1	Revision 3
2	Density Determination of Liquid Iron–Nickel–Sulfur at High Pressure
3	
4	SAORI I. KAWAGUCHI ^{1,2*} , GUILLAUME MORARD ^{3,4} , YASUHIRO KUWAYAMA ⁵ ,
5	KEI HIROSE ^{2,5} , NAOHISA HIRAO ¹ , and YASUO OHISHI ¹
6	
7	¹ Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo
8	679-5198, Japan
9	² Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama,
10	Meguro-ku, Tokyo 152-8550, Japan
11	³ Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de
12	Cosmochimie, IMPMC, Museum National d'Histoire Naturelle, UMR CNRS, 7590
13	Paris, France
14	⁴ Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR,
15	ISTerre, 38000 Grenoble, France

16	⁵ Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo,
17	Bunkyo-ku, Tokyo 113-0033, Japan
18	*E-mail: sao.kawaguchi@spring8.or.jp
19	
20	Abstract
21	The density of liquid iron-nickel-sulfur (Fe _{46.5} Ni _{28.5} S ₂₅) alloy was determined at
22	pressures up to 74 GPa and an average temperature of 3400 K via pair distribution
23	function (PDF) analysis of synchrotron X-ray diffraction (XRD) data obtained using
24	laser-heated diamond anvil cells. The determined density of liquid $Fe_{46.5}Ni_{28.5}S_{25}$ at 74
25	GPa and 3400 K is 8.03(35) g/cm ³ , 15% lower than that of pure liquid Fe. The obtained
26	density data were fitted to a third-order Vinet equation of state (EoS), and the
27	determined isothermal bulk modulus and its pressure derivative at 24.6 GPa are K_{TPr} =
28	110.5(250) GPa and $K'_{TPr} = 7.2$ (25), respectively, with a fixed density of $\rho_{Pr} = 6.43$
29	g/cm ³ at 24.6 GPa. The change in the atomic volume of $Fe_{46.5}Ni_{28.5}S_{25}$ upon melting was
30	found to be approximately 10% at the melting temperature, a significantly larger value

31	than that of pure Fe (\sim 3%). Combined with the above EoS parameters and the thermal
32	dependence reported in the literature, our data were extrapolated to the outer core
33	conditions of the Earth. Assuming that S is the only light element and considering the
34	range of suggested Ni content, we estimated a 5.3-6.6wt% S content in the Earth's outer
35	core.
36	Keywords: liquid iron alloy, high pressure, Fe ₃ S, Earth's outer core
37	
38	Introduction
39	The liquid outer core of the Earth primarily comprises iron (Fe)-nickel (Ni) alloyed
40	with lighter elements. Recent measurements of the density contrast between the liquid
41	outer core and pure liquid Fe were estimated to be 7.6%, assuming an adiabatic
42	temperature profile with an inner core boundary temperature of 5400 K (Kuwayama et al.
43	2020). Both the nature and number of light elements in the core have remained to be the
44	two biggest enigmas in Earth sciences for more than 60 years (Birch, 1961). In this study,
45	we focus on sulfur (S) as a potential light element in the Earth's core. S has a high

46	solubility in liquid Fe at low pressures (Fei et al. 1997, 2000; Li et al. 2001; Stewart et al.
47	2007) and is missing in the mantle compared with other volatile elements (Murthy and
48	Hall, 1970). Owing to its high volatility, S was limited to ~1.7wt% in core composition
49	models (Dreibus and Palme, 1996). However, recently, high-pressure partitioning
50	experiments revised this value to greater than 6wt% (Mahan et al. 2017). Therefore,
51	from a geochemical perspective, S can be the primary light element in the Earth's core.
52	The density and sound velocity of the Earth's liquid outer core can be obtained from
53	seismic observations such as the Preliminary Reference Earth Model (PREM,
54	Dziewonski and Anderson, 1981). Recently, we determined the sound velocity of liquid
55	Fe-Ni-S alloys at pressures up to 52 GPa in diamond anvil cells (DACs) using
56	high-resolution inelastic X-ray scattering (Kawaguchi et al. 2017). Moreover, we
57	discussed the S content in the Earth's outer core Earth based on sound velocity data and
58	concluded the compatibility of seismic data using 5.8wt%-7.5wt% S in the Earth's outer
59	core, suggesting S as the primary light element in the Earth's core. To complete this
60	preceding study, we performed density measurements of liquid Fe-S alloys at pressures

61 corresponding to those in the Earth's core.

62	The density of liquid Fe alloys under extreme conditions were successfully
63	determined using Paris-Edinburgh press and DAC via pair distribution function analysis
64	of liquid diffuse signals in X-ray diffraction (XRD) patterns (Eggert et al, 2002; Morard
65	et al. 2013; Morard et al. 2018; Kuwayama et al. 2020). Herein, we use this method to
66	determine the density of liquid $Fe_{46.5}Ni_{28.5}S_{25}$ in DAC at pressures up to 70 GPa and an
67	average temperature of 3400 K. Further, we employ our findings to construct the
68	isothermal equation of state (EoS).
69	
70	Method
71	We determined the density of liquid $Fe_{46.5}Ni_{28.5}S_{25}$ via XRD measurements at the
72	BL10XU beamline at SPring-8 (Hirao et al. 2020). Fe _{46.5} Ni _{28.5} S ₂₅ synthesized in a

73 multianvil apparatus was used as the samples in all runs. The sample composition was

74 determined using field emission-electron probe microanalysis before loading. The

sample pellets were cut into $\phi 30-50-\mu m$ pieces and loaded into a sample hole drilled in a

76	rhenium gasket with a pressure medium (a dry potassium chloride (KCl) powder). The
77	samples were compressed to the pressures of interest using single crystal diamond anvils
78	with 300- μ m culets. Then, they were heated using a double-sided laser-heating system to
79	minimize the axial temperature gradient. The heating spot sizes on the samples were 25-
80	40 μ m. The temperature was measured using a spectroradiometric method, the variation
81	of which was approximately 10%. The X-ray was monochromatized to 30 and 50 keV
82	using liquid nitrogen-cooled silicon (Si)(111) and Si(220) double crystals. The X-ray
83	compound refractive lenses achieved a focus of approximately ~8 μ m (H) × 8 μ m (V)
84	at 30 keV and 10 μm (H) \times 12 μm (V) at 50 keV (full width at half maximum),
85	which were sufficiently small compared with the laser beam size. Two-dimensional (2D)
86	XRD images were captured on a charge-coupled device detector (SMART APEX,
87	Bruker AX) and X-ray flat-panel detector (XRD0822, PerkinElmer, Inc.) with an
88	exposure time of 1-10 seconds. We used IPAnalyzer and PDIndexer (Seto et al. 2010)
89	for the X-ray energy and camera-length calibration and one-dimensional (1D)
90	integration calculation of 2D XRD images. The pressure was determined using the KCl

