1	REVISION 2
2	Origin of ß-cristobalite in Libyan Desert Glass– the hottest naturally occurring silica
3	polymorph?
4	Aaron J. Cavosie ^{1,§,†} , William D.A. Rickard ² , Noreen J. Evans ^{1,2} , Kai Rankenburg ² , Malcolm
5	Roberts ³ , Catherine A. Macris ⁴ , and Christian Koeberl ⁵
6	
7	¹ School of Earth and Planetary Sciences ([§] Space Science and Technology Centre, [†] The Institute
8	for Geoscience Research), Curtin University, Perth, WA 6102, Australia.
9	² John de Laeter Centre, Curtin University, Perth, WA 6102, Australia.
10	³ Centre for Microscopy, Characterisation, and Analysis, University of Western Australia, Perth,
11	WA 6009
12	⁴ School of Science, Indiana University– Purdue University, Indianapolis, IN 46202, USA
13	⁵ Department of Lithospheric Research, University of Vienna, Althanstrasse 14, A-1090 Vienna,
14	Austria
15	Corresponding author Email: aaron.cavosie@curtin.edu.au
16	ABSTRACT
17	Identifying and determining the origin of ß-cristobalite, a high-temperature silica
18	polymorph, in natural samples is challenging as it is rarely, if ever, preserved due to polymorphic
19	transformation to α -cristobalite at low temperature. Formation mechanisms for β -cristobalite in
20	high silica rocks are difficult to discern, as superheating, supercooling, bulk composition, and
21	trace element abundance all influence whether cristobalite crystallizes from melt or by

22	devitrification. Here we report a study of α -cristobalite in Libyan Desert Glass (LDG), a nearly
23	pure silica natural glass of impact origin found in western Egypt, using electron microprobe
24	analysis (EMPA), laser ablation inductively coupled mass spectrometry (LAICPMS), time-of-
25	flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy (SEM), and
26	electron backscatter diffraction (EBSD). The studied grains are mostly 250 μm in diameter, and
27	consist of ~150 μm wide cores surrounded by ~50 μm wide dendritic rims. Compositional
28	layering in LDG continues across cristobalite grains, and mostly corresponds to variations in Al
29	content. However, layering is disrupted in cores of cristobalite grains, where Al distribution
30	records oscillatory growth zoning, whereas in rims, high Al occurs along grain boundaries.
31	Cristobalite cores thus nucleated within layered LDG at conditions that allowed mobility of Al
32	into crystallographically-controlled growth zones, whereas rims grew when Al was less mobile.
33	Analysis of 37 elements indicates little evidence of preferential partitioning; both LDG and
34	cristobalite are variably depleted relative to upper continental crust, and abundance variations
35	correlate to layering in LDG. Orientation analysis of {112} twin systematics in cristobalite by
36	EBSD confirms that cores were formerly single ß-cristobalite crystals. Combined with published
37	experimental data, these results provide evidence for high-temperature (>1350 °C) magmatic
38	crystallization of oscillatory zoned ß-cristobalite in LDG. Dendritic rims suggest growth across
39	the glass transition by devitrification driven by undercooling, with transformation to α -
40	cristobalite at low-temperature. This result represents the highest formation temperature estimate
41	for naturally occurring cristobalite, which is attributed to the near pure silica composition of
42	LDG and anomalously high temperatures generated during melting by meteorite impact
43	processes.

Keywords: Cristobalite; silica; Libyan Desert Glass; EBSD; meteorite impact

45

INTRODUCTION

46 The high-temperature silica polymorph β -cristobalite is thermodynamically stable from 47 1470-1726 °C; however, it is metastable at lower temperatures (Swamy et al., 1994; Heaney, 48 1994). The low-temperature polymorph α -cristobalite forms through displacive transformation 49 below ~270 °C (Dollase, 1965), and is thus the only form of cristobalite found in natural samples 50 (cf. Keith and Muffler, 1978; Damby et al., 2014). Occurrences of α -cristobalite (hereafter 51 simply cristobalite) are restricted to volcanic glass (e.g., Swanson, 1989; Watkins et al., 2009), 52 volcanic ash and/or soils (Horwell et al., 2013), hydrothermal/diagenetic deposits (Dollase, 1965; 53 Shoval et al., 1997), and granulite facies rocks (Darling et al., 1997). The only other significant 54 terrestrial occurrences of cristobalite are in high-temperature melt rocks, including those formed 55 during meteorite impact (e.g., Ferrière et al., 2009; Trepmann et al., 2020), and less commonly, fulgurite (e.g., Crespo et al., 2009). Extra-terrestrial occurrences of cristobalite include lunar 56 57 basalts (e.g., Christie et al., 1971), Martian rocks, including shergottites (Leroux and Cordier, 58 2006) and nakhlites (Kuebler, 2013), and diogenite meteorites (Benzerara et al., 2002). Here we 59 describe a study to test formation hypotheses for cristobalite in Libyan Desert Glass (LDG). Occurrences of LDG are found over several thousand km² in western Egypt. It consists of 60 61 high-silica glass formed by fusion of a quartz-rich source, widely attributed to meteorite impact 62 (e.g., Koeberl, 1997; 2000; Koeberl and Ferrière, 2019; Cavosie and Koeberl, 2019; Svetsov et 63 al., 2020). The LDG is yellow to green and translucent, although some pieces are dark and others 64 milky. In hand-sample, LDG can be nearly featureless; however, some samples have irregular 65 white and/or brown layers. Cathodoluminescence and trace element studies show LDG is 66 pervasively layered at ~10 µm-scale (e.g., Gucsik et al., 2004; Greshake et al., 2010), and some 67 dark layers have a meteoritic geochemical signature (e.g., Koeberl, 2000).

68	Cristobalite in LDG has been documented in optical images (Spencer, 1939; Kleinmann,
69	1969; Greshake et al., 2010; Swaenen et al., 2010; Fröhlich et al., 2013), and its composition
70	determined by electron microscopy (Greshake et al., 2010, 2018). Identification of α -cristobalite
71	was confirmed using Raman spectroscopy (Greshake et al., 2010; Swaenen et al., 2010;
72	Aramendia et al., 2011) and Fourier transform infrared spectroscopy (Fröhlich et al., 2013).
73	Electron microprobe studies show LDG cristobalite is nearly pure silica (mostly >98 wt% SiO ₂);
74	Al is the second most abundant element (Al ₂ O ₃ = 0.2 to 1.1 wt%), followed by Fe and Ti (Barnes
75	and Underwood, 1976; Greshake et al., 2010, 2018). The LDG also contains little water (1100-
76	1500 ppm, Frischat et al., 1984; Beran and Koeberl, 1997). Evidence of possible twinning in
77	LDG cristobalite includes lamellar features in transmitted light images (Barnes and Underwood,
78	1976; Greshake et al., 2010). A transmission electron microscopy (TEM) study reported sub-µm
79	mullite inclusions in LDG cristobalite (Greshake et al., 2018).
80	The round shape of LDG cristobalite (e.g., Spencer, 1939) and alignment within layers in
81	some samples, have been cited as evidence that LDG cristobalite formed by devitrification (e.g.,
82	Barnes and Underwood, 1976; Seebaugh et al., 1985). In contrast, others have interpreted a
83	magmatic origin for LDG cristobalite, citing its high temperature stability, and twinning as
84	evidence of former ß-cristobalite (e.g., Greshake et al., 2010; 2018). Conclusive evidence to
85	support either hypothesis remains elusive.
86	MATERIALS AND METHODS
87	The seven studied LDG samples are from western Egypt, and include characteristics
88	previously described, such as locally containing optically dark and/or light-colored layering (see
89	Online Materials for additional details). Samples were imaged and analyzed for orientation by
90	scanning electron microscopy (SEM) using a Tescan Mira3 FE-SEM in the John de Laeter

91	Centre (JdLC) at Curtin University. Images include secondary electron (SE), backscattered
92	electron (BSE), and panchromatic cathodoluminescence (CL) images. Acquisition of orientation
93	data for cristobalite by electron backscatter diffraction (EBSD) used similar protocols for silicate
94	minerals (e.g., Cavosie et al., 2018a). Orientation data were collected with an Oxford
95	NordlysNano EBSD detector and Oxford Instruments AZtec software program (v. 3.3). The
96	LDG cristobalite grains yielded high-quality diffraction patterns (average mean angular deviation
97	values $<0.5^{\circ}$). The EBSD map was collected with a step size of 200 nm, which yielded 2.4 M
98	points. Figures showing pattern quality (band contrast, BC), orientation (inverse pole figure, IPF)
99	and stereonets were plotted using the Tango and Mambo modules in the Oxford
100	Instruments/HKL Channel5 software program (v. 5.12). Energy dispersive spectroscopy (EDS)
101	elemental abundances were not calibrated.
102	Analysis of LDG and cristobalite by electron microprobe analyser (EMPA) was
103	conducted using a JEOL JXA-8530F field emission microscope with Probe For EMPA
104	acquisition software at the Centre for Microscopy, Characterization and Analysis at the
105	University of Western Australia. Operating conditions included a 15 kV accelerating voltage, 15
106	nA current, and a 10 μ m defocused beam; analyses were spaced at least 25 μ m apart. A
107	combination of glass and mineral standards were employed; Smithsonian Institution basaltic
108	glass (NMNH111240-52 VG2) was analyzed to estimate precision. Calculated error based on
109	nine analyses of basaltic glass are 0.1 rel% (Ti), 1-3 rel% (Si, Ca, Mg, Mn, Na, Fe), and 6-8 rel%
110	(Al, K, P). Elements are expressed as molecular oxides (Tables 1 and 2). The EMPA data are
111	available in Table 1 (LDG), Table 2 (cristobalite) and Online Materials (Tables OM1 and OM2).
112	Analysis of LDG and cristobalite by laser ablation inductively coupled plasma mass
113	spectrometry (LAICPMS) was accomplished using a RESOlution M-50A-LR incorporating a

114	Compex 102 excimer laser, coupled to an Agilent 8900 QQQ ICP-MS at the GeoHistory
115	Facility, JdLC, Curtin University. Analyses with a 50 μ m spot size were spaced at least 10 μ m
116	apart. Glass standard NIST 612 was used as the primary reference material to calculate elemental
117	concentrations (using stoichiometric ²⁹ Si as the internal standard element with an EMPA-
118	determined Si content for LDG of 46.34 wt.% Si) and to correct for drift. Reproducibility of
119	secondary standard glass analyses yielded an accuracy of between 0.5 and 5 rel%. Data were
120	collected for 37 elementals; abundances (in ppm) are presented in Tables 3 (LDG), Table 4
121	(cristobalite), and Online Materials (Tables OM3 and OM4).
122	Time-of-flight secondary ion mass spectrometry (ToF-SIMS) maps of Al distribution
123	were collected using a Tescan Lyra3 focused ion beam scanning electron microscope (FIB-SEM)
124	fitted with a Tofwerks compact ToF-SIMS detector located in the JdLC at Curtin University.
125	Data were collected using a monoisotopic ⁶⁹ Ga primary ion source operated with an accelerating
126	voltage of 30 kV and a beam current of 300 pA, resulting in a nominal lateral resolution of ≤ 100
127	nm. ToF-SIMS maps and spectra were collected by scanning 15 x 15 μ m areas (effective pixel
128	size ~ 60 nm) for 20 frames. The 2D elemental maps showing Al distribution were extracted
129	from the volume analyzed using the Tofwerk's ToF-SIMS Explorer software (v. 1.3.); Al
130	abundances were not calibrated.
131	RESULTS
132	General observations of LDG
133	The LDG samples analyzed in this study are light yellow, translucent, and contain
134	optically visible layering. All samples are pervasively layered in CL images and EDS maps
135	down to the ~10 μ m scale (Figs. 1-3), similar to that shown previously (Gucsik et al., 2004).
136	Layering in LDG documented in this study at the 10s to 100s of micrometer scale (CL, BSE, and

137 EDS images) is distinguished from previously reported optically discernible layering in LDG at 138 the mm scale (e.g., Greshake et al., 2010); the microscopic layering reported here is likely a 139 manifestation of the macroscopic layering, but a rigorous correlation was not attempted. Layers 140 observed here vary in thickness, extend laterally for several mm, and range from broadly linear 141 to highly contorted (Fig. 1A). In general, layering in LDG and cristobalite is best resolved in CL 142 images; herein, we refer to 'CL light' and 'CL dark' layers. 143 Cristobalite is readily discernible in CL images of LDG (Fig. 1B); grains in this study 144 range from round to oval-shaped, with most 0.25 to 0.5 mm in diameter. All cristobalite grains 145 observed (approximately 25) are zoned in CL, with distinct cores and rims (Fig. 2). Rims are 146 generally about \sim 50 µm wide, and uniformly brighter in CL than cores. The CL dark cores have 147 geometric shapes, with some nearly hexagonal (Fig. 2A-C). Linear features that are dark in CL 148 radiate from the center of cores in some grains and terminate at the core-rim boundary (Fig. 149 2A,C). Other features include narrow enveloping layers with dark CL emission along grain 150 boundaries (Fig. 2C) and cracks (Fig. 2B). The hexagonal shapes and linear features in LDG 151 cristobalite (Fig. 2A-C) bear a striking resemblance to experimentally nucleated euhedral β-152 cristobalite grains in vitreous silica (Fig. 2D) (Wagstaff, 1968). Eleven cristobalite grains from 153 three samples of LDG were analyzed by EBSD, and all have core-rim microstructures. A grain 154 from sample LDG-2018-4 (hereafter grain L4) was chosen as a representative example of LDG 155 cristobalite for detailed analysis based on the presence of a well-developed core-rim 156 microstructure. 157 Analysis of cristobalite grain L4 and surrounding LDG 158 Secondary and backscattered electron imaging (SE, BSE). Grain L4 is round,

approximately ~250 μ m across, and contains a network of fractures (Fig. 3A). All fractures

truncate other fractures; none traverse the entire grain, nor do they extend into LDG (Fig. 3A).
Subtle BSE contrast variation in the center of the grain suggests the presence of a core-rim

162 microstructure (Fig. 3B).

