1 Revision 1

2	Helvine-danalite mineralogy of the Dulong Sn-Zn polymetallic
3	deposit in SE Yunnan, SW China
4	Shiyu Liu ^{1,2} , Yuping Liu ^{1*} , Lin Ye ^{1*} , Chen Wei ^{1,2} , Weihong Chen ^{1,2}
5	¹ State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy
6	of Sciences, Guiyang 550081, China
7	² University of Chinese Academy of Sciences, Beijing 100049, China
8	ABSTRACT
9	Southeastern (SE) Yunnan is a major Sn polymetallic province of China, with the Dulong large
10	Sn-Zn polymetallic deposit (in the Laojunshan orefield) being one of the most representative
11	deposits. Our recent work had first identified helvine-group minerals in this deposit. These minerals
12	mainly occur in massive sphalerite ores, and coexist with sphalerite, pyrrhotite, biotite, talc,
13	cassiterite, and fluorite. Raman spectroscopic, XRD, SEM, and EPMA analyses indicate that these
14	helvine-group minerals are oscillatory-zoned helvine-danalite. Both the helvine and danalite zones
15	are mixed with varying proportion of the other helvine-group end-member, and our studies indicate
16	that the oscillatory zoning was formed mainly by periodic fluctuations of the fluid physicochemical
17	conditions (notably fS_2 and fO_2), but less related to the variation of the fluid Mn, Fe, and Zn contents.
18	The helvine zone was likely formed in a higher fS_2 but lower fO_2 environment than the datalite zone.
19	In this study, we present the first LA-ICP-MS in-situ trace element data for the helvine-danalite
20	minerals from Dulong, and the results indicate that the helvine has considerably high contents and
21	wider range of trace elements. The helvine is rich in Ca, Al, Sc, and Y, whilst the danalite is rich in
22	Sn and P (reaching thousands of ppm). Such trace element enrichments are likely controlled by their

23 respective ionic radius and chalcophile behavior.

24	Meanwhile, the fO_2 and fS_2 conditions during the zoning formation may have also influenced
25	the trace element distributions: trace elements may have mainly entered the helvine-group minerals
26	by substituting into the M-site cations of M_4 [BeSiO ₄] ₃ S, for instance Al, Sc, and Y substitute for Mn,
27	and Sn, Mg for Fe and Zn. It is noteworthy that the helvine and danalite zones are all HREE-enriched
28	and have distinct negative Eu anomalies. This may be related to the high fluid F-Y-P contents during
29	the mineral formation. High F-Y fluids can readily incorporate HREEs into helvine-group minerals,
30	and phosphates incorporate HREEs more readily in alkali fluids. Europium occurs as Eu ²⁺ in the
31	fluid, causing the negative Eu anomalies observed. We have also identified cassiterite grains in the
32	helvine-group minerals and its coexisting sphalerite. U-Pb dating on these cassiterite grains yielded
33	86.5 ± 1.6 Ma, coeval with the reported sulfide mineralization age. This indicates that both the Be
34	and Sn-Zn polymetallic mineralization occurred in the Cretaceous, and may have been product of
35	the Late Yanshanian Laojunshan magmatic-hydrothermal activity. Considering the close relations
36	with many W(-Be) deposits nearby (e.g. Nanyangtian, Saxi, and Maka), we considered that the
37	Laojunshan orefield has also substantial Be mineralization potential.
38	Keywords: Helvine-group minerals; physicochemical environment; major and trace element
39	compositions; LA-ICP-MS; cassiterite U-Pb age; Dulong Sn-Zn polymetallic deposits
40	
41	INTRODUCTION
42	Beryllium is a lithophile rare metal (Goldschmidt 1932), with its upper crustal abundance (~2.1
43	ppm) being around 30 times of its abundance in the primitive mantle (~0.07 ppm) (Taylor et al.

44 1995). Beryllium minerals are commonly found in hydrothermal deposits associated with granitic

45	pegmatites, skarns, and alkaline and (sub-)volcanic rocks. In nature, Be minerals mainly comprise
46	silicates and aluminosilicates, among which beryl, bertrandite, and helvine-group minerals have
47	industry value (Grew et al. 2014). Helvine-group minerals are important Be minerals, which have
48	the general formula M_4 [BeSiO ₄] ₃ S with $M = Mn$ (helvite), Fe (danalite) or Zn (genthelvite). The
49	crystal structure belongs to sodalite-type, in which the [SiO ₄] tetrahedron and [BeO ₄] tetrahedron
50	are interlinked in four- or six-membered rings in the crystal lattice (Hassan and Grundy 1985; Nimis
51	et al. 1996). It is generally considered that helvine is formed in granites or granitic pegmatites,
52	especially in their intrusive contact zones or endoskarns. Danalite is commonly formed in skarn or
53	contact metamorphism-related deposits and granite or pegmatite. Genthelvite is considered to be the
54	rarest helvine-group minerals, and its presence is only documented in calc-alkaline granites,
55	pegmatite and some contact replacement-type altered rocks (Raade 2020). At present, there are not
56	many studies on the helvine mineralogy in the region, and not much is known for its trace element
57	(including REE) compositions, or any petrogenetic link between the helvine-group minerals.
58	The Laojunshan region in SE Yunnan is an important Be province in China (Li et al. 2017),
59	which hosts the large Nanyangtian beryl gemstone deposit and the small Saxi beryl gemstone
60	deposit/prospect. In recent years, helvine mineralization was discovered at Maka in the northern
61	part of the Laojunshan intrusion (Du et al. 2014). These deposits/prospects are distributed around
62	the Late Yanshanian Laojunshan intrusion (Fig. 1), but there is basically no research on the Be
63	mineralogy in the area, with the Be mineralization age and ore-formation process still under dispute.
64	The Dulong Sn-Zn polymetallic deposit is the largest (superlarge-scale) polymetallic deposit in the
64 65	The Dulong Sn-Zn polymetallic deposit is the largest (superlarge-scale) polymetallic deposit in the district (Fig. 1), and is widely accepted that its mineralization is closely related to the Laojunshan

67	et al. 2018). In this paper, our study has first discovered abundant independent Be minerals (helvine-
68	group) from the deposit. It is note worthy that some of the helvine-group minerals are euhedral and
69	oscillatory zoned, and contain several geochemical indicator elements (e.g. Mn, Fe, Zn) that can
70	provide more information on the SE Yunnan Be ore-formation process and helvine mineralogy. we
71	conducted laser Raman spectroscopy, X-ray diffraction (XRD), back-scattered electron (BSE)
72	imaging, electron probe microanalysis (EPMA), and laser ablation-inductively coupled plasma-
73	mass spectrometry (LA-ICP-MS) analysis on the helvine-group minerals from the Dulong orefield,
74	in order to understand their mineralogy and the physicochemical conditions of the formation of
75	these minerals. We conducted also U-Pb dating on the cassiterite coexisting with Be minerals to
76	unravel the timing of Be mineralization in the Laojunshan orefield.
77	
77 78	GEOLOGICAL BACKGROUND
	GEOLOGICAL BACKGROUND The Dulong ore district is located in the southwestern part of the Laojunshan Metamorphic
78	
78 79	The Dulong ore district is located in the southwestern part of the Laojunshan Metamorphic
78 79 80	The Dulong ore district is located in the southwestern part of the Laojunshan Metamorphic Core Complex, and situated in tectonic junction between the western end of the Huanan nappes, the
78 79 80 81	The Dulong ore district is located in the southwestern part of the Laojunshan Metamorphic Core Complex, and situated in tectonic junction between the western end of the Huanan nappes, the Yangtze block, and the Ailaoshan fold belt (Fig. 1a). Exposed stratigraphy in the region comprises

plagioclase amphibolite, which was SHRIMP zircon U-Pb dated to be ca. 761-829 Ma (Liu et al.

2006). The Silurian Nanwenhe granite (SHRIMP zircon U-Pb age: ca. 440–420 Ma; Liu et al. 2006)

is exposed in the eastern Dulong, and was metamorphosed/deformed during the Triassic Indosinian

orogeny (Yan et al. 2006). The Cretaceous Laojunshan granite is an intrusive complex and

85

86

87

88

89	comprises (i) medium- to coarse-grained two-mica monzogranite (100-118 Ma) around (ii)
90	medium- to fine-grained two-mica monzogranite (90-98 Ma). These rocks were intruded by
91	(iii)quartz porphyry and granite porphyry stocks (76-88 Ma) (e.g. Liu et al. 2007; Lan et al. 2016).
92	Previous petrological and geochemical studies indicated that these granite suites are all highly-
93	fractionated S-type, and sourced from partial melting of the Mesoproterozoic argillaceous bedrocks.
94	These magmatic suites were likely formed in a back-/intra-arc extensional environment, associated
95	with large-scale lower crustal delamination and asthenospheric upwelling (e.g. Xu et al. 2015; Zhao
96	et al. 2018). Regional faults at Dulong include mainly the NW-trending Maguan-Doulong and
97	Nanwenhe faults, and a set of NE-trending secondary faults (Fig. 1b).
98	The Dulong deposit, located on the southern margin of the Laojunshan granite (Fig. 1b),
99	contains five ore blocks: the Tongjie, Manjiazhai, Lazizhai, Nandangchang, and Wukoudong (from
100	north to south) (Fig.1 c). At Dulong, sedimentary rocks are dominated by the Cambrian Xinzhai
101	Formation (main ore host) and Middle Cambrian Tianpeng Formation, which are separated by the
102	NS-trending F ₂ fault. The Xinzhai Formation is composed of quartz-mica schist, marble, granulite
103	and minor gneiss. The overlying Tianpeng Formation comprises marble and phyllite, and is exposed
104	only in the western Dulong. Three sets of faults were identified at Dulong: NW-trending Maguan-
105	Dulong fault, NS-trending ore-controlling faults (F ₀ , F ₁ and F ₂), and NW-trending strike-slip fault
106	(F_4) (Fig. 1c). The only granitic rocks exposed at the mine are the late quartz porphyry and granite
107	porphyry dike or apophyses, which represent the southernmost extension of the Laojunshan granite.
108	The early-stage two-mica monzogranite was intersected in drill-holes at depth (Su et al. 2016).
109	Recent geological and geochemical studies suggested that the Dulong Sn-Zn polymetallic
110	mineralization was closely related to the Laojunshan granitic magmatism, which is best classified

as magmatic-hydrothermal origin (e.g. Wang et al. 2014; He et al. 2014, 2015; Xu et al. 2015; Ye et

112 al. 2016, 2017, 2018; Zhao et al. 2018).

113 In the Laojunshan orefield, both the Nanyangtian and Saxi W-Be deposits are located on the 114 eastern side of the Laojunshan granite and share similar ore geological features. The Be 115 mineralization mainly occurred as beryl in the Proterozoic Mengdong Group. gneiss, schist and 116 granulite with plagioclase amphibolite interlayers. The beryl crystals are coarse-grained euhedral, 117 some reaching gemstone quality (Liu et al. 2011). The Maka W(-Be) deposit is located in northern 118 part of the Laojunshan intrusion. The area has different rock types and complex structure, with the 119 Early Paleozoic Maka granitic intrusion being the main magmatic rock type. At Maka, exposed 120 stratigraphy includes mainly the Lower Cambrian Xinzhai Formation and Middle Cambrian 121 Tianpeng Formation, and Be minerals (helvine) coexist with the W mineralization (Du et al. 2014).

122 SAMPLING AND ANALYTICAL METHODS

123 Helvine-group samples of this study were collected from the Sn-Zn polymetallic orebody in

124 the Manjiazhai ore block (Fig. 1c). The Be mineral samples were prepared into 200 μm-thick

125 polished thin-sections for the subsequent SEM-BSE and EPMA analyses.

126 Identification of mineral types and features were mainly performed through laser Raman 127 spectroscopic and scanning electron microscope (SEM) analyses. EPMA major and major element 128 mapping analysis, together with LA-ICP-MS trace element analysis, were carried out. To constrain 129 the Be mineralization age, LA-ICP-MS U-Pb dating was conducted on the cassiterite grains in the 130 helvine minerals and their coexist sphalerite. All these above-mentioned analyses were conducted 131 at the State Key Laboratory of Ore Deposit Geochemistry (SKLODG), Institute of Geochemistry, 132 Chinese Academy of Sciences.