91	unit-cell volume with high-temperature thermal EoS proposed in Tateno et al. (2019).
92	Additionally, we collected powder XRD patterns of $\mathrm{Fe}_{46.5}\mathrm{Ni}_{28.5}\mathrm{S}_{25}$ at 1 atm in a
93	temperature range of 100-400 K at the BL02B2 beamline at SPring-8 (Kawaguchi et al.
94	2017). The X-ray energy was 30 keV using water-cooled Si(111) double crystals; XRD
95	data were collected using multiple 1D detectors (MYTHEN 1K, Dectris) in the
96	temperature range of 100-400 K. Note that 24.8 keV X-ray was used for the XRD data
97	collection for structural refinement. We performed structural refinements by the Rietveld
98	method using JANA2006 (Petricek et al. 2006).
99	
100	Results
101	We conducted nine separate experiments to collect XRD data of $\mathrm{Fe}_{46.5}\mathrm{Ni}_{28.5}\mathrm{S}_{25}$ at
102	pressures up to 70 GPa. Table 1 lists the density, pressure, and temperature, KCl unit-cell
103	volume, and calculated properties. We obtained XRD data in the temperature range of
104	2700–3900 K, and the temperature effect was included in the analytical pressure error.
105	We set the average temperature of 3400 K as the temperature condition in this study (Fig.

106	5). All experiments were performed at temperatures higher than the predicted melting
107	point of Fe ₃ S (Fei et al. 1997, 2000; Morard et al. 2008; Mori et al. 2017). We excluded
108	liquid data coexisting with major XRD peaks obtained from solid Fe and other
109	compounds.
110	The density of liquid Fe _{46.5} Ni _{28.5} S ₂₅ was determined by pair distribution analysis.
111	More information pertaining to this method is available in the literature (Morard et al.
112	2013). Figure 1 shows typical 1D and 2D XRD patterns of solid and liquid
113	$Fe_{46.5}Ni_{28.5}S_{25}$ at 70 GPa (the highest pressure tested in this study) and approximately 30
114	GPa using 30 keV X-rays. In the analysis, Bragg spots from the diamond anvils were
115	masked. Figure 1 also shows the results of whole XRD pattern profile fitting using the
116	Le Bail method of (Fe,Ni) ₃ S (space group: $I\overline{4}$) and KCl B2 (space group: $Pm\overline{3}m$). In
117	the XRD patterns, the liquid sample exhibits broad halos. Both before and after melting,
118	the signals were fitted using spline curves. The only halo peak intensity of the liquid
119	sample, which is expressed as a function of the scattering angle $I_{sample}(\theta)$, was extracted
120	from the measured XRD signal function after melting $I_{mes}(\theta)$ via the subtraction of the

background signal function
$$I_{bg}(\theta)$$
. Herein, $I_{bg}(\theta)$ was obtained from the solid XRD signal

122 before melting. The scattering angle 2θ can be transformed into scattering momentum

123 (Q) with wavelength (
$$\lambda$$
) via $Q = 4\pi sin\theta/\lambda$. Then, $I_{sample}(Q)$ can be written as

124
$$I_{sample}(Q) = I_{mes}(Q) - bI_{bg}(Q), \tag{1}$$

125 where b is a background factor. In this study, we used Krogh-Moe–Norman

126 normalization (Krogh-Moe 1956; Norman 1957; Morard et al. 2013) for processing

127 $I_{sample}(Q)$ to structure factor S(Q). Reduced pair distribution function G(r) and pair

128 distribution function g(r) were calculated from S(Q) using Fourier transform:

129
$$G(r) = 4\pi r [\rho(r) - \rho_0] = \frac{2}{\pi} \int_0^{Q_{Max}} Q \{S(Q) - 1\} \sin(Qr) dQ,$$
(2)

130
$$g(r) = G(r)/4\pi r \rho_0 + 1,$$
 (3)

131 where r, $\rho(r)$, ρ_0 , and Q_{Max} are the radial distance from the atom, atomic density, average

132 atomic density, and maximum scattering momentum in each data point, respectively.

133 Figure 2 shows the typical S(Q), G(r), and g(r) functions after completing the analytical

- 134 calculations. Owing to the repulsive force of an atom from a reference point (r = 0), no
- 135 atom should be closer than the first coordination shell r_{min} . Therefore, in the range 0 < r

136 $< r_{min}, G(r)$ can be represented as a linear function:

137
$$G(r) = -4\pi\rho_0 r.$$
 (4)

Using the above principle, it is necessary to integrate Eq. (2) from Q = 0 to ∞ , which is

139 not possible using experimental data. Additionally, Q = 6-7 Å⁻¹ is the upper limit when

140 using 30-keV X-rays because of the aperture angle of the DAC. Such a limited Q range

141 produces ripples (Fig. 2a) in the distribution functions. To minimize these ripples in G(r),

142 which are attributed to the *Q* truncation effect, the difference between ideal $G(r) = -4\pi r$

143 and $G(r) = G_0(r)$ directly obtained from the raw data (without iteration) was calculated

144 in the range
$$0 < r < r_{min}$$
:

145
$$\Delta G_0(r) = -4\pi r - G(r). \tag{5}$$

146 Then, the function was integrated from 0 to r_{min} as the sum of the squares of the

147 differences:

148
$$\chi^2(\rho_0, b) = \int_0^{r_{min}} \Delta G_i(r)^2 dr.$$
 (6)

- 149 To minimize χ^2 , background factors *b* and ρ_0 were determined.
- 150 The density of the liquid sample can then be expressed as

151
$$\rho = \rho_0 \times M, \tag{7}$$

152	where M is the average atomic weight. We determined the uncertainty of the calculated
153	ρ_0 to be $\pm 3 \times 10^{-3}$ atoms/Å by considering the <i>Q</i> truncation effects. Herein, the bulk of
154	runs for the XRD measurements were operated using 30-keV X-rays. Thus, the Q range
155	was limited to <6–7 $Å^{-1}$, implying that only two oscillations could be observed for liquid
156	Fe alloys. In run #9, using higher-energy X-rays at 50 keV, we successfully obtained
157	data for a higher Q range of up to 10.5 $Å^{-1}$ (Fig. 1). Further, we examined the
158	uncertainty in the ρ_0 determination using two oscillations compared with the data after
159	the third oscillation, which we calculated to be $\pm 2.9 \times 10^{-3} \text{ atoms/} \text{\AA}^3.$ This estimated
160	uncertainty was consistent with that reported by Morard et al. (2013) and was confirmed
161	via a similar examination using higher Q range data at lower pressures with Paris-
162	Edinburgh press. Similar to the method followed by Morard et al. (2013), calculations
163	were performed by shifting r_{\min} in steps of 0.1 Å. The ρ_0 fluctuation in $r = \pm 0.1$ Å was
164	approximately $\pm 1 \times 10^{-3}$ atoms/Å ³ . We estimated the uncertainty of density in the present
165	study to be 3.9×10^{-3} atoms/Å ³ , i.e., 0.349 g/cm ³ , for Fe _{46.5} Ni _{28.5} S ₂₅ .