163 **Cathodoluminescence (CL) imaging.** A distinct core-rim microstructure is visible in 164 CL, with the boundary delineated by a narrow CL light feature, and the core darker than the rim 165 (Fig. 3C). The upper two-thirds of grain L4 is in a CL light layer, and the lower one-third of the 166 grain is in a CL dark layer (Fig. 3C). Superimposed on the broad CL layering are discrete light 167 and dark wispy layers at the $\sim 10 \,\mu m$ scale that can be traced uninterrupted across the glass-rim 168 boundary (Fig. 3C, top left). The cristobalite rim has a conspicuous internal web-like structure, 169 defined by a network of irregular $\sim 5 \,\mu m$ shapes with CL light boundaries. In contrast, the core 170 consists of broad areas of overall subdued CL intensity. There are also discrete, linear, CL light 171 features in the core, some of which are sub-parallel to the core-rim boundary. Subtle evidence of 172 LDG layering is locally observed in the core.

173 Energy dispersive spectroscopy (EDS). Elements detected by EDS include Si, O, Al, 174 Fe, and Ti; however, only Al displays resolvable spatial distribution variations (Fig. 3D). In 175 general, areas of relatively high Al abundance (bright) are dark in CL, whereas areas of relatively 176 low Al abundance (dark) are light in CL (Fig. 3C,D). As in the CL image, discrete ~10 μm wide 177 Al-rich and Al-poor layers in the glass are visible as uninterrupted features across the rim of 178 grain L4 (Fig. 3D, top left). In contrast to the glass-rim boundary, Al layering is largely truncated 179 at the core-rim boundary. In the core, vestiges of the broad Al layering are visible; however, the 180 most prominent features are concentric and continuous zones $\sim 5 \,\mu m$ wide characterized by 181 alternating layers of relatively high Al abundance (bright) and relatively low Al abundance

(dark) that are discordant to layering. The Al zoning pattern in the core forms a rectangular shapewith accentuated corners that resembles a crystalline form (Fig. 3D).

184 Electron backscatter diffraction (EBSD). Orientation data show that grain L4 exhibits 185 a distinct $\sim 150 \,\mu\text{m}$ diameter core and $\sim 50 \,\mu\text{m}$ wide rim with a well-defined boundary (Fig. 4A). 186 Fractures are not concentrated in either the core or rim, and do not seem to be influenced by the 187 core-rim boundary (Fig. 4A). Fracture-bound subgrains are essentially undeformed (<1° of 188 internal misorientation), and the same orientation domains across fractures are misoriented by 189 <1°. No evidence of crystal-plastic deformation or significant rigid block rotation by fracturing 190 was detected. 191 Both core and rim of grain L4 are pervasively twinned. The core consists of two regions, 192 each defined by three sets of intergrown twins (Fig. 4B, labelled 1-3, and 4-6). In each core 193 region, one twin orientation is prevalent (i.e., 2 and 4), and hosts the other two twins. Boundaries 194 between twin domains are straight and terminate at fractures (Fig. 4B). Each set of intergrown 195 twins is related by a systematic misorientation of $90^{\circ}/<110>$ (Fig. 4C,D). The misorientation 196 relation results in shared directions for several crystallographic axes, including [001] and [110], 197 [110], [100] and [112], and [112] (Fig. 4C,D). The two twin regions in the core (1-3 and 4-6) 198 also share crystallographic directions, including [100] and [112] (Fig. 4C,D). Analysis of 199 orientation data on stereonets, in conjunction with geometry of twin boundaries, confirms the 200 presence of six discrete {112} twin orientations in each core region (labelled a-f in Fig. 5A-C). 201 The boundary between the core regions (Fig. 5D) is defined by a $70^{\circ}/(100)$ misorientation 202 relation, which identifies it as a shared {011} twin plane (Fig. 5E). Twin orientations in the rim 203 include both {112} and {011}, similar to the core. A notable feature in the rim are elongate

204 dendritic twin domains that are orientated orthogonal to the core-rim boundary (Fig. 5F).

205 Individual twins in the rim can be traced across fractures.

206	Time-of-flight secondary ion mass spectrometry (ToF-SIMS). Fine-scale Al
207	distribution in grain L4 was further investigated using ToF-SIMS mapping. The spatial
208	distribution of other elements, including Si and O, was homogenous in mapped areas, apart from
209	regions of high Al. Six 15 x 15 μ m maps of Al distribution were made in the rim (n=1), the rim-
210	core boundary ($n=3$), and in the core ($n=2$); these areas were chosen to evaluate if features
211	visible in CL, EDS, and orientations maps are correlated (Fig. 6A, E). The ToF-SIMS maps
212	reveal two types of Al distribution. In the rim (Fig. 6B), Al forms a discrete network of irregular
213	shapes, each ~5 μ m across, similar to the network of bright features visible in CL (6A).
214	Comparison with orientation data shows that the ToF-SIMS Al map correlates to boundaries of
215	${\sim}5$ µm-sized cristobalite grains in the rim (Fig. 6A, IPFz). The width of Al-enriched regions is
216	approximately 0.2 μ m. In contrast, ToF-SIMS Al maps in the core show linear features (Fig. 6C)
217	and/or discrete Al-rich spots 0.1-1.0 μ m across, some of which form arrays (Fig. 6D). Linear
218	features defined by Al in the core correlate to bright features visible in BSE, CL, and EDS Al
219	maps, and are not coincident with grain boundaries (Fig. 6A,C-D). The spatial distribution of
220	discrete Al hot-spots in the core (Fig. 6C,D) appears to correlate to both sub-vertical (Fig. 6A,C)
221	and sub-horizontal (Fig. 6A,D) bands in the EDS Al map that form part of the oscillatory zoning
222	pattern (Fig. 3D).
223	The ToF-SIMS maps of the core-rim boundary (Fig. 6E-H) reveal the presence of
224	elongate, ~5 μ m wide shapes up to ~10 μ m long, defined by curved, semicontinuous high Al

- lines both normal (Fig. 6F) and sub-parallel (Fig. 6G,H) to the core-rim boundary. The Al
- abundance inside the elongate shapes is comparatively low and homogeneous, in contrast to

adjacent rim domains, which consist of high Al networks similar to those described above (Fig.
6B). The high Al boundaries are partially resolved in the EDS-Al map (Fig. 6E-EDS), which
suggests the features are part of oscillatory growth bands.

- 230 Major and minor element analysis (EMPA). Thirty EMPA analyses on sample LDG-
- 231 2018-4 include 21 on glass (Table 1) and 9 on cristobalite grain L4 (Table 2). Of 12 elements
- analyzed, only Si, Al, Fe, and Ti are at detectable levels in all analyses; other elements are
- variably or entirely below detection. Analytical totals for glass (98.6-101.1 wt.%) and cristobalite
- grain L4 (99.7-101.1 wt.%) indicate all major and minor elements were measured. Silica
- variations in LDG and cristobalite correlate to CL intensity (Fig. 7A,B); CL dark layers have
- approximately ~ 1 wt% lower silica values (average = 97.8 wt% SiO₂), whereas CL light layers
- are nearly pure silica (average = 99.1 wt\% SiO_2). In CL dark layers, abundances of other
- elements are elevated, including Al_2O_3 (average = 1.33 wt%), FeO (average = 0.22 wt%), and
- 239 TiO₂ (average = 0.14 wt%).

240 Nine EMPA analyses of cristobalite grain L4 include four spots in the core and five spots

in the rim, and provide values averaged over the 10 µm beam diameter (Fig. 8A). Among all spot

analyses on cristobalite, average values for SiO₂, Al₂O₃, FeO, and TiO₂ in both domains (Fig.

- 243 8B; Table 2) are similar to average values of LDG (Table 1). However, when EMPA analyses
- are grouped by CL intensity (e.g., CL dark cores and rims vs. CL light cores and rims) (Fig. 8B.
- lower panel), a bimodal population emerges, with CL dark domains yielding higher Al₂O₃ values
- 246 (average = $1.71 \text{ wt\% Al}_2\text{O}_3$) than values from CL light domains, (average = $0.50 \text{ wt\% Al}_2\text{O}_3$)
- 247 (Table 2). Values for FeO and TiO₂ follow similar trends, with higher values in CL dark areas
- and lower values in CL light areas. In general, minor element abundances in cristobalite are
- similar to cristobalite in other LDG samples (Greshake et al., 2010, 2018) (Fig. 8B, lower panel).

250	Trace element analysis (LAICPMS). Forty-five LAICPMS spot analyses, each 50-µm-
251	diameter, were made, including 25 on glass (Table 3) and 20 on cristobalite grain L4 (Table 4).
252	Ten analyses (spots 1-10) were done in a 0.9 mm linear transect across layers that contain grain
253	L4, with a close spatial relationship to EMPA analyses (e.g., Fig. 7B). The other 15 analyses
254	were in random spots near grain L4. Abundance patterns for most elements in LDG correlate to
255	CL intensity, with higher abundances in CL dark layers and lower abundances in CL light layers
256	(Fig. 7B,C). Abundances of 37 elements in LDG indicate three are present at >1000 ppm (Al, Fe,
257	Ti), two at 100-1000 ppm (K, Zr), seven at 10-100 ppm (Na, Mg, Ca, Sr, Ba, La, Ce), 19 at 1-10
258	ppm (Li, B, Sc, V, Cr, Mn, Cu, Zn, Y, Nb, Hf, Pb, Th, U, Nd, Pr, Sm, Gd, Dy), and six <1 ppm
259	(Co, Ni, Rb, Eu, Er, Yb). Element abundances in LDG and cristobalite grain L4 are similar; both
260	materials are variably depleted relative to upper continental crust (Fig. 9A). The most depleted
261	elements include Na, Mg, K, Ca, and Rb; the least depleted include B, Zr, and Hf. Several
262	elements are enriched in cristobalite over LDG, including Co, Ni, and Cu.
263	The largest variation in element abundance, for both LDG and cristobalite, occurs
264	between CL dark and CL light layers (e.g., Fig. 8A). Total minor/trace element abundance varies
265	by nearly a factor of two between CL light layers (average = 6300 ppm) and CL dark layers
266	(average = 11,700 ppm) (Table 3). A similar a range occurs between CL light layers in
267	cristobalite (average = 6705 ppm) and CL dark layers (average = 13,758 ppm) (Fig. 8A; Table
268	4). Covariations of Al and Fe correlate to CL intensity, rather than domain (i.e., core vs. rim).
269	Average values for Al ₂ O ₃ from LAICPMS analyses agree well with those derived by EMPA for
270	cristobalite grain L4 for both CL dark layers (1.7±0.23 wt.%, 1σ, EMPA vs. 1.90±0.21 wt.%, 1σ,
271	LAICPMS) and CL light layers (0.5±0.09 wt.%, 1σ, EMPA vs. 0.77±0.18 wt.%, 1σ, LAICPMS).
272	No evidence of core-rim geochemical zonation was detected (Fig. 8C).

273	Inclusions in cristobalite. The oscillatory zoning pattern defined by Al in the core of
274	grain L4 (Fig. 3D, 6C,D) was further investigated. Close inspection with BSE imaging revealed
275	that the ~1 μm Al 'hot spots' visible in the core by EDS and ToF-SIMS (Fig. 10A) consist of
276	parallel arrays of aligned inclusions (Fig. 10B). The arrays are sub-parallel to the core-rim
277	boundary (Fig. 4A), and cross-cut twins. Inclusions are up to \sim 500 nm across, and most appear
278	polyphase (Fig. 10B,C). The inclusions are Al-rich as measured by EDS (Fig. 10D). Attempts to
279	identify the inclusions using a 20 nm EBSD spot size were unsuccessful; this may be due to
280	recessed surfaces from preferential polishing, lack of crystallinity, or other effect. Mullite
281	inclusions were previously reported in LDG cristobalite (Greshake et al., 2018); inclusions
282	identified here are tentatively interpreted as mullite, although confirmation requires further
283	study. Both EMPA and LAICPMS spot analyses may have incorporated some of these
284	inclusions.
285	DISCUSSION
286	Aspects of LDG formation
287	Duration and temperature of melting. Given that impact-induced melting is the most
288	widely favored mechanism for generation of LDG, quartz in the precursor would have been
289	rapidly superheated above its melting temperature. Numerical modelling of near-surface
290	radiative heat transfer generated by different impact scenarios suggests melting lasted from 1 to 7
291	minutes, producing a layer up to 10 cm thick, which solidified after 8 minutes (Svetsov et al.,
292	2020). Earlier models featured LDG forming a >1 m thick sheet (e.g., Seebaugh et al., 1985).
293	The Svetsov et al. (2020) model features silica melting at ~2025 °C, whereas at
294	equilibrium, silica melting occurs at 1726 °C (Swamy et al. 1994). Experiments involving rapid
295	superheating of quartz show that silica melt can form at 1550 °C (Ainslie et al., 1961); melting of

296	the LDG precursor could thus have begun by ~1550 °C (e.g., Greshake et al., 2010). Mineral-
297	based observations support the idea that the LDG precursor experienced temperatures in excess
298	of 1550 °C (Fig. 11). The presence of Al-rich orthopyroxene melt by ~1550 °C (Greshake et al.,
299	2010), decomposition of kaolinite by 1600 °C (Greshake et al., 2018), zircon dissociation by
300	1675 °C (Kleinmann, 1969; Cavosie and Koeberl, 2019), and rutile melting by ~1800 °C
301	(Greshake et al., 2018) are consistent with modelled temperatures >2000 °C (Svetsov et al.,
302	2020), which implies at least \sim 300 °C of superheating above the silica liquidus.
303	Porosity and layering in LDG. Dilation studies show LDG has a relatively open
304	structure, with thermal and compositional characteristics similar to Type III silica glass
305	(Brückner, 1970; Frischat et al., 1984, 1989). The LDG glass no effective porosity, other than
306	bubbles in some samples (e.g., Seebaugh et al., 1985). Annealing experiments on silica glass
307	powder (5-25 μm spheres) found no reduction in porosity from 1200 to 1350 °C; however, above
308	1550 C°, the spheres sintered into non-porous glass in 5 to 10 minutes (Breneman and Halloran,
309	2014). This observation may have significance on minimum temperature and heating duration if
310	the source was porous (e.g., Sighinolfi et al., 2020). The LDG contains ubiquitous layering
311	visible in CL and element distribution maps (Gucsik et al., 2004, Greshake et al., 2010; this
312	study); the layering likely reflects mineralogical heterogeneity of the precursor. The observation
313	that LDG layering is incorporated within cristobalite crystals (Fig. 3) establishes that cristobalite
314	formed after the layering.
315	LDG glass transition. As a nearly pure silica superheated melt in contact with
316	atmosphere, LDG would have experienced rapid supercooling, producing a highly viscous state.
317	The glass transition temperature (T_g) is the temperature at which supercooled melt and glass are
318	in metastable equilibrium (e.g., Richet et al., 1982); the structural state of a supercooled melt is

