1	Word Count: 6550 (Revision 2)
2	Thermal conductivity of single-crystal brucite at high pressures with
3	implications for thermal anomaly in the shallow lower mantle
4	
5	Yu-Hsiang Chien ^{1,2,3*} , Kai-Chi Wei ⁴ , and Wen-Pin Hsieh ^{2,4*}
6	¹ Earth System Science Program, Taiwan International Graduate Program (TIGP),
7	Academia Sinica and National Central University, Taipei 11529, Taiwan
8	² Institute of Earth Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan
9	³ College of Earth Sciences, National Central University, Taoyuan 32001, Taiwan
10	⁴ Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan
11	
12	Corresponding authors: Yu-Hsiang Chien (<u>yhchien@gate.sinica.edu.tw</u>) and Wen-Pin
13	Hsieh (wphsieh@earth.sinica.edu.tw)
14	
15	Abstract
16	Brucite (Mg(OH) ₂) is an important hydrous mineral in the MgO-SiO ₂ -H ₂ O system
17	and also a key component in the process of hydrothermal metamorphism. Due to its large
18	water storage capacity and presence within a sinking slab, study of brucite's physical

Confidential manuscript submitted to American Mineralogist

19	properties under relevant extreme conditions could shed new lights on its potential
20	impacts on slab's thermal profile and geodynamics, as well as seismic anomaly observed
21	around a subduction zone. For example, seismic tomography has revealed slab stagnation
22	and low-velocity zones in the shallow lower mantle that are conventionally attributed,
23	respectively, to large contrasts of physical properties between the slab and mantle as well
24	as dehydration melt. However, the effect of hydrous minerals on slab dynamics and
25	seismic anomalies remains poorly understood. Here we study thermal conductivity of
26	brucite at high pressures and room temperature as well as at ambient pressure and
27	elevated temperatures. We further model thermal conductivity of brucite along a
28	representative geotherm and find an ~6–19-fold increase in the thermal conductivity as
29	brucite decomposes to periclase in the shallow lower mantle (~800 km depth). This result
30	implies that the subduction and decomposition of brucite-rich aggregate within a slab
31	may create a local high-temperature anomaly that would both enhance the slab's
32	buoyancy, leading to stagnation, and facilitate dehydration melting, contributing to
33	seismic low-velocity zones. Our findings offer mechanisms associated with brucite
34	decomposition that could influence the slab dynamics and seismic structures in the
35	shallow lower mantle.

36

37	Keywords: brucite, hydrous mineral, anisotropic thermal conductivity, slab stagnation,
38	dehydration melting
39	
40	Introduction
41	Brucite is one of the key hydrous phases in the complex MgO-SiO ₂ -H ₂ O (MSH)
42	ternary system (Hacker et al., 2003; Ohtani et al., 2000; Ohtani et al., 1995). It contains
43	large amounts of water (~30 wt%) and can coexist with other hydrous minerals, e.g.,
44	phase D, at pressure-temperature $(P-T)$ conditions within a subducting slab at mantle
45	transition zone and top of lower mantle (Irifune et al., 1998; Nishi et al., 2014; Ohtani et
46	al., 2000; Ohtani et al., 1995). Presence of brucite in Earth's deep interior could play a
47	crucial role in affecting Earth's deep water circulation and water budget. In the past
48	decades, many physical properties of brucite under extreme conditions have been
49	extensively investigated, including 1) phase stability (Fukui et al., 2005; Hacker et al.,
50	2003; Hermann and Mookherjee, 2016; Nishi et al., 2014; Pawley and Wood, 1996), 2)
51	elastic properties and seismic velocities (Hermann and Mookherjee, 2016; Jiang et al.,
52	2006; Mainprice and Ildefonse, 2009), 3) atomic structure and equation of state (Catti et
53	al., 1995; Hermann and Mookherjee, 2016; Mookherjee and Stixrude, 2006; Nagai et al.,
54	2000; Parise et al., 1994; Raugei et al., 1999; Xia et al., 1998), 4) molecular vibrational