166 The obtained density values were fitted using third-order Vinet EoS.

167
$$(P - Pr) = K_{TPr} x^{2/3} (1 - x^{-1/3}) \times exp \left[\frac{3}{2} (K'_{TPr} - 1) (1 - x^{-1/3})\right],$$
(8)

where
$$Pr$$
, K_{TPr} , K'_{TPr} , and x are the reference pressure, isothermal bulk modulus, its first

169 pressure derivative at reference pressure and 3400 K, and
$$x = \rho/\rho_{Pr, 3400K}$$
, respectively. A

170 structural transition at around 20 GPa has been suggested for liquid Fe_{46.5}Ni_{28.5}S₂₅ from

- 171 sound velocity determination (Kawaguchi et al., 2017). Considering the structural
- transition below 20 GPa, we performed the fitting based on measured density data at the
- 173 lowest pressure point. We derived the pressure dependence of the density of liquid
- 174 Fe_{46.5}Ni_{28.5}S_{25.} The best fit for the compression curve of the density data yielded K_{TPr} =
- 175 110.5(250) GPa and K'_{TPr} = 7.2(25) with a fixed $\rho_{Pr,3400K}$ = 6.434 g/cm³ (Table 2). Figure
- 176 3 shows the confidence ellipsoid of the determined K_{TPr} and K'_{TPr} . As reported in Angel
- 177 (2000), the confidence ellipsoid is expressed as

178
$$\Delta = (K_{\text{TPr}}, K'_{\text{TPr}}) \begin{pmatrix} \sigma_{K_{\text{TPr}}K_{\text{TPr}}} & \sigma_{K_{\text{TPr}}K'_{\text{TPr}}} \\ \sigma_{K'_{\text{TPr}}K_{\text{TPr}}} & \sigma_{K'_{\text{TPr}}K'_{\text{TPr}}} \end{pmatrix}^{-1} \begin{pmatrix} K_{\text{TPr}} \\ K'_{\text{TPr}} \end{pmatrix},$$
(9)

179 with the covariance of K_{TPr} and $K_{TPr'}$, where Δ is the chi-square distribution (here, $\Delta =$

180 2.3 for 1σ -level confidence with two degrees of freedom).

181	To characterize thermal expansion of Fe _{46.5} Ni _{28.5} S ₂₅ , we performed powder XRD
182	measurements at 1 atm from 90 to 400 K. Figures 4(a) and (b) show temperature
183	dependence of XRD pattern and structural refinement results via Rietveld analysis with
184	high reliability ($R_{WP} = 2.79\%$, $R_I = 3.84\%$) at room temperature. These data indicate that
185	the sample had no impurities. Tetragonal (Fe,Ni) ₃ S (space group: $l\overline{4}$) was stable
186	throughout the temperature range measured.
187	
188	Discussion
189	All density data and fitting results are summarized as a function of pressure in Fig. 5.
189 190	
	All density data and fitting results are summarized as a function of pressure in Fig. 5.
190	All density data and fitting results are summarized as a function of pressure in Fig. 5. In Fig. 5, we show the isothermal density profiles at 2700 K and 3900 K, which are the
190 191	All density data and fitting results are summarized as a function of pressure in Fig. 5. In Fig. 5, we show the isothermal density profiles at 2700 K and 3900 K, which are the minimum and maximum temperatures, respectively. Although the temperature
190 191 192	All density data and fitting results are summarized as a function of pressure in Fig. 5. In Fig. 5, we show the isothermal density profiles at 2700 K and 3900 K, which are the minimum and maximum temperatures, respectively. Although the temperature conditions in the present study were slightly different in each run, the agreement of the

196	Figure 5 shows the density profile of pure liquid Fe at 3400 K calculated from the EoS
197	reported provided by Kuwayama et al. (2020). The difference between the densities of
198	liquid Fe and liquid Fe _{46.5} Ni _{28.5} S ₂₅ was 16% in the pressure range of 20–70 GPa.
199	Morard et al. (2013, 2018) and Terasaki et al. (2019) reported density measurement
200	results for liquid Fe-(Ni)-S systems. Morard et al. (2013) performed $Fe_{76}Ni_4S_{20}$
201	measurements using laser-heated DACs, as we used in this study; the average atomic
202	mass in our study differed from theirs by only 4%. The results reported by Morard et al.
203	(2013) and the present data are consistent within the margin of error.
204	However, although their temperatures were lower by more than 1300 K, Morard et al.
205	(2018) and Terasaki et al. (2019) reported high compressibility at lower pressures (<20
206	GPa) than that obtained in the present study. This observation indicates the existence of
207	a semimetallic to compact metallic structural transition, as discussed in Kawaguchi et al.
208	(2017) and other existing studies that treated Fe–S alloys (Nishida et al. 2011; Morard et
209	al. 2007). Morard et al. (2008) suggested that covalent Fe-S bonds in liquid Fe-S
210	transformed into an interstitial metallic-like configuration, similar to Fe-Si at high

211 pressures.

212	Figure 5 compares our results with the density profile at 3400 K and densities at 30
213	GPa and 100 GPa near the melting temperatures of solid Fe ₃ S calculated using the EoS
214	of Thompson et al. (2020). This comparison indicates that melting reduces the density of
215	(Fe,Ni) ₃ S by approximately 9.3% at 30 GPa and 2000 K and 11.5% at 100 GPa at 2500
216	K, thereby indicating a 12%–15% increase in the atomic volume. Although our sample
217	included 28at% Ni, it produced only a 3% density difference. When melting pure Fe,
218	Anderson and Isaak (2002) found that the atomic volume change was 1.2%-1.3% at 330
219	GPa, a pressure condition that corresponded to the inner core boundary. From recent
220	compression experiments on pure solid hcp Fe (Dewaele et al. 2006) and pure liquid Fe
221	(Kuwayama et al. 2020), the atomic volume changes were estimated to be 3% at 100
222	GPa and near the melting temperature, $T=3000$ K. The results indicate that S increases
223	the volume change when Fe alloys are melted. Figure 6 shows the crystal structure of
224	$Fe_{46.5}Ni_{28.5}S_{25}$ at 1 atm and 300 K with anisotropic displacement ellipsoids at the 80%
225	probability level drawn using the VESTA (Momma and Izumi, 2011). Figure 7 plots