319	locked in at T _g . Devitrification of LDG would have occurred if melt temperature was held at or
320	above Tg during cooling; however, TEM analysis found no evidence of devitrification (Pratesi et
321	al., 2002). Below Tg, increased viscosity would have prohibited element mobility and
322	crystallization. Estimates of T_g for synthetic silica glass range from 1000 °C to 1200 °C, the
323	latter for densified glass (Brückner, 1970). For LDG, estimates for T_g of ~1200 °C have been
324	proposed (fictive temperature, Frischat et al., 1984). However, T _g is a function of cooling rate;
325	rapidly supercooled silica has a higher T _g than slowly cooled silica (Brückner, 1970; Moynihan,
326	1974). For vitreous silica, values for T_g of 1207 °C (slow cooling) and 1327 °C (rapid cooling)
327	have been experimentally determined (Richet et al., 1982). Determining which T_g value is
328	appropriate for LDG (Fig. 11) from the range of estimates (1000 to ~1325 °C) depends on the
329	cooling rate assumed.
330	Evidence for β-cristobalite in LDG
331	Twinning and phase heritage analysis. Detecting the former presence of ß-cristobalite
332	in LDG is achievable through analysis of twin orientation relations in α -cristobalite by applying
333	a concept known as 'phase heritage' (Timms et al., 2017a). The basis of phase heritage analysis
334	is that systematic crystallographic orientation relations among co-existing domains of a given
335	phase (e.g., twins or neoblasts) are only established through transformation of a former
336	polymorph that typically is no longer present (Cayron et al., 2006). The concept of phase
337	heritage analysis has been applied in TEM studies (e.g., Nord, 1992, 1994; Kerschhofer et al.,

2000; Lussier et al., 2017), and more recently, using EBSD. EBSD-based phase heritage

- applications have provided evidence for the former existence of high-pressure and/or
- temperature phases for zirconia (Humbert et al., 2010; Timms et al., 2017a,b; White et al., 2018),

zircon (e.g., Cavosie et al., 2016, 2018a,b; Erickson et al., 2017), monazite (Erickson et al.,

- 342 2019), and Ti-bearing phases (Pearce and Escolme, 2021).
- 343 Twinning in cristobalite results from loss of symmetry during the β (cubic) to α
- (tetragonal) transformation, which changes the space group $(Fd\overline{3}m \rightarrow P4_32_12)$, point group
- 345 $(m\overline{3}m \rightarrow 422)$, and lattice $(cF \rightarrow tP)$ (Nord, 1992). Up to 12 twin domains may form during the β - α
- transformation (Hatch and Gosse, 1991). The most common, termed pseudomerohedral twins by
- Nord (1992, 1994), result from loss of the 3-fold rotation axis. Other twins result from loss of
- 348 center of symmetry (merohedral) and translational symmetry (antiphase domains) (Nord, 1992).
- 349 Studies using TEM have reported twin orientations of $\{112\}$, $\{200\}$, $\{011\}$, and $\{012\}$ in α -
- cristobalite (e.g., Christie et al., 1971; Withers et al., 1989). In addition, an EBSD study of
- dendritic cristobalite reported {111} twins (Zhao et al., 2008).
- 352 Analysis of orientation data in LDG cristobalite, combined with geometric arguments,
- allowed confirmation of the dominant twin orientation as {112} (e.g., Withers et al., 1989), with
- each twin defined by a systematic $90^{\circ}/<110>$ misorientation relationship (Dollase, 1965). We
- identified {112} pole clusters corresponding to the orientation of the trace for each twin (Fig. 5),
- as they intersect lines orthogonal to the trace; pole clusters for {111} (Zhao et al., 2008), were
- found to be systematically offset from the predicted twin plane by $\sim 5^{\circ}$. In LDG cristobalite, the
- 358 presence of six {112} twins in each core domain (Fig. 5) match that predicted to form during
- transformation from β to α -cristobalite (Nord, 1992), and is consistent with the core originally
- 360 consisting of either a single twinned β-cristobalite crystal, or two intergrown crystals, one
- represented by domains 1-3, and the second by domains 4-6.
- 362 Coincidence of crystallographic directions in each core twin domain (Figs. 4, 5) (e.g.,
- domains 1-3 and 4-6) follows the predicted orientation of crystallographic axes resulting from

364	the β - α transformation (Fig. 12). A single cubic β -cristobalite crystal will produce 3 tetragonal α -
365	cristobalite variants (Withers et al., 1989). The c-axis and [110] direction of each tetragonal
366	variant are orthogonal, resulting in shared orientations for [001] and {110}, {110}, {100} and
367	{112}, and {112} (Fig. 4c). These observations support orientation relationships of $<001>\beta =$
368	$<001>\alpha$, $<001>\beta$ = $<110>\alpha$, and $<110>\beta$ = $<110>\alpha$. Alignment of three orthogonal $<001>$
369	directions of the tetragonal phase (Figs. 4, 5) with <001> of the cubic parent is analogous to that
370	described for the cubic to tetragonal transformation of zirconia (Timms et al., 2017b).
371	Oscillatory growth zoning. Distribution of Al in cristobalite cores defines an oscillatory
372	pattern resembling growth zoning in igneous minerals that crystallize from melt. The Al
373	distribution pattern in the core of grain L4 consists of multiple concentric and generally
374	continuous layers of variable thickness that oscillate in relative Al abundance and preserve a
375	crystalline form (Figs. 3D, 6A,E). Our investigation of the oscillatory pattern in a region of high
376	Al abundance (Fig. 10) demonstrated that Al 'hot spots' in EDS and ToF-SIMS maps are arrays
377	of <500 nm sized Al-rich inclusions. Inclusion arrays in the core do not correlate to twin planes
378	(Fig. 10B), but are parallel to the well-defined nearby core-rim boundary (Fig. 4A). The Al-rich
379	inclusions are thus interpreted to have been incorporated during growth of ß-cristobalite.
380	Elsewhere in the core, elongate patterns of Al enrichment defined by continuous curvilinear
381	bands visible in ToF-SIMS maps (Fig. 6F-H) appear to represent crystal edges or interfaces
382	where Al was rejected during growth (e.g., Watkins et al., 2009).
383	Diffusion of Al in nearly pure silica (quartz and amorphous) at high temperature (~1000
384	°C) is slow (10^{-24} to 10^{-22} m ² s ⁻¹ , Francois-Saint-Cyr et al., 2003; Schipper et al., 2020); Al is also
385	assumed to diffuse slowly in cristobalite. Studies of trace element incorporation in magmatic
386	crystals describe processes that can enrich trace elements along planar growth interfaces

387	(Hammer, 2008). One is a diffusive boundary layer processes, whereby slowly diffusing
388	incompatible elements become enriched along the melt-crystal interface due to crystal growth
389	rates exceeding rates at which incompatible elements diffuse away into the melt; when the
390	enriched layer is incorporated into the crystal under local equilibrium conditions, the resulting
391	abundance is beyond that predicted for equilibrium partitioning based on the bulk composition
392	(Milman-Barris et al., 2008). Another process is solute trapping, which happens when rapidly
393	growing crystals incorporate melt inclusions dominated by the incompatible element(s). In this
394	process, observed element enrichment is also not representative of abundance in the bulk
395	material (Milman-Barris et al., 2008). Solute trapping can be caused by high growth rates during
396	large supercooling, and also during interface-controlled growth (Hammer, 2008).
397	The Al-rich inclusions documented here (Fig. 10) are preferentially concentrated in areas
398	corresponding to high Al abundance layers in LDG (Fig. 3D), whereas discrete, continuous
399	linear Al enrichments occur outside of high Al abundance layers (Fig. 6). The oscillatory zoning
400	pattern thus appears to record local redistribution of Al by diffusive boundary processes at the
401	crystallization front in low Al abundance layers, whereas solute trapping of Al-rich inclusions
402	occurred in high Al abundance layers. Both processes are viewed as manifestations of
403	disequilibrium partitioning resulting from rapid growth of cristobalite in heterogeneously layered
404	silica melt.
405	Considerations for β-cristobalite growth in LDG

406 Factors governing crystallization. Important factors controlling crystallization of
407 silicate melts include (1) reactions at the crystal-melt interface, (2) stability of the planar
408 interface, (3) element diffusivity at the interface, (4) removal of latent heat, and (5) flow of bulk

409 material (convection) (Kirkpatrick, 1975, 1981; Hammer, 2008). In the case of LDG cristobalite,

410 which is compositionally nearly identical to LDG, diffusivity of silica was not rate-limiting, but 411 diffusivity of minor elements such as Al would have influenced their incorporation into 412 cristobalite. Convective heat flow or flow of bulk material are unlikely to have occurred in the 413 thin (up to 10 cm) modelled thickness of LDG (e.g., Svetsov et al., 2020). 414 Former β -cristobalite grains in LDG are viewed as either having crystallized as magmatic 415 grains in static melt when LDG was a viscous silica liquid, or alternatively, are a product of 416 devitrification after LDG solidified but resided at a temperature above T_g. At temperatures below 417 T_g , melt would not be present, viscosity would have inhibited element mobility, and 418 crystallization of cristobalite with oscillatory growth zoning would not have been possible. 419 Below we discuss observational and experimental data to evaluate processes that may have 420 affected crystallization of cristobalite in LDG. 421 Grain morphology, growth mechanisms, effects of supercooling. Cores of LDG 422 cristobalite are interpreted to have formed as euhedral β -cristobalite crystals with planar 423 boundaries (Fig. 4A). Such characteristics are typical of interface-controlled growth, which 424 occurs at high-temperature (near liquidus) with low degrees of supercooling, where diffusivity is 425 high and growth rate is low (Kirkpatrick, 1975, 1981; Jambon et al., 1992; Hammer 2008). In 426 contrast, rims consist of dendritic grains (Fig. 5F); dendrites are typical of diffusion-controlled 427 growth at high degrees of supercooling where growth rate is high (Christensen et al., 1973; 428 Kirkpatrick, 1975; Jambon et al., 1992). Individual grains in the rim range from 5-10 µm, with 429 discrete twinned domains up to \sim 50 µm long that radiate orthogonally from the core (Fig. 5F). 430 The boundary between the core and rim is discrete rather than gradational (Fig. 4A), indicating 431 the rim formed as an epitaxial overgrowth.

432	The core-rim microstructure of LDG cristobalite records a two-stage growth history.
433	However, it is possible that increased supercooling alone may have triggered an instability of the
434	initial planar interface, leading to precipitation of dendritic rims (Jackson, 1967; Kirkpatrick,
435	1975). The physical process(es) that drove the change in supercooling regime for LDG is not
436	known, such as whether it was a gradual or abrupt process, and whether it was triggered by
437	factors external (e.g., environmental) or internal (e.g., interface effects) to LDG. Distinctive
438	cristobalite core-rim microstructures are evident in published images (e.g., Spencer, 1939;
439	Greshake et al., 2010; Fröhlich et al., 2013), indicating the petrogenetic conditions described
440	here occurred throughout the LDG field. The sequence of interface-controlled core growth
441	followed by dendritic rim growth for LDG cristobalite is opposite to descriptions of oscillatory P
442	zoning in olivine, whereby crystallization of dendrites by diffusion-controlled growth transitions
443	to interface-controlled growth (Welsch et al., 2014; Watson et al., 2015). The contrasting growth
444	processes between LDG cristobalite and magmatic olivine may reflect differences in degree of
445	superheating, duration at high temperature, degree of supercooling, or other factors.
446	The crystalline form defined by Al growth zoning in the core of grain L4 merits further
447	mention. The Al distribution pattern on the polished surface is a four-sided intersection of a
448	polyhedron with conspicuously 'stretched' corners and concave sides (Fig. 3D). The morphology
449	of cubic crystals grown by surface nucleation-controlled growth at relatively large undercooling
450	has been described in the context of a surrounding three-dimensional diffusion field,
451	supersaturation, and interface growth kinetics in a static (non-convecting) melt (Kuroda et al.,
452	1977; Kirkpatrick, 1981). Growth of cubic crystals under these conditions preferentially occurs
453	at corners or edges, relative to faces, resulting in the interface 'sloping down' away from corners,
454	and towards face centers. Diagrams of such crystals in Kuroda et al. (1977) and Kirkpatrick

455 (1981) with 'stretched' corners and concave sides look remarkably similar to the form defined by 456 Al in the core of cristobalite grain L4 (Fig. 3D). These studies provide cogent descriptions of a 457 kinetic process that explains the morphology of growth zoning in cores of LDG cristobalite, and 458 are in agreement with our interpretation of interface-controlled growth. 459 **Nucleation of cristobalite in LDG.** Observational data support formation of β -460 cristobalite in LDG by internal (homogeneous) nucleation, including: (1) all cristobalite 461 occurrences reported since Spencer (1939) are internal to LDG; we are not aware of occurrences 462 on free surfaces; (2) there is little to no porosity in LDG; bubbles (e.g., Seebaugh et al., 1985), 463 are not ubiquitously associated with cristobalite (c.f., Kleinmann, 1969); (3) layering in LDG is 464 incorporated within cristobalite grains; (4) the extent of fusion indicates remnant quartz grains 465 from the precursor are unlikely nucleation sites; no 'seed' crystals or other objects have been 466 observed in cores of cristobalite grains that record evidence of heterogeneous nucleation. 467 If rapidly heated to >2000 °C (Fig. 11), the LDG precursor would have experienced at 468 least 300 °C of superheating to superliquidus temperatures. Superheating, followed by rapid 469 supercooling, is known to depolymerize silicate melts (Hammer, 2008), and likely inhibited 470 extensive nucleation of cristobalite. In basaltic liquids, the magnitude of superheating, rather 471 than its duration, is the most significant effect on delayed nucleation (Kirkpatrick, 1981). 472 Further, if LDG was supercooled as a structurally unrelaxed melt (Frischat et al., 1984, 1989), 473 delayed nucleation may have driven supersaturation, resulting in accelerated cristobalite growth 474 (Hammer, 2008). 475 **Temperature of cristobalite crystallization.** The maximum temperature for cristobalite 476 crystallization is ~1726 °C (Swamy et al. 1994), however most silicate melts require some

477 degree of undercooling to trigger crystallization (e.g., Kirkpatrick, 1975, 1981). Coarse

cristobalite cores imply a relatively low degree of supercooling, compared to the dendritic rims.
The crystallization temperature of cristobalite may have been substantially below the liquidus
(i.e., Ainslie et al., 1961); it could have crystallized within the thermodynamic stability field
(1726 to 1470 °C), or metastably at lower temperature.
Of relevance to crystallization temperature of LDG cristobalite is the observation that

483 experimentally nucleated β-cristobalite grains in vitreous silica from 1350-1620 °C (Wagstaff,
484 1968) had a near-hexagonal form (in 2D), a shape consistent with polished octahedra, and

485 further, that some contained linear features in a radial pattern (Fig. 2D). Both hexagonal-shaped

486 cores and linear radial features were observed in LDG cristobalite (e.g., Figs. 2, 3). The size of

487 the grain in Figure 2D is not given; however others from the same experiments are 200-500 μm

488 in diameter (Wagstaff, 1968), and thus comparable in size to those in LDG. The similar

489 morphological features of LDG cristobalite and experimentally nucleated β-cristobalite provides

490 support for the possibility that cores of LDG cristobalite grains may have crystalized at >1350 °C

491 (Fig. 11).

