1 2	Revision 1 Hydroxymcglassonite-(K), KSr4Si8O20(OH)·8H2O, the first Sr-bearing member of the apophyllite group, from the Wessels mine, Kalahari Manganese Field, South Africa		
- 3 4 5			
6 7 8 9 10 11 12 13 14	Hexiong Yang* ¹ , Xiangping Gu ² , Michael M. Scott ¹ ¹ Department of Geosciences, University of Arizona, 1040 E. 4 th Street, Tucson, AZ 85721-0077, USA ² School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, China *Corresponding author: hyang@arizona.edu		
15			
16	Abstract		
17	A new mineral species, hydroxymcglassonite-(K), ideally KSr ₄ Si ₈ O ₂₀ (OH)·8H ₂ O,		
18	has been found in the Wessels mine, Kalahari Manganese Field, Northern Cape Province,		
19	South Africa. It is granular (<0.05 mm), associated with meieranite, sugilite, aegirine,		
20	pectolite, and yuzuxiangite. The mineral is colorless, transparent with white streak and		
21	vitreous luster. It is brittle and has a Mohs hardness of 4.5-5.0; cleavage is perfect on		
22	$\{001\}$ and no parting or twinning was observed. The measured and calculated densities		
23	are 2.60(3) and 2.614 g/cm ³ , respectively. Optically, hydroxymcglassonite-(K) is uniaxial		
24	(+), with $\omega = 1.555(5)$, $\varepsilon = 1.567(5)$ (white light), and absorption $O > E$.		
25	Hydroxymcglassonite-(K) is insoluble in water or hydrochloric acid. An electron		
26	microprobe analysis yielded an empirical formula (based on 13 non-H cations pfu)		
27	$K_{1.01}(Sr_{2.99}Ca_{1.03})_{\Sigma 4.02}Si_{7.99}O_{20}(OH) \cdot 8H_2O$, which can be simplified to		
28	$K(Sr,Ca)_4Si_8O_{20}(OH)\cdot 8H_2O.$		
29	Hydroxymcglassonite-(K) is tetragonal with space group P4/mnc and unit-cell		
30	parameters $a = 9.0792(2)$, $c = 16.1551(9)$ Å, $V = 1331.70(9)$ Å ³ , and $Z = 2$. It is		
31	isostructural with hydroxyapophyllite-(K), KCa ₄ Si ₈ O ₂₀ (OH)·8H ₂ O, with Sr substituting		
32	for Ca. The crystal structure of hydroxymcglassonite-(K) is characterized by SiO_4		

33	tetrahedra sharing corners to form $(Si_8O_{20})^{8-}$ sheets parallel to (001), which are connected
34	by the K and B (= Sr + Ca) cations, as well as hydrogen bonding. The K cation is
35	coordinated by eight H_2O groups and the average K–O distance of 2.941(3) Å is shorter
36	than that of $2.950(3) - 2.975(3)$ Å in hydroxyapophyllite-(K) or fluorapophyllite-(K). The
37	<i>B</i> cation is 7-coordinated (4O + $2H_2O$ + OH) and the average <i>B</i> –O distance of 2.522 (3)
38	Å is noticeably longer than that of 2.422 – 2.435 Å in hydroxyapophyllite-(K) or
39	fluorapophyllite-(K). The Raman spectra of hydroxymcglassonite-(K) and
40	hydroxyapophyllite-(K) are very comparable, especially in the O-H stretching region.
41	The discovery of hydroxymcglassonite-(K), the first Sr-bearing mineral of the apophyllite
42	group, implies that more Sr-bearing members of the group may be found in nature or
43	synthesized in laboratories, but the possibility for an incomplete solid solution between
44	hydroxyapophyllite-(K) and hydroxymcglassonite-(K), due to the size difference between
45	Sr^{2+} and Ca^{2+} , cannot be ruled out.
46	
47	Key words: hydroxymcglassonite-(K), apophyllite, new mineral, crystal structure, X-ray
48	diffraction, Raman spectra
48 49	diffraction, Raman spectra
	diffraction, Raman spectra Introduction
49	
49 50	Introduction
49 50 51	Introduction A new mineral species, hydroxymcglassonite-(K), ideally KSr ₄ Si ₈ O ₂₀ (OH)·8H ₂ O,
49 50 51 52	Introduction A new mineral species, hydroxymcglassonite-(K), ideally KSr ₄ Si ₈ O ₂₀ (OH)·8H ₂ O, has been found in the Wessels mine, Kalahari Manganese Fields, Northern Cape
 49 50 51 52 53 	Introduction A new mineral species, hydroxymcglassonite-(K), ideally KSr ₄ Si ₈ O ₂₀ (OH)·8H ₂ O, has been found in the Wessels mine, Kalahari Manganese Fields, Northern Cape Province, Republic of South Africa. It is named in honor of Mr. James (Jim) A.
 49 50 51 52 53 54 	Introduction A new mineral species, hydroxymcglassonite-(K), ideally KSr ₄ Si ₈ O ₂₀ (OH)·8H ₂ O, has been found in the Wessels mine, Kalahari Manganese Fields, Northern Cape Province, Republic of South Africa. It is named in honor of Mr. James (Jim) A. McGlasson, who has been interested in collecting minerals since age 10, and started field
 49 50 51 52 53 54 55 	Introduction A new mineral species, hydroxymcglassonite-(K), ideally KSr ₄ Si ₈ O ₂₀ (OH)·8H ₂ O, has been found in the Wessels mine, Kalahari Manganese Fields, Northern Cape Province, Republic of South Africa. It is named in honor of Mr. James (Jim) A. McGlasson, who has been interested in collecting minerals since age 10, and started field collecting after graduation from college. Jim earned his B.S. degree in geology at the
 49 50 51 52 53 54 55 56 	Introduction A new mineral species, hydroxymcglassonite-(K), ideally KSr ₄ Si ₈ O ₂₀ (OH)·8H ₂ O, has been found in the Wessels mine, Kalahari Manganese Fields, Northern Cape Province, Republic of South Africa. It is named in honor of Mr. James (Jim) A. McGlasson, who has been interested in collecting minerals since age 10, and started field collecting after graduation from college. Jim earned his B.S. degree in geology at the New Mexico Institute of Mining and Technology and M.S. degree in geology at the
 49 50 51 52 53 54 55 56 57 	Introduction A new mineral species, hydroxymcglassonite-(K), ideally KSr ₄ Si ₈ O ₂₀ (OH)·8H ₂ O, has been found in the Wessels mine, Kalahari Manganese Fields, Northern Cape Province, Republic of South Africa. It is named in honor of Mr. James (Jim) A. McGlasson, who has been interested in collecting minerals since age 10, and started field collecting after graduation from college. Jim earned his B.S. degree in geology at the New Mexico Institute of Mining and Technology and M.S. degree in geology at the Colorado School of Mines. A successful 45-year career as an exploration geologist, mine