226	variations of unit-cell parameters a and c and unit-cell volume V as a function of
227	temperature. Cell parameters increase almost linearly with increasing temperature;
228	however, the c axis exhibits a higher expansion rate than the a axis. Sun and Hoyt (2004)
229	attributed the anisotropy of melting to that of the crystal structure based on
230	molecular-dynamics (MD) simulation results. They revealed that bcc Fe has higher
231	mobility and lower free energy of the solid-liquid interface than those of fcc Fe. In
232	addition, mobility along the (100) orientation of bcc Fe is larger than those along its
233	(111) and (110) orientations. Hence, the large atomic volume change related to melting
234	of $Fe_{46.5}Ni_{28.5}S_{25}$ was possibly a result of the large anisotropy in thermal vibration of the
235	bcc Fe ₃ S structure (space group $I\overline{4}$) compared with face-centered cubic and hexagonal
236	close-packed Fe. Structural refinement and MD simulation of the solid materials
237	immediately before their melting and precise structural characterization of the liquid and
238	amorphous materials via pair distribution analyses using higher-energy X-rays should be
239	attempted in future work.

241 Implications

The density deficit in the outer core in terms of pure liquid Fe was estimated to be 7.5%–7.6% (Kuwayama et al. 2020). To discuss the density of the Earth's outer core, we used a constant αK_T relationship:

245
$$P(\rho, T) = P(\rho, T_0) + \Delta P_{th},$$
 (10)

$$\Delta P_{th} = \alpha K_T (T - T_0), \tag{11}$$

247 where α , K_T , and T_0 are the thermal expansion coefficient, isothermal bulk modulus, and 248 reference temperature (3400 K), respectively. Additionally, $\alpha \times K_T$ can be considered as 249 constant from reference pressure and temperature to the pressure-temperature (P-T)250 condition of interest ($\alpha \times K_T = \alpha_{Pr} \times K_{TPr}$). Assuming that the temperature effect on the 251 sound velocities can be negligible, we refitted the sound velocity data of Kawaguchi et al. (2017) using $\rho_{Pr,3400 \text{ K}}$ determined herein, yielding an adiabatic bulk modulus K_{SPr} = 252 253 186.8 GPa at 24.6 GPa and 3400 K. The relation between K_{SPr} and K_{TPr} can be expressed 254 as $K_{SPr}/K_{TPr} = (1 + \alpha_{Pr} \times \gamma_{Pr} \times T_{Pr})$, where γ_{Pr} of pure Fe is from Kuwayama et al. (2020). Combination of K_{SPr} , K_{TPr} , and γ_{Pr} yielded $\alpha_{Pr} \times K_{TPr} = 1.18 \times 10^{-2}$ GPa/K. 255

256 We calculated the adiabatic temperature as follows:

257
$$T = T_{ref} exp \left[\gamma_{ref} \left(1 - \frac{\rho_{ref}}{\rho} \right) \right], \tag{12}$$

258	where T_{ref} is the reference temperature, and γ_{ref} is the Grüneisen parameter at 24.6 GPa
259	and $T_{\rm ref}$. We calculated $\gamma_{\rm ref}$ for pure Fe based on the data of Kuwayama et al. (2020). In
260	Fig. 8, the density of liquid Fe-Ni-S alloys and Fe is plotted along the adiabatic
261	temperature profiles corresponding to the temperatures at the core-mantle boundary
262	(CMB), i.e., T_{CMB} = 3600 and 4300 K (T_{ref} =2459 and 2812 K, respectively). The
263	obtained density profiles appear to differ from previous shock experimental results
264	(Huang et al. 2013). Conversely, our results are consistent with the density calculated
265	from the sound velocity data reported by Kawaguchi et al. (2017), which was
266	recalculated using thermo-elastic parameters of pure Fe (Kuwayama et al. 2020). We
267	also calculated the density of liquid Fe ₃ S, assuming that the effect of Ni has little effect
268	on the thermal elastic parameters (e.g. Kawaguchi et al.2017). Finally, assuming ideal
269	mixing with pure Fe and S as the only light element in the Earth's core, the density
270	profile of the outer core is best explained using 5.7-6.6wt% S with Ni and 5.3-6.2wt% S

271 without Ni. This estimation is compatible with our sound velocity measurements	, which
--	---------

suggest a volume of 5.8-7.5wt% S in the Earth's outer core.

273	S is considered a dominant candidate for lighter components in the Martian core. The
274	S content of Mars is approximately 10.6-16.2 wt%, estimated from Martian-origin
275	shergottite, nakhlite, and chassignite meteorites (e.g., Dreibus and Wanke 1985). A
276	(partially) molten Martian core has been reported using observed large Love number k_2
277	(e.g., Yoder et al. 2003). In Fig. 9, we show the isothermal density profiles of
278	$Fe_{46.5}Ni_{28.5}S_{25}$ (16wt% S) and pure Fe (0wt% S) at 1500, 1900, and 2300 K in the
279	pressure range corresponding to that of the Martian core (Tsujino et al. 2013). Mars
280	exploration lander, InSight, landed on Mars in 2018. Additionally, ExoMars 2022 will be
281	launched in the denoted year. InSight's rotation and interior structure experiment
282	(Folkner et al. 2018), seismometer data (Giardini et al. 2020), and ExoMars' lander
283	radio-science experiment (Péters et al. 2020) will provide additional information about
284	the interior structure of Mars and its core. Our density and sound velocity data may help
285	better understand the Martian core and its thermal evolution.

286	Acknowledgments
287	We would like to thank Y. Nakajima for sample preparation and Y. Higo, Y. Tange, and
288	S. Kawaguchi for their fruitful discussion and help in analysis. R. Sinmyo, S. Kamada,
289	and anonymous referee were helpful to improve the manuscript. XRD measurements
290	using DAC and at ambient pressures were performed at the BL10XU (proposals no.
291	2014A0080, 2014A1127, 2016A1846, 2016B1954, 2016B1955, 2017B1977,
292	2018A2062, 2018B2109, 2019A1381, 2019B2094) and BL02B2 beamlines (proposals
293	no. 2019B2086) of SPring-8.
294	
295	
296	
297	
298	
299	References Cited
300	Anderson, O. L., and Isaak, D. G. (2002) Another look at the core density deficit of