492 Cristobalite growth rate. Experimentally-derived crystallization rates of cristobalite in
493 fused silica include surface (heterogeneous) nucleation rates and internal (homogeneous)

494 nucleation rates, typically measured over durations from hours to days; internal nucleation rates

495 for cristobalite (e.g., Wagstaff, 1968, 1969) are slower than surface nucleation rates (e.g., Ainslie

496 et al., 1961). Crystallization rates for internal nucleation of β -cristobalite in vitreous silica ranged

497 from 0.13 μm/minute at 1675 °C (Fig. 11) to 0.02 μm/minute at 1475 °C (Wagstaff, 1969).

498 These values overlap crystallization rates in siliceous melts (10^{-9} to 10^{-13} ms⁻) summarized by

499 Watson et al. (2009). Using the fastest cristobalite crystallization rates from Wagstaff (1969),

500 formation of a 150 μ m diameter grain would require 9.6 hours, which is far beyond the ~7

501 minute duration of liquid LDG suggested by modelling (Svetsov et al., 2020). In contrast, 502 formation of a 150 μ m diameter core within the modelled ~7 minute duration of liquid LDG 503 would require a crystallization rate of $\sim 20 \,\mu$ m/minute, two orders of magnitude faster than 504 experimental constraints (Wagstaff, 1968, 1969). Latent heat release may have influenced 505 growth rate of cristobalite in supercooled LDG. Rapidly grown crystals in supercooled melt can 506 release heat faster than it diffuses away from the interface, resulting in increased heating along 507 the interface, in a process known as recalescence. Recalescence has been described in silicate 508 melts (Whittington et al., 2021), however its effects on LDG cristobalite growth has not been 509 studied. The conditions under which LDG formed are extreme in terms of the degree of 510 superheating, the short duration of melting, and the degree of supercooling (e.g., Macris et al., 511 2018), all of which could have delayed nucleation and driven supersaturation of cristobalite, 512 which makes crystallization rate difficult to characterize. 513 **Comparison with other occurrences** 514 Igneous and volcanic rocks. Cristobalite is often described from obsidian (e.g., Swanson 515 and Fenn, 1986), where a magmatic origin at temperatures <1000 °C is inferred (see McArthur et 516 al., 1998). Cristobalite in Martian meteorite NWA 856, a basaltic shergottite, is interpreted to 517 have formed below ~1000 °C (Leroux and Cordier, 2006). A melt phase origin has been inferred 518 to explain cristobalite inclusions in garnet from granulite facies metagabbro (Darling et al., 519 1997). The cristobalite occurrences listed above represent metastable crystallization below

- 520 < 1000 °C, forming grains that do not share characteristics of LDG cristobalite.
- 521 Dendritic cristobalite in volcanic rocks is interpreted to form by devitrification (e.g.,
- 522 Kayama et al., 2009; Watkins et al., 2009), driven by significant undercooling (Lofgren et al.,
- 523 1971; Swanson et al., 1989; McArthur et al., 1998). Vapor phase deposition (VPD) of

524 cristobalite occurs in volcanic rocks that contain cavities (Rogers, 1922; Horwell et al., 2013; 525 Schipper et al., 2020) and in hydrothermal experiments (Grieg et al., 1936). However, VDP 526 could not have played a role in formation of cristobalite in LDG, given the low water content 527 (Frischat et al., 1984; Beran and Koeberl, 1997), zero effective porosity, and absence of cavities 528 with cristobalite. 529 High-temperature melts. Ferrière et al. (2009) described two high temperature 530 processes that form β-cristobalite in impact melt rocks. The first involves a solid-state 531 transformation of α -quartz to diaplectic glass, followed by crystallization of β -cristobalite at 532 high-temperature (>1000 °C). The second mechanism involves a solid-liquid transformation of 533 α-quartz to lechatelierite at high-temperature (>1700 °C), from which β-cristobalite crystallizes. 534 The solid-liquid transformation of α -quartz to lechatelierite, followed by crystallization of β -535 cristobalite (Ferrière et al., 2009) seems most applicable, as LDG experienced near-total fusion. 536 Cristobalite has been reported in fulgurite (e.g., Crespo et al., 2009), however, a review of global 537 occurrences indicates cristobalite is rare in fulgurite (Pasek and Pasek, 2018). 538 A model for the formation of cristobalite in LDG 539 Most studies favour LDG originating from melting associated with meteorite impact, 540 although other mechanisms have been proposed (see Koeberl, 1997; Greshake et al., 2018). In 541 the context of a high-temperature origin scenario, LDG cristobalite has been proposed to result 542 from both magmatic processes (e.g., Greshake et al., 2018) and devitrification (e.g., Seebaugh et 543 al., 1985). We view the weight of observations as compelling evidence for magmatic growth of 544 LDG cristobalite cores; the origin of dendritic rims is less clear. Our model features a multi-stage 545 growth history of LDG cristobalite to explain formation of large, euhedral, oscillatory zoned 546 cores surrounded by dendritic rims (Fig. 13). The LDG source is constrained as a high-purity,

547	quartz-rich precursor (Fig. 13A); its nature (e.g., alluvium, eolian sand, sandstone, quartzite) has
548	been discussed elsewhere (e.g., Abate et al., 1999; Koeberl and Ferrière, 2019). Elemental
549	analyses in this study (Fig. 9A) show LDG is variably depleted relative to upper continental crust
550	(Taylor and McLennan, 1995), consistent with a mature, quartz-rich precursor. The composition
551	of LDG in this study (Fig. 9A) is similar to other occurrences (Fig. 9B) (Koeberl, 1997; Barrat et
552	al., 1997; Magna et al., 2011), demonstrating broad homogeneity of LDG. Less depleted
553	elements (Fig. 9A, arrows) may record accessory minerals in the precursor, including zircon (Zr,
554	Hf), rutile (Ti), chromite (Cr), tourmaline (B), aluminum silicate (Al), or possibly clay minerals
555	(Al, B).
556	The precursor was superheated by at least 300 °C and fused to a layered (Figs. 1-3,7;
557	Gucsik et al., 2004), nearly pure (~99 wt%) silica melt at high-temperature (Fig. 13B). The
558	presence of Al-bearing phases in the precursor, possibly kaolinite (Greshake et al., 2018) or
559	andalusite, created Al-rich and Al-poor layers (Fig. 3D; Greshake et al., 2010). The minimum
560	melt temperature of LDG (Fig. 11) is ~1550 °C (rapid quartz melting, Ainslie et al., 1960),
561	although actual melt temperature was likely hotter (Svetsov et al., 2020).
562	Numerical models suggest LDG existed as liquid for up to ~7 minutes (Svetsov et al.,
563	2020). In this time, euhedral crystals of β -cristobalite, with various types of growth zoning
564	defined by Al distribution, nucleated from the layered viscous melt in an interface-controlled
565	regime during modest supercooling (Fig. 13C). There are few constraints on β -cristobalite
566	crystallization temperature (Fig. 11); experimental results (Wagstaff, 1968) allow the possibility
567	that cristobalite crystallized from 1350-1650 °C. We cite ~1350 °C from Wagstaff (1968) as the
568	lowest temperature reported at which euhedral β -cristobalite crystals have been shown to
569	nucleate within vitreous silica as the best estimate for minimum temperature of β -cristobalite in

570 LDG (Fig. 13C), while acknowledging that β-cristobalite can form metastably at lower
571 temperatures.

572	Increased supercooling triggered the transition to a diffusion-controlled growth regime,
573	resulting in crystallization of dendritic ß-cristobalite rims as epitaxial overgrowths (Fig. 13D)
574	(e.g., Kirkpatrick, 1975; McArthur et al., 1998). Rim growth is assumed to have occurred within
575	the glass transition, from 1000 to ~1325 °C (e.g., Richet et al., 1982). The absence of
576	devitrification features in LDG at atomic scale (Pratesi et al., 2002) indicates rapid quenching.
577	The ß- to α -cristobalite transformation at ~270 °C resulted in a 4% volume reduction
578	(Dollase, 1965), creating fractures in LDG cristobalite (Fig. 13E). The final microstructure to
579	form was twinning (Fig. 13F). Twins extend across fractures in the rim, but not in the core,
580	suggesting twins in the rim formed before development of the fracture network. Twins in the
581	core formed subsequently, and are pinned by the fractures. The fracture network and twins likely
582	formed nearly simultaneously, given both are a consequence of the β - α transformation.
583	IMPLICATIONS
584	No other natural occurrence of cristobalite is comparable to that found in LDG, in terms
585	of host rock composition, growth zoning, and core-rim microstructure. Experimental data for ß-
586	cristobalite formation in vitreous silica represent reasonable analogues for cristobalite formation
587	in LDG, as both the kinetics (rapid melting) and composition (pure silica) appear applicable to
588	LDG. The model presented is consistent with a high-temperature impact origin of LDG (e.g.,
589	Kleinmann, 1969; Koeberl, 1997; Greshake et al., 2018; Koeberl and Ferrière, 2019; Cavosie and
590	Koeberl, 2019; Sighinolfi et al., 2020). Our study is the first to quantify a multi-stage growth
591	history involving ß-cristobalite from any environment. The cores of LDG cristobalite grains may

592	represent natural examples of liquidus growth of ß-cristobalite within its thermodynamic stability
593	field, although metastable growth <1470 °C cannot be fully ruled out.
594	We describe the first occurrence of oscillatory growth zoning in cristobalite, here
595	recorded by concentric variations in Al content. Oscillatory zoning is common in other minerals
596	(e.g., plagioclase, zircon), and its occurrence in LDG provides insight into incorporation of trace
597	elements in cristobalite at extreme temperatures (>1350 °C). Phase heritage analysis of twins in
598	LDG cristobalite using EBSD provided evidence that confirmed the former presence of ß-
599	cristobalite. Phase heritage analysis of zircon, monazite, and baddeleyite has identified former
600	polymorphs; our study shows that twinned cristobalite is also suitable for detecting polymorphs
601	that are no longer present.
602	ACKNOWLEDGEMENTS
603	Support was provided by the Space Science and Technology Centre, a Curtin Research
604	Fellowship, and the John de Laeter Centre at Curtin University. The GeoHistory laser ablation
605	Facility was enabled by AuScope and the Australian Government via the National Collaborative
606	Research Infrastructure Strategy. We thank O. Tschauner for editorial handling, and F. Yin, C.
607	Ma, and I. Baziotis for constructive comments.
608	REFERENCES CITED
609	Abate, B., Koeberl, C., Kruger, F.J., and Underwood, J.R. Jr. (1999) BP and Oasis impact
610	structures, Libya, and their relation to Libyan Desert Glass, in Dressler, B.O and Sharpoton, V.L.
611	(eds.) Large Meteorite Impacts and Planetary Evolution II, Boulder, Colorado, Geological
612	Society of America Special Paper, 339, 177-192.
613	

- 614 Ainslie, N.G., Mackenzie, J.D., and Turnbull, D. (1961) Melting kinetics of quartz and
- 615 cristobalite. Journal of Physical Chemistry, 65, 1718-1724.
- 616
- 617 Aramendia, J., Gomez-Nubla, L., Fdez-Ortiz de Vallejuelo, S., Castro, K., Murelaga, X., and
- 618 Madariaga, J.M. (2011) New findings by Raman microspectroscopy in the bulk and inclusions
- 619 trapped in Libyan Desert Glass. Spectroscopy Letters, 44, 521-525.
- 620
- 621 Barnes, V.E., and Underwood, J.R. Jr. (1976) New investigations of the strew field of Libyan
- desert glass and its petrography. Earth and Planetary Science Letters, 30, 117-122.
- 623
- Barrat, J.A., Jahn, B.M., Amosse, J., Rocchia, R., Keller, F., Poupea, G.R., and Diemer, E.
- 625 (1997) Geochemistry and origin of Libyan Desert glasses. Geochimica et Cosmochimica Acta,
- 626 61, 1953-1959.
- 627
- 628 Benzerara, K., Guyot, F., Barrat, J.A., Gillet, P., and Lesourd, M. (2002) Cristobalite inclusions
- 629 in the Tatahouine achondrite: Implications for shock conditions. American Mineralogist, 87,
- 630 250–1256.
- 631
- Beran, A., and Koeberl, C. (1997) Water in tektites and impact glasses by fourier-transformed
- 633 infrared spectrometry. Meteoritics and Planetary Science, 32, 211-216.
- 634
- Breneman, R.C. and Halloran, J.W. (2014) Kinetics of cristobalite formation in sintered silica.
- Journal of the American Ceramic Society, 97, 2272-2278.