60	Tucson Gem and Mineral Society, and on the board of directors of the Friends of
61	Mineralogy. With a strong belief that getting children interested in science of any kind,
62	especially geology and mineralogy, is critical for our society and future, he has been
63	actively and constantly involved in various educational programs for children and young
64	students, and has donated considerable amounts of mineral specimens for their
65	interests/hobbies. Since his retirement in 2016, Jim has been a volunteer at the University
66	of Arizona Mineral Museum and the mineralogy laboratory of the Department of
67	Geosciences at the University of Arizona to continue his passion for minerals while
68	contributing his knowledge and experience to help the society and other people. The new
69	mineral and its name have been approved by the Commission on New Minerals,
70	Nomenclature and Classification (CNMNC) of the International Mineralogical
71	Association (IMA 2020-066). The cotype samples have been deposited at the University
72	of Arizona Mineral Museum (Catalogue # 22691) and the RRUFF Project (deposition #
73	R200004), which is a part of the University of Arizona Mineral Museum.
74	Hydroxymcglassonite-(K) is the first Sr-bearing mineral of the apophyllite group.
75	This paper describes its physical and chemical properties and its crystal structure
76 77	determined from single-crystal X-ray diffraction data.
78	Sample Description and Experimental Methods
79	Occurrence, physical and chemical properties, and Raman spectra
80	Hydroxymcglassonite-(K) was found on a specimen (Fig. 1) collected from the
81	Wessels mine, Kalahari Manganese Field, Northern Cape Province, Republic of South
82	Africa (27° 6'51.82"S, 22°51'18.31"E). This specimen is also the type sample for
83	meieranite (Yang et al. 2019) and yuzuxiangite (Gu et al. 2021). Hydroxymcglassonite-
84	(K) crystals are found intergrown with isolated blue granular meieranite aggregates,
85	which are embedded in a matrix consisting of mainly massive pale-green sugilite, along
86	with minor prismatic grey aegirine, bladed white pectolite, and fibrous brownish

87 vuzuxiangite (Figs 2, 3, and 4). The mineral assemblage probably formed as a result of a 88 hydrothermal event. Conditions during metamorphism were in the range of 270-420 °C at 89 0.2-1.0 kbar (Klevenstuber 1984; Gutzmer and Beukes 1996). Detailed reviews on the 90 geology and mineralogy of the Kalahari Manganese Field have been presented by 91 Klevenstuber (1984), Von Bezing et al. (1991), and Gutzmer & Beukes (1996). 92 Hydroxymcglassonite-(K) crystals are granular (< 0.05 mm). The mineral is 93 colorless, transparent with white streak and vitreous luster. It is brittle and has a Mohs 94 hardness of 4.5-5.0; cleavage is perfect on $\{010\}$ and no twinning was observed. The 95 density measured floatation in heavy in liquids is 2.60(3) g/cm³ and the calculated density is 2.614 g/cm³. Optically, hydroxymcglassonite-(K) is uniaxial (+), with $\omega = 1.555(5)$, ε 96 97 = 1.567(5) (white light), and absorption O > E. The compatibility index based on the 98 empirical formula is 0.031 (excellent) (Mandarino 1981). Hydroxymcglassonite-(K) is 99 insoluble in water or hydrochloric acid. 100 The chemical composition of hydroxymcglassonite-(K) was determined using a 101 Shimadzu EPMA-1720 electron microprobe (WDS mode, 15 kV, 10 nA, and a beam 102 diameter of 5 μ m). Because of the small size and vulnerability to the damage 103 (dehydration) by the electron beam, only 5 analysis points were obtained from the single 104 crystal used for the X-ray structure determination. As minerals in the apophyllite group 105 commonly have the OH-F substitution, before the measurements, fluorine was 106 particularly searched by the EDS method and then checked by the WDS scan for the $F_{K\alpha}$ 107 peak. No F was detected by either methods with a detection limit of ~ 0.08 wt%. The 108 standards used are listed in Table 1, along with the determined compositions. The 109 resultant chemical formula, calculated on the basis of 13 non-H cations *pfu*, is 110 $K_{1.01}(Sr_{2.99}Ca_{1.03})_{\Sigma 4.02}Si_{7.99}O_{20}(OH) \cdot 8H_2O$, which can be simplified to 111 $K(Sr,Ca)_4Si_8O_{20}(OH)\cdot 8H_2O$. It should be pointed out that the Sr and Ca contents vary 112 noticeably from point to point and are inversely correlated, resulting in the large standard 113 deviations in their measurements. The crystal analyzed has Sr/(Sr+Ca)=75%. We also

found another crystal with Sr/(Sr+Ca) > 80%, but its structure data are not as good as
those reported here.