- Earth's outer core. Physics of the Earth and Planetary Interiors, 131(1), 19-27.
- 302 Angel, R.J. (2000) Equations of state. Reviews in Mineralogy and Geochemistry, 41,
- 303 35–59.
- 304 Birch, F. (1961) The velocity of compressional waves in rocks to 10 kilobars: 2. Journal
- 305 of Geophysical Research, 66, 2199–2224.
- 306 Dewaele, A., Loubeyre, P., Occelli, F., Mezouar, M., Dorogokupets, P., and Torrent, M.
- 307 (2006) Quasihydrostatic equation of state of iron above 2 Mbar. Physical Review
- 308 Letters, 97, 215504.
- 309 Dreibus, G., and H. Palme (1996) Cosmochemical constraints on the sulfur content in
- the Earth's core, Geochimica et Cosmochimica Acta, 60, 1125–1130,
- doi:10.1016/0016-7037(96)00028-2.
- 312 Dreibus, G., and Wanke, H. (1985) Mars, a volatile-rich planet. Meteoritics, 20, 367–
- 313 381.
- 314 Dziewonski, A. M., and Anderson, D. L. (1981) Preliminary reference Earth
- 315 model. Physics of the earth and planetary interiors, 25(4), 297-356.
- 316 Eggert, J. H., Weck, G., Loubeyre, P., and Mezouar, M. (2002) Quantitative structure

317	factor and density measurements of high-pressure fluids in diamond anvil cells by
318	x-ray diffraction: Argon and water. Physical Review B, 65(17), 174105.
319	Fei, Y., Bertka, C. M., and Finger, L.W. (1997) High-pressure iron-sulfur compound,
320	Fe ₃ S ₂ , and melting relations in the Fe–FeS system. Science, 275, 1621–1623.
321	Fei, Y., Li, J., Bertka, C.M., and Prewitt, C.T. (2000) Structure type and bulk modulus of
322	Fe ₃ S, a new iron-sulfur compound. American Mineralogist, 85, 1830–1833.
323	Folkner, W. M., Dehant, V., Le Maistre, S., Yseboodt, M., Rivoldini, A., Van Hoolst, T.,
324	Asmar, S. W., and Golombek, M. P. (2018) The rotation and interior structure
325	experiment on the InSight mission to Mars. Space Science Reviews, 214(5), 100.
326	Giardini, D., Lognonné, P., Banerdt, W. B., Pike, W. T., Christensen, U., Ceylan, Clinton,
327	J. F., van Driel, M., Stähler, S. C., Böse, M., Garcia, R. F., Khan, A., Panning, M.,
328	Perrin, C., Banfield, D., Beucler, E., Charalambous, C., Euchner, F., Horleston, A.,
329	Jacob, A., Kawamura, T., Kedar, S., Mainsant, G., Scholz, JR., Smrekar, S. E.,
330	Spiga, A., Agard, C., Antonangeli, D., Barkaoui, S., Barrett, E., Combes, P.,
331	Conejero, V., Daubar, I., Drilleau, MC. Ferrier, C., Gabsi, T., Gudkova, T., Hurst, K.,

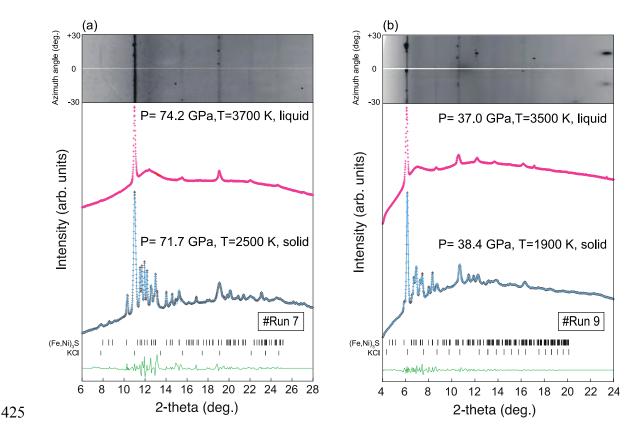
332	Karakostas, F., King, S., Knapmeyer, M., Knapmeyer-Endrun, B., Llorca-Cejudo, R.,
333	Lucas, A., Luno, L., Margerin, L., McClean, J. B., Mimoun, D., Murdoch, N.,
334	Nimmo, F., Nonon, M., Pardo, C., Rivoldini, A., Rodriguez Manfredi, J. A., Samuel,
335	H., Schimmel, M., Stott, A. E., Stutzmann, E., Teanby, N., Warren, T., Weber, R. C.,
336	Wieczorek, M., and Yana, C (2020) The seismicity of Mars. Nature Geoscience,
337	13(3), 205–212.
338	Hirao, N., Kawaguchi, S.I., Hirose, K., Shimizu, K., Ohtani, E., and Ohishi, Y. (2020)
339	New developments in high-pressure X-ray diffraction beamline for diamond anvil
340	cell at SPring-8. Matter and Radiation at Extremes, 5, 018403.
341	Huang, H., Wu, S., Hu, X., Wang, Q., Wang, X., and Fei, Y. (2013) Shock compression
342	of Fe-FeS mixture up to 204 GPa. Geophysical Research Letters, 40, 687–691.
343	Kawaguchi, S. I., Nakajima, Y., Hirose, K., Komabayashi, T., Ozawa, H., Tateno, S.,
344	Kuwayama Y., Tsutsui S., and Baron, A. Q. (2017) Sound velocity of liquid Fe-Ni-S
345	at high pressure. Journal of Geophysical Research: Solid Earth, 122, 3624–3634.
346	Kawaguchi, S., Takemoto, M., Osaka, K., Nishibori, E., Moriyoshi, C., Kubota, Y.,

347	Kuroiwa, Y., and Sugimoto, K. (2017). High-throughput powder diffraction
348	measurement system consisting of multiple MYTHEN detectors at beamline
349	BL02B2 of SPring-8. Review of Scientific Instruments, 88, 085111.
350	Krogh-Moe, J. (1956) A method for converting experimental X-ray intensities to an
351	absolute scale. Acta Crystallographica, 9, 951–953.
352	Kuwayama, Y., Morard, G., Nakajima, Y., Hirose, K., Baron, A.Q., Kawaguchi, S.I.,
353	Tsutsuya, T., Ishikawa, D., Hirao, N., and Ohishi, Y. (2020). Equation of state of
354	liquid iron under extreme conditions. Physical Review Letters, 124, 165701.
355	Li, J., Y. Fei, H. K. Mao, K. Hirose, and S. R. Shieh (2001), Sulfur in the Earth's inner
356	core, Earth Planet. Sci. Lett., 193(3). S0012-821X(01)00521-0.
357	Mahan, B., Siebert, J., Pringle, E. A., and Moynier, F. (2017). Elemental partitioning and
358	isotopic fractionation of Zn between metal and silicate and geochemical estimation
359	of the S content of the Earth's core. Geochimica et Cosmochimica Acta, 196,
360	252-270.
361	Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of