637

- Brückner, R. (1970) Properties and structure of vitreous silica. I. Journal of Non-Crystalline
 Solids, 5, 123-175.
- 640
- 641 Cavosie, A.J., Koeberl, C. (2019) Overestimation of threat from 100 Mt-class airbursts? High-

642 pressure evidence from zircon in Libyan Desert Glass. Geology, 47, 609-612.

643

- 644 Cavosie, A.J., Timms, N.E., Erickson, T.M., Hagerty, J.J., and Hörz, F. (2016) Transformations
- to granular zircon revealed: Twinning, reidite, and ZrO₂ in shocked zircon from Meteor Crater
- 646 (Arizona, USA). Geology, 44, 703-706.

647

- 648 Cavosie, A.J., Timms, N.E., Ferrière, L., and Rochette, P. (2018a) FRIGN zircon- The only
- 649 terrestrial mineral diagnostic of high-pressure and high-temperature shock deformation.
- 650 Geology, 46, 891-894.
- 651
- 652 Cavosie, A.J., Timms, N.E., Erickson, T.M., and Koeberl, C. (2018b) New clues from Earth's
- most elusive impact crater: Evidence of reidite in Australasian tektites from Thailand. Geology,

654 46, 203-206.

655

658

<sup>Cayron, C., Artaud, B., and Briottet, L. (2006) Reconstruction of parent grains from EBSD data.
Materials Characterization, 57, 386-401.</sup>

659	Christensen, N.H., Cooper, A.R., and Rawal, B.S. (1973) Kinetics of dendritic precipitation of
660	cristobalite from a potassium silicate melt. Journal of the American Ceramic Society, 56, 557-
661	561.

662

663	Christie, J.M., Lally	, J.S., Heuer, A.H.	, Fisher, R.M.,	Griggs, D.T.	and Radcliffe,	S.V. (1971)
-----	-----------------------	---------------------	-----------------	--------------	----------------	--------	-------

664 Comparative electron petrography of Apollo 11, Apollo 12, and terrestrial rocks. Proceedings of

the Second Lunar Science Conference, 1, 69-89, New York, Pergamon.

- 666
- 667 Crespo, T.M., Lozano Fernandez, R.P., and Gonzalez Laguna, R. (2009) The fulgurite of Torre
- de Moncorvo (Portugal): description and analysis of the glass. European Journal of Mineralogy,
- 669 21, 783**-**794.
- 670
- 671 Damby, D.E., Llewellin, E.W., Horwell, C.J., Williamson, B.J., Najorka, J., Cressey, G., and
- 672 Carpenter, M. (2014) The α - β phase transition in volcanic cristobalite. Journal of Applied
- 673 Crystallography, 47, 1205-1215.
- 674
- Darling, R.S., Chou, I.-M., and Bodnar, R.J. (1997) An occurrence of metastable cristobalite in
- high-pressure garnet granulite. Science, 276, 91-93.
- 677
- 678 Dollase, W.A. (1965) Reinvestigation of the structure of low cristobalite. Zeitschrift für
- 679 Kristallographie, 121, 369-377.
- 680
- Erickson, T.M., Pearce, M.A., Reddy, S.M., Timms, N.E., Cavosie, A.J., Bourdet, J., Rickard,

- 682 W.D.A., and Nemchin, A.A. (2017) Microstructural constraints on the mechanisms of the
- transformation to reidite in naturally shocked zircon. Contributions to Mineralogy and
- 684 Petrology, 172(6), doi:10.1007/s00410-016-1322-0.
- 685
- 686 Erickson, T.M., Timms, N.E., Pearce, M.A., Cayron, C., Deutsch, A., Keller, L.P., and Kring,
- D.A. (2019) Shock-produced high-pressure (La,Ce,Th)PO₄ polymorph revealed by
- 688 microstructural phase heritage of monazite. Geology, 47, 505-508.
- 689 https://doi/org/10.1130.G46008.1.
- 690
- 691 Ferrière, L., Koeberl, C., and Reimold, W.U. (2009) Characterisation of ballen quartz and
- 692 cristobalite in impact breccias: new observations and constraints on ballen formation. European
- 693 Journal of Mineralogy, 21, 203–217.
- 694
- 695 Francois-Saint-Cyr, H.G., Stevie, F.A., McKinley, J.M., Elshot, K. Chow, L., and Richardson,
- 696 K.A. (2003) Diffusion of 18 elements implanted into thermally grown SiO₂. Journal of Applied
- 697 Physics, 94, 7433-7439.
- 698
- 699 Frischat, G.H., Klopfer, C., Beier, W., and Weeks, R.A. (1984) Some properties of Libyan
- 700 Desert Glasses. Journal of Non-Crystalline Solids, 67, 621-628.
- 701
- 702 Frischat, G.H., Schwander, R., Beier, W., and Weeks, R.A. (1989) High-temperature thermal
- r03 expansion of Libyan Desert Glass as compared to that of silica glasses and natural silicates.
- Geochimica et Cosmochimica Acta, 53, 2731-2733.

706	Fröhlich, F., Poupeau, G., Badou, A., Le Bourdonnec, F.X., Sacquin, Y., Dubernet, S.,
707	Bardintzeff, J.M., Véran, M., Smith, D.C., and Diemer, E. (2013) Libyan Desert Glass: New
708	field and Fourier transform infrared data. Meteoritics and Planetary Science, 48, 2517-2530.
709	
710	Greshake, A., Koeberl, C., Fritz, J., and Reimold, W.U. (2010) Brownish inclusion and dark
711	streaks in Libyan Desert Glass: Evidence for high-temperature melting of the target rock.
712	Meteoritics and Planetary Science, 45, 973-989.
713	
714	Greshake, A., Wirth, R., Fritz, J., Jakubowski, T., and Bottger, U. (2018) Mullite in Libyan
715	Desert Glass: Evidence for high-temperature/low-pressure formation. Meteoritics and Planetary
716	Science, 53, 467-481.
717	
718	Grieg, J.W., Merwin, H.E., and Shepherd, E.S. (1936) Notes on the volatile transport of silica.
719	American Journal of Science, 25, 61-73.
720	
721	Gucsik, A., Koeberl, C., Brandstätter, F., Libowitzky, E., and Zhang, M. (2004) Infrared, Raman,
722	and cathodoluminescence studies of impact glasses. Meteoritics and Planetary Science, 39, 1273-
723	1285.
724	
725	Hammer, J.E. (2008) Experimental studies of the kinetics and energetics of magma
726	crystallization. Reviews in Mineralogy and Geochemistry, 69, 9-59.
727	

- Hatch, D.M., and Ghose, S. (1991) The α - β phase transition in cristobalite, SiO₂. Physics and
- 729 Chemistry of Minerals, 17, 554-562.

730

- Heaney, P.J. (1994) Structure and chemistry of the low-pressure silica polymorphs. Reviews in
- 732 Mineralogy, 29, 1-40.

733

- Horwell, C.J., Williamson, B.J., Llewellin, E.W., Damby, D.E., and Le Blond, J.S. (2013) The
- nature and formation of cristobalite at the Soufriere Hills volcano, Montserrat: implications for
- the petrology and stability of silicic lava domes. Bulletin of Volcanology, 75, 696,
- 737 doi.org/10.1007/s00445-013-0696-3.

738

- 739 Humbert, M., Gey, N., Patapy, C., Joussein, E., Huger, M., Guinebretiere, R., Chotard, T., and
- Hazotte, A. (2010) Identification and orientation determination of parent cubic domains from
- relectron backscatter diffraction maps of monoclinic pure zirconia. Scripta Materialia, 63, 411-

742 414.

743

- Jackson, K.A. (1967) Current concepts in crystal growth from the melt. Progress in Solid State
 Chemistry, 4, 53-56.
- 746

in a tholeiitic basalt: An experimental study of melt inclusions in plagioclase. Chemical Geology,

749 96, 277-287.

Jambon, A., Lussiez, P., Clocchiatti, R., Weisz, J., and Hernandez, J. (1992) Olivine growth rates

751	Kayama, M., Nishido, H., and Ninagawa, K. (2009) Effect of impurities on cathodoluminescence
752	of tridymite and cristobalite. Journal of Mineralogical and Petrological Sciences, 104, 401-406.
753	
754	Keith, T.E.C., and Muffler, L.J.P. (1978) Minerals produced during cooling and hydrothermal
755	alteration of ash flow tuff from Yellowstone drill hole Y-5. Journal of Volcanology and
756	Geothermal Research, 3, 373-402.
757	
758	Kerschhofer, L., Schärer, U., and Deutsch, A. (2000) Evidence for crystals from the lower
759	mantle: baddeleyite megacrysts of the Mbuji Mayi kimberlite. Earth and Planetary Science
760	Letters, 179, 219–225.
761	
762	Kirkpatrick, R.J. (1975) Crystal growth from the melt: A review. American Mineralogist, 60,
763	798-814.
764	
765	Kirkpatrick, R.J. (1981) Kinetics of crystallization of igneous rocks. Reviews in Mineralogy, 8,
766	321-398.
767	
768	Kleinmann, B. (1969) The breakdown of zircon observed in the Libyan desert glass as evidence
769	of its impact origin. Earth and Planetary Science Letters, 5, 497-501.
770	
771	Koeberl, C. (1997) Libyan Desert Glass: Geochemical composition and origin. In V. De
772	Michele, Ed., Proceedings of the Silica '96 Meeting on Libyan Desert Glass and related desert
773	events, p. 121–131. Segrate (Milan), Pyramids.

774

- 775 Koeberl, C. (2000) Confirmation of a meteoritic component in Libyan Desert Glass from
- osmium-isotopic data. Meteoritics and Planetary Science, 35, A89–A90.

777

- Koeberl, C. and Ferrière, L. (2019) Libyan Desert Glass area in western Egypt: Shocked quartz
- in bedrock points to possible presence of a deeply eroded impact structure in the region.
- 780 Meteoritics and Planetary Science, 54, 2398-2408.

781

- 782 Kuebler, K.E. (2013) A combined electron microprobe (EMP) and Raman spectroscopic study of
- the alteration products in Martian meteorite MIL 03346. Journal of Geophysical Research, 118,

784 347-368.

- 785
- Kuroda, T., Irisawa, T., and Ookawa, A. (1977) Growth of a polyhedral crystal from solution and
- its morphological stability. Journal of Crystal Growth, 42, 41-46.
- 788
- 789 Leroux, H. and Cordier, P. (2006) Magmatic cristobalite and quartz in the NWA 856 Martian
- meteorite. Meteoritics and Planetary Science, 41, 913-923.

791

- 792 Lofgren, G. (1971) Experimentally produced devitrification textures in natural rhyolitic glass.
- 793 Geological Society of America Bulletin, 82, 111-124.

- Lussier, A.J., Rouvimov, S., Burns, P.C., and Simonetti, A. (2017) Nuclear-blast induced
- nanotextures in quartz and zircon within Trinitite. American Mineralogist, 102, 445-460.

797

Macris, C.A., Asimow, P.D., Badro, J., Eiler, J.M., Zhang, Y., and Stolper, E.M. (2018) Seconds
after impact: Insights into the thermal history of impact ejecta from diffusion between
lechatelierite and host glass in tektites and experiments. Geochimica et Cosmochimica Acta, 241,
69-94.
Magna, T., Deutsch, A., Mezger, K., Skála, R., Seitz, HM., Mizera, J., Řanda, Z. and Adolph,
L. (2011) Lithium in tektites and impact glasses: Implications for sources, histories and large
impacts. Geochimica et Cosmochimica Acta, 75, 2137-2158.
McArthur, A.N., Cas, R.A.F., and Orton, G.J. (1998) Distribution and significance of crystalline,
perlitic and vesicular textures in the Ordovician Garth Tuff (Wales). Bulletin of Volcanology, 60,
260-285.
Milman-Barris, M.S., Beckett, J.R., Baker, M.B., Hofmann, A.E., Morgan, Z., Crowley, M.R.,
Vielzeuf, D., and Stolper, E. (2008) Zoning of phosphorus in igneous olivine. Contributions to
Mineralogy and Petrology, 155, 739-765.
Moynihan, C.T., Easleal, A.J., Wilder, J., and Tucker, J. (1974) Dependence of the glass
transition temperature on heating and cooling rate. Journal of Physical Chemistry, 78, 2673-
2677.

- 819 Nord, G.L. Jr. (1992) Imaging transformation-induced microstructures. Reviews in Mineralogy,
- 820 27, 455-508.
- 821
- 822 Nord, G.L. Jr. (1994) Transformation-induced twin boundaries in minerals. Phase Transitions,
- 823 48, 107**-**134.
- 824
- Pasek, M.A. and Pasek, V.D. (2018) The forensics of fulgurite formation. Mineralogy and
 Petrology, 112, 185-198.
- 827
- 828 Pearce, M. and Escolme, A (2021) Phase heritage during replacement reactions in Ti-bearing
- minerals. Contributions to Mineralogy and Petrology, 176, 21. https://doi.org/10.1007/s00410-
- 830 021-01775-8
- 831
- 832 Pratesi, G., Viti, C., Cipriani, C., and Mellini, M. (2002) Silicate-silicate liquid immiscibility and
- graphite ribbons in Libyan desert glass. Geochimica et Cosmochimica Acta, 66, 903-911.

834

- 835 Richet, P., Bottinga, Y., Denielou, L., Petitet, J.P., and Tequi, C. (1982) Thermodynamic
- 836 properties of quartz, cristobalite, and amorphous SiO₂: drop calorimetry measurements between
- 1000 and 1800 K and a review from 0 to 2000 K. Geochimica et Cosmochimica Acta, 46, 2639-
- 838 2658.