116	The Raman spectrum of hydroxymcglassonite-(K) was collected from a randomly
117	oriented crystal on a Horiba Labram HR spectrometer in the State Key Laboratory of
118	Powder Metallurgy, Central South University, China. The laser beam (488 nm, laser
119	power 2 mW) was focused to 1 μ m with a 100× objective on an Olympus
120	microscope. The time of each scan in the range 100-4000 cm ⁻¹ was 20 minutes with a
121	resolution of 2 cm ^{-1} .
122	
123	X-ray crystallography
124	The powder X-ray diffraction data for hydroxymcglassonite-(K) were collected on
125	a Rigaku Xtalab Synergy single crystal diffractometer (Mo $K\alpha$ radiation) in powder mode
126	at 50KV and 1mA (Table 2, deposited). The unit-cell parameters obtained from the
127	powder X-ray diffraction data using the program by Holland and Redfern (1997) are: $a =$
128	9.0928 (6), $c = 16.203$ (2) Å, and $V = 1339.65(4)$ Å ³ .
129	Single-crystal X-ray diffraction data for hydroxymcglassonite-(K) were collected
130	from a 0.010 x 0.002 x 0.002 mm crystal on a Rigaku Xtalab Synerg D/S 4-circle
131	diffractometer equipped with MoK α radiation. All reflections were indexed on the basis
132	of a tetragonal unit-cell (Table 3). The systematic absences of reflections are compatible
133	with space groups P4nc (#104) and P4/mnc (#128). The crystal structure was solved and
134	refined using SHELX-2018 (Sheldrick 2015a, 2015b) based on space group P4/mnc,
135	because it produced the better refinement statistics in terms of bond lengths and angles,
136	atomic displacement parameters, and R factors. Difference Fourier syntheses only
137	revealed the two H atoms (H1 and H2) associated with the H_2O group (O4), but failed to
138	locate the H atom in the OH group (O5). This is not surprising, considering that there are
139	only two equivalent H atoms from the OH group per unit-cell, but 16 equivalent ones for
140	each H1 and H2. During the refinements, the structure chemistry was constrained to the

5

141 empirical formula determined from the electron microprobe analysis, i.e.,

142 $K_{1.00}(Sr_{2.98}Ca_{1.02})_{\Sigma=4.00}Si_8O_{20}(OH)\cdot 8H_2O$. All non-H atoms were refined anisotropically,

143 whereas the two H atoms (H1 and H2) were refined isotropically. Final atomic

144 coordinates and displacement parameters for hydroxymcglassonite-(K) are given in

145 Tables 4 and 5, respectively. Selected bond distances are presented in Table 6.

- 146
- 147

Crystal structure description and discussion

148 Hydroxymcglassonite-(K), ideally KSr₄Si₈O₂₀(OH)·8H₂O, is isostructural with

hydroxyapophyllite-(K), $KCa_4Si_8O_{20}(OH)\cdot 8H_2O$ (Rouse et al. 1978) (Table 3), with Sr

150 substituting for Ca. Its structure is characterized by SiO₄ tetrahedra sharing corners to

form $(Si_8O_{20})^{8-}$ sheets parallel to (001) (Fig. 5), which are connected by the interstitial K⁺ and B^{2+} (=Sr + Ca) cations and by hydrogen bonding. In the sheet, SiO₄ tetrahedra form 4- and 8-membered rings (Fig. 5). The geometry of hydrogen bonding is in accord with that in hydroxyapophyllite-(K) (Rouse et al. 1978). The bond-valence sums calculated

that in hydroxyapophyllite-(K) (Rouse et al. 1978). The bond-valence sums calculated
using the parameters from Brese and O'Keeffe (1991) (Table 7) indicate that O4 is H₂O

and O5 is OH.

157 The K^+ cation in hydroxymcglassonite-(K) is coordinated by eight H₂O groups.

158 The average K–O distance of 2.941(3) Å (Table 6) is shorter than that of 2.950(3) –

159 2.975(3) Å in hydroxyapophyllite-(K) (Rouse et al. 1978) or fluorapophyllite-(K) (Chao

160 1971; Colville et al. 1971; Prince 1971; Pechar 1987; Ståhl et al. 1987). The *B* (= 0.74Sr

161 + 0.26Ca) cation is 7-coordinated (4O + $2H_2O$ + OH). The average *B*-O distance of

162 2.522 (3) Å in hydroxymcglassonite-(K) (Table 6) is noticeably longer than that of 2.422

163 – 2.435 Å in hydroxyapophyllite-(K) (Rouse et al. 1978) or fluorapophyllite-(K) (Chao

164 1971; Colville et al. 1971; Prince 1971; Pechar 1987; Ståhl et al. 1987). This is

165 understandable, as the *B* site is predominantly occupied by Ca^{2+} in both

hydroxyapophyllite-(K) and fluorapophyllite-(K), which is significantly smaller than Sr^{2+}

167 in ionic radius (1.06 vs. 1.21 Å) (Shannon 1976).

In the ruizite-strontioruizite solid solution $(Ca,Sr)_2Mn^{3+}_2Si_4O_{11}(OH)_4 \cdot 2H_2O$, the B 168 169 cation (B = Ca + Sr) is also 7-coordinated (Hawthorne, 1984; Fendrich et al. 2016; Yang 170 et al. 2021) and the average B-O bond distance increases linearly with increasing X =Sr/(Sr + Ca), following the equation $\langle B-O \rangle = 0.1468X + 2.4475$ (Å) ($R^2 = 0.98$) (Yang et 171 al. 2021). With Sr = 0.74 for hydroxymcglassonite-(K), we obtain $\langle B-O \rangle = 2.556$ Å, 172 which is slightly longer than our measured value of 2.522 Å. 173 174 The Raman spectrum of hydroxymcglassonite-(K) is plotted in Figure 6. Based on 175 previous Raman spectroscopic studies on both hydroxyapophyllite-(K) and 176 fluorapophyllite-(K) (Adams et al. 1980; Sidorov 2000; Frost and Xi 2012; Goryainov et 177 al. 2012; Ogorodova et al. 2019), we made the tentative assignments of major Raman 178 bands for hydroxymcglassonite-(K) (Table 8). For comparison, the Raman spectra of 179 hydroxyapophyllite-(K) (http://rruff.info/R050169) and fluorapophyllite-(K) 180 (http://rruff.info/R050021) from the RRUFF Project were also plotted in Figure 6. The 181 similarities among the three spectra are evident. The difference in peak intensities among 182 the spectra principally results from the different crystal orientations when the data were 183 collected. According to Frost and Xi (2012), Goryainov et al. (2012), and Ogorodova et al. 184 185 (2019), the key difference between the Raman spectra of hydroxyapophyllite-(K) and 186 fluorapophyllite-(K) is the observation of two Raman bands in the O-H stretching region at ~3565 (due to the O-H stretching vibrations in H_2O) and 3625 cm⁻¹ (due to the O-H 187 stretching vibrations in OH) for the former and only one band at \sim 3565 cm⁻¹ for the latter. 188 The observation of the Raman peak at \sim 3625 cm⁻¹ is regarded as a distinctive diagnostic 189 190 feature indicating the presence of the OH group in the apophyllite-type structures 191 (Ogorodova et al. 2019). The Raman spectrum of hydroxymcglassonite-(K) exhibits two 192 major bands in the O-H stretching vibration region, consistent with that of 193 hydroxyapophyllite-(K), indicating the presence of both H₂O and OH groups in its 194 structure.