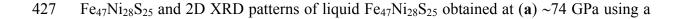
362	crystal, volumetric and morphology data. Journal of applied crystallography, 44(6),
363	1272-1276.
364	Morard, G., Andrault, D., Guignot, N., Sanloup, C., Mezouar, M., Petitgirard, S., and
365	Fiquet, G. (2008) In situ determination of Fe-Fe3S phase diagram and liquid
366	structural properties up to 65 GPa. Earth and Planetary Science Letters, 272(3-4),
367	620-626.
368	Morard, G., Bouchet, J., Rivoldini, A., Antonangeli, D., Roberge, M., Boulard, E.,
369	Denoeud, A., and Mezouar, M. (2018). Liquid properties in the Fe-FeS system under
370	moderate pressure: Tool box to model small planetary cores. American Mineralogist:
371	Jourrth and Planetary Materials, 103(11), 1770–1779.
372	Morard, G., Sanloup, C., Fiquet, G., Mezouar, M., Rey, N., Poloni, R., and Beck, P.
373	(2007) Structure of eutectic Fe–FeS melts to pressures up to 17 GPa: implications for
374	planetary cores. Earth and Planetary Science Letters, 263(1-2), 128-139.
375	Morard, G., Siebert, J., Andrault, D., Guignot, N., Garbarino, G., Guyot, F., and
376	Antonangeli, D. (2013) The Earth's core composition from high pressure density

377	measurements of liquid iron alloys. Earth and Planetary Sc	eience Letters, 373, 169-
378	178.	

- 379 Mori, Y., Ozawa, H., Hirose, K., Sinmyo, R., Tateno, S., Morard, G., and Ohishi, Y.
- 380 (2017) Melting experiments on Fe–Fe3S system to 254 GPa. Earth and Planetary
- 381 Science Letters, 464, 135–141.
- 382 Murthy, V.R., and Hall, H.T. (1970) The chemical composition of the Earth's core:
- possibility of sulphur in the core. Physics of the Earth and Planetary Interiors, 2,
- 384 276–282.
- 385 Nishida, K., Ohtani, E., Urakawa, S., Suzuki, A., Sakamaki, T., Terasaki, H., and
- 386 Katayama, Y. (2011) Density measurement of liquid FeS at high pressures using
- 387 synchrotron X-ray absorption. American Mineralogist, 96, 864–868.
- 388 Norman, N. (1957) The Fourier transform method for normalizing intensities. Acta
- 389 Crystallographica, 10, 370–373.
- 390 Petříček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic computing system
- 391 JANA2006: general features. Zeitschrift für Kristallographie-Crystalline Materials,

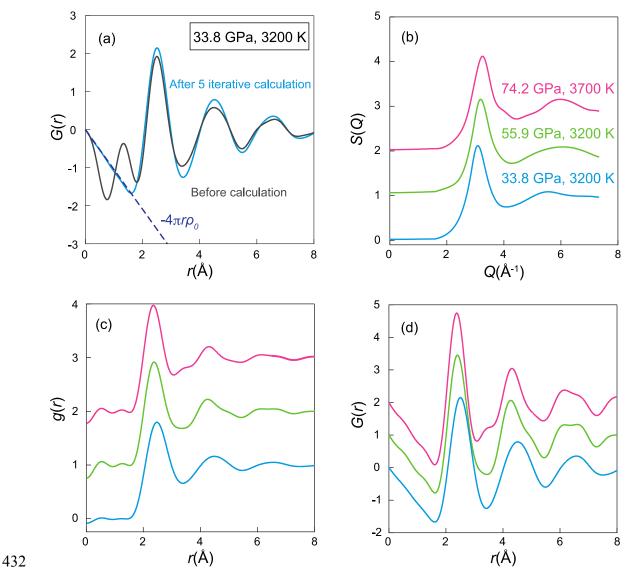

- 392 229, 345–352.
- 393 Péters, M. J., Le Maistre, S., Yseboodt, M., Marty, J. C., Rivoldini, A., Van Hoolst, T.,
- and Dehant, V. (2020) LaRa after RISE: Expected improvement in the Mars rotation
- and interior models. Planetary and Space Science, 180, 104745.
- 396 Seto, Y., Nishio-Hamane, D., Nagai, T., and Sata, N (2010) The Review of High
- 397 Pressure Science and Technology, 20, 269.
- 398 Stewart, A.J., Schmidt, M.W., van Westrenen, W., and Liebske, C. (2007) Mars: A new
- 399 core-crystallization regime. Science, 316, 1323–1325.
- 400 Sun, D. Y., Asta, M., and Hoyt, J. J. (2004) Crystal-melt interfacial free energies and
- 401 mobilities in fcc and bcc Fe. Physical Review B, 69(17), 174103.
- 402 Tateno, S., Komabayashi, T., Hirose, K., Hirao, N., and Ohishi, Y. (2019) Static
- 403 compression of B2 KCl to 230 GPa and its PVT equation of state. American
- 404 Mineralogist: Journal of Earth and Planetary Materials, 104(5), 718-723.
- 405 Terasaki, H., Rivoldini, A., Shimoyama, Y., Nishida, K., Urakawa, S., Maki,
- 406 M.,Kurokawa, F., Takubo, Y., Shibazaki, Y., Sakamaki, T., Machida, A., Higo, Y.,

407	Uesugi, K., Takeuchi, A., Watanuki, T., and Kondo, T. (2019) Pressure and
408	composition effects on sound velocity and density of core-forming liquids:
409	Implication to core compositions of terrestrial planets. Journal of Geophysical
410	Research: Planets, 124(8), 2272–2293.
411	Thompson, S., Komabayashi, T., Breton, H., Suehiro, S., Glazyrin, K., Pakhomova, A.,
412	and Ohishi, Y. (2020) Compression experiments to 126 GPa and 2500 K and thermal
413	equation of state of Fe3S: Implications for sulphur in the Earth's core. Earth and
414	Planetary Science Letters, 534, 116080.
415	Tsujino, N., Y. Nishihara, Y. Nakajima, E. Takahashi, K. I. Funakoshi, and Y. Higo
416	(2013) Equation of state of γ -Fe: Reference density for planetary cores, Earth and
417	Planetary Science Letters, 375, 244–253.
418	Yoder, C. F., Konopliv, A. S., Yuan, D. N., Standish, E. M., and Folkner, W. M. (2003)
419	Fluid core size of Mars from detection of the solar tide. Science, 300(5617), 299-
420	303.
421	