839

Rogers, A.F. (1922) A new occurrence of cristobalite in California. American Mineralogist, 30,
211-216.

843	Schipper, C.	I., Rickard, V	N.D.A.,	Reddy,	S.M., \$	Saxey,	D.W.,	Castro,	J.M.,	Fougerouse,	D.,
)	,	<i>,</i>	,	, ,	,	,	,	0,	

- 844 Quadir, Z., Conway, C., Prior, D.J., and Lilly, K. (2020) Volcanic SiO₂-cristobalite: A natural
- product of chemical vapor deposition. American Mineralogist, 105, 510-524.
- 846
- 847 Seebaugh, W.R., Kinser, D.L., Hoff, R., and Weeks, R.A. (1985) Cooling and crystallization
- rates of Libyan desert glass. Journal of Non-Crystalline Solids, 71, 387-395.
- 849
- 850 Shoval, S., Champagnon, B., and Panczer, G. (1997) The quartz-cristobalite transformation in
- 851 heated chert rock composed of micro and crypto-quartz by micro-Raman and FT-IR
- spectroscopic methods. Journal of Thermal Analysis, 50, 203-213.
- 853
- 854 Sighinolfi, G.P., Lugli, F., Piccione, F., Michele, V.D., and Cipriani, A. (2020) Terrestrial target
- and melting site of Libyan Desert Glass: New evidence from trace elements and Sr isotopes.
- 856 Meteoritics and Planetary Science, 55, 1865-1883.
- 857
- 858 Spencer, L.J. (1939) Tektites and silica-glass. Mineralogical Magazine, 167, 425-442.
- 859
- 860 Svetsov, V., Shuvalov, V. and Kosarev, I. (2020) Formation of Libyan desert glass: Numerical
- simulations of melting of silica due to radiation from near-surface airbursts. Meteoritics and
- 862 Planetary Science, 55, 895-910.
- 863

- 864 Swaenen, M., Stefaniak, E.A., Frost, R., Worobiec, A., and Van Grieken, R. (2010) Investigation
- of inclusions trapped inside Libyan desert glass by Raman microscopy. Analytical and
- Bioanalytical Chemistry, 397, 2659-2665.
- 867
- 868 Swamy, V., Saxena, S.K., Sundman, B., and Zhang, J. (1994) A thermodynamic assessment of
- silica phase diagram. Journal of Geophysical Research, Solid Earth, 99 (B6), 11787–11794.

870

- 871 Swanson, S.E., and Fenn, P.M. (1986) Quartz crystallization in igneous rocks. American
- 872 Mineralogist, 71, 331-342.
- 873
- 874 Swanson, S.E., Naney, M.T., Westrich, H.R., and Eichelberger, J.C. (1989) Crystallization
- history of Obsidian Dome, Inyo Domes, California. Bulletin of Volcanolgy, 5, 161-176.
- 876
- 877 Taylor, S.R., McLennan, S.M. (1995) The geochemical evolution of the continental crust.
- 878 Reviews of Geophysics, 33, 241-265.
- 879
- 880 Timms, N.E., Erickson, T.M., Pearce, M.A., Cavosie, A.J., Schmieder, M., Tohver, E., Reddy,
- 881 S.M., Zanetti, M.R., and Nemchin, A.A. (2017a) A pressure-temperature phase diagram for
- zircon at extreme conditions. Earth-Science Reviews, 165, 185-202.
- 883
- Timms, N.E., Erickson, T.M., Zanetti, M.R., Pearce, M.A., Cayron, C., Cavosie, A.J., Reddy,
- 885 S.M., Wittmann, A., and Carpenter, P.K. (2017b) Cubic zirconia in >2370 °C impact melt
- records Earth's hottest crust. Earth and Planetary Science Letters, 477, 52-58.

887

888	Trepmann, C.A., Dellefant, F., Kaliwoda, M., Hess, KU., Schmahl, W.W., and Hölzl, S. (2020)
889	Quartz and cristobalite ballen in impact melt rocks from the Ries impact structure, Germany,
890	formed by dehydration of shock-generated amorphous phases. Meteoritics and Planetary Science
891	55, 2360-2374, doi:10.1111/maps.13590.
892	
893	Wagstaff, F.E. (1968) Crystallization kinetics of internally nucleated vitreous silica. Journal of
894	the American Ceramic Society, 51, 449-452.
895	
896	Wagstaff, F.E. (1969) Crystallization and melting kinetics of cristobalite. Journal of the
897	American Ceramic Society, 52, 650-654.
898	
899	Watkins, J., Manga, M., Huber, C., and Martin, M. (2009) Diffusion-controlled spherulite
900	growth in obsidian inferred from H ₂ O concentration profiles. Contributions to Mineralogy and
901	Petrology, 157, 163–172. DOI 10.1007/s00410-008-0327-8.
902	
903	Watson, E.B. and Muller, T. (2009) Non-equilibrium isotopic and elemental fractionation during
904	diffusion-controlled crystal growth under static and dynamic conditions. Chemical Geology, 267,
905	111-124.
906	
907	Watson, E.B., Cherniak, D.J., and Holycross, M.E. (2015) Diffusion of phosphorus in olivine
908	and molten basalt. American Mineralogist, 100, 2053-2065.
909	

- 910 Welsch, B., Hammer, J., and Hellebrand, E. (2014) Phosphorus zoning reveals dendritic
- 911 architecture of olivine. Geology, 42, 867-870.
- 912
- 913 White, L.F., Darling, J.R., Moser, D.E., Cayron, C., Barker, I., Dunlop, J., and Tait, K.T. (2018)
- 914 Baddeleyite as a widespread and sensitive indicator of meteorite bombardment in planetary
- 915 crusts. Geology, 46, 719-722.
- 916
- 917 Whittington, A.G., Sehlke, A., and Speck, A.K. (2021) Recalescence in silicate melts:
- 918 Applications to circumstellar dust grains, lava fountains, and lava flows. Lunar and Planetary
- 919 Science Conference, abstract 1776, LPI Contribution no. 2548.
- 920
- 921 Withers, R.L., Thompson, J.G., and Welberry, T.R. (1989) The structure and microstructure of
- 922 α-cristobalite and its relationship to β-cristobalite. Physics and Chemistry of Minerals, 16, 517-
- 923 523.
- 924
- 925 Zhao, S., Yang, M., Xu, H., and Zhang, S. (2008) Branching and twinning in α-cristobalite

926 dendrites: an electron backscatter diffraction study. Journal of Applied Crystallography, 41, 800-

- 927 802.
- 928

Figure captions

929 Figure 1. Cathodoluminescence images of Libyan Desert Glass. A. Sample LDG-2018-

2a, showing layering. B. Sample LDG-2018-2b; inset shows the cristobalite grain in Figure 2A.

932	Figure 2. Cristobalite grains. A. Cathodoluminescence (CL) image showing a zoned LDG
933	cristobalite grain with a rim and radial features extending from the core, sample LDG-2018-02b.
934	B & C. CL images of LDG cristobalite grains described in the text. White arrows indicate the
935	glass-rim and core-rim boundary. D. Optical image of β -cristobalite grain experimentally
936	nucleated in vitreous silica from 1350-1620 °C (no scale bar available) [Used by permission of
937	Wiley, from Wagstaff (1968), Journal of the America Chemical Society, vol. 51, No. 8, Fig. 6, p.
938	452].
939	
940	Figure 3. Cristobalite grain L4, sample LDG-2018-4. A. Secondary electron image
941	(bright spots are charging artifacts). B. Backscattered electron image. C. Cathodoluminescence
942	(CL) image. Long-dash line indicates the boundary between CL light layer (above) and CL dark
943	layer (below). D. EDS-Al distribution map. In B, C, and D the short-dash outline is the grain
944	boundary.
945	
946	Figure 4. Orientation maps of cristobalite grain L4. A. Pattern quality (Band contrast,
947	BC) map. B. Orientation data shown with an inverse pole figure (IPFz) color scheme. C. Pole
948	figures of twin domains 1-3. D. Pole figures of twin domains 4-6. Stereonets are equal area,
949	lower hemisphere projections in the sample reference frame. Circled data on stereonets indicate
950	shared orientations.
951	
952	Figure 5. Twin systematics in grain L4. A. Orientation data in an inverse pole figure
953	(IPFz) color scheme. B. Stereonet showing six {112} planes in domain 1-3 (labelled a-f). C.
954	Images from A showing orientation of the intersection of six twin planes from domain 1-3

955	(labelled a-f). D. Image from A showing orientation of twin plane (labelled g) forming the
956	boundary between domains 1-3 and 4-6. E. Stereonet showing crystallographic relations of the
957	twin plane (g), and graphical representation of the disorientation relationship of 70°/<100>
958	measured by EBSD (dashed arrows indicate direction). F. Image from A showing dendritic twin
959	domains in rim. Arrows indicate elongation direction.
960	
961	Figure 6. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) maps of Al
962	distribution in grain L4 with a "heat map" color scale, where red represents a higher signal
963	intensity than yellow. A. Images in CL, Al (EDS), and orientation (IPFz) of areas analyzed by
964	ToF-SIMS. B. ToF-SIMS map of Al distribution in the rim. C, D. ToF-SIMS map of Al
965	distribution in the core. E. Images in CL, Al (EDS), and orientation (IPFz) of additional areas
966	analyzed by ToF-SIMS. F-H. ToF-SIMS maps of Al distribution across the core-rim boundary.
967	
968	Figure 7. Elemental abundances along a linear transect orthogonal to layering in LDG. A:
969	Silica variation across dark and light cathodoluminescence (CL) domains. B: CL image of LDG
970	showing location of EMPA (10 μm) and LAICPMS analysis spots (50 μm). Analyses shown
971	include LAICPMS spots 1-10 (Table 3) and EMPA spots 1-21 (Table 1). Dashed lines indicate
972	layer boundaries. C: Variation in element abundances across dark and light CL domains.
973	
974	Figure 8. Analysis of cristobalite grain L4 by EMPA and LAICPMS. A: Location of
975	analysis sites on CL (above) and Al-EDS (below) maps. B: Covariation of SiO_2 and Al_2O_3 for
976	grain L4 (EMPA, Table 2) grouped by core-rim (top) and CL domain (bottom). The lower panel
977	includes EMPA data from Greshake et al. (2010, 2018). C: Covariation of Fe and Al in

978 cristobalite grain L4 (LAICPMS, Table 4), showing a correlation between dark and light CL979 layers.

981	Figure 9. Element abundances for LDG and cristobalite grain L4. A. LAICPMS data
982	from this study (Tables 3 and 4). Data indicated 'CL dark' are from the CL dark layer in LDG
983	(n=6) that contains grain L4 (n=6), and data indicated 'CL light' are from the CL light layer in
984	LDG (n=4) that contains grain L4 (n=14). B. Composition of LDG from this study compared to
985	other samples. Upper continental crust (UCC) values from Taylor and MacLennan (1995).
986	
987	Figure 10. Inclusions in the core of grain L4. A. Al abundance map (from Figure 3D)
988	showing oscillatory zoning defined by Al. B. Backscattered electron (BSE) image of sub-vertical
989	inclusion arrays from an Al-rich layer in the core (see location in A). Dashed lines indicate twin
990	boundaries. C. Area from B, showing polyphase sub-micrometer inclusions. D. Al abundance
991	map (EDS) showing inclusions are Al-rich.
992	
993	Figure 11. Stability fields of silica polymorphs and melt at low pressure (after Swamy et
994	al., 1994). Vertical arrows indicate heating and cooling paths for LDG; numbers are temperature
995	estimates (references in text). For brevity, only the thermal history of LDG (heating and cooling)
996	is considered; high-pressure conditions (e.g., Cavosie and Koeberl, 2019) were not present
997	during cristobalite crystallization.
998	
999	Figure 12. Crystallographic relations of the β - to α -cristobalite transformation. A parent
1000	cubic crystal (left) gives rise to three tetragonal orientation variants (right). Stereonets are equal

1001	area, lower hemisphere projects, and show orientations of models in reference frames where
1002	either (001) or {110} is vertical. Cubic crystal morphology after Wagstaff (1968). Tetragonal
1003	crystal forms are from Mindat.org.
1004	
1005	Figure 13. Model of ß-cristobalite origin in Libyan Desert Glass (LDG). A. Silica-rich
1006	precursor material (quartz arenite?), pre-impact. Grey and black grains represent Al-bearing
1007	phases. B. Rapid superheating of the precursor formed layered silica melt. C. Crystallization of
1008	magmatic ß-cristobalite octahedra with various growth zoning features defined by Al zonation in
1009	supercooled silica melt. D. Dendritic growth of ß-cristobalite rims by devitrification in the solid-
1010	state. E. Fracturing due to volume change (ΔV) from the β - α transformation. F. Formation of α -
1011	cristobalite twins; twins in the rim extend across and pre-date fractures; twins in the core are
1012	pinned, forming after fractures.