195 196 Implications 197 Apophyllite-type minerals are of great industrial and technological interest 198 because they are examples of naturally occurring single-sheet silicates and their reactions 199 with chlorosilanes yield apophyllite-based organosilicate polymers on both sides of 200 silicate sheets, which possess a unique combination of hydrophobic and hydrophilic 201 properties that are highly tunable (Chao et al., 2001; Chen et al., 2007; Specht et al., 202 2010). According to the IMA-CNMNC guidelines for mineral nomenclature (Hatert et al. 203 2013), minerals of the apophyllite group are named based on the chemical formula A^{+} Ca₄Si₈O₂₀X·8H₂O, where A^{+} (= K. Na. Cs. or NH₄) and X (= F or OH) are used as 204 205 suffixes and prefixes (fluor for F and hydroxy for OH), respectively, in the naming. To 206 date, there are five members in the apophyllite group: fluorapophyllite-(K), 207 fluorapophyllite-(Na), fluorapophyllite-(NH₄), fluorapophyllite-(Cs), and 208 hydroxyapophyllite-(K). The discovery of hydroxymcglassonite-(K), the first Sr-bearing 209 member of the apophyllite group, suggests that more Sr-dominant members of the group 210 may be found in nature or synthesized in laboratories. For naturally occurring Sr-211 dominant members, the same naming guidelines with A and X as suffixes and prefixes, 212 respectively, should be employed. The $Sr^{2+}-Ca^{2+}$ substitution in various minerals and materials has been a subject of 213 214 numerous investigations owing to its effects on the properties of luminescent materials 215 (e.g., Yu et al., 2012; Misevicius et al. 2019; Wang et al. 2020), bioactive glasses (e.g., 216 Martin et al. 2012; Pedone et al. 2021), and solid solutions (e.g., Gottschalk et al. 1998; Ellemann-Olesen and Malcherek 2005). In some cases, the $Sr^{2+}-Ca^{2+}$ substitution may 217 result in incomplete solid solutions due to the difference in the Ca^{2+} and Sr^{2+} ionic radii (r 218 = 1.06 Å for 7-coordinated Ca^{2+} and 1.21 Å for Sr^{2+}) (Shannon 1976). There are two 219 220 kinds of incomplete solid solutions. One of them is that the two endmembers assume

different structure symmetries, such as CaCO₃ (*R*-3*c* calcite) vs. SrCO₃ (*Pmcn*

222 strontianite) or CaSO₄ (Bmmb anhydrite) vs. SrSO₄ (Pnma celestine). The other kind is 223 that the two endmembers possess the same symmetry, but it is different from that for the intermediate phases, as a consequence of the Ca^{2+} and Sr^{2+} ordering into different 224 crystallographic sites. For example, in the system of $Ca_2Mn^{3+}_2Si_4O_{11}(OH)_4$ ·2H₂O 225 (ruizite) --- $Sr_2Mn^{3+}_2Si_4O_{11}(OH)_4$ ·2H₂O (strontioruizite), the two endmembers have the 226 227 same C2 symmetry, but the intermediate phase with the Ca:Sr \cong 1:1, ideally $SrCaMn^{3+}_{2}Si_4O_{11}(OH)_4 \cdot 2H_2O$ (taniajacoite), exhibits the C-1 symmetry due to the 228 preferential occupation of Sr^{2+} and Ca^{2+} over two distinct, 7-coordinated sites (Yang et al. 229 230 2021). Since both hydroxyapophyllite-(K), KCa₄Si₈O₂₀(OH)·8H₂O, and 231 hydroxymcglassonite-(K), KSr₄Si₈O₂₀(OH) \cdot 8H₂O, have the same symmetry *P*4/*mnc*, it then begs the question whether the intermediate phase, $K(Sr_2Ca_2)Si_8O_{20}(OH)\cdot 8H_2O_1$ 232 possesses the same symmetry as the two endmembers. In other words, could Sr^{2+} and 233 Ca^{2+} in the intermediate phase be ordered into two distinct sites, as in taniajacoite, thus 234 235 resulting in a reduction in the structure symmetry? Interestingly, Matsueda et al. (1981) 236 reported that fluorapophyllite-(Na), NaCa₄Si₈O₂₀ $F \cdot 8H_2O$, exhibits the orthorhombic 237 symmetry *Pnnm*, rather than the tetragonal symmetry *P4/mnc* as for fluorapophyllite-(K). 238 They ascribed this symmetry reduction to the silicate-sheet distortion caused by the substitution of small Na⁺ for large K⁺. As a consequence, the 8-fold position (8*h* with the 239 site symmetry m) occupied by Ca^{2+} in the P4/mnc structure splits into two 4-fold 240 241 positions (4g with the site symmetry m), Ca1 and Ca2, in the *Pnnm* structure. An 242 examination of the fluorapophyllite-(Na) structure (Matsueda et al. 1981) reveals that, 243 although both Ca1 and Ca2 sites are still 7-coordinated, as in fluorapophyllite-(K), the Cal site is significantly larger than the Ca2 site, with $\langle Ca1-(O,F) \rangle = 2.426$ Å vs. $\langle Ca2-$ 244 (O,F) > = 2.367 Å. This observation suggests that the apophyllite-type structure is 245 246 intrinsically capable of assuming an ordered orthorhombic *Pnnm* structure with the Cal and Ca2 sites occupied by two different B^{2+} cations. Thus, we cannot rule out the 247 248 possibility that the intermediate phase between hydroxyapophyllite-(K) and