55	spectrum (Duffy et al., 1995; Kruger et al., 1989; Zhu et al., 2019), and 5) thermal
56	properties (Hofmeister, 2014; Horai, 1971; Saxena et al., 2012; Zhu et al., 2019).
57	Importantly, using structure search and <i>ab initio</i> calculations (Hermann and Mookherjee,
58	2016) predicted that brucite is stable along the P - T conditions of a subducting slab until
59	about 30 GPa (~800 km depth), after which it decomposes to periclase (MgO) and H_2O .
60	The stability of brucite would impact the relative stability of other minerals in the MSH
61	system (Hacker et al., 2003; Ohtani et al., 2000; Ohtani et al., 1995). Potentially the
62	drastic changes in physical properties across brucite's decomposition to periclase and
63	H ₂ O could trigger local seismic and geodynamic anomalies (see Hermann and
64	Mookherjee (2016) and our discussion below).
65	Lattice thermal conductivity, the ability of a material to conduct heat, of minerals in
66	the mantle and subducting slabs is crucial to control the thermal evolution and
67	geodynamics in Earth's interior (Chang et al., 2017; Dalton et al., 2013; Deschamps and
68	Hsieh, 2019; Hsieh et al., 2017; Hsieh et al., 2018; Hsieh et al., 2020; Marzotto et al.,
69	2020). Recent studies suggested that a temperature anomaly within a subducting slab
69 70	2020). Recent studies suggested that a temperature anomaly within a subducting slab could be induced by large variations of thermal conductivity in the oceanic crust due to,
69 70 71	2020). Recent studies suggested that a temperature anomaly within a subducting slab could be induced by large variations of thermal conductivity in the oceanic crust due to, for instance, the effect of hydration (Chang et al., 2017) or spin transition (Chao and

73	peridotitic layer of a subducting slab, yet decompose to periclase in the shallow lower
74	mantle, how the thermal conductivity changes across the decomposition could critically
75	influence the local temperature profile, the stability of other hydrous minerals, and
76	dynamics of slabs. Prior studies on the brucite thermal conductivity have been limited to
77	polycrystalline or powder samples (Hofmeister, 2014; Horai, 1971; Yagi et al., 2010).
78	However, at ambient conditions brucite is a layered crystal ($P\overline{3}$ symmetry) with large
79	elastic anisotropy (Hermann and Mookherjee, 2016). Knowledge to the thermal
80	conductivity of brucite along different crystal orientations under extreme conditions is
81	critically needed as it could offer novel insights to the thermal profiles of a slab and
82	ambient mantle, with important consequences on slab's subduction dynamics and route of
83	water cycle in the shallow lower mantle.
84	In this work, we coupled ultrafast time-domain thermoreflectance with diamond-
85	anvil cells (DAC) to study the lattice thermal conductivity of brucite along a - ([100]) and
86	c-axis ([001]) of the crystal to 30 GPa. We observed a strong thermal conductivity
87	anisotropy that reduces with pressure. Our modeled thermal conductivity profiles of the
88	brucite and periclase along a slab's geotherm further indicate a significant increase in the
89	thermal conductivity by ~6–19 folds, depending on brucite's crystal orientation, at depth
90	of ~800 km. The large thermal conductivity discontinuity across the decomposition of