	Oxide	SiO ₂	AI_2O_3	FeO	TiO ₂	K ₂ O	Na_2O	CaO	MgO	MnO	Cr_2O_3	P_2O_5	SO ₃	Total	
	dl ^a	0.02	0.02	0.05	0.02	0.01	0.02	0.02	0.01	0.05	0.02	0.05	0.03	-	
#	CLp														
1	dark	97.5	1.30	0.23	0.16	0.03	bdl ^c	bdl	bdl	bdl	bdl	bdl	bdl	99.3	
2	dark	97.5	1.18	0.25	0.10	0.02	bdl	bdl	bdl	bdl	bdl	bdl	bdl	99.1	
3	mixed	97.3	1.24	0.12	0.16	0.02	bdl	0.02	bdl	bdl	bdl	bdl	bdl	98.9	
4	dark	97.3	1.17	0.21	0.14	0.02	bdl	bdl	0.01	bdl	bdl	bdl	bdl	98.9	
5	dark	96.9	1.31	0.23	0.14	0.03	bdl	bdl	0.01	bdl	bdl	bdl	0.03	98.6	
6	dark	96.6	1.57	0.27	0.17	0.02	bdl	bdl	0.01	bdl	bdl	bdl	bdl	98.7	
7	dark	99.3	1.18	0.21	0.08	0.02	bdl	bdl	bdl	bdl	bdl	bdl	bdl	100.8	
8	mixed	100.8	0.31	0.08	0.05	bdl	bdl	bdl	0.01	bdl	bdl	bdl	0.03	101.2	
9	light	99.0	1.59	0.13	0.20	0.01	bdl	0.03	0.01	bdl	bdl	bdl	0.03	101.1	
10	light	99.9	0.69	0.10	0.18	0.03	bdl	0.03	bdl	bdl	bdl	0.05	bdl	101.0	
11	light	99.2	1.37	0.22	0.23	0.02	0.02	bdl	0.01	bdl	bdl	bdl	bdl	101.1	
12	light	99.8	0.52	0.07	0.13	bdl	bdl	bdl	0.02	bdl	bdl	bdl	bdl	100.5	
13	dark	98.9	1.24	0.18	0.11	0.01	bdl	bdl	0.01	bdl	0.02	bdl	bdl	100.4	
14	dark	98.4	1.52	0.24	0.16	0.02	bdl	bdl	bdl	bdl	bdl	bdl	0.03	100.4	
15	mixed	98.3	1.43	0.13	0.19	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	100.1	
16	light	99.3	0.65	0.08	0.11	0.01	bdl	bdl	0.01	bdl	bdl	bdl	bdl	100.2	
17	light	98.1	1.19	0.12	0.14	0.06	0.02	bdl	0.01	bdl	bdl	bdl	bdl	99.6	
18	light	98.8	0.69	0.08	0.11	0.01	bdl	bdl	0.01	bdl	bdl	bdl	bdl	99.7	
19	light	98.8	0.64	0.11	0.11	bdl	bdl	0.02	0.01	bdl	bdl	bdl	bdl	99.7	
20	light	98.7	0.60	0.06	0.16	bdl	0.02	bdl	0.01	0.08	bdl	bdl	bdl	99.7	
21	dark	97.3	1.48	0.15	0.17	0.02	0.03	bdl	bdl	bdl	bdl	bdl	bdl	99.1	
Ave	rage, all	98.5	1.09	0.16	0.14	0.02	bdl	bdl	0.01	bdl	bdl	bdl	bdl	99.9	
	2SD ^d	2.18	0.78	0.14	0.08	0.03	-	-	0.01	-	-	-	-	1.71	
Avg	erage, CL	light (n	=9)												
		99.1	0.88	0.11	0.15	0.02	bdl	bdl	0.01	bdl	bdl	bdl	bdl	100.3	
2SD		1.15	0.78	0.10	0.08	0.04	-	-	0.01	-	-	-	-	1.30	
Average, CL o		dark (n=	9)												
		97.8	1.33	0.22	0.14	0.02	bdl	bdl	0.01	bdl	bdl	bdl	bdl	99.5	
	2SD	1.84	0.32	0.08	0.06	0.01	-	-	0.00	-	-	-	-	1.66	

Table 1. Electron microprobe analysis of Libyan Desert Glass sample LDG-2018-4 (in wt%).

Note(s): The CL light and dark layers were not correlated with optically visible layering.

Data in this table are shown in Figure 7A. The EMPA spot size used is 10 μm across.

^adl = detection limit.

^bCL = cathodoluminescence response (intensity) of area analyzed.

^cbdl = below dl; ^dSD = standard deviation.

Table 2. Electron microprobe analysis of cristobalite grain L4 in sample LDG-2018-4 (in wt%).

	Oxide	SIO ₂	Al ₂ O ₃	FeO	IIO_2	K ₂ O	Na ₂ O	CaO	MgO	MnO	Cr_2O_3	P_2O_5	SO₃	Total
	dl ^a	0.02	0.02	0.05	0.02	0.01	0.02	0.02	0.01	0.05	0.02	0.05	0.03	-
Core spot	CL^{b}													
3	light	100.5	0.34	0.10	0.15	bdl ^c	bdl	bdl	bdl	bdl	bdl	bdl	bdl	101.1
4	dark	99.0	1.49	0.12	0.14	bdl	bdl	0.04	bdl	bdl	bdl	bdl	bdl	100.8
5	light	100.0	0.57	0.10	0.15	0.01	bdl	bdl	0.02	bdl	bdl	bdl	0.03	101.0
9	light	99.4	0.52	0.10	0.08	bdl	bdl	bdl	bdl	bdl	bdl	0.05	bdl	100.2
Average, o	core	99.7	0.73	0.11	0.13	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	100.8
Rim spot	CL													
1	dark	98.1	1.94	0.29	0.22	bdl	bdl	0.03	0.01	0.06	bdl	bdl	0.03	100.7
2	dark	98.6	1.69	0.25	0.17	bdl	0.02	0.05	0.02	bdl	bdl	bdl	bdl	100.9
6	light	100.1	0.58	0.08	0.12	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	101.0
7	light	98.9	0.49	0.10	0.13	0.02	bdl	bdl	bdl	bdl	bdl	bdl	bdl	99.7
8	light	100.1	0.52	0.06	0.10	bdl	bdl	bdl	bdl	bdl	bdl	0.05	0.03	100.9
Average, I	rim	99.2	1.04	0.15	0.15	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	100.6
Average, a	all	99.4	0.91	0.13	0.14	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	100.7
	$2SD^{d}$	1.62	1.23	0.16	0.08	-	-	-	-	-	-	-	-	0.92
Avgerage,	, CL light	: (n=6)												
		99.9	0.50	0.09	0.12	0.02	bdl	bdl	bdl	bdl	bdl	bdl	bdl	100.6
	2SD	1.16	0.17	0.03	0.05	0.02	-	-	-	-	-	-	-	1.15
Average,	CL dark	(n=3)												
		98.6	1.71	0.22	0.18	bdl	bdl	0.04	0.02	bdl	bdl	bdl	bdl	100.8
	2SD	0.83	0.45	0.17	0.08	-	-	0.02	0.02	-	-	-	-	0.16

Note(s): The CL light and dark layers were not correlated with optically visible layering.

Data in this table are shown in Figure 8B. The EMPA spot size used is 10 μm across.

^adl = detection limit.

^bCL = cathodoluminescence response (intensity) of area analyzed.

^cbdl = below dl; ^dSD = standard deviation.

Table 3. Trace element abundances in Libyan Desert Glass sample LDG-2018-4 by LAICPMS (in ppm).																														
	dl ^a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	Avg	2SD ^b	Avg	Avg
CL ^c		dark	dark	dark	dark	light	light	dark	light	light	light	dark	light	dark	dark	dark	light	dark	dark	dark	dark	mixed	dark	dark	dark	light	all		CL light	CL dark
Li	0.05	2.92	3.20	3.20	3.65	2.09	1.69	3.22	1.98	1.77	2.95	5.03	1.92	3.40	3.09	3.38	2.05	4.55	5.09	4.98	1.59	3.25	4.15	4.20	4.28	2.70	3.21	2.13	2.14	3.75
В	0.4	7.41	7.87	8.02	8.82	9.64	11.0	7.78	8.46	7.45	8.75	7.83	5.83	7.19	8.13	7.82	10.0	7.84	7.71	7.54	7.00	9.73	9.70	7.65	8.92	9.88	8.32	2.27	8.87	7.95
Na	0.8	19.0	20.6	20.8	24.3	12.4	10.6	20.7	12.3	11.0	20.5	32.9	12.1	21.3	21.0	22.3	11.6	29.7	33.7	31.2	8.7	19.4	26.0	26.7	26.8	16.3	20.5	14.3	13.3	24.1
Mg	0.2	30.6	31.9	35.8	30.9	21.9	21.4	32.5	19.8	16.2	33.8	23.6	13.9	30.8	34.0	40.8	20.6	43.5	34.9	26.7	12.4	26.9	29.7	37.5	34.4	24.7	28.4	15.9	21.6	31.9
Al	0.2	7440	8280	8250	9200	4030	2860	8300	4550	3410	7180	8490	2830	7240	8760	10000	3320	10600	10200	8340	1700	5630	8380	9650	9300	5080	6920	5260	4160	8380
К	1	118	130	130	153	80.4	62.6	126	73.3	66.6	127	184	64.7	128	128	145	70.7	173	188	178	44.8	112	156	156	163	101	122	82.8	80.8	144
Ca	40	51.0	76.0	68.0	87.0	55.0	bdl ^d	bdl	82.0	47.0	110	83.0	65.0	101	65.0	54.0	45.0	82.0	104	84.0	bdl	85.0	95.0	76.0	78.0	102	77.0	37.2	72.3	78.9
Sc	0.04	2.08	2.05	2.11	2.13	1.54	1.31	2.12	1.47	1.40	1.91	1.88	1.24	1.93	2.05	2.30	1.44	2.43	2.23	1.87	1.05	1.63	1.99	2.22	2.11	1.52	1.84	0.73	1.48	2.04
Ti	0.1	995	1070	1070	1420	1130	745	1020	860	642	1050	1150	508	924	1050	1040	964	1180	1150	1150	262	1020	1680	1130	1310	1250	1030	556	894	1100
V	0.02	6.77	7.48	7.91	7.21	3.89	3.14	7.61	3.93	2.93	5.45	5.66	2.11	6.33	7.68	8.99	3.53	9.73	8.75	5.18	1.72	5.47	5.96	8.86	7.26	4.62	5.93	4.43	3.70	7.07
Cr	0.2	6.33	5.96	7.11	6.69	3.18	3.22	6.00	3.43	3.14	6.16	5.40	3.62	6.86	6.70	7.59	3.41	8.66	6.87	5.57	3.05	5.10	5.57	7.49	6.86	4.28	5.53	3.27	3.81	6.42
Mn	0.3	7.17	7.15	6.96	9.75	8.27	6.06	6.55	7.21	4.94	9.30	6.62	4.37	6.81	6.61	8.48	8.25	8.13	7.37	7.81	2.69	7.61	12.4	7.75	10.6	10.6	7.58	3.98	7.38	7.67
Fe	2	1620	1680	1810	1600	876	747	1550	688	520	1010	1190	453	1490	1730	2100	809	2270	1830	1130	463	1250	1400	1920	1790	1020	1320	1040	765	1600
Со	0.01	0.157	0.177	0.176	0.232	0.130	0.107	0.192	0.115	0.105	0.173	0.150	0.103	0.171	0.156	0.218	0.121	0.257	0.222	0.211	0.038	0.181	0.268	0.186	0.233	0.132	0.168	0.107	0.123	0.190
Ni	0.06	0.685	0.700	0.737	1.03	0.430	0.339	0.710	0.445	0.383	0.784	0.679	0.560	0.810	0.601	0.749	0.268	0.705	0.917	0.758	0.238	0.570	0.726	0.706	0.760	0.365	0.626	0.396	0.447	0.719
Cu	0.02	1.48	1.74	1.84	2.12	1.00	0.933	1.76	1.02	0.890	1.58	2.68	0.992	1.72	1.80	1.85	1.04	2.60	2.79	2.49	0.76	1.63	2.17	2.22	2.24	1.31	1.71	1.19	1.10	2.02
Zn	0.08	2.26	2.45	2.84	2.54	1.49	1.24	2.46	1.24	1.01	2.08	1.95	1.24	2.59	2.49	2.96	1.55	3.24	2.74	1.85	0.96	1.91	2.34	2.96	2.70	1.55	2.11	1.32	1.43	2.46
Rb	0.02	0.528	0.576	0.577	0.548	0.263	0.252	0.496	0.230	0.205	0.384	0.374	0.230	0.524	0.657	0.675	0.252	0.627	0.538	0.425	0.149	0.331	0.418	0.582	0.571	0.270	0.427	0.317	0.261	0.517
Sr	0.01	23.0	23.4	24.1	26.6	21.6	21.5	22.6	22.2	15.1	31.3	23.0	14.9	21.7	22.6	28.8	22.0	28.9	25.2	26.3	6.24	22.8	29.5	25.5	28.0	26.6	23.3	10.3	21.9	24.1
Y	0.001	5.70	5.93	5.92	6.43	4.99	4.40	5.72	5.10	3.67	5.70	6.08	2.91	5.08	6.11	6.69	5.58	6.72	6.52	6.00	2.25	5.47	6.93	6.50	6.48	5.22	5.52	2.29	4.70	5.94
Zr	0.01	163	1/1	167	238	208	153	1/1	183	134	200	210	112	162	1/3	153	193	1/4	1/8	227	54.8	189	319	1/6	231	233	183	95.7	1//	185
D	0.001	2.63	2.89	2.88	3.56	2.71	1.94	2.73	2.43	1.76	2.91	3.11	1.44	2.48	3.01	2.97	2.37	3.28	3.25	3.17	0.814	2.73	4.12	3.15	3.57	3.13	2.76	1.38	2.34	2.97
ва	0.01	20.7	22.2	22.4	22.7	19.2	19.2	23.1	18.2	13.8	22.8	20.5	11.8	20.6	21.7	25.4	20.0	25.6	24.1	21.4	10.9	20.6	23.5	24.4	23.7	20.3	20.7	7.40	18.2	22.0
La C-	0.001	9.90	10.4	10.3	24.6	8.94	9.09	10.4	9.74	0.48	10.4	10.73	5.30	9.37	10.7	25.0	14.1	25.6	25.4	10.7	4.85	9.54	11.8	11.1	11.0	9.43	10.0	3.94	9.20	10.5
Ce Dr	0.001	21.7	22.0	22.5	24.6	20.2	20.5	22.5	21.8	15.4	23.3	24.1	12.0	20.6	23.5	25.0	33.1	25.0	25.4	24.1	11.4	21.8	26.1	24.5	25.0	21.3	22.4	8.01	21.0	23.1
Pr	0.001	2.22	2.31	2.31	2.46	1.97	1.94	2.32	2.09	1.45	2.20	2.42	1.18	2.10	2.41	2.54	3.33	2.58	2.60	2.40	1.09	2.05	2.63	2.40	2.50	2.08	2.23	2.26	2.04	2.34
Sm	0.005	0.54	0.50	0.29	9.05	1 20	1.24	0.44	1 29	1.01	0.25	1.50	4.59	1.44	0.04	9.56	2.02	9.75	9.49	0.05	0.644	1.02	9.59	9.25	9.57	1 20	1 /0	0.604	1.20	0.33
En	0.01	0.254	0.270	0.200	0 207	0.220	0.222	0.270	0.254	0.102	0.224	0.275	0.850	0.240	0.202	0.224	0.242	0.224	0.201	0.221	0.044	0.251	0.261	0.229	0.242	0.247	0.271	0.004	0.227	0.280
Gd	0.002	1 16	1 32	1 30	1 3/	1 1 2	1 09	1 23	1 33	0.155	1 21	1 27	0.100	1.02	1 /1	1 /1	1 33	1 40	1 44	1 29	0.600	1 1 8	1 40	1 4 2	1 30	1 1 2	1 21	0.119	1 09	1 27
Dv	0.003	0.983	1.09	1 14	1 1 2	0.92	0.87	1.25	0.97	0.69	1.01	1.27	0.502	0.95	1 13	1 18	1.55	1.40	1 15	1.03	0.000	1.10	1 21	1.42	1.50	0.916	1.00	0.393	0.865	1.27
Er	0.002	0.561	0 587	0.613	0.697	0.484	0.406	0.586	0.518	0 367	0.606	0.603	0.303	0.531	0.654	0 708	0.552	0 731	0.691	0.605	0 207	0.556	0 737	0 703	0 718	0 549	0 571	0.265	0.000	0.621
Yh	0.01	0.562	0.604	0.569	0.723	0.491	0.427	0.500	0.310	0 382	0.539	0.671	0.298	0.560	0.650	0 718	0.455	0.655	0 709	0.596	0.189	0 5 1 4	0.769	0 574	0.633	0.605	0.559	0.265	0.461	0.611
Hf	0.003	4 10	4 33	4 4 5	5 98	5 31	3 94	4 33	4 70	3 4 2	4 94	5 30	2 78	4 10	4 59	3 99	4 84	4 57	4 46	5 95	1 38	4 74	8 19	4 73	6.02	5 97	4 68	2 47	4 4 9	4 78
Ph	0.01	5.08	5 51	5 59	6.60	4 58	4.09	5 14	4 91	3 59	6 36	6 37	3 75	5 37	5 21	5.86	4 4 8	6.93	6.28	6 4 4	2 47	5 14	6 94	5.65	6 54	4 71	5 34	2 20	4 56	5 75
Th	0.001	3.45	3.73	3.65	4.58	3.40	2.87	3.53	2.96	2.23	3.80	4.02	1.69	3.12	3.83	3.83	3.63	4.02	4.00	4.04	1.26	3.69	5.60	4.02	4.63	3.73	3.57	1.76	3.04	3.83
U	0.001	1.04	1.12	1.14	1.30	1.00	0.866	1.09	0.945	0.77	1.17	1.17	0.584	1.02	1.13	1.17	1.08	1.25	1.27	1.21	0.430	1.12	1.40	1.22	1.28	1.08	1.07	0.432	0.938	1.14
Sum		10587	11617	11712	12929	6551	4730	11376	6605	4948	9899	11523	4147	10243	12120	13733	5597	14738	13893	11331	2614	8482	12274	13345	13115	7980				
Aver	age of su	ım, anal	yses in (CL light a	areas (n:	=8): 630	0 ppm																							

