originating from minor minerals were labeled as

Revision 1

637 quartz (Qz), magnetite (Mag), and hematite (Hm).

Revision 1

638

640 Figure 2 FTIR spectra of precipitates from three solutions with different Al contents. The

641 arrows indicate the absorbance which is possibly related to the tetrahedral Al-O-Si

642 vibrations (Russell and Fraser 1994).

643

Revision 1

644

Figure 3 XRD profiles of FS009 and samples that were oxidized (FS009O), reduced for
one hour (FS009R1h), and for 24 hours (FS009R24h). The reflections from magnetite and
hematite were indicated by Mag and Hm, respectively.

649

Revision 1

Figure 4

651

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Revision 1

- 652 **Figure 4** Low-resolution TEM images, ED patterns, and high-resolution TEM images of
- 653 FS009O (a, b, c) and FS009R1h saponites (d, e, f). The ED patterns (b and e) were
- 654 measured based on the TEM images (a and d).

Revision 1

Figure 5 Fe K-edge XANES spectra of biotite, FS009R24h, FS009R1h, FS009O, and nontronite (NAu-1). Open circles indicate the energy of edge at the normalized absorbance of 0.5. Dashed lines indicate the minimum and maximum energies of edges in the measured samples. Low energy of edge corresponds to the high ratio of ferrous ion in the sample.

Revision 1

664 **Figure 6** Mössbauer spectra of (a) biotite, (b) FS009R24h, (c) FS009R1h, and (d) FS009O.

665 Open circles are measured data. Solid line indicates the sum of each component from ferric

Revision 1

668

669 **Figure 7** Ferric iron/total iron (Fe³⁺/ Σ Fe) ratios in biotite and saponites estimated from the

670 K-edge XANES spectra (open symbols) and from the Mössbauer spectra (solid symbols).

Revision 1

672

673

Figure 8 A comparison of XRD profiles around 02*l* and 11*l* reflections among FS009O,

675 FS009R24h, NAu-1, and two samples (John Klein and Cumberland) from the Yellowknife

676 Bay in Gale crater (Vaniman et al. 2014).

Revision 1

678

679 Figure 9 Relationship between d_{02l} and d_{060} for smectites (Mnt: montmorillonite 680 (Nagelschmidt 1938; Earley et al. 1952; Miyawaki et al. 2010), Fe-rich Mnt (Fox et al. 681 2021), Bei: beidellite (Nagelschmidt 1938; Weir and Greene-Kelly 1962), Non: nontronite 682 (Nagelschmidt 1938; Eggleton 1977; Our sample), Mg-Sap: Mg-saponite (Nagelschmidt 683 1938; Cahoon 1954; Miyawaki et al. 2010), Di-trioctahedral Fe-Sme: Di-trioctahedral 684 Fe-smectite (Fox et al. 2021), Fe-Sap: Fe-saponite (Sudo 1954; Baldermann et al. 2014; 685 Chemtob et al. 2015; Fox et al. 2021). Open and solid symbols are categorized to 686 di-octahedral and tri-octahedral smectites, respectively. Solid line indicates the ideal correlation described as $d_{02l} = 3d_{060}$. Shaded zone indicates the d_{02l} values of smectites 687 found in the Yellowknife Bay. Our data includes several synthesized samples of Fe-Sap in 688 689 addition to FS007, FS009, and FS010.

Revision 1

690

Figure 10 Iron content in octahedral sheets (Fe_{Oct}) in a half-unit cell versus lattice parameter *b*. The abbreviations of mineral names are the same as those in Fig. 9. Dashed and solid lines indicate the fitted linear lines to open and solid symbols, respectively. Shaded zone indicates the estimated range in the *b* parameter of smectites found in Yellowknife Bay.