249	hydroxymcglassonite-(K) could possess an ordered structure with large Sr^{2+} and small		
250	Ca ²⁺ occupying two distinct sites, such as the Ca1 and Ca2 sites in fluorapophyllite-(Na)		
251	(Matsueda et al. 1981).		
252			
253			
254	Acknowledgements		
255	We are grateful for the constructive comments by Anthony R. Kampf and Radek		
256	Å. Koda.		
257			
258	References Cited		
259 260 261	Adams, D.M., Armstrong, R.S., and Best, S.P. (1980) Single-crystal Raman spectroscopic study of apophyllite, a layer silicate. Inorganic Chemistry, 20, 1771-1776.		
262 263	Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica B47, 192–197.		
264 265	Burke E A J (2008) Tidying up mineral names: an IMA-CNMNC scheme for suffixes, hyphens and diacritical marks. The Mineralogical Record, 39, 131-135.		
266 267 268	Chen, C., Yebassa, D., and Raghavan, D. (2007) Synthesis, characterization, and Mechanical properties evaluation of thermally stable apophyllite vinyl ester nanocomposites. Polymers for Advanced Technologies, 18, 574–581.		
269 270 271	Chao, G.Y. (1971) The refinement of the crystal structure of apophyllite. II. Determination of the hydrogen positions by X-ray diffraction. American Mineralogist, 56, 1234–1242.		
272 273	Chao, T.C., Katsoulis, D.E., and Kenney, M.E. (2001) Synthesis and characterization of organosilicon sheet and tube polymers. Chemistry of Materials, 13, 4269–4277.		
274 275 276	Colville, A.A., Anderson, C.P., and Black, P.M. (1971) Refinement of the crystal structure of apophyllite. I. X-ray diffraction and physical properties. American Mineralogist, 56, 1222-1233.		
277 278	Dunn, P.J., Rouse, R.C., Norberg, J.A., and Peacor, D.R. (1978) Hydroxyapophyllite, a new mineral, and a redefinition of the apophyllite group I. Description,		

279 280	occurrences, and nomenclature II. Crystal structure. American Mineralogist, 63, 196-202.
281 282	Ellemann-Olesen, R. and Malcherek, T. (2005) The structure of SrTiOGeO ₄ and its solid solution with CaTiOGeO ₄ . Physics and Chemistry of Minerals, 32, 531-545.
283 284	Fendrich, K.V., Downs, R.T., and Origlieri, M.J. (2016) Redetermination of ruizite, Ca ₂ Mn ³⁺ ₂ [Si ₄ O ₁₁ (OH)](OH) ₂ ·2H ₂ O. Acta Crystallographica, E72, 959-963.
285 286 287	Frost, R.L. and Xi, Y. (2012) Raman spectroscopic study of the minerals apophyllite- (KF) KCa ₄ Si ₈ O ₂₀ F·8H ₂ O and apophyllite-(KOH) KCa ₄ Si ₈ O ₂₀ (F,OH)·8H ₂ O. Journal of Molecular Structure, 1028, 200–207.
288 289 290 291	Goryainov, S.V., Krylov, A.S., Pan, Y., Madyukov, I.A., Smirnove, M.B., and Vtyurind, A.N. (2012) Raman investigation of hydrostatic and nonhydrostatic compressions of OH- and F-apophyllites up to 8 GPa. Journal of Raman Spectroscopy, 43, 439– 447.
292 293 294	Gottschalk, M., Najorka, J., and Andrut, M. (1998) Structural and compositional characterization of synthetic (Ca,Sr)-tremolite and (Ca,Sr)-diopside solid solutions. Physics and Chemistry of Minerals, 25, 415-428.
295 296 297	Gu, X., Yang, H., and Xie, X. (2021) Yuzuxiangite, IMA 2020-084, in: CNMNC Newsletter 60, European Journal Mineralogy, 33, <u>https://doi.org/10.5194/ejm-33-203-2021</u> .
298 299	Gutzmer, J. and Beukes, N.J. (1996) Mineral paragenesis of the Kalahari manganese field, South Africa. Ore Geology Reviews, 11, 405-428.
300 301 302	Hatert, F., Mills, S.J., Pasero, M., and Williams, P.A. (2013) CNMNC guidelines for the use of suffixes and prefixes in mineral nomenclature, and for the preservation of historical names. European Journal of Mineralogy, 25, 113-115.
303 304 305	Hawthorne, F.C. (1984) The crystal structure of ruizite, a sorosilicate with an [Si ₄ O ₁₃] cluster. Tschermaks Mineralogische und Petrographische Mitteilungen, 33, 135-146.
306 307	Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 65-77.
308 309 310	Kleyenstuber, A.S.E. (1984) The mineralogy of the manganese bearing Hotazel formation of the Proterozoic Travsvaal sequence of Griqualand West, South Africa. Transaction of Geological Society of South Africa, 87, 267-275.
311 312	Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. Canadian Mineralogist 19, 441-450.

313 314 315 316 317 318	Martin, R.A., Twyman, H.L., Rees, G.J., Barney, E.R., R. M. Moss, R.M., J. M. Smith, J.M., Hill, R.G., Cibin, G., Charpentier, T., Smith, M.E., Hanna, J.V. and Newport, R.J. (2012) An examination of the calcium and strontium site distribution in bioactive glasses through isomorphic neutron diffraction, X-ray diffraction, EXAFS and multinuclear solid state NMR. Journal of Materials Chemistry, 22, 22212-22223.
319 320	Matsueda, H., Miura, Y., Rucklidge, J., and Kato, T. (1981) Natroapophyllite, a new orthorhombic sodium analog of apophyllite. American Mineralogist, 66, 410-423.
321 322 323	Misevicius, M., Jonikavicius, K., Jørgensen, JE., and Balevicius, V. (2019) Effect of partial substitution of Ca for Sr on crystal structure and luminescence of Ce-doped Sr ₄ Al ₁₄ O ₂₅ . Journal of Solid State Chemistry, 274, 116-123.
324 325 326	Ogorodova, L.P., Melchakova, L.V., M. Vigasina, M.F., Gritsenko, Yu. G., Ksenofontov, D.A., and Bryzgalov, I.A. (2019) Thermodynamic Properties of Fluorapophyllite-(K) and Hydroxyapophyllite-(K). Geochemistry International, 57, 805–811.
327 328	Pechar, F. (1987) An X-ray Diffraction Refinement of the Crystal Structure of Natural Apophyllite. Crystal Research & Technology, 22, 1041-1046.
329 330 331	Pedone, A., Cannillo, V., Menziani, M.C. (2021) Toward the understanding of crystallization, mechanical properties and reactivity of multicomponent bioactive glasses. Acta Materialia, 213, 116977 (1-15).
332 333 334	Prince, E. (1971) Refinement of the crystal structure of apophyllite. III. Determination of the hydrogen positions by neutron diffraction. American Mineralogist, 56, 1241-1251.
335 336 337	Rouse, R.C., Peacor, D.R., and Dunn, P.J. (1978) Hydroxyapophyllite, a new mineral, and a redefinition of the apophyllite group II. Crystal structure. American Mineralogist, 63, 196-202.
338 339	Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.
340 341	Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal structure determination. Acta Crystallographica A71, 3-8.
342 343	Sheldrick, G.M. (2015b) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 3-8.
344 345	Sidorov, T.A. (2000) The molecular structure and vibrational spectrum of apophyllite, KCa ₄ (Si ₄ O ₁₀) ₂ (F,OH)·8H ₂ O. Russian Journal of Physical Chemistry, 74, 377-381.