422

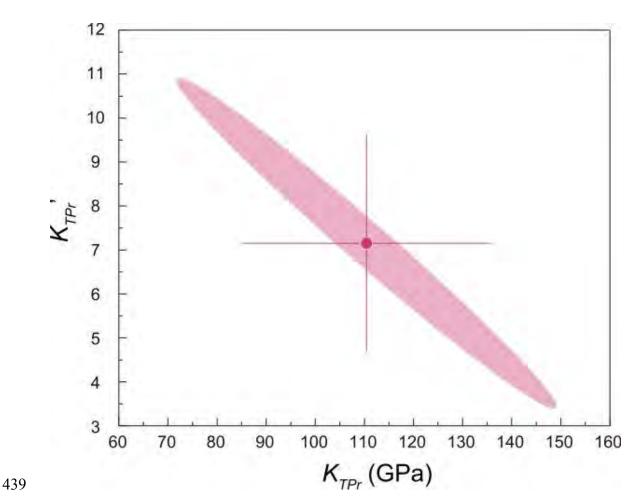
423

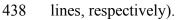
424


426 FIGURE 1. 1D XRD patterns of solid (gray symbols) and liquid (pink symbols)

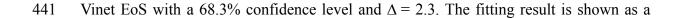
428 30 keV X-ray and (b) ~37 GPa using a 50 keV X-ray. Blue and green lines indicate the

429 whole pattern profile fitting results of $(Fe,Ni)_3S$ (space group: $I\overline{4}$) and KCl B2 (space

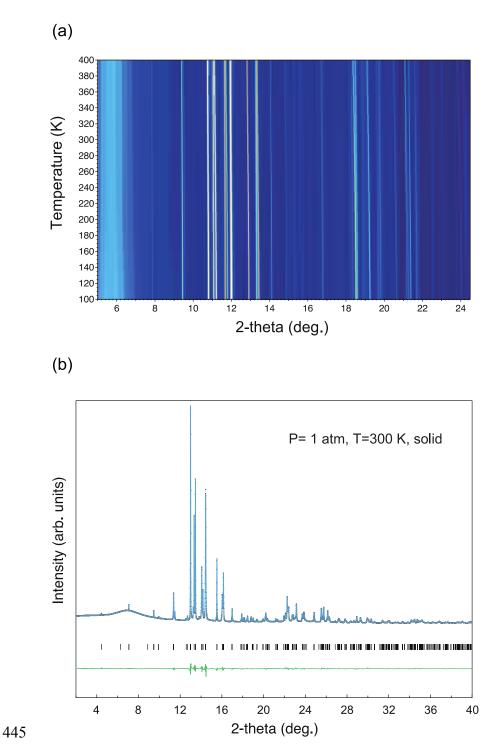

430 group: $Pm\overline{3}m$) using the Le Bail method and the differences between the observed and

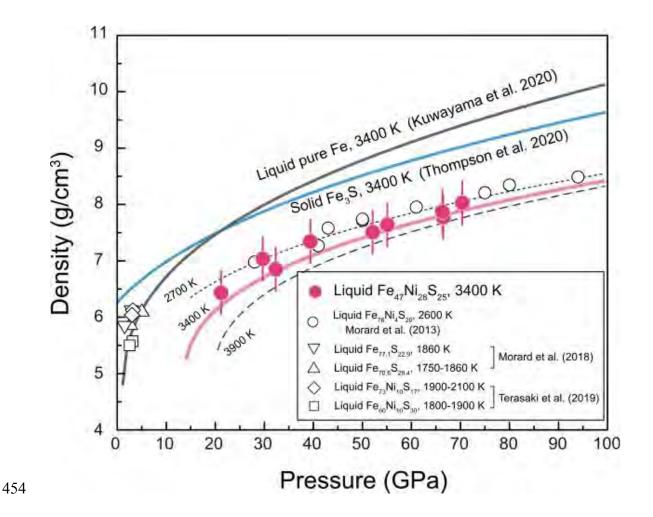


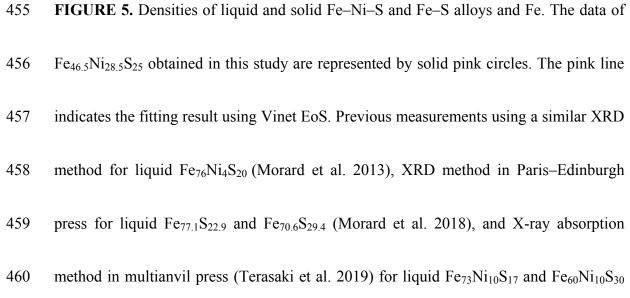
431 calculated profiles, respectively.


434 **FIGURE 2.** Typical Faber–Ziman structure factor S(Q), reduced pair distribution 435 function G(r), and pair distribution function g(r). (a) Comparison of G(r) functions

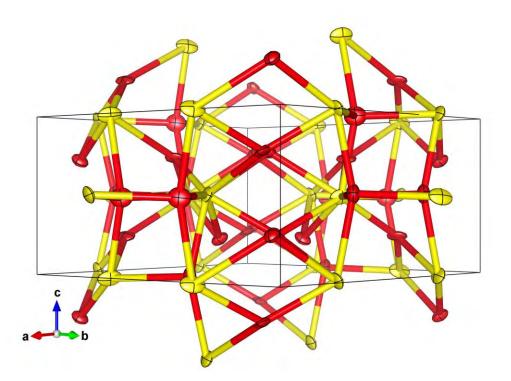
- 436 before and after five iterative optimization calculations; (b)–(d) typical S(Q), g(r), and
- 437 G(r) functions after optimization at 34, 56, and 74 GPa (light blue, light green, and pink

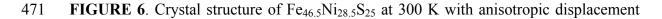


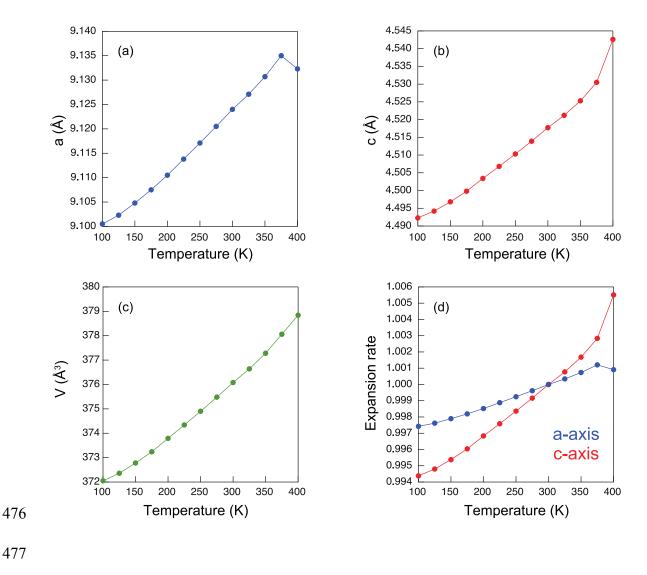

442 circular symbol with errors of $K_{TPr} = 110.5(250)$ GPa and $K'_{TPr} = 7.2(25)$.