133 Laser Raman Spectroscopy

134	The analysis was conducted with a Renishaw in $\mathrm{Via}^{\mathrm{TM}}$ Reflex confocal laser Raman
135	spectrometer (UK). The analysis used Ar $^{\!+}$ laser, 532 nm wavelength, 50 $\!\times$ magnification, 1 μm laser
136	beam size, 514 nm spectroscopic resolution, and 200–1100 cm ⁻¹ spectroscopic range.
137	XRD
138	The powder XRD analysis used a Empyream XRD diffractometer (Netherland). Experiment
139	setting and conditions include a Cu target, 40 kV voltage, 40 mA current, 15°-95° scan range
140	(2 θ), 10(°) /min scan speed, and 0.026° step size.
141	SEM
142	The analysis used a JSM-7800F Field Emission SEM (Japan), coupled with a EDAX TEAM
143	Apollo XL Energy Dispersive Spectroscopy (EDS) and the latest TAEM software version (UK).
144	The SEM-EDS can perform fast and accurate qualitative/semi-quantitative determination of mineral
145	phases and their distribution, together with line and planar scanning.
146	EPMA
147	The analysis used a JXA8530F-plus Field Emission EPMA (JEOL, Japan). The secondary
148	electron image resolution can reach 3 nm (30 kV, working distance 11 mm), with the spatial
149	resolution better than 0.1 $\mu m.$ Analytical conditions include 25kV accelerating voltage, $1.0 \times 10^{-8} A$
150	current, 10 µm electron beam size. Since there is no corresponding helvine-group mineral standard,
151	we used almandine (to calibrate FeO, MgO), pyrope (to calibrate TiO ₂ , Cr ₂ O ₃ , Al ₂ O ₃), johannsenite
152	(to calibrate MnO, SiO ₂), barite (to calibrate SO ₃), willemite (to calibrate ZnO) as standards. The
153	lowest detection limit for the elements analyzed is 0.01%, and the relative error is $\pm 2\%$. Considering
154	that EPMA direct measurement of Be is still technically difficulty (Zhang et al. 2020), the Be

155	contents in helvine are commonly calculated by assuming the stoichiometric ratios of Be with other
156	elements or element groups. Previous studies suggested various ways of calculation: (1) helvine-
157	group minerals ideal formula $\sum M$: Be = 4:3 calculation (Dunn et al. 1976); (2) 12(Al+Be+Si)
158	calculation (Hassan and Grundy 1985; Ragu et al. 1994); (3) 4(Mn+Fe+Zn) calculation (Langhof et
159	al. 2000); (4) 26 (O+S) calculation (Deer et al. 2004; Zito and Hanson 2017); (5) 3Si and 3Be
160	calculation (Raade 2020). Through detailed comparison analysis of published calculation results,
161	Raade (2020) considered that the assumption of $Si = 3$ and $Be = 3$ can effectively avoid the problem
162	of M-site cation substitution by other trace elements in the helvine-group minerals, and yield more
163	accurate and reasonable results. This calculation method, therefore, is used in this study.
164	
165	LA-ICP-MS trace-element analysis
166	Trace element analysis used a Coherent 193 nm laser ablation system coupled with an Agilent
167	7900x ICP-MS. Multiple external standards of USGS reference glass (NIST 610, NIST612, BCR-
168	2G, BIR-1G, BHVO-2G, CGSG-1, analyzed with 44 μ m beam size) and no internal standard were
169	used for the calibration and quantitative elemental content calculation (Liu et al. 2008).
170	Recommended elemental contents of the USGS glass are from the GeoReM database (http:
171	//georem.mpch-mainz.gwdg.de/). Offline processing of the obtained data, including sample and
172	blank signal selection, instrumental drift calibration, and elemental contents calculation, were
173	performed with the ICPMSDataCal software (Liu et al. 2010).
174	LA-ICP-MS U-Pb dating
175	The analysis used the same equipment as the mineral trace-element analysis. Analysis

176 conditions include 60 μ m laser beam size, 4 J/cm² energy frequency, 6 Hz repetitive frequency. To

177	increase sensitivity, helium is used as a carrier gas to mix with the Ar make-up gas before entering
178	the ICP. In-house standard AY-4 was used, and the detailed analysis process is as described by Zhang
179	et al. (2017). Offline processing of raw data, and the calculation of U-Th-Pb isotope ratios and age
180	were performed with the ICPMSDataCal software (Liu et al. 2010).
181	
182	RESULTS
183	Helvine-danalite assemblage
184	XRD results are illustrated in Figure 2a, which show that the Be minerals are danalite, and they
185	coexist with minerals such as sphalerite, biotite and pyrrhotite. Raman spectroscopy results show
186	that the Be minerals are helvine (Fig. 2b). It is noteworthy that the three end-member minerals of
187	helvine-group have very similar Raman spectral peaks. As a result, although XRD and Raman
188	analyses can identify helvine-group minerals, they cannot distinguish effectively between the three
189	end-member minerals.
190	In hand-specimen, these helvine-group minerals display triangular profile features. They occur
191	in massive sphalerite ores (Fig. 3-a, b) and coexist with minerals such as sphalerite, pyrrhotite,
192	biotite, and talc (Fig. 3-c, d). Besides, pyrrhotite displays exsolution textures in sphalerite. Under
193	the microscope, it is observed that fine-grained cassiterite coexists with sphalerite and helvine (Fig.
194	3-e, f).
195	In the BSE images, some Be minerals developed clear oscillatory zoning (Fig. 4a), as shown
196	by darker helvine and brighter danalite zones and (from inside out) helvine \rightarrow danalite alternating
197	growth zones. This shows that these Be minerals are oscillatory-zoned helvine-danalite (Fig. 4 a-b).
198	Fluorite veinlets or grains are commonly found inside the helvine-group minerals, and coexist with

- 199 sphalerite or pyrrhotite (Fig. 4c). It is noteworthy that the helvine minerals commonly contain some
- 200 exsolved minerals, including cassiterite, biotite, ilmenite, apatite, (Fig. 4d-f).
- 201 Major element compositions of helvine-danalite
- 202 Results of the EPMA analysis and major-element 2D scan (Fig. 5) and line scan (Fig. 6c) are
- 203 given in Table 1. BSE imaging and EPMA results show that the helvine-danalite grains have many
- 204 zones from core to rim, with each zone having different chemical compositions (mainly in Mn, Fe,
- 205 and Zn) (Figs. 5, 6a): MnO = 8.38–38.70 wt.%, FeO = 9.91–33.68 wt.%, ZnO = 1.58–9.21 wt.%.
- 206 In contrast, the Si, S, and **BeO contents have similar ranges: $SiO_2 = 32.63-32.89$ wt.%, S = 5.71-
- 207 5.85 wt.%, **BeO = 13.59–13.70 wt.%. Content variations of Mn, Fe, and Zn across adjacent zone
- are relatively large, and the variation trend for Fe and Zn is the opposite of that for Mn (Fig. 5).
- 209 Helvine-group minerals include the end-member minerals of helvine (Mn₄(BeSiO₄)₃S), danalite
- $(Fe_4(BeSiO_4)_3S)$, and genthelvite ($Zn_4(BeSiO_4)_3S$). From the mineral core to rim, no genthelvite is
- 211 identified in any zone, and inside the helvine and danalite there is varying amount of the other two
- 212 end-members (Fig. 6b-c). Geochemically, the Al and Mg contents are relatively low, and they show
- 213 covariation patterns with Mn, Fe, and Zn (Fig. 6d).
- 214 Trace element compositions of helvine-danalite

For the helvine and danalite zones in the helvine-danalite minerals, their representative LA-

216 ICP-MS trace element and REE data are illustrated in Figure 7-8 and Table 2 respectively.

- 217 Concentrations of some elements (K, Mg, Al, P, Ca, Sc, Y, and Sn) in the helvine-danalite samples
- 218 are rather high (tens to thousands ppm), whereas those of some other elements (Na, V, Cu, Rb, Sr,
- 219 Zr, Nb, Ag, In, Cs, and W) range from below the detection limit to several tens of ppm. The helvine
- 220 zones have relatively high Al (481–1483 ppm), Ca (650–2573 ppm), Sc (82–133 ppm), and Y (566–

221	1277 ppm), whilst the danalite zones have relatively high Mg (1425-2337 ppm), P (1151-1551
222	ppm), and Sn (652-1326 ppm). The samples show chondrite-normalized HREE enrichments,
223	distinct negative Eu anomalies, and relatively high Y contents (218-1278 ppm) (Fig. 11, Table 2).
224	Cassiterite U-Pb age
225	Cassiterite grains in the helvine-danalite and its coexisting sphalerite are relatively large
226	(diameter 10–400 $\mu m)$ and euhedral (Figs. 3f, 4d, 9a). As shown in CL images (Fig. 9b), the
227	cassiterite (in sphalerite) grains show clear alternating bright-dark zoning from core to rim. The
228	cassiterite grains have U contents of 0.20-18.36 ppm (Table 3), and yielded a U-Pb lower-intercept
229	concordia age of 86.5 ± 1.6 Ma (2δ , $n = 25$, MSWD = 1) (Fig. 10).
230	
231	DISCUSSION
232	Formation of oscillatory zoning in helvine-danalite
232 233	Formation of oscillatory zoning in helvine-danalite Oscillatory zoning is common in hydrothermal minerals (e.g. garnet, helvine) (Allegre et al.
233	Oscillatory zoning is common in hydrothermal minerals (e.g. garnet, helvine) (Allegre et al.
233 234	Oscillatory zoning is common in hydrothermal minerals (e.g. garnet, helvine) (Allegre et al. 1981; Wang and Merino 1992; Jamtveit et al. 1993; Shore and Fowler 1996; Zito and Hanson, 2017;
233 234 235	Oscillatory zoning is common in hydrothermal minerals (e.g. garnet, helvine) (Allegre et al. 1981; Wang and Merino 1992; Jamtveit et al. 1993; Shore and Fowler 1996; Zito and Hanson, 2017; Antao and Salvador. 2019; Raade, 2020). Many previous studies proposed two mechanisms for the
233 234 235 236	Oscillatory zoning is common in hydrothermal minerals (e.g. garnet, helvine) (Allegre et al. 1981; Wang and Merino 1992; Jamtveit et al. 1993; Shore and Fowler 1996; Zito and Hanson, 2017; Antao and Salvador. 2019; Raade, 2020). Many previous studies proposed two mechanisms for the formation of oscillatory zoning in hydrothermal minerals: (1) internal crystal growth that involves
233 234 235 236 237	Oscillatory zoning is common in hydrothermal minerals (e.g. garnet, helvine) (Allegre et al. 1981; Wang and Merino 1992; Jamtveit et al. 1993; Shore and Fowler 1996; Zito and Hanson, 2017; Antao and Salvador. 2019; Raade, 2020). Many previous studies proposed two mechanisms for the formation of oscillatory zoning in hydrothermal minerals: (1) internal crystal growth that involves spontaneous chemical self-organization controlled by kinetic factors, such as the mineral growth
233 234 235 236 237 238	Oscillatory zoning is common in hydrothermal minerals (e.g. garnet, helvine) (Allegre et al. 1981; Wang and Merino 1992; Jamtveit et al. 1993; Shore and Fowler 1996; Zito and Hanson, 2017; Antao and Salvador. 2019; Raade, 2020). Many previous studies proposed two mechanisms for the formation of oscillatory zoning in hydrothermal minerals: (1) internal crystal growth that involves spontaneous chemical self-organization controlled by kinetic factors, such as the mineral growth rate and the diffusion rate of key mineral-forming elements in the fluid (e.g. Allegre et al. 1981;
233 234 235 236 237 238 239	Oscillatory zoning is common in hydrothermal minerals (e.g. garnet, helvine) (Allegre et al. 1981; Wang and Merino 1992; Jamtveit et al. 1993; Shore and Fowler 1996; Zito and Hanson, 2017; Antao and Salvador. 2019; Raade, 2020). Many previous studies proposed two mechanisms for the formation of oscillatory zoning in hydrothermal minerals: (1) internal crystal growth that involves spontaneous chemical self-organization controlled by kinetic factors, such as the mineral growth rate and the diffusion rate of key mineral-forming elements in the fluid (e.g. Allegre et al. 1981; Wang and Merino 1992); (2) periodic fluctuations of external factors, including pressure-

At the Dulong, chemical compositions of the helvine-danalite oscillatory zoning vary widely (Figs. 6-7; Table 1). In general, the helvine zones contain much higher Mn, K, Al, Ca, Sc and Y contents but much lower Fe, Zn, Mg, P and Sn content than the danalite zones. The Al, Mg, Mn, Zn and Fe contents vary across different zones, locally up to two orders of magnitude (Fig. 6), and thus achieving that via chemical self-organization is highly unlikely (Kohn, 2004).