91	brucite to periclase suggests that a local high-temperature anomaly can be induced as the
92	brucite-rich aggregate within a slab is subducted to the shallow lower mantle and
93	eventually decomposed, enhancing slab's buoyancy for stagnation and release of water in
94	the region. Similar to the endothermic ringwoodite to bridgmanite and ferropericlase
95	transition at ~660 km depth that increases slab's buoyancy (Goes et al., 2017), the
96	decomposition of brucite at ~800 km depth not only creates additional effective mantle
97	resistance that impacts the slab dynamics, but serves as a new water source that promotes
98	formation of dehydration melts, causing seismic low velocities in the shallow lower
99	mantle.
100	
100 101	Experimental Methods
100 101 102	Experimental Methods Starting materials and sample preparation
100 101 102 103	Experimental Methods Starting materials and sample preparation Natural samples of brucite used in this study were collected from Killa Saifullah
100 101 102 103 104	Experimental Methods Starting materials and sample preparation Natural samples of brucite used in this study were collected from Killa Saifullah District in Balochistan, Pakistan. Their chemical composition was confirmed to be
100 101 102 103 104 105	Experimental Methods Starting materials and sample preparation Natural samples of brucite used in this study were collected from Killa Saifullah District in Balochistan, Pakistan. Their chemical composition was confirmed to be Mg(OH)2 using energy-dispersive X-ray spectroscopy with an Oxford X max-80 detector.
100 101 102 103 104 105 106	Experimental Methods Starting materials and sample preparation Natural samples of brucite used in this study were collected from Killa Saifullah District in Balochistan, Pakistan. Their chemical composition was confirmed to be Mg(OH)2 using energy-dispersive X-ray spectroscopy with an Oxford X max-80 detector. We determined the crystal orientation along the [100] and [001] axes with single-crystal
100 101 102 103 104 105 106	Experimental Methods Starting materials and sample preparation Natural samples of brucite used in this study were collected from Killa Saifullah District in Balochistan, Pakistan. Their chemical composition was confirmed to be Mg(OH)2 using energy-dispersive X-ray spectroscopy with an Oxford X max-80 detector. We determined the crystal orientation along the [100] and [001] axes with single-crystal X-ray diffraction (Bruker X8 APEX). To perform thermal conductivity measurements

109	μm and coated an ~90 nm thick aluminum (Al) film on the brucite. We then loaded the
110	sample, along with a ruby sphere, into a symmetric piston-cylinder DAC with a culet size
111	of 400 μ m and a tungsten gasket. We used silicone oil (CAS No. 63148-62-9 from
112	ACROS ORGANICS) as the pressure medium. The schematic illustration of the brucite
113	sample within a DAC is shown in Fig. 1. We measured the pressure within the sample
114	chamber using calibrated ruby fluorescence (Mao et al., 1986), which has a typical
115	uncertainty of less than 5% within the pressure range we studied, from ambient to 30
116	GPa.
117	
118	Lattice thermal conductivity measurements
119	We measured the lattice thermal conductivity of brucite using time-domain
120	thermoreflectance (TDTR). TDTR is an ultrafast optical technique which uses a mode-
121	locked, 785-nm wavelength, Ti:sapphire laser to pump and probe thermal diffusion
122	through a material. The output of the laser was split into pump and probe beams that were
123	both focused onto the Al film coated on the sample. We used the pump beam to heat up
124	the Al film and then used the probe beam to measure the resulting optical reflectivity
125	change on the Al film due to the temperature variations over time (Fig. 1). We measured
126	the in-phase (V_{in}) and out-of-phase (V_{out}) components of variations in the reflected probe

127	beam intensity using a silicon photodiode and lock-in amplifier. Detailed descriptions of
128	the TDTR technique are available in Cahill (2004) and Hsieh et al. (2009).
129	To derive the thermal conductivity of the brucite sample, we compared the ratio of V_{in}
130	to $V_{\rm out}$ (- $V_{\rm in}/V_{\rm out}$) as a function of delay time between the pump and probe beams to the
131	numerical calculations of a bi-directional heat-flow model (Ge et al., 2006; Schmidt et
132	al., 2008), see Fig. 2 for an example of TDTR data compared with model calculations.
133	Table 1 contains the input parameters for the heat-flow model for Fig. 2, including laser
134	spot size, Al-film thickness, and the thermal conductivity and volumetric heat capacity of
135	each layer (i.e., silicone oil, Al film, and brucite). As such, the brucite thermal
136	conductivity is the only significant, free parameter in the model, which is determined by
137	manipulating it until the model calculation matches the experimental data with the
138	minimum mean-square error (Fig. 2). We measured the thickness of Al film at ambient
139	conditions using picosecond acoustics (O'Hara et al., 2001) and estimated the changes in
140	thickness as a function of pressure using the equation-of-state of Al following a method
141	developed in (Chen et al., 2011). Since the thermal penetration depths (the skin depth that
142	a heat wave can diffuse into a material) of the silicone oil and brucite sample are both
143	only on the order of few hundred nanometers (Hsieh et al., 2009), the heat-flow model
144	calculations are not sensitive to their thicknesses. The thermal conductivity and heat