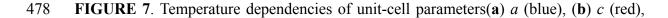

443

444



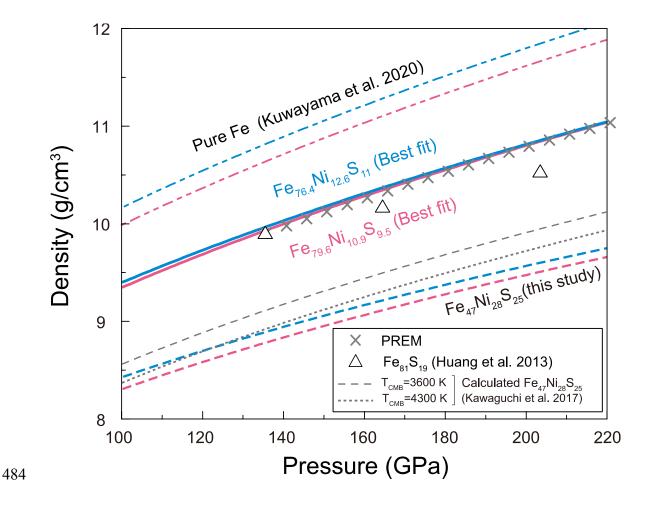

447	FIGURE 4 . (a) Temperature dependence of powder XRD pattern of $Fe_{46.5}Ni_{28.5}S_{25}$ in the
448	temperature range 100-400 K at 1 atm using 30 keV X-ray; (b) XRD pattern of
449	$Fe_{46.5}Ni_{28.5}S_{25}$ at room temperature using 24.8 keV X-ray and its Rietveld analysis.
450	
451	
452	
453	


- are represented by the open diamonds and squares, respectively. The gray and light blue
 lines indicate the calculated densities of liquid Fe using the EoS in Kuwayama et al.
 (2020) and solid Fe₃S using the EoS in Thompson et al. (2020), respectively, at 3400 K.
 Dotted and broken lines indicate the calculated isothermal density profiles of liquid
 Fe_{46.5}Ni_{28.5}S₂₅ at 2700 and 3900 K.
- 467
- 468



- 472 ellipsoids at 80% probability level. Red and yellow symbols indicate the thermal
- 473 vibrations of Fe/Ni and S, respectively.
- 474

475

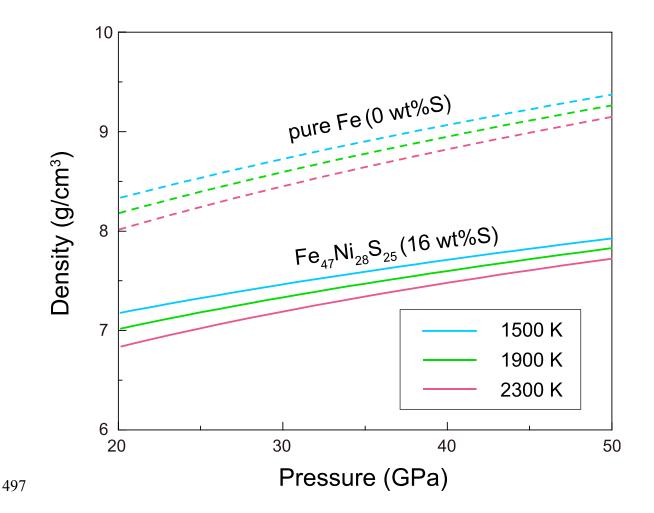


479 and (c) unit-cell volume V (purple); (d) a comparison of the expansion rates of the a and

480 c axes based on the values at 300 K.

482

483


485 **FIGURE 8.** Densities of liquid Fe–Ni–S alloys and Fe along adiabats with $T_{CMB} = 3600$

486 and 4300 K (blue and pink curves, respectively). Density profiles of Fe_{46.5}Ni_{28.5}S₂₅

487 calculated from the present results and pure Fe (Kuwayama et al. 2020) are shown with

488 broken and dashed lines, respectively. Solid blue and red curves indicate the best fits to

489	PREM (crosses) with liquid Fe _{76.4} Ni _{12.6} S ₁₁ (T_{CMB} = 3600 K) and Fe _{79.6} Ni _{10.9} S _{9.5} (T_{CMB} =
490	4300 K), respectively. The calculated density profiles of $Fe_{46.5}Ni_{28.5}S_{25}$ from the sound
491	velocity data of Kawaguchi et al. (2017) are shown by gray dashed (T_{CMB} = 3600 K) and
492	dotted (T_{CMB} = 4300 K) lines.
493	
494	
495	

498 **FIGURE 9.** Isothermal density profiles of liquid Fe_{46.5}Ni_{28.5}S₂₅ (16wt% S) and pure Fe

499 (0 wt% S) in the pressure range corresponding to the Martian core at 1500 (blue), 1900

500 (green), and 2300 K (pink).

501

502

Run No.	P (GPa)	<i>T</i> (K)	KCI volume (Å ³)	ρ (g/cm ³)	r _{min} (Å)	ρ ₀ (atoms/ų) ×10 ⁻²	BG factor	χ²
X-ray energy	/: 30 keV							
1	33.8(12)	3200	35.79(4)	7.035	1.59	8.333	0.941	0.12
2	44.0(14)	3900	33.77(2)	7.342	1.54	8.697	0.954	0.17
3	55.9(12)	3200	30.95(5)	7.510	1.60	8.897	0.924	0.924
4	59.1(12)	3500	30.60(3)	7.639	1.52	9.048	0.905	0.10
5	69.5(12)	3200	29.00(1)	7.872	1.58	9.324	0.911	0.16
6	70.4(14)	3700	29.12(9)	7.771	1.62	9.230	0.902	0.34
7	74.2(14)	3700	28.67(12)	8.027	1.66	9.508	0.900	1.04
X-ray energy	: 50 keV							
8	24.6(10)	2700	38.64(14)	6.434	1.66	7.621	0.926	0.35
9	37.0(13)	3500	35.24(13)	6.852	1.74	8.116	0.964	0.18

504

505

506

TABLE 2. Fittin	g results using the Vinet equa	ation of state		
<i>T</i> ₀ (K)	К _{тРr} (GPa)	K _{TPr} '	ρ_{Pr} (g/cm ³)	P _r (GPa)
3400	110.5(250)	7.2(25)	6.434	24.6

508