248 (2) Hydrothermal fluid composition

249 Some authors consider that for the formation of genthelvite-helvine zoning (and other complex zoning), the cation availability (notably Mn, Fe, and Zn) in the fluid is highly important (e.g. Raade 250 251 2020). However, our helvine-danalite samples occur mainly in massive sphalerite ores, and the 252 sphalerite shows significant pyrrhotite exsolution (Fig. 3e-f). This implies that neither Zn or Fe was lacking in the helvine-forming fluid. Genthelvite minerals are absent from core to rim in the helvine-253 254 danalite, suggesting that fluctuations of the fluid Mn, Fe, and Zn contents were unlikely the main 255 cause for the helvine oscillatory zoning. Meanwhile, published studies on the helvine oscillatory 256 zoning show no fixed growth sequence from core to rim, e.g. $Mn \rightarrow Fe \rightarrow Zn$ (e.g. Dunn et al. 1976; 257 Haapala et al. 1972; Langhof et al. 2000; Zito and Hanson 2017), $Zn \rightarrow Fe \rightarrow Mn$ (e.g. Clark and 258 Fejer 1976), Fe \rightarrow Zn (e.g. Kwak and Jackson 1986), or Zn \rightarrow Mn (e.g. Perez et al. 1990; Raade 259 2020). This further supports that that elemental composition in the hydrothermal fluid has probably 260 played little role in the formation of oscillatory zoning in helvine-group minerals. 261 (3) Sulfur fugacity

262 Considering the decreasing chalcophilicity of $Zn \ge Fe > Mn$, sphalerite would form 263 preferentially instead of genthelvite under high- fS_2 conditions, and thus genthelvite is mainly 264 formed in low- fS_2 environment (Burt, 1980). Helvine and danalite are unstable under low- fS_2

265	conditions, and thus their formation requires relatively high fS_2 , under which genthelvite would
266	break down into sphalerite, phenakite, and quartz (Burt 1988). Therefore, the genthelvite formation
267	is highly sensitive to the fluid fS_2 . Zinc content (genthelvite mol.%) fluctuations may reflect fS_2
268	variation: lower Zn content in the helvine zone (cf. danalite zone) reflects higher fS_2 , which is also
269	indicated by the high coexisting sulfide (sphalerite) content in the former (Fig. 4b). At Dulong, the
270	presence of coexisting helvine-danalite with sphalerite and the absence of genthelvite thus indicate
271	a high-fS2 metallogenic environment. From core to rim in the Be mineral samples (Fig. 6a), their Zn
272	contents vary across different zones (Fig. 6c). Overall, three pluses in the Zn content were observed.
273	In the firstly two pluses, the Zn contents increase first and then decrease, indicating that the fS_2
274	increases first and then drops. In the last pulse, the Zn contents increase continuously, suggesting
275	rising fS_2 in the rim during the Be mineral formation.
276	(4) Oxygen fugacity
277	Apart from fS_2 , the stability of danalite is also highly sensitive to fO_2 , and the mineral is stable
278	only in a very narrow fO_2 range between fayalite (low fO_2) and hematite-magnetite (high fO_2) (Nimis
279	et al. 1996; Burt 1980). SEM imaging indicates the coexistence of cassiterite and ilmenite in the
280	
	danalite zones (Fig. 4d-f), a phenomenon that is absent in the helvine zone. The presence of these
281	danalite zones (Fig. 4d-f), a phenomenon that is absent in the helvine zone. The presence of these oxides implies that danalite is formed in a higher fO_2 environment. Therefore, during the oscillatory
281 282	
	oxides implies that danalite is formed in a higher fO_2 environment. Therefore, during the oscillatory
282	oxides implies that danalite is formed in a higher fO_2 environment. Therefore, during the oscillatory zoning formation from core to rim (Fig.6c), the helvine \rightarrow danalite transition may signify a fluid

In conclusion, helvine-group minerals are unique in the way that they are not purely sulfides or purely silicates, and thus the coupling of fS_2 and fO_2 influence can reasonably explain the zoning 287formation. As mentioned above, we considered that the Dulong helvine zones were formed under288higher fS_2 and lower fO_2 conditions than the danalite zones. Periodic and coupled fluctuations of the289fluid fS_2 and fO_2 may have formed the distinct oscillatory zoning observed in the helvine-danalite,290in agreement with the conclusion by Raade (2020).291Occurrence and substitution mechanism of trace elements in helvine-danalite292The limited available studies suggest that helvine-group minerals are commonly rich in Ca, Al,

293 Sn, Sc, and Y (e.g. Raimbault and Bilal 1993; Zito and Hanson 2017; Raade 2020). LA-ICP-MS 294 data show that the helvine-group minerals from Dulong contain relatively high contents of Mg, Al, 295 P, Ca, Y, Sc, Sn (from several hundred ppm to thousand ppm) and REE (from several ppm to 296 hundreds of ppm), and their concentrations vary distinctly in the helvine zones and danalite zones 297 (Figs. 7 and 8). The molecular formula of Helvine-group minerals can be expressed as 298 M_4 [BeSiO₄]₃S and the divalent M cation occupies the triangular pyramidic position of the 4-fold 299 coordination, whilst the S atom is positioned in the apex of the pyramid (Hassan and Grundy 1985; 300 Nimis et al. 1996). Compared to the other elements, the difference between the ΣM position element 301 and the theoretical value (4apfu) is the largest, with the former far lower than its theoretical value 302 (Table 1). This indicates that the $\sum M$ position would be easily substituted by other trace elements. 303 EPMA results indicate that the elemental variations between the helvine and danalite zones are only 304 shown in the compositional difference at the $\sum M$ position. The Si, **Be, and S compositions are 305 rather fixed, and the differences in elemental features (e.g. ionic radius, chalcophile) at the M306 position may have been the main control for the trace elemental compositions, a viewpoint 307 consistent with many previous studies (Raimbault and Bilal 1993; Zito and Hanson 2017; Raade 2020). The atomic radii and chalcophilicity indices of the major elements and (main) trace elements 308

309 measured are shown in Figure 11.

310 (1) K, Ca, and P

311	Under 4-fold coordination, the ionic radii of $K^+(1.27 \text{ Å})$ and $P^{5+}(0.17 \text{ Å})$ are rather different
312	from those of Mn^{2+} (0.80 Å), Fe ²⁺ (0.63 Å) and Zn ²⁺ (0.60 Å) in the <i>M</i> position (Fig. 11), which
313	makes substitution unlikely from an ionic radius perspective. Although no Ca2+ ionic radius data
314	(under 4-fold coordination) were given by Shannon (1976), the Ca^{2+} ionic radius (under 6-fold
315	coordination: 1 Å) is still rather different from that of Mn^{2+} , Fe^{2+} and Zn^{2+} (under 6-fold
316	coordination), which means that Ca ²⁺ does not easily enter the helvine crystal lattice. Meanwhile,
317	BSE imaging shows that helvine-danalite contains significant amount K-, Ca- and P-rich minerals,
318	such as biotite, apatite and fluorite (Fig. 4 c, d, f). Therefore, we consider that the K, Ca, and P occur
319	mainly as micro-inclusions in the helvine-danalite matrix.
320	(2) Al and Mg

In view of the similar ionic radius among Mg²⁺, Fe²⁺ and Zn²⁺ under 4-fold coordination 321 322 (Fig.11) and the good positive Mg vs. (Fe + Zn) correlation (Figs. 6d), we consider Mg substitutes readily Zn and Fe at the M position. Under 4-fold coordination, the ionic radius of Al^{3+} is rather 323 324 different from that of the M-site cations, and its chalcophilicity is also not similar (Fig. 11). EPMA 325 results show that the contents of Al is well correlated to those of Mn (Fig. 6d), suggesting that Al can be incorporated into the helvine-group minerals by substituting Mn. This indicates that trace 326 327 element distributions in the helvine-group minerals are influenced by the atomic radius, elemental 328 chalcophilicity, and external factors including the fluid fS₂, fO₂, and crystal structure. The trivalent cation (e.g. Al³⁺) entering the tetrahedron position is required in the coupled substitution to maintain 329 330 the charge balance of the crystal structure (e.g. Smith et al. 2004; Gaspar et al. 2008). At Dulong,

both the helvine and danalite zones contain relatively high total (Σ) REE contents (up to 1500 ppm).

Al has good linear relation with *M position* elements and REE indicate that the helvine-group minerals may have coupled substitution mechanism of Al and REEs: $Al^{3+}+REE^{3+}+\Box = 3M^{2+}$ (Fig.

334 12a)

331

335 (3) Sn, Sc, and Y

Radde (2020) considered that although Sn²⁺ has higher chalcophilicity than Sn⁴⁺, the Sn in 336 helvine-group minerals is more likely to be Sn⁴⁺ from a stereochemical perspective. Under 4-fold 337 338 coordination, the ionic radius of Sn^{4+} is similar to that of Zn^{2+} and Fe^{2+} , but different from that of Mn^{2+} (Fig. 11). Therefore, Sn substitutes readily the Zn and Fe at the M position (Sn⁴⁺+ \Box = 2(Fe, 339 Zn)²⁺). This is supported by the content of Sn in danalite is much higher than that in helvine(Fig. 7), 340 consistent with the results by Radde (2020). Many studies have reported high Sc contents in helvine-341 342 group minerals (Raimbault and Bilal 1993; Zito and Hanson 2017; Raade ,2020). For instance, 343 Radde (2020) reported that the Sc_2O_3 in helvine can reach 1.53 wt.%, and argued that Sc substitutes 344 into the *M* position via $2Sc^{3+}+\Box = 3(Mn, Fe, Zn)^{2+}$. The Dulong helvine-danalite samples have also 345 relatively high Sc content (up to 100ppm), with that in the helvine zone higher than that in the danalite zone (Fig. 7). Although no Sc^{3+} ionic radius data (under 4-fold coordination) were given by 346 347 Shannon (1976), elemental chalcophilicity behavior analysis suggests that Sc is a strongly-lithophile 348 element, and is thus similar to Mn from a chalcophilicity perspective (Christy 2018). This could 349 explain the relatively high Mn content in helvine, although the possible influence from Sc-bearing 350 mineral micro-inclusions in helvine cannot be excluded. Compared with the reported Y contents in helvine-group minerals (Zito and Hanson 2017), the helvine-danalite from Dulong have 351 352 anomalously high Y contents (up to 1200 ppm), with the helvine zones being especially rich Y (Fig.

7). Under 4-fold coordination, Y^{3+} has more similar ionic radius to Mn^{2+} than that of Zn^{2+} and Fe^{2+} . 353 354 From an ionic radius perspective, therefore, Y can readily substitute Mn in the M-site cations, which 355 is consistent with the high Y content measured in the Dulong helvine.this is Therefore, Y may enter the M-site cations via $2Y^{3+} = 3Mn^{2+}$. 356 357 In conclusion, the K, P, and Ca occur mainly in helvine-group minerals as micro-inclusions, 358 whilst the Mg, Sn, Y, and Sc can enter readily the M-site cations of helvine-group minerals through 359 isomorphic substitution of Mn, Fe, and Zn. Coupled substitution between Al and REEs into the M position may have occurred. 360 361 **REE** in helvine-danalite Since Y and REE³⁺ have very similar geochemical behavior in hydrothermal minerals (e.g. 362 garnet), if the entry of these elements into garnet is only controlled by the crystal chemical factor 363 (e.g. coupled substitution mechanism), REE³⁺ contents would be strongly related to Y (Dziggel et 364 365 al. 2009; Park et al. 2017), this phenomenon is also found in our helvine-danalite samples (Fig. 12b). 366 This indicates that the Dulong helvine-danalite has similar coupled substitution behavior for REEs and Y to that in hydrothermal garnet: REE³⁺ + Y³⁺ \rightarrow 3 (Mn, Fe, Zn)²⁺. 367 368 HREE-enrichments in helvine were reported in many previous studies (Raimbault and Bilal 1993; Zito and Hanson 2017). However, the HREE-enrichment mechanism in helvine remains 369 370 unclear. For example, Raimbault and Bilal (1993) considered that the HREE-enrichment in helvine 371 may have been crystallographic-control, similar to the REE geochemical behavior in garnet (REEs 372 substitute readily major elements of Fe, Mn, and Zn). Zito and Hanson (2017) considered that the 373 HREE-enrichments in helvine are related to F-rich fluid, as supported by thermodynamic calculation 374 models. Equilibrium constant of the HREE-F complexes is higher than that of the LREE-F