346 347 348	Specht, K.M., Jackson, M., Sunkel, B. and Boucher, M.A. (2010) Synthesis of a functianalized sheet silicate derived from apophyllite and further modification by hydrosilylation. Applied Clay Science, 47, 212–215.
349 350 351 352	Ståhl, K., Kvick, Å., and Ghose, S. (1987) A neutron diffraction and thermogravimetric study of the hydrogen bonding and dehydration behaviour in fluorapophyllite, KCa ₄ (Si ₈ O ₂₀)F·8H ₂ O, and its partially dehydrated form. Acta Crystallographica, B43, 517–523.
353 354	Von Bezing, K.L., Dixon, R.D., Pohl, D., and Cavallo, G. (1991) The Kalahari Manganese Field, an update. Mineralogical Record, 22, 279-297.
355 356 357	Wang, QY., Yuan, P., Wang, TW., Yin, ZQ., and Lu, FC. (2020) Effect of Sr and Ca substitution of Ba on the photoluminescence properties of the Eu ²⁺ activated Ba ₂ MgSi ₂ O ₇ phosphor. Ceramics International, 46, 1374-1382.
358 359 360 361	Yang, H., Gu, X., Downs. R.T., Evans, S.H., Van Nieuwenhuizen, J.J., Lavinsky, R.M., Xie, X. (2019) Meieranite, Na ₂ Sr ₃ MgSi ₆ O ₁₇ , a new mineral from the Wessels mine, Kalahari Manganese Fields, South Africa. The Canadian Mineralogist, 57, 457-466.
362 363 364 365	Yang, H., Gu, X., Cairncross, B., Downs, R.T., and Evans, S.H., (2021) Taniajacoite and strontioruizite, two new minerals isostructural with ruizite, from the N'Chwaning III mine, Kalahari Manganese Field, South Africa. Canadian Mineralogist (in press: https://doi.org/10.3749/canmin.2000037)
366 367 368	Yu, J., Zhang, X., Hao, Z., Luo, Y., Wang, X., and Zhang, J. (2012) Blue emission of Sr _{2-x} Ca _x P ₂ O ₇ :Eu ²⁺ for near UV excitation. Journal of Alloys and Compounds, 515, 39-43.
369	
370	
371	
372	
373	
374	
375	
376	
377	

378 **List of Figure Captions**

2	7	n
.)	1	У

380 Figure 1. The specimen on which colorless hydroxymcglassonite-(K) crystals are found 381 in intergrowth with isolated blue granular meieranite aggregates, which are embedded in 382 a matrix consisting of mainly massive pale-green sugilite, along with minor prismatic grev aegirine, bladed white pectolite, and brownish fibrous vuzuxiangite. 383 384 385 Figure 2. A microscopic view of colorless hydroxymcglassonite-(K) intergrown with blue 386 granular meieranite.

- 387
- 388 Figure 3. A photomicrograph showing the occurrence and association of 389 hydroxymcglassonite-(K) (reflected light, parallel nicols).
- 390
- 391 Figure 4. Backscattered electron image of hydroxymcglassonite-(K), associated with 392 meieranite and sugilite.
- 393
- 394 Figure 5. Raman spectra of hydroxymcglassonite-(K), hydroxyapophyllite-(K), and 395 fluorapophyllite-(K).
- 396
- 397 Figure 6. Crystal structure of hydroxymcglassonite-(K). SiO₄ tetrahedra and Sr-dominant 398 polyhedra are green and yellow, respectively. The K, O4 (H₂O), O5 (OH), and H atoms
- 399 are shown as large purple, medium aqua, medium red, and small blue spheres,
- 400 respectively. Thin black lines show the unit cell.
- 401
- 402
- 403 **List of Tables**
- 404
- 405 Table 1. Chemical composition of hydroxymcglassonite-(K). 406
- 407 Table 2. Powder X-ray diffraction data for hydroxymcglassonite-(K).
- 408 409 Table 3. Summary of crystallographic data and refinement results for
- 410 hydroxymcglassonite-(K). 411
- 412 Table 4. Fractional atomic coordinates and isotropic or equivalent isotropic displacement 413 parameters ($Å^2$) for hydroxymcglassonite-(K).
- 414 Table 5. Atomic displacement parameters $(Å^2)$ for hydroxymcglassonite-(K). 415
- 416 417 Table 6. Selected bond distances (Å) in hydroxymcglassonite-(K).
- 419 Table 7. Bond-valence sums for hydroxymcglassonite-(K). 420
- 421 Table 8. Tentative assignments of major Raman bands for hydroxymcglassonite-(K).

422

418

Constituent	Mean	Range	Stand. Dev.	Probe Standard
SiO ₂	45.99	44.94-47.27	0.99	SiO ₂
K ₂ O	4.56	4.17-5.93	0.32	KAlSi ₃ O ₈
CaO	5.52	3.06-7.21	2.19	CaSiO ₃
SrO	29.66	26.36-33.67	3.11	SrSO ₄
H ₂ O*	14.67			
Total	100.40	100.05-100.78	0.28	

Table 1. Electron microprobe analysis data (in wt.%) for hydroxymcglassonite-(K).