Average of sum, analyses in CL dark areas (n=16): 11,700 ppm Note(s): The CL light and dark layers were not correlated with optically visible layering. Data in this table are shown in Figures 7B,C and 9A,B. The LAICPMS spot size used is 50 µm.

^adl = detection limit; ^bSD = standard deviation; ^cCL = cathodoluminescence response (intensity) of area analyzed; ^dbdl = below dl.

Tabl	Jable 4. Trace element abundances of cristobalite grain L4 in sample LDG-2018-4 by LAICPMS (in ppm)																								
	dl ^a	C6 ^b	C6r	C7	C7r	C8	C8r	C9	C9r	R10	R10r	R11	R11r	R12	R12r	R13	R13r	Rn1	Rn2	Rn3	Rn4	Avg	Avg	Avg	2SD ^c
CL^d		light	light	light	light	light	light	light	light	dark	dark	mixed	mixed	dark	dark	light	light	mixed	light	light	light	CL light	CL dark	all	all
Li	0.05	5.81	6.23	8.71	6.51	8.40	7.15	8.40	6.41	4.10	6.31	6.45	5.02	4.49	3.96	10.0	7.47	4.82	5.37	4.00	4.45	6.84	4.72	6.20	3.48
В	0.4	10.2	11.1	10.4	11.5	9.20	9.63	8.40	8.17	8.57	8.18	12.8	10.9	8.05	8.10	10.2	9.27	11.0	10.2	9.68	9.63	9.81	8.23	9.76	2.61
Na	0.8	33.3	27.9	49.0	28.7	46.8	34.5	39.0	29.3	20.6	39.9	34.9	26.0	20.9	18.3	44.4	34.1	23.6	30.0	24.9	25.9	34.4	24.9	31.6	17.6
Mg	0.2	28.5	29.2	20.2	27.1	18.4	20.4	14.5	19.9	41.9	43.0	21.9	24.6	35.3	39.2	21.4	19.2	35.6	25.1	21.7	24.4	22.3	39.9	26.6	16.6
Al	0.2	5520	5600	3260	5130	3190	3220	2380	4130	11400	10600	5000	4320	8770	9510	3780	3080	6840	4120	4560	5130	4080	10100	5480	5230
К	1	9.90	4.14	bdl ^e	5.94	6.00	4.05	bdl	5.06	10.1	213	24.2	62.7	6.40	43.0	9.70	19.3	15.9	59.0	118	87.0	29.9	68.1	39.1	109
Ca	40	179	91.0	125	41.0	bdl	76.0	bdl	67.0	113	78.0	bdl	51.0	bdl	59.0	bdl	76.0	96.0	93.0	65.0	57.0	87.0	83.3	84.5	69.5
Sc	0.04	1.89	2.21	1.63	2.18	1.34	1.81	1.28	1.68	2.46	2.57	1.64	1.84	2.03	2.46	1.55	1.66	2.09	1.69	1.62	1.74	1.71	2.38	1.87	0.73
Ti	0.1	1200	984	1060	1040	961	923	689	789	1260	1140	995	958	1070	1120	747	691	1220	1160	1100	950	946	1150	1000	340
V	0.02	5.60	5.38	4.14	4.92	3.77	3.70	3.23	4.39	10.6	9.51	5.49	4.74	8.60	8.95	4.37	3.31	6.76	4.14	4.24	5.32	4.35	9.41	5.56	4.35
Cr	0.2	4.47	4.61	2.81	4.05	3.31	3.72	2.30	4.25	8.44	7.95	3.97	4.39	8.04	7.42	4.35	3.13	5.38	3.65	3.45	4.47	3.74	7.96	4.71	3.62
Mn	0.3	10.0	8.67	7.90	9.11	7.70	7.59	4.70	6.42	8.39	8.49	6.00	6.98	8.19	7.67	6.81	6.17	11.4	10.1	8.61	6.62	7.72	8.19	7.88	3.17
Fe	2	1210	1090	898	1020	859	816	771	921	2080	2110	1230	1010	1910	1890	1010	749	1450	958	875	1120	946	2000	1200	889
Со	0.01	0.317	0.307	0.319	0.288	0.407	0.340	0.303	0.252	0.312	0.300	0.351	0.367	0.350	0.303	0.271	0.271	0.371	0.446	0.205	0.287	0.309	0.316	0.318	0.109
Ni	0.06	2.32	1.75	3.22	1.75	2.48	1.75	1.97	1.96	0.940	0.846	1.28	1.05	0.850	0.74	3.18	2.45	1.36	1.39	0.630	0.710	1.97	0.844	1.63	1.59
Cu	0.02	7.67	6.52	7.72	6.38	8.09	7.06	8.25	6.31	3.10	4.06	5.83	4.55	3.53	3.02	8.77	7.62	4.78	6.04	3.09	3.33	6.68	3.43	5.79	3.91
Zn	0.08	3.85	2.87	2.63	2.81	3.25	3.02	2.27	2.58	4.00	3.64	3.33	2.85	3.74	3.31	2.95	2.39	3.47	4.60	2.18	2.94	2.95	3.67	3.13	1.24
Rb	0.02	0.083	0.081	0.087	0.109	0.078	0.051	bdl	0.114	0.159	1.06	0.338	0.514	0.102	0.361	0.233	0.264	0.127	0.364	0.490	0.549	0.209	0.421	0.272	0.503
Sr	0.01	24.3	28.9	17.6	28.4	17.9	22.2	13.3	20.9	27.0	28.2	19.5	20.5	22.8	26.4	21.4	18.7	32.7	21.7	22.5	21.3	21.5	26.1	22.8	9.34
Y	0.001	5.09	5.40	4.22	5.53	4.27	4.28	3.35	4.08	6.76	6.76	5.31	5.35	5.60	6.20	4.18	4.43	6.00	4.72	4.80	4.93	4.56	6.33	5.06	1.83
Zr	0.01	185	185	167	204	172	181	135	161	175	172	183	202	164	168	145	142	203	206	204	168	173.0	170	176	42.3
Nb	0.001	3.13	2.76	2.66	2.84	2.82	2.41	1.96	2.16	3.49	3.21	2.63	2.54	3.01	3.01	2.41	1.89	3.20	2.86	2.75	2.61	2.56	3.18	2.72	0.830
ва	0.01	17.8	18.4	12.5	21.6	14.6	13.9	11.2	16.6	22.4	26.5	24.0	23.9	20.1	26.1	17.5	22.4	23.7	20.1	20.0	20.8	17.5	23.8	19.7	8.75
La	0.001	9.35	9.88	7.88	9.96	8.20	8.01	5.95	7.58	11.6	11.7	9.70	9.97	9.84	10.8	8.41	8.67	10.5	8.48	8.96	9.12	8.50	11.0	9.23	2.81
Ce	0.001	22.2	22.2	20.6	23.2	20.0	18.6	16.2	17.3	27.1	25.8	24.9	22.5	23.7	24.2	22.4	21.3	24.8	20.6	20.7	21.1	20.5	25.2	22.0	5.50
Pr	0.001	2.01	2.12	1.80	2.23	1.82	1.72	1.52	1.66	2.69	2.56	2.19	2.20	2.36	2.40	1.97	1.92	2.37	1.95	1.93	2.03	1.90	2.50	2.07	0.61
NU Crea	0.005	7.40	1.00	0.30	1.40	0.30	0.22	4.76	5.90	9.61	9.80	8.07	1.88	8.20	9.05	7.40	1 20	8.78	0.31	0.78	1.20	0.72	9.18	7.44	2.59
SIII	0.01	1.32	1.54	1.04	1.48	1.30	1.21	0.780	1.14	1.80	1.//	1.27	1.40	1.44	1.59	1.30	1.28	1.03	1.14	1.20	1.20	1.23	1.07	1.35	0.506
Eu	0.002	1.02	0.289	0.197	1.00	0.192	0.231	0.131	0.193	1.45	1 47	0.242	1 22	0.203	1 22	1.04	1.00	1 20	0.229	0.221	1.00	0.223	1.302	1.07	0.096
Dv	0.01	0.700	1.14	0.770	0.096	0.810	0.957	0.790	0.877	1.45	1.47	0.990	1.25	1.12	1.52	0.790	0.910	1.20	0.917	0.964	0.951	0.900	1.54	0.010	0.405
Dy Er	0.003	0.790	1.07	0.720	0.960	0.720	0.803	0.020	0.710	0.712	1.24	0.620	0.956	0.525	1.15	0.760	0.019	1.09	0.007	0.002	0.031	0.019	0.222	0.910	0.572
EI Vh	0.002	0.352	0.055	0.474	0.051	0.320	0.050	0.303	0.045	0.715	0.044	0.300	0.049	0.525	0.040	0.491	0.055	0.044	0.055	0.056	0.055	0.205	0.552	0.252	0.300
ты ығ	0.01	1 26	1 91	1 20	1 00	4 25	1 60	2 17	202	4.66	4 54	4 70	5.29	1 24	1 1 2	2 97	2 5 2	5 10	5 19	5 11	1 22	1 2/	4.42	0.469	1 1 2
Ph	0.005	5.65	5 35	4.56	5.66	5.52	5.08	3.60	4 39	7 14	6.98	5 74	4.96	6.09	6.44	5.13	4 51	6 79	6 19	4 90	4.32	5.03	6.66	5.47	1.12
Th	0.001	3 74	3 63	2.88	4 03	3.05	2 97	2 48	3.08	4 12	4 10	3.64	3 71	3 45	3 90	3.00	2 97	4 10	3 44	3.46	3 32	3 23	3.89	3.45	0.951
U.	0.001	1.15	1.05	0.830	1.13	1.03	0.80	0.81	0.919	1.35	1.28	0.96	1.09	1.17	1.19	1.05	1.02	1.26	1.14	1.05	1.02	1.00	1.25	1.06	0.303
Sum	5.001	8529	8178	5718	7668	5395	5415	4140	6256	15285	14586	7653	6812	12140	13022	5913	4957	10070	6805	7114	7709	6466	13814	8195	5.505
Ave	age of s	um. an	alvses i	n CL liøh	t areas	(n=14)	: 6705 n	. <u>.</u>	5250	_5205	2.550		0012		10011	5515	.557	20070	0000	,		0.00	1001.	0100	
	050013	u, u		· · · ·		(14).		· · · ·																	

Average of sum, analyses in CL dark areas (n=4): 13,758 ppm Note(s): The CL light and dark layers were not correlated with optically visible layering. Data in this table are shown in Figures 8C and 9A. The LAICPMS spot size used is 50 µm.

Most of the cristobalite grain is in a single, light CL layer (e.g., Figure 3). Only analyses R10 and R12 are in dark CL areas

^adl = detection limit; ^bAnalysis label convention: C = core; R = rim; r = repeat analysis in same location.

^cSD = standard deviation; ^dCL = cathodoluminescence response (intensity) of area analyzed; ^ebdl = below dl.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 6 (cont)

Figure 7

Figure 8

Figure 9

Figure 10

Figure 12

Figure 13