375	complexes, and thus F complexes preferentially with HREEs and forms the HREE enrichments in
376	helvine-group minerals (Gramaccioli et al. 1999; Gramaccioli and Pezzotta 2000). Published REE
377	analyses on helvine-group minerals did not systemically analyze Y or P (Raimbault and Bilal, 1993;
378	Zito and Hanson, 2017), and hence the influence of these element on REE-enrichment is poorly
379	constrained. Our results indicate that the Dulong helvine-danalite contains high contents of HREEs,
380	Y and P, and these elements show good mutual linear relations (Fig. 12b,c). Meanwhile, helvine
381	commonly precipitates under relatively alkaline conditions (Perez et al. 1990; Finch 1990; Burt
382	1977, 1980), and fluorine and phosphate ions can effectively complex with REEs (esp. HREEs)
383	(Mineyev 1963; Sillen and Martell 1964; Dumonceau et al. 1979). We considered that the HREE
384	enrichments in the Dulong helvine-danalite are attributed to the F-Y(-P) enrichments in the ore
385	fluids.
386	It is noteworthy that the Dulong helvine-danalite samples show distinct negative Eu anomalies
386 387	It is noteworthy that the Dulong helvine-danalite samples show distinct negative Eu anomalies in chondrite-normalized REE distribution patterns. Previous studies indicate that the Eu decoupling
387	in chondrite-normalized REE distribution patterns. Previous studies indicate that the Eu decoupling
387 388	in chondrite-normalized REE distribution patterns. Previous studies indicate that the Eu decoupling (expressed as positive or negative anomalies) in REEs requires valence changes of Eu, which in
387 388 389	in chondrite-normalized REE distribution patterns. Previous studies indicate that the Eu decoupling (expressed as positive or negative anomalies) in REEs requires valence changes of Eu, which in turn requires changes in the fluid redox conditions. Fluid redox conditions are commonly co-
387 388 389 390	in chondrite-normalized REE distribution patterns. Previous studies indicate that the Eu decoupling (expressed as positive or negative anomalies) in REEs requires valence changes of Eu, which in turn requires changes in the fluid redox conditions. Fluid redox conditions are commonly co-influenced by the fluid temperature-pressure, fO_2 , pH, and chemical compositions (Bau 1991; Wood
387 388 389 390 391	in chondrite-normalized REE distribution patterns. Previous studies indicate that the Eu decoupling (expressed as positive or negative anomalies) in REEs requires valence changes of Eu, which in turn requires changes in the fluid redox conditions. Fluid redox conditions are commonly co-influenced by the fluid temperature-pressure, fO_2 , pH, and chemical compositions (Bau 1991; Wood 1990; Slack et al. 2000), and the main control for the type of REE occurrence is temperature
387 388 389 390 391 392	in chondrite-normalized REE distribution patterns. Previous studies indicate that the Eu decoupling (expressed as positive or negative anomalies) in REEs requires valence changes of Eu, which in turn requires changes in the fluid redox conditions. Fluid redox conditions are commonly co-influenced by the fluid temperature-pressure, fO_2 , pH, and chemical compositions (Bau 1991; Wood 1990; Slack et al. 2000), and the main control for the type of REE occurrence is temperature (Sverjensky 1984; Bau 1991). Theoretical calculation indicates that when the temperature is >
387 388 389 390 391 392 393	in chondrite-normalized REE distribution patterns. Previous studies indicate that the Eu decoupling (expressed as positive or negative anomalies) in REEs requires valence changes of Eu, which in turn requires changes in the fluid redox conditions. Fluid redox conditions are commonly co- influenced by the fluid temperature-pressure, fO_2 , pH, and chemical compositions (Bau 1991; Wood 1990; Slack et al. 2000), and the main control for the type of REE occurrence is temperature (Sverjensky 1984; Bau 1991). Theoretical calculation indicates that when the temperature is > 250 °C, Eu occurs mainly as Eu ²⁺ (Sverjensky 1984). Published fluid inclusion microthermometric

the fluid Eu may have mainly occurred as Eu^{2+} . The reduction of Eu^{3+} to Eu^{2+} is accompanied by increase in ionic radius, and the decrease of adsorption capacity of Eu^{2+} (compared to other REEs) on the helvine-danalite mineral surface, which eventually generates the observed negative Eu anomalies.

401

Regional Be mineralization potential in the Laojunshan orefield

402 The Be minerals in the Laojunshan orefield comprise mainly oscillatory-zoned helvine-403 danalite, with its coexisting cassiterite U-Pb dated to be 86.5 ± 1.6 Ma. The age is consistent (within error) with the reported cassiterite U-Pb ages (87.2 ± 3.9 Ma to 89 ± 1.4 Ma) in the orefield (Wang 404 405 et al. 2014; Zhao et al. 2018). Published mineralization ages from Dulong (Fig. 13; Liu et al. 2007, 406 2011; Li et al. 2013; Wang et al. 2014; Xu et al. 2015; Zhao et al. 2018) indicate that both the Be and Sn mineralization are coeval with and likely resulted from the Laojunshan granite intrusion and 407 its associated hydrothermal activities (Liu et al. 2007; Wang et al. 2014; Xu et al. 2015; Zhao et al. 408 409 2018). Notably, many Be deposits/prospects have been discovered in the Laojunshan orefield, e.g. 410 the Nanyangtian W deposit and Saxi W-Be (mainly beryl) deposits in the SE Laojunshan orefield, 411 and the Maka W(-Be) (mainly helvine) deposit in the northern Laojunshan orefield. This suggests 412 that the Be mineralization occurred in a regional scale. Recently reported ages for the orefield include high-precision biotite 40 Ar- 39 Ar isochron ages (Nanyangtian: 97.01 ± 1.39 Ma and 99.58 ± 413 0.98 Ma; Wang et al., 2019), biotite 40 Ar- 39 Ar inverse isochron age (Saxi and Maka: 119 ± 3 Ma; 414 415 Liu 2011), and zircon U-Pb ages (Maka: 415.6 ± 1.8 Ma, 411.2 ± 3.5 Ma, 400.7 ± 3.0 Ma) of the ore-causative intrusion (Du 2015). These age data imply that the Be mineralization at Dulong, 416 417 Nanyangtian, and Saxi all occurred in the Cretaceous (Fig. 13), during which the Laojunshan pluton 418 was emplaced. At Maka, the ore-related intrusion is largely coeval (within error) to the Silurian 419 Nanwenhe granitic gneiss (Liu et al. 2006). As the Nanwenhe granitic gneiss is widespread in the 420 Laojunshan orefield, whether there was an older Early Paleozoic Be mineralization episode in the 421 orefield will need further investigation. 422 In the southern end of the Laojunshan intrusion (Su et al. 2016), the presence of high-K calc-423 alkaline and highly-fractionated S-type granite (Liu et al. 2007; Lan et al. 2016; Xu et al. 2015; 424 Zhao et al. 2018) implies that the high Na and K assemblage would preferentially form phenakite 425 and feldspars (instead of beryl), and that the Al would form feldspathoids. This is consistent with 426 previous suggestions that alkali granite-related Be mineralization would form helvine-group 427 minerals instead of beryl (Perez et al. 1990; Finch 1990; Burt 1977, 1980). We therefore suggest 428 that the entire orefield may have substantial Be mineralization potential, which may partly explain 429 why beryl is not found around the Laojunshan intrusion. 430 431 **IMPLICATIONS** 432 Helvine-group minerals first identified at Dulong Sn-Zn deposits, SE Yunnan. It comprises

432 related to the fluid compositional variation. 433 related to the fluid compositional variation.

The helvine-danalite from Dulong contains high contents of trace elements (including mainly
Ca, Mg, Al, Sc, Sn, Y, and REEs). The Ca, K, and P may have occurred mainly as micro-inclusions
in the helvine-danalite, whilst the Sn, Sc, and Y likely enter the helvine (*M* position) via isomorphic
substitution. Affected by the ionic radius, elemental chalcophilicity and physicochemical conditions,

the Sc and Y preferentially enter helvine, and Sn and Mg into danalite.

442	The helvine-danalite samples are featured by HREE enrichments and negative Eu anomalies,
443	with the \sum REE of helvine distinctly higher than danalite. This may be caused by the higher Y and
444	P in the helvine and higher F in the fluid. F-Y-rich fluid and phosphate ion would preferentially
445	complex HREEs and enter helvine. REE minerals mainly enter helvine through $Y^{3+}+REE^{3+} + \Box =$
446	$3(Mn, Fe, Zn)^{2+}$, as well as through coupled substitution of Al with REEs. The dominance of Eu ²⁺
447	for Eu in the fluid may have generated the observed negative Eu anomalies.
448	The helvine-coexisting cassiterite from Dulong is U-Pb dated to be 86.5 ± 1.6 Ma, coeval with
449	the Dulong Sn-Zn polymetallic mineralization. This implies that both are product of the Cretaceous
450	Laojunshan magmatic-hydrothermal activity. Regional mineralization age compilation indicates
451	that Cretaceous (plus possibly Early Paleozoic) Be mineralization is common in the orefield, and
452	the whole orefield has likely substantial potential for Be discovery.
452 453	the whole orefield has likely substantial potential for Be discovery. ACKNOWLEDGEMENTS AND FUNDING
453	ACKNOWLEDGEMENTS AND FUNDING
453 454	ACKNOWLEDGEMENTS AND FUNDING We thank the Editor Hongwu Xu, Associate Editor Matthew Steele-MacInnis and two
453 454 455	ACKNOWLEDGEMENTS AND FUNDING We thank the Editor Hongwu Xu, Associate Editor Matthew Steele-MacInnis and two anonymous reviewers for their comments on our manuscript, and appreciate the assistance of
453 454 455 456	ACKNOWLEDGEMENTS AND FUNDING We thank the Editor Hongwu Xu, Associate Editor Matthew Steele-MacInnis and two anonymous reviewers for their comments on our manuscript, and appreciate the assistance of Yunfeng Liu, Suoqing Zhang, and Qinfu Ye from the Yunan Hualian Zinc and Indium Stock., LTD
453 454 455 456 457	ACKNOWLEDGEMENTS AND FUNDING We thank the Editor Hongwu Xu, Associate Editor Matthew Steele-MacInnis and two anonymous reviewers for their comments on our manuscript, and appreciate the assistance of Yunfeng Liu, Suoqing Zhang, and Qinfu Ye from the Yunan Hualian Zinc and Indium Stock., LTD in South Yunnan province and Hang Su from Yunnan Hualian Mineral Exploration Co. LTD during
453 454 455 456 457 458	ACKNOWLEDGEMENTS AND FUNDING We thank the Editor Hongwu Xu, Associate Editor Matthew Steele-MacInnis and two anonymous reviewers for their comments on our manuscript, and appreciate the assistance of Yunfeng Liu, Suoqing Zhang, and Qinfu Ye from the Yunan Hualian Zinc and Indium Stock., LTD in South Yunnan province and Hang Su from Yunnan Hualian Mineral Exploration Co. LTD during our fieldwork. We would like to acknowledge Yanwen Tang and Junjie Han from the State Key
453 454 455 456 457 458 459	ACKNOWLEDGEMENTS AND FUNDING We thank the Editor Hongwu Xu, Associate Editor Matthew Steele-MacInnis and two anonymous reviewers for their comments on our manuscript, and appreciate the assistance of Yunfeng Liu, Suoqing Zhang, and Qinfu Ye from the Yunan Hualian Zinc and Indium Stock., LTD in South Yunnan province and Hang Su from Yunnan Hualian Mineral Exploration Co. LTD during our fieldwork. We would like to acknowledge Yanwen Tang and Junjie Han from the State Key Laboratory of Ore Deposit Geochemistry (SKLODG), Institute of Geochemistry, Chinese Academy

462

REFERENCES

464

463

- 465 Allegre, C.J., Provost, A., and Jaupart, C. (1981) Oscillatory zoning: a pathological case of crystal
- 466 growth. Nature, 294, 223–228.
- 467 Antao, S.M., and Salvador, J.J. (2019) Crystal Chemistry of Birefringent Uvarovite Solid
 468 Solutions. Minerals, https://doi.org/10.3390/min9070395.
- 469 Bau, M. (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid -rock
- 470 interaction and the significance of the oxidation state of europium. Chemical Geology, 93, 219–
- 471 230.
- 472 Burt, D.M. (1977) Chalcophile-lithophile tendencies in the helvite group: genthelvite stability in the
- 473 system $ZnO-BeO-Al_2O_3-SiO_2-SO-1-F_2O-1$ (abstract). American Geophysical Union
- 474 Transactions 58, 1242.
- 475 Burt, D.M. (1980) The Stability of danalite, Fe₄Be₃(SiO₄)₃S. American Mineralogist, 65, 355–360.
- 476 Burt, D.M. (1988) Stability of genthelvite, Zn₄(BeSiO₄)₃S: An exercise in chalcophilicity using
- 477 exchange operators. American Mineralogist, 73, 1384–1394.
- 478 Christy, A.G. (2018) Quantifying lithophilicity, chalcophilicity and siderophilicity. European
 479 Journal of Mineralogy 30, 193–204.
- 480 Clark, A.M. and Fejer, E.E. (1976) Zoned genthelvite from the Cairngorm Mountains, Scotland.
- 481 Mineralogical Magazine, 40, 637–639.
- 482 Deer, W.A., Howie, R.A., Wise, W.S., and Zussman, J. (2004) Rock-forming minerals, Vol. 4B:
- 483 Framework silicates. Second Edition, The Geological Society of London, England, 352–368.