Note: *Calculated based on the structure.

	hydroxyapophyllite-(K)	Hydroxymcglassonite-(K)
Ideal chemical formula	KCa ₄ Si ₈ O ₂₀ (OH,F)·8H ₂ O	KSr ₄ Si ₈ O ₂₀ (OH)·8H ₂ O
Crystal symmetry	Tetragonal	Tetragonal
Space group	P4/mnc	P4/mnc
a (Å)	8.979(4)	9.0792(2)
$c(\dot{A})$	15.83(1)	16.1551(9)
$V(\dot{A}^3)$	1276.253	1331.70(10)
Z	2	2
$\rho_{obs}, \rho_{cal} \left(g/cm^3\right)$	2.37, 2.36	2.59, 2.60
Optical properties	uniaxial (+)	uniaxial (+)
ω	1.52	1.555
3	1.53	1.567
2θ range for data collection	≤54.77	≤67.31
No. of reflections collected	1049	10474
No. of independent reflections	757	1262
No. of reflections with $I > 2\sigma(I)$	696	1046
No. of parameters refined		61
R(int)		0.039
Final R_1 , wR_2 factors $[I > 2\sigma(I)]$	0.035, 0.038	0.040, 0.088
Goodness-of-fit		1.069
Reference	Rouse et al. (1978)	This study

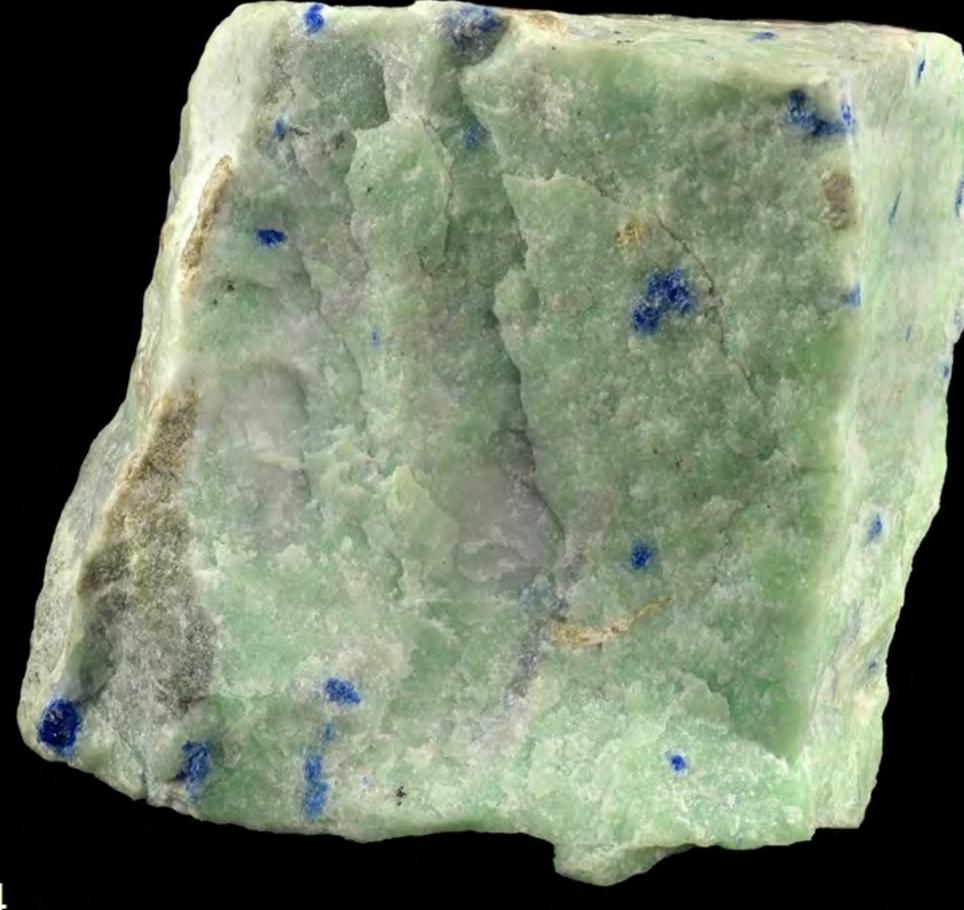
Table 3. Comparison of mineralogical data for hydroxyapophyllite-(K) and Hydroxymcglassonite-(K)

	Hydroxymcglassonite-(K)	Hydroxyapophyllite-(K)
K—O4 × 8	2.941(3)	2.954(3)
<i>B</i> —O3 × 2	2.487(2)	2.403(2)
-03×2	2.509(2)	2.416(2)
05	2.5497(5)	2.435(1)
-04×2	2.555(3)	2.486(3)
Ave.	2.522	2.435
Si—O3	1.590(2)	1.584(3)
—O1	1.6185(11)	1.622(3)
—O2	1.629(2)	1.617(2)
—O2	1.636(2)	1.644(2)
Ave.	1.619	1.616

Table 6. Selected bond distances (Å) for hydroxymcglassonite-(K) and hydroxyapophyllite-(K).

======	к	======= В	Si	======================================
01			1.015x2→	2.029
02			0.984	1.953
			0.969	
03		0.337 x2↓	1.100	1.754
		0.317 x2↓		
04	0.112 x 8↓	0.280 x2↓		0.392
05		0.237 x 4 $ ightarrow$		0.948
Sum	0.896	2.105	4.068	

Table 7. Bond-valence sums for hydroxymcglassonite-(K).


Note: The bond valence sum for *B* was calculated based on $(0.74Sr^{2+} + 0.26Ca^{2+})$.

Assignment
O-H stretching vibration in OH groups O-H stretching vibration in H ₂ O groups Si-O stretching vibrations in SiO ₄ units H ₂ O libration Si-O-Si bending vibrations O-Si-O bending vibrations Lattice modes and <i>B</i> -O interaction vibrations

Table 8. Tentative assignments of major Raman bands for hydroxymcglassonite-(K).

Note: $B = Sr^{2+} + Ca^{2+}$.

_

<u>1 cm</u>

Figure 1

Sugilite

Hydroxymcglassonite-(K)

Meieranite

mm

R200004

Figure 2.