484	Du, S.J., Wen, H.J., Qing, C.J., Yan, Y.F., Yang, G.S., and Feng, P.Y. (2014) Occurrence of Beryllium
485	in the Maka Tungsten Polymetallic Deposit in Malipo County, Yunnan Province and its
486	Significance. Acta Mineralogica Sinica, 34, 446-450 (in Chinese with English abstract).
487	Dumonceau, J., Bigot, S., Treuil, M., Faucherre, M., and Fromage, F. (1979) Détermination des
488	constantes de formation des tétracarbonatolanthanidates (III). Rev. Chimie Minerale, 16, 583-
489	592.
490	Dunn, P.J. (1976) Genthelvite and the helvine-group. Mineralogical Magazine, 40, 627-636
491	Dziggel, A., Wulff, K., Kolb, J., Meyer, F.M., and Lahaye, Y. (2009) Significance of oscillatory and
492	bell-shaped growth zoning in hydrothermal garnet: evidence from the Navachab gold deposit.
493	Namibia. Chem. Geol. 262, 262–276.
494	Finch, A.A. (1990) Genthelvite and willemite, zinc minerals associated with alkaline magmatism
495	from the Motzfeldt center, South Greenland. Mineralogical Magazine, 34, 407–412.
496	Gaspar, M., Knaack, C., Meinert, L.D., and Moretti, R.(2008) REE in skarn systems: a LA-ICP-MS
497	study of garnets from the Crown Jewel Deposit. Geochimica et Cosmochimica Acta, 72, 185-
498	205.
499	Gramaccioli, C.M., and Pezzotta, F. (2000) Geochemistry of yttrium with respect to the rare-earth
500	elements in pegmatites. Memorie della Italiana di Scienze e del Museo Civico di Storia
501	Naturale di Milano XXX, 111–115.
502	Gramaccioli, C.M., Diella, V., and Demartin, F. (1999) The role of fluoride complexes in REE
503	geochemistry and theimportance of 4f electrons: some examples in minerals. European Journal
504	of Mineralogy, 11, 983–992.
505	Goldschmidt, V.M (1932) Geochemische Leit-Elemente. Naturwissenschaften, 20, 947-948.

506 Grew, E. S., and Hazen, R. M. (2014) Beryllium mineral evolution. American Mineralogist, 99(5-

507 **6**), 999-1021.

- 508 Haapala, I. and Ojanpera, P. (1972) Genthelvite-bearing greisens in southern Finland. Bulletin of
- the Geological Survey of Finland, 259, 22.
- 510 Hassan, I., and Grundy, H.D. (1985) The crystal structures of helvite group minerals, (Mn, Fe, Zn)
- 511 8(Be₆Si₆O₂₄) S₂. American Mineralogist, 70, 186–192
- 512 He, F., Zhang, Q., Liu, Y.P., Ye, L., Miao, Y.L., Wang, D.P., Su, H., Bao, T., and Wang, X.J. (2015)
- 513 Lead Isotope Compositions of Dulong Sn-Zn Polymetallic Deposit, Yunnan, China:
- 514 Constraints on Ore-forming Metal Sources. Acta Mineralogica Sinica, 35(3), 32-40 (in Chinese
 515 with English abstract).
- e ,
- 516 He, F., Zhang, Q., Wang, D.P., Liu, Y.P., Ye, L., and Bao, T. (2014) Ore-Forming Materials Sources
- 517 of the Dulong Sn-Zn polymetallic Deposit, Yunnan, Evidences from S-C-O stable isotope.
- Bulletin of Mineralogy, Petrology and Geochemistry, 33(6), 900-907 (in Chinese with English
 abstract).
- Holten, T., Jamtveit, B., and Meakin, P. (2000) Noise and oscillatory zoning of minerals.
 Geochimica et Cosmochimica Acta, 11, 1893–1904.
- 522 Jamtveit, B., Wogelius, R.A., and Fraser, D.G. (1993) Zonation patterns of skarn garnets: Records
- 523 of hydrothermal system evolution. Geology, 21, 113–116.
- 524 Kohn, M.J., 2004. Oscillatory- and sector-zoned garnets record cyclic (?) rapid thrusting in central
- 525 Nepal. Geochemistry Geophysics Geosystems, 5, 12.Kwak, T.A.P., and Jackson, P.G. (1986)
- 526 The compositional variation and genesis of danalite in Sn–F–W skarns, NW Tasmania,
- 527 Australia. Neues Jahrbuch für Mineralogie Monatshefte, 452–462.

528	Lan, J.B., Liu, Y.P., Ye, L., Zhang, Q., Wang, D.P., and Su, H. (2016) Geochemistry and age
529	spectrum of Late Yanshanian granites from Laojunshan Area, Southeastern Yunnan Province,
530	China. Acta Mineralogica Sinica, 36(4), 441-454 (in Chinese with English abstract).
531	Langhof, J., Holtstam, D., and Gustafsson, L. (2000) Chiavennite and zoned genthelvite-helvite as
532	late-stage minerals of the Proterozoic LCT pegmatites at Uto, Stockholm, Sweden. GFF, 122,
533	207–212
534	Li, J.K., Wang, D.H., Li, H.Q., Cheng, Z.H., and Mei, Y.P. (2013) Late Jurassic-early Cretaceous
535	mineralization in the Laojunshan ore concentration area, Yunnan province. Earth Science-
536	Journal of China University of Geosciences, 38(5), 1023-1036 (in Chinese with English
537	abstract).
538	Li, J.K., Zou, T.R., Wang, D.H., and Ding, X. (2017) A review of beryllium metallogenic regularity
539	in China. Mineral Deposits, 36(4), 951-978 (in Chinese with English abstract).
540	Liu, Y.S., Hu, Z.C., Gao, S., Günther, D., Xu, J., Gao, C.G., Chen, H.H. (2008) In situ analysis of
541	major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal
542	standard. Chemical Geology, 257, 34-43.
543	Liu, Y.P., Li, Z., Li, H., Guo, L., Xu, W., Ye, F., Li, C., Pi, D. (2007) U-Pb geochronology of
544	cassiterite and zircon from the Dulong deposit: evidence for Cretaceous large-scale granitic
545	magmatism and mineralization events in southeastern Yunnan Province, China. Acta Petrol Sin,
546	23, 967–976 (in Chinese with English abstract).
547	Liu, Y.P., Ye, L., Li, C.Y., Song, B., Li, T.S., Guo, L.G., and Pi, D.H. (2006) Discovery of the
548	Neoproterozoic magmatics in southeastern Yunnan: evidence from SHRIMP zircon U-Pb
549	dating and lithogeochemistry. Acta Petrol Sin, 22, 916–926 (in Chinese with English abstract).

- 550 Liu, Y.S., Hu, Z.C., Zong, K.Q., Gao, C.C., and Chen, H.H. (2010) Reappraisement and refinement
- 551 of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin,
- 552 55(15), 1535-1546
- 553 Liu, Y.P., Li, Z.X., Ye, L., Tan, H.Q., and Li, C.Y. (2011) Ar-Ar chronology of Tungsten
- 554 mineralization in Laojunshan ore concentration area. Acta Mineralogica Sinica, (S1), 617-618 (in
- 555 Chinese).
- 556 Mineyev, D.A. (1963) Geochemical differentiation of the rare earths. Geochemistry, 1129-1149
- 557 Nimis, P., Molin, G., and Visona, D. (1996) Crystal chemistry of danalite from Daba Shabeli
- 558 Complex (N Somalia). Mineralogical Magazine, 60, 375–379.
- 559 Park, C., Song, Y., Kang, I.M., Shim, J., Chung, D., and Park, C.S. (2017) Metasomatic changes
- during periodic fluid flux recorded in grandite garnet from the Weondong W skarn deposit,
 South Korea. Chemical Geology, 451, 135–153.
- 562 Perez, J.B., Dusausoy, Y., Babkine, J., and Pagel, M. (1990) Mn zonation and fluid inclusions in
- 563 genthelvite from the Taghouaji complex (Air Mountains, Niger). American Mineralogist, 75,
- 564 909–914.
- 565 Raade, G. (2020) Helvine-group minerals from Norwegian granitic pegmatites and some other
- granitic rocks: cases of significant Sc and Sn contents. Canadian Mineralogist, 58(3), 367-379
- 567 Ragu, A. (1994) Helvite from the French Pyrénée as evidence for granite-related hydrothermal
- 568activity. Canadian Mineralogist, 32, 111–120.
- 569 Raimbault, L., and Bilal, E. (1993) Trace-element contents of helvite-group minerals from
- 570 metasomatic albitites and hydrothermal veins at Sucuri, Brazil, and Dajishan, China. Canadian
- 571 Mineralogist, 31, 119–127.

- 572 Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances
- 573 in halides and chalcogenides. Acta Crystallographica, A32, 751–767.
- 574 Shore, M., and Fowler, A.D. (1996) Oscillatory zoning in minerals: A common phenomenon.
- 575 Canadian Mineralogist, 34, 1111–1126.
- 576 Sillen, L.G., and Martell, A.E. (1964) Stability constraints of metal-ion complexes. Chem. Soc.
- 577 London, Spec. Publ. 17.
- 578 Slack, J.F., Meier, A.L., Malcolm, M.J., Fey, D.L., Doughten, M.W., and Wanless, G.A.(2000)
- 579 Trace element and rare-earth element geochemistry of bedded and massive sulfides from the
- 580 Sullivan Pb–Zn–Ag deposit, British Columbia—a reconnaissance study. In: Lydon, J.W., Hoy,
- 581 T., Slack, J.F., Knapp, M.E. (Eds.), The Geological Environment of the Sullivan Pb –Zn –Ag
- 582 Deposit, British Columbia. Spec. Publ.-Geol. Assoc. Can. Miner. Depos. Div., vol. 1, pp. 720–
- 583 735.
- 584 Smith, M.P., Henderson, P., Jeffries, T.E.R., Long, J., and Williams, C.T. (2004) The rare earth
- 585 elements and uranium in garnet from the Beinn an Dubhaich aureole, Skye, Scotland, UK:
- 586 constraints on processes in a dynamic hydrothermal system. Journal of Petrology, 45, 457–484.
- Su, H., Wei, W.B., Tao, Z.H., Dao, X.Q., and Li, T.J. (2016) Geological and Geochemical
 Characteristics of Later Yanshanian Concealed Granite and its Relation with Sn-Zn
 Polymetallic Mineralization. Acta Mineralogica Sinica, 36(4), 488-496 (in Chinese with
 English abstract).
- Sverjensky, D.A. (1984) Europium redox equilibria in aqueous solution. Earth and Planetary
 Science Letters, 67, 70–78.

- 593 Taylor, S.R., and McLennan, S.M. (1995) The geochemical evolution of the continental
- crust. Reviews of Geophysics, 33(2), 241-265.
- 595 Wang, C.Y., Han, R.S., Huang, J.G., Xu, S.H., and Ren, T. (2019). The ⁴⁰ Ar-³⁹ Ar dating of biotite
- 596 in ore veins and zircon U–Pb dating of porphyritic granite dyke in the Nanyangtian tungsten
- 597 deposit in SE Yunnan, china. Ore Geology Reviews, <u>https://doi.org/10.1016/j.ore geo</u>
- 598 <u>rev.2019.103133.</u>
- 599 Wang, X.J., Liu, Y.P., Miao, Y.L., Bao, T., Ye, L., and Zhang, Q. (2014). In LA-MC-ICP-MS
- 600 cassiterite U-Pb dating of Dulong Sn-Zn polymetallic deposit and its significance. Acta
- 601 Petrologica Sinica, 30, 867-876 (in Chinese with English abstract).
- Wang, Y.F., and Merino, E. (1992) Dynamic model of oscillatory zoning of trace elements in calcite:
- 603 Double layer, inhibition, and self-organization. Geochimica et Cosmochimica Acta, 56, 587–
 604 596.
- 605 Wood, S.A. (1990) The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoretical
- 606 predictions of speciation in hydrothermal solutions to 350 °C at saturation water vapor pressure.
- 607 Chemical Geology, 88, 99–125.
- 608 Xu, B., Jiang, S.Y., Wang, R., Ma, L., Zhao, K.D., and Yan, X. (2015) Late Cretaceous granites from
- 609 the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China: geochronology,
- 610 geochemistry, mineral chemistry and Nd–Hf isotopic compositions. Lithos, 218: 54–72.
- 611 Yan, D.P., Zhou, M.F., Wang, C.Y., and Xia, B. (2006) Structural and geochronological constraints
- 612 on the tectonic evolution of the Dulong-Song Chay tectonic dome in Yunnan province, SW
- 613 China. Journal of Asian Earth Sciences, 28, 332–353.

- 614 Ye, L., Bao, T., Liu, Y.P., He, F., Wang, X.J., Zhang, Q., Wang, D.P., and Lan, J.B. (2018) The trace
- and rare elements in scheelites and their implication for mineralization in Dulong Sn-Zn
- 616 polymetal ore deposit, Yunnan Province. Journal of Nanjing University (Natural Science),
- 617 54(2), 245-258 (in Chinese with English abstract).
- 618 Ye, L., Bao, T., Liu, Y.P., Zhang, Q., Wang, X.J., He, F., Wang, D.P., and Lan, J.B. (2016)
- 619 Mineralization Stages and Ore-Forming Fluid of Dulong Sn-Zn Polymetal Ore Deposit,
- 620 Yunnan Province, China. Acta Mineralogica Sinica, 36(4), 503-509 (in Chinese with English621 abstract).
- 622 Ye, L., Liu, Y.P., Zhang, Q., Bao, T., He, F., Wang, X.J., Wang, D.P., and Lan, J.B. (2017) Trace and
- 623 rare elements characteristics of sphalerite in Dulong super large Sn-Zn polymetallic ore deposit,
- 624 Yunnan province. Journal of Jilin University (Earth Science Edition), 47(3), 734-750. (in
- 625 Chinese with English abstract).
- 626 Zhang, R., Lehmann, B., Seltmann, R., Li, C., and Sun, W. (2017) Cassiterite U-Pb geochronology
- 627 constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic
- 628 Erzgebirge tin province (Saxony and Bohemia). Geology, 45, 1095–1098.
- 629 Zhang, W.L., Che, X.D., Wang, R.C., Xie, L., Li, X.F., Zhang, D. (2020) Optimum conditions for
- 630 quantitative analysis of beryllium by electron probe microanalysis: a case study of beryl.
- 631 Chinese Science Bulletin, dol: 10.1360/TB-2020-0316
- 632 Zhao Z, Hou L, Ding J, Zhang Q, Wu S (2018) A genetic link between Late Cretaceous granitic
- 633 magmatism and Sn mineralization in the southwestern South China Block: a case study of the
- 634 Dulong Sn dominant polymetallic deposit. Ore Geology Reviews, 93, 268–289

- 635 Zito, G., and Hanson, S.L. (2017) Genthelvite overgrowths on danalite cores from a Pegmatite
- 636 Miarolitic Cavity in Cheyenne Canyon, El Paso County, Colorado. Canadian Mineralogist, 55,

637 195-206

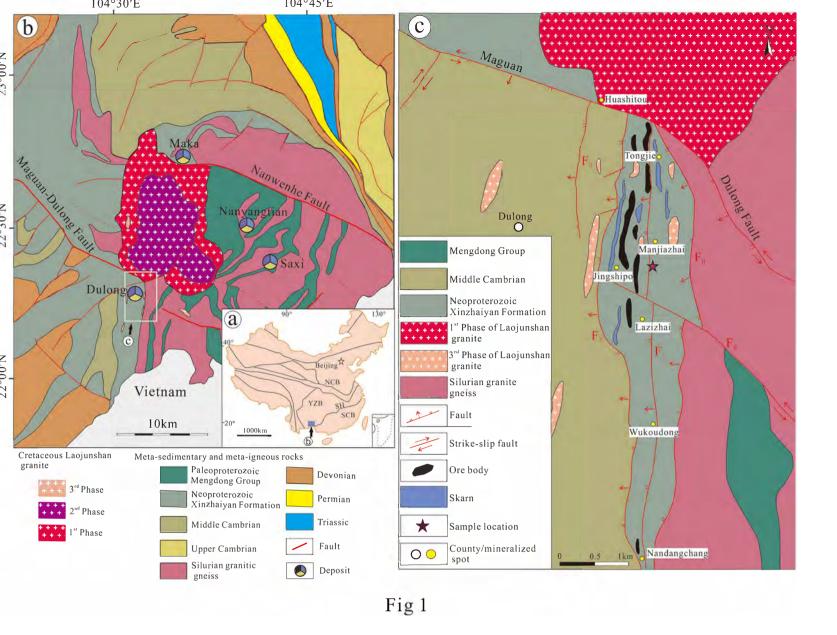
638

```
639 Figure Captions
```

Figure 1 a Simplified structural map showing the location of the study area. b Geological sketch
map of the Laojunshan Metamorphic Core Complex in SE Yunnan, SW China (modified after Liu
et al. 2006). c Geological map of the Dulong Sn-polymetallic skarn deposit (modified after Liu et
al. 2007)

644

Figure 2 XRD (a) and Raman (b) images of helvine-group minerals from the Dulong Sn-Zn
polymetallic deposit. Abbreviations: Dan = danalite; Sp = sphalerite; Po = pyrrhotite; Bt = biotite;
DL= samples from Dulong district; RRUFF mineral = RRUFF Raman database (http://rruff.info)


648

```
Figure 3 Hand specimen photographs (a-b); thin-section microphotographs under crossed-
polarized light (c-d) and reflected light (e-f), showing the intergrowth of sphalerite, Biotite,
pyrrhotite, cassiterite, talc and helvine-group minerals. Definitions of mineral abbreviations: Dan =
danalite; Hel = helvine; Sp = sphalerite; Po = pyrrhotite; Bt = biotite; Tlc = talc. Cst = cassiterite
Figure 4 Backscattered electron (BSE) images of helvine-group minerals from Dulong: (a-b)
euhedral-subhedral oscillatory-zoned helvine-danalite grain, showing intergrowth of sphalerite, talc,
```

biotite and helvine-danalite. In general, the dark-gray and bright zones are helvine and danalite,

657	respectively; (c) fluorite veins or grains intergrown with sphalerite and pyrrhotite in the helvine-
658	danalite; (d-f) cassiterite, biotite, ilmenite, apatite in the danalite zone. Abbreviations: Ilm = ilmenite;
659	Ap = apatite, and as in Figure 3.
660	
661	Figure 5 Coupled BSE images with EPMA multi-element maps of the helvine-danalite samples: (a)
662	BSE image; (b-h) EPMA maps of Mn, Fe, Zn, Si, S, Al, and Mg.
663	
664	Figure 6 (a) BSE image of helvine-danalite grain, showing seven (core-f) zones in the grain; (b)
665	chemical compositions of the seven zones; (c) EPMA line scan of Fe, Mn, Zn, S, and Si for profiles
666	A-B and C-D in (a); (d) a-Correlation diagram of MnO vs. Al ₂ O ₃ , b-(ZnO、FeO) vs. MgO
667	
668	Figure 7 Trace element compositions of helvine-group minerals from Dulong
669	
670	Figure 8 Chondrite-normalized REE diagram for the Dulong helvine-group minerals. Chondrite
671	normalizing values are from Taylor and McLennan (1995).
672	
673	Figure 9 Representative cathodoluminescence (CL) images of the cassiterite intergrown with
674	sphalerite and helvine-group minerals
675	
676	Figure 10 Tera-Wasserburg U–Pb age diagrams for the cassiterite from Dulong
677	
678	Figure 11 Plot of ionic charge vs. ionic radius (fourfold coordination except Ca ²⁺ and Sc ³⁺ ; from

679	Shannon 1976) and chalcophilicity index (Christy 2018) for the elements measured
680	
681	Figure 12 Trace element and REE diagrams of helvine-group in Dulong ore district
682	
683	Figure 13 Age range of representative granites and associate Be deposits in the Laojunshan orefield
684	(modified after Liu et al., 2007; Liu et al., 2011; Li et al., 2013; Wang et al., 2014; Du et al., 2015;
685	Xu et al., 2015; Zhao et al., 2018; Wang et al., 2019)
686	
687	Table Captions
688	Table 1. Major element compositions of the helvine-danalite samples
689	n = number of spots; **BeO calculation with the assumption of $Si = 3$ and $Be = 3$.
690	Table 2. Trace element compositions of the helvine-danalite samples
691	Table 3. LA-ICP-MS U-Pb dating results of cassiterite from Dulong ore district