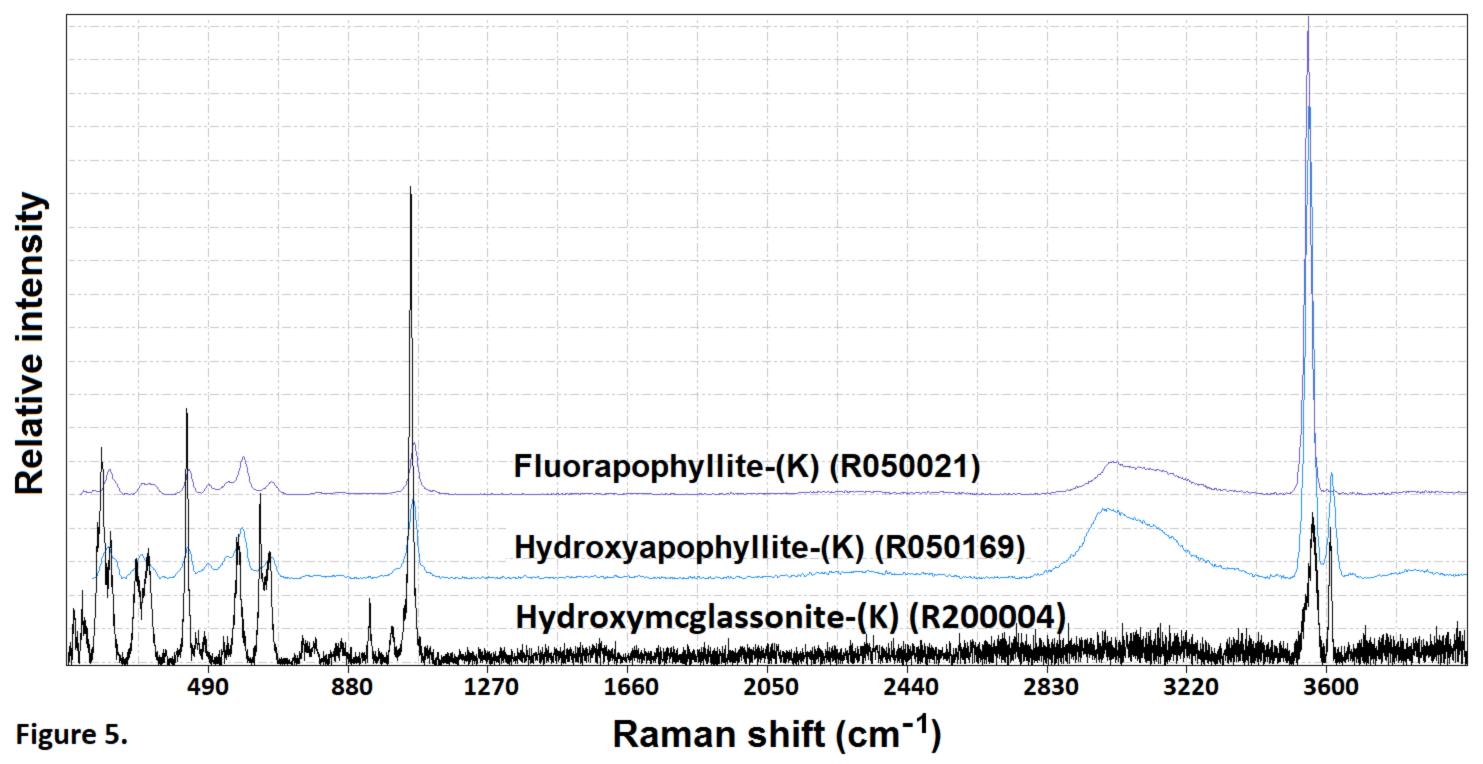
sugilite

Hydroxymcglassonite-(K)

meieranite

meieranite

0.25 mm



Meieranite

15µm

Sugilite Hydroxymcglassonite-(K)

Figure 4.

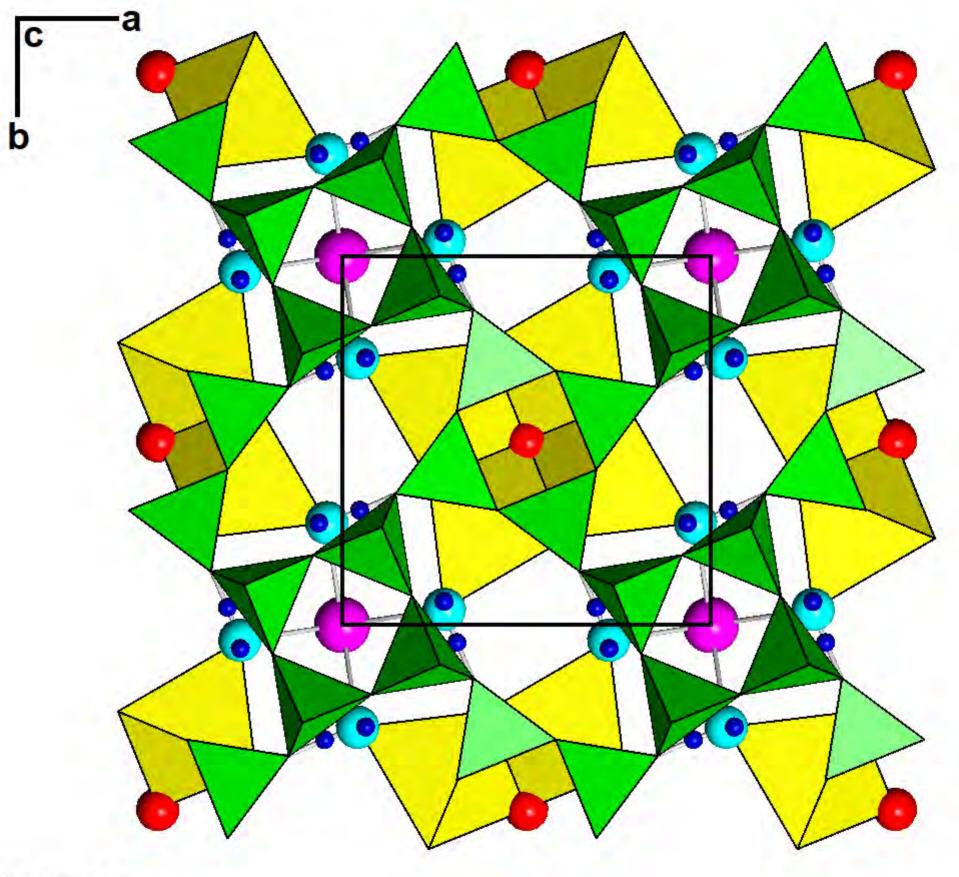


Figure 6.