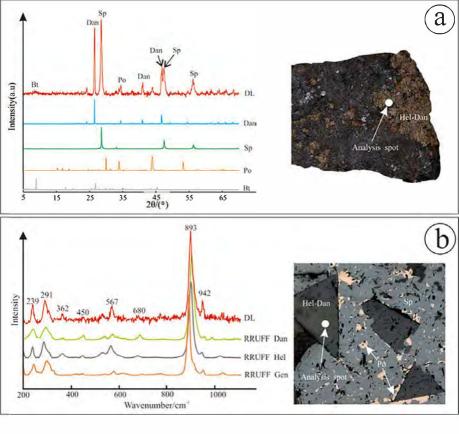


Fig 2

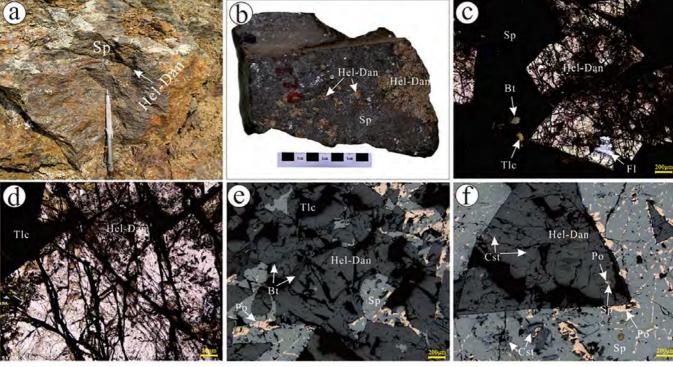


Fig 3

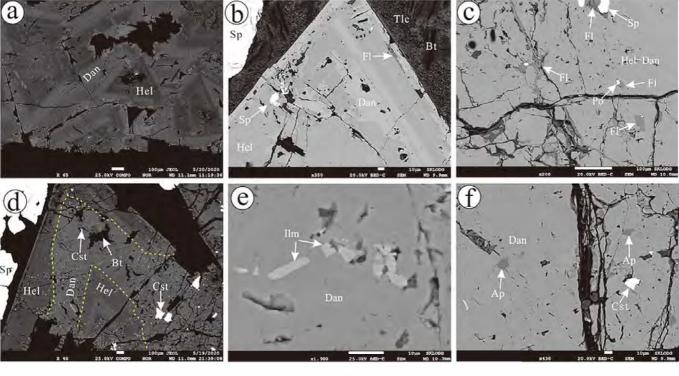
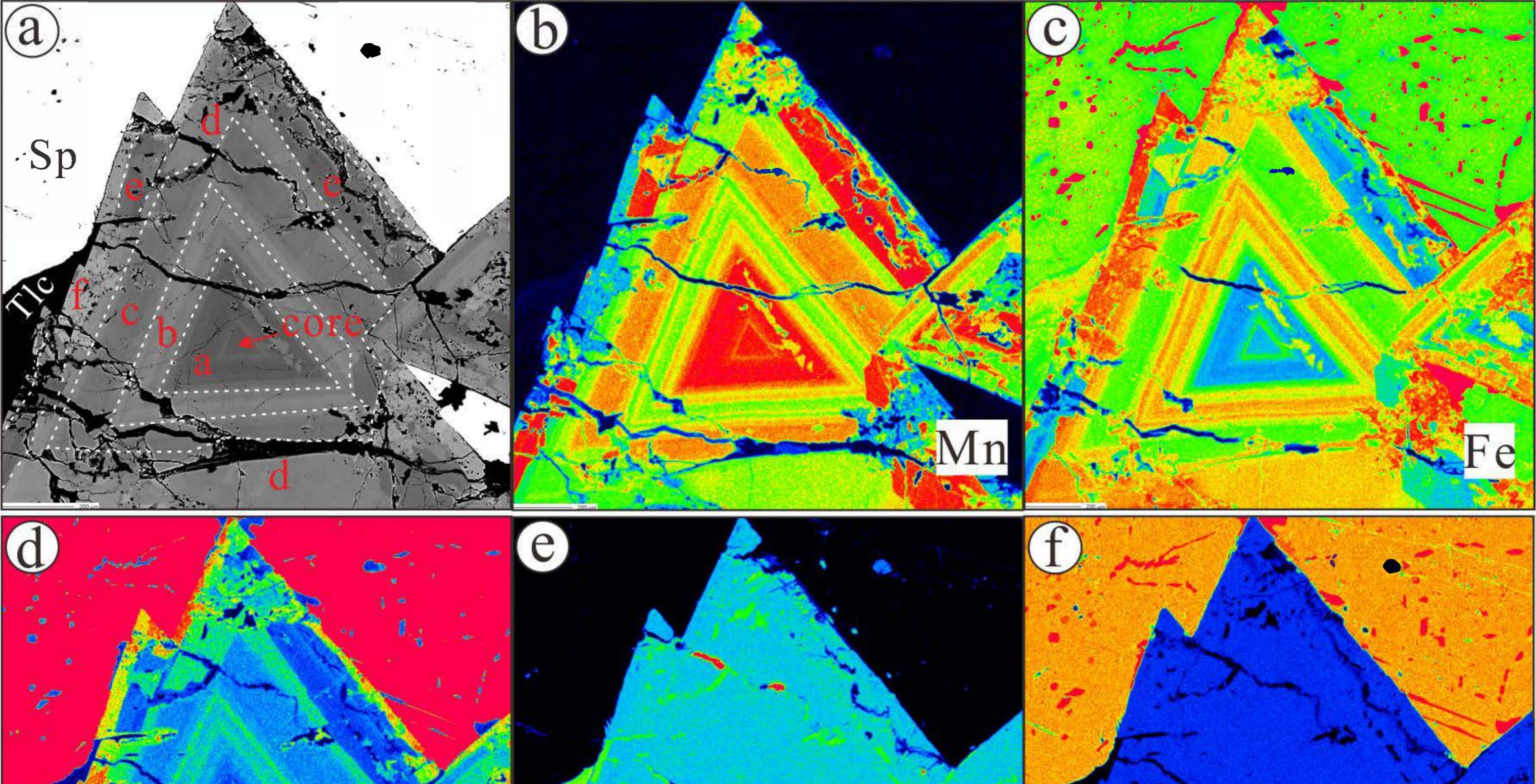
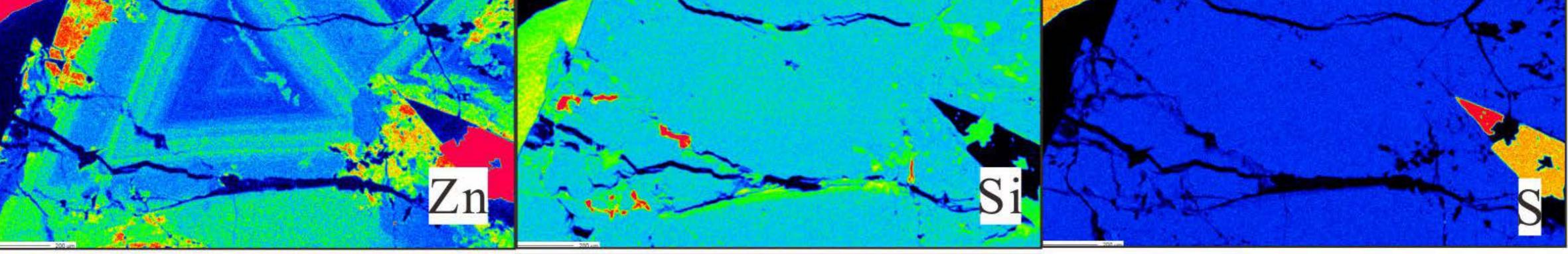
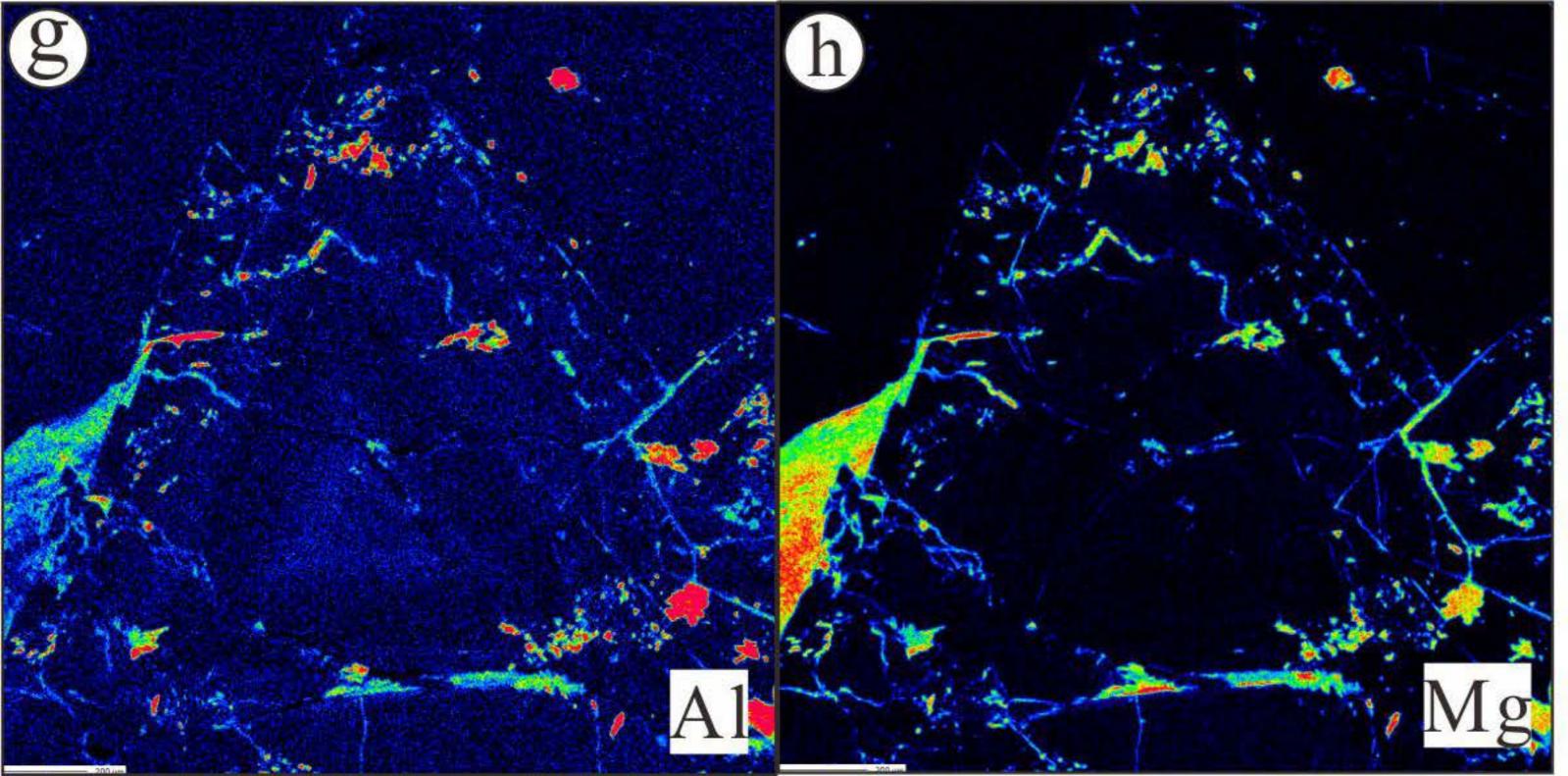





Fig 4

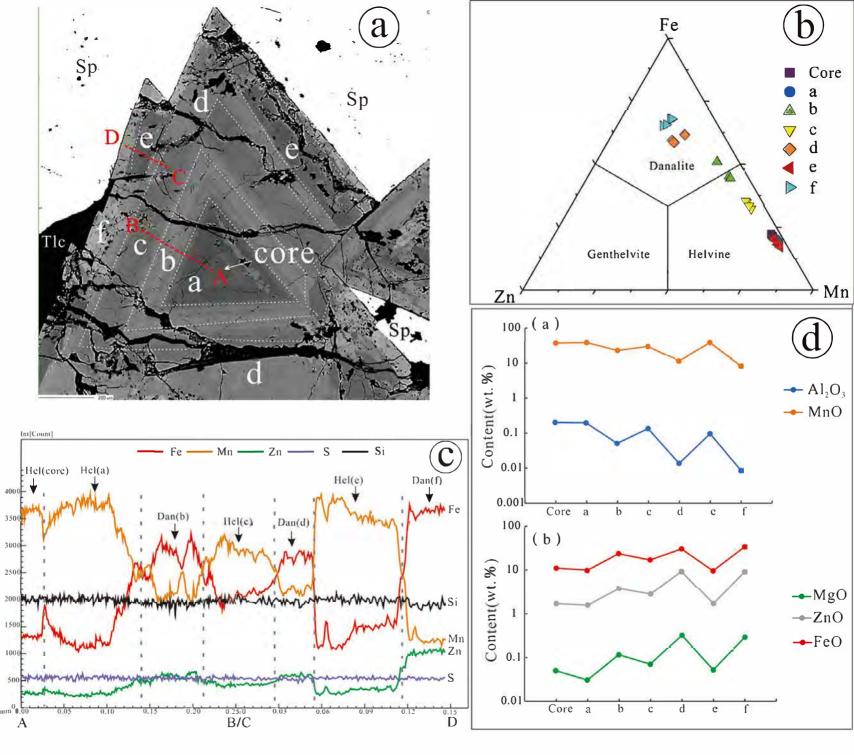
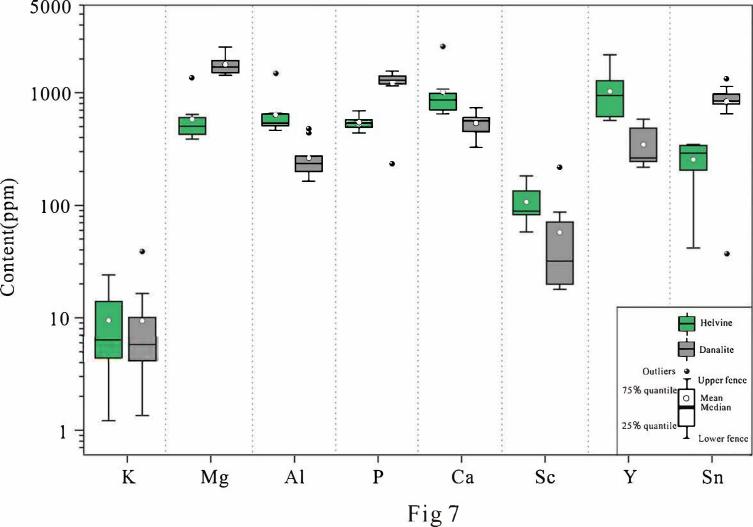
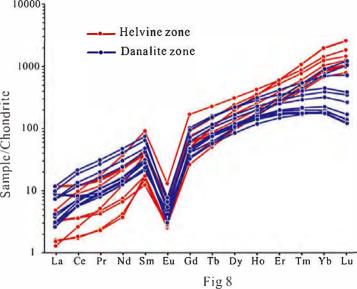




Fig 6

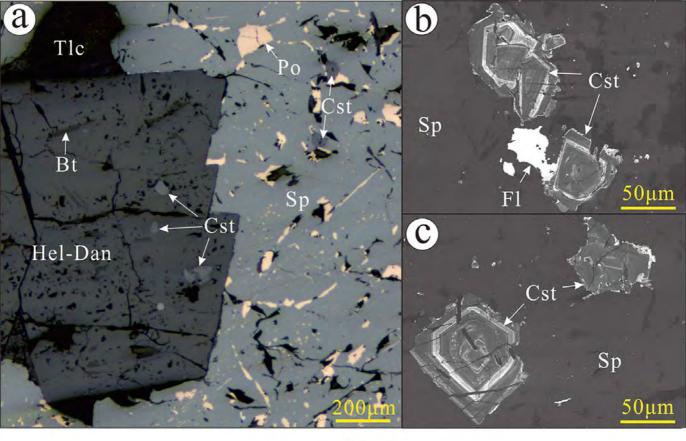
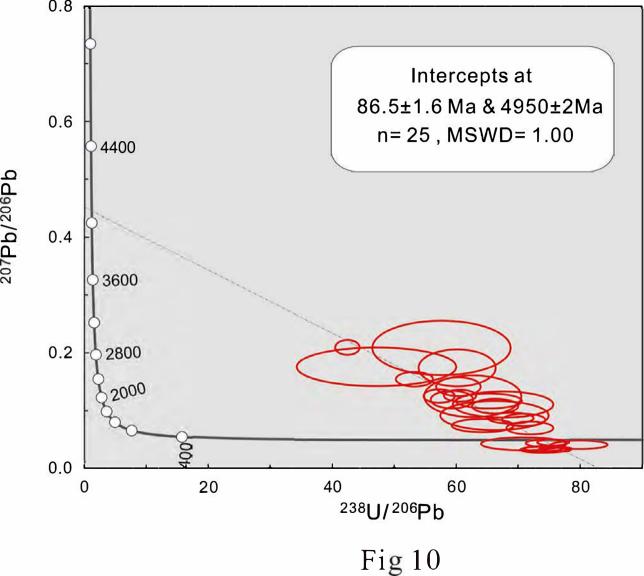
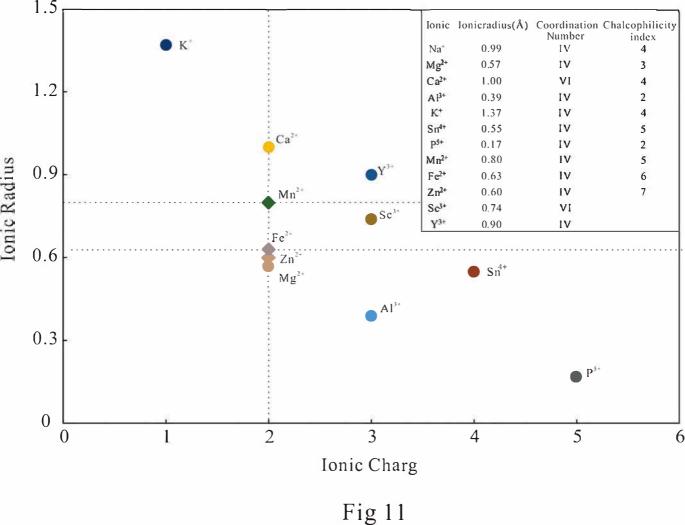
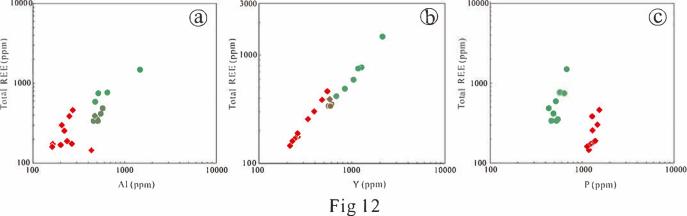
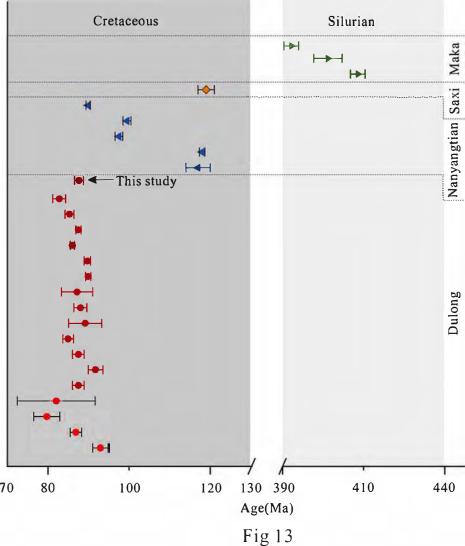






Fig 9

Locality	Core	a	b	с	d	e	f
Sample	<i>n</i> =5						
Na ₂ O(wt.%)	0.13	0.10	0.14	0.19	0.05	0.05	0.07
MgO	0.05	0.03	0.12	0.07	0.32	0.05	0.29
Al ₂ O ₃	0.20	0.20	0.05	0.13	0.01	0.10	0.01
SiO ₂	32.78	32.63	32.64	32.67	32.73	32.89	32.75
CaO	0.27	0.25	0.07	0.20	0.00	0.13	0.06
MnO	37.25	38.54	22.87	29.96	11.74	38.70	8.38
FeO	10.97	9.91	23.73	17.14	30.38	9.74	33.68
ZnO	1.71	1.58	3.83	2.85	9.38	1.72	9.21
S	5.77	5.80	5.77	5.83	5.88	5.71	5.82
O≡S	-2.88	-2.90	-2.88	-2.91	-2.93	-2.85	-2.91
**BeO	13.66	13.59	13.60	13.61	13.64	13.70	13.65
Toal	99.91	99.74	99.94	99.76	101.22	99.97	101.01
Cations							
Na(apfu)	0.02	0.02	0.02	0.03	0.01	0.01	0.01
Mg	0.01	0.00	0.02	0.01	0.04	0.01	0.04
Al	0.02	0.02	0.01	0.01	0.00	0.01	0.00
Si	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Ca	0.03	0.02	0.01	0.02	0.00	0.01	0.01
Mn	2.88	3.00	1.78	2.33	0.91	2.98	0.65
Fe	0.84	0.76	1.82	1.31	2.32	0.74	2.57
Zn	0.12	0.11	0.26	0.19	0.64	0.12	0.62
$\sum M$	3.83	3.86	3.86	3.83	3.87	3.84	3.84
S	0.99	1.00	0.99	1.00	1.01	0.98	1.00
Be	3.00	3.00	3.00	3.00	3.00	3.00	3.00

Table1 Major element compositions of Helvine-Danalite

Ternary

mol.%

Helvine	75.15	77.56	46.08	60.70	23.52	77.70	16.87
Danalite	21.82	19.66	47.16	34.24	60.01	19.28	66.88
Genthelvite	3.03	2.79	6.76	5.06	16.47	3.02	16.25

n=number of spots.**BeO calculated assuming Si=3 and Be=3.

	Mg	Al	Р	Κ	Ca	Sc	Y	Sn	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Helvine-1	390	553	493	-	827	82.7	689	306	3.64	9.56	1.76	13.4	7.47	0.43	15.6	4.13	41.8	14.4	66.5	16.7	187	34.4
Helvine-2	426	507	549	-	706	92.6	612	323	1.03	2.98	0.58	4.48	3.36	0.21	8.68	2.89	33.0	11.8	58.1	15.1	177	34.1
Helvine-3	467	645	568	-	965	182	1277	348	0.49	1.40	0.29	2.54	2.94	0.19	12.6	5.00	62.4	24.3	125	34.8	407	82.8
Helvine-4	459	654	575	-	989	182	1279	344	0.47	1.47	0.28	2.25	3.37	0.20	12.5	4.89	63.3	24.5	126	34.8	413	83.6
Helvine-5	541	581	439	-	1076	84.8	848	205	2.45	7.27	1.46	12.8	8.83	0.51	19.6	5.34	55.1	18.1	81.1	19.4	216	40.4
Helvine-6	603	518	639	-	898	112	1176	87	1.50	7.90	2.15	22.2	17.8	0.96	44.0	10.8	99.8	30.7	125	28.4	299	59.4
Helvine-7	387	481	523	-	698	57.8	1046	42	0.40	2.11	0.63	7.36	7.59	0.42	23.4	6.92	77.2	25.3	109	25.0	261	47.0
Helvine-8	1364	1483	692	4.63	2574	134	2174	272	21.4	76.2	15.4	124	66.1	4.21	119	25.3	210	59.7	222	44.1	420	76.7
Helvine-9	540	462	467	-	742	64.8	566	274	3.70	9.88	1.87	13.9	7.92	0.40	15.1	3.79	36.9	12.3	53.2	12.9	142	25.5
Helvine-10	643	513	528	-	650	82.7	593	340	0.99	2.91	0.52	3.99	2.40	0.21	6.81	2.40	30.3	11.4	56.8	15.0	172	32.1
Danalite-1	1690	477	1234	196	326	87.0	582	37.0	2.71	6.32	0.98	7.43	4.07	0.33	9.04	2.64	32.6	12.9	65.6	17.1	190	39.3
Danalite-2	1490	221	1321	38.0	516	50.1	339	891	2.21	9.48	1.97	14.4	8.17	0.35	16.0	4.88	47.3	14.4	52.7	9.41	66.5	8.51
Danalite-3	2550	438	1200	36.6	629	28.0	218	652	0.97	4.46	0.96	7.43	4.51	0.30	8.42	2.70	27.2	8.51	31.2	5.47	39.1	4.55
Danalite-4	1926	267	1309	14.8	566	18.4	263	838	0.88	4.63	1.13	8.55	5.63	0.22	10.8	3.58	37.0	11.2	39.8	6.44	41.1	4.39
Danalite-5	1425	166	1268	-	490	19.9	249	843	1.16	5.74	1.28	9.81	6.15	0.21	12.3	3.88	37.9	10.9	37.2	5.90	37.5	3.93
Danalite-6	1500	200	1222	19.8	579	17.9	245	793	1.28	5.72	1.31	9.53	5.80	0.23	11.9	3.72	35.4	10.7	36.6	5.80	36.3	3.82
Danalite-7	1706	235	1407	84.2	562	31.9	263	979	0.94	5.28	1.31	9.39	6.08	0.24	12.1	3.85	38.2	11.3	41.5	6.96	46.6	5.44
Danalite-8	1755	207	1487	6.82	603	70.9	397	1134	2.25	10.8	2.42	18.2	9.32	0.39	18.6	5.47	53.6	16.3	60.5	11.1	81.2	11.1
Danalite-9	1591	250	1293	29.5	449	69.6	483	897	3.61	17.2	3.77	28.2	14.5	0.48	26.6	7.53	70.2	20.6	73.8	13.1	93.6	12.4
Danalite-10	1644	164	1152	-	451	21.1	231	843	0.80	4.51	1.06	8.52	5.42	0.22	11.0	3.53	34.2	10.0	35.1	5.67	36.6	3.90
Danalite-11	2337	273	1552	-	738	218	552	1326	3.04	14.9	3.25	24.3	12.4	0.56	24.4	7.16	71.1	22.4	88.9	17.7	148	23.2

 Table 2 Trace element compositions of Helvine-Danalite (ppm)

"-" means under the detection limit.

	Common Pb	Total Pb	²³² Th	²³⁸ U			Isotopic	Ratios			Isotopic Age	e (Ma)
Spots	(ppm)	(ppm)	(ppm)	(ppm)	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	²⁰⁶ Pb/ ²³⁸ U	lσ
DL741	0.13	0.24	0.03	18.36	0.03569	0.00340	0.05985	0.00509	0.01317	0.00031	84.4	2.0
DL74-2	0.16	0.00	0.00	0.27	0.02537	0.00960	0.49927	0.09788	0.01738	0.00222	111	14.1
DL74-3	0.00	0.13	0.00	10.14	0.04241	0.00624	0.06987	0.00883	0.01254	0.00047	80.3	3.0
DL74-4	0.09	0.15	0.00	11.31	0.03666	0.00400	0.06343	0.00575	0.01352	0.00037	86.6	2.3
DL74-5	0.00	0.16	0.04	10.44	0.08023	0.01006	0.13394	0.01482	0.01393	0.00048	89.2	3.1
DL74-6	0.16	0.18	0.03	13.10	0.04754	0.00449	0.08203	0.00661	0.01325	0.00029	84.8	1.8
DL74-7	0.28	0.02	0.00	0.88	0.08124	0.01933	0.27456	0.05713	0.01598	0.00132	102	8.4
DL74-8	0.40	0.20	0.05	14.20	0.04677	0.00538	0.08059	0.00824	0.01345	0.00038	86.1	2.4
DL74-9	0.13	0.01	0.00	0.81	0.08087	0.01815	0.22557	0.03523	0.01482	0.00118	94.8	7.5
DL74-10	0.16	0.05	0.00	2.32	0.11549	0.02015	0.15919	0.01816	0.01558	0.00080	99.6	5.1
DL74-11	0.19	0.21	0.01	8.66	0.13627	0.01028	0.28645	0.01715	0.01652	0.00047	106	3.0
DL74-12	0.11	0.13	0.02	5.17	0.12906	0.01325	0.27687	0.02562	0.01688	0.00064	108	4.1
DL74-13	0.43	0.16	0.02	5.54	0.15082	0.01726	0.30155	0.02038	0.01749	0.00051	112	3.2

Table 3 LA-ICP-MS U–Pb dating results of cassiterite from the Dulong Tin-Zinc polymetallic deposit.

DL74-14	0.11	0.10	0.02	4.90	0.12520	0.01550	0.22407	0.01938	0.01511	0.00056	96.7	3.6
DL74-15	0.26	0.11	0.01	3.92	0.20544	0.02705	0.32296	0.02749	0.01659	0.00065	106	4.1
DL74-16	0.15	0.12	0.01	6.33	0.10164	0.01016	0.17451	0.01384	0.01455	0.00051	93.1	3.3
DL74-17	0.00	0.05	0.01	2.25	0.13674	0.01737	0.24638	0.02237	0.01534	0.00083	98.1	5.2
DL74-18	0.13	0.28	0.07	15.05	0.08556	0.00858	0.16329	0.01463	0.01412	0.00046	90.4	2.9
DL74-19	0.21	0.17	0.02	4.74	0.18050	0.01539	0.39962	0.02615	0.01881	0.00070	120	4.4
DL74-20	0.31	0.04	0.02	2.73	0.05885	0.01548	0.08272	0.01535	0.01412	0.00091	90.4	5.8
DL74-21	0.72	0.37	0.02	7.11	0.23255	0.01461	0.68060	0.03474	0.02359	0.00073	150	4.6
DL74-22	0.37	0.01	0.00	0.66	0.05627	0.01506	0.19074	0.03857	0.01513	0.00132	96.8	8.4
DL74-23	0.18	0.01	0.00	0.20	0.02620	0.01152	0.51409	0.11291	0.02124	0.00383	135	24.2
DL74-24	0.00	0.02	0.03	0.96	0.14262	0.02802	0.39899	0.05537	0.01665	0.00114	106	7.2
DL74-25	0.43	0.21	0.00	15.28	0.03955	0.00581	0.06027	0.00682	0.01353	0.00044	86.6	2.8