145	capacity of silicone oil and Al as a function of pressure were taken from previous data
146	(Hsieh, 2015; Hsieh et al., 2009). The volumetric heat capacity of brucite at ambient
147	conditions is 3.12 J cm ^{-3} K ^{-1} (Saxena et al., 2012); we assumed it is a constant under high
148	pressure because upon compression the decrease in brucite's specific heat per molecule is
149	largely counterbalanced by the increase in its density (Hermann and Mookherjee, 2016;
150	Xia et al., 1998). Figure 2 also shows that the estimated uncertainty of each of the
151	parameters in the heat-flow model (Table 1) propagates an integrated error in the
152	measured brucite thermal conductivity of approximately 5% at ambient pressure and
153	about 20% at 30 GPa.
154	
154 155	Experimental Results
154 155 156	Experimental Results Thermal conductivity at high pressure and room temperature
154 155 156 157	Experimental Results Thermal conductivity at high pressure and room temperature Figure 3(a) shows the brucite thermal conductivity (Λ) along the [100] (Λ _[100]) and
154 155 156 157 158	Experimental Results Thermal conductivity at high pressure and room temperature Figure 3(a) shows the brucite thermal conductivity (Λ) along the [100] (Λ _[100]) and [001] (Λ _[001]) axes under high pressure and room temperature. At ambient conditions, the
154 155 156 157 158 159	Experimental Results Thermal conductivity at high pressure and room temperature Figure 3(a) shows the brucite thermal conductivity (Λ) along the [100] (Λ _[100]) and [001] (Λ _[001]) axes under high pressure and room temperature. At ambient conditions, the Λ _[100] and Λ _[001] are 12.6 ± 0.11 W m ⁻¹ K ⁻¹ and 1.08 ± 0.08 W m ⁻¹ K ⁻¹ , respectively,
154 155 156 157 158 159 160	Experimental Results Thermal conductivity at high pressure and room temperature Figure 3(a) shows the brucite thermal conductivity (Λ) along the [100] (Λ _[100]) and [001] (Λ _[001]) axes under high pressure and room temperature. At ambient conditions, the Λ _[100] and Λ _[001] are 12.6 ± 0.11 W m ⁻¹ K ⁻¹ and 1.08 ± 0.08 W m ⁻¹ K ⁻¹ , respectively, resulting in a large conductivity ratio (Λ _[100] / Λ _[001]) of 11.7, which indicates a significant
 154 155 156 157 158 159 160 161 	Experimental Results Thermal conductivity at high pressure and room temperature Figure 3(a) shows the brucite thermal conductivity (Λ) along the [100] (Λ _[100]) and [001] (Λ _[001]) axes under high pressure and room temperature. At ambient conditions, the Λ _[100] and Λ _[001] are 12.6 ± 0.11 W m ⁻¹ K ⁻¹ and 1.08 ± 0.08 W m ⁻¹ K ⁻¹ , respectively, resulting in a large conductivity ratio (Λ _[100] / Λ _[001]) of 11.7, which indicates a significant conductivity anisotropy between the crystal axes. Literature data for the polycrystalline

Confidential manuscript submitted to American Mineralogist

163	for comparison, which fall within the range between $\Lambda_{[100]}$ and $\Lambda_{[001]}$. As the pressure
164	increases, the $\Lambda_{[100]}$ and $\Lambda_{[001]}$ increase as a function of pressure, reaching $20.7\pm2.3~W$
165	$m^{\text{-1}}K^{\text{-1}}$ and 6.3 \pm 0.8 W $m^{\text{-1}}K^{\text{-1}}$ at 30 GPa, respectively, with a conductivity ratio
166	reducing to about 3.3. The pressure dependence of $\Lambda_{[100]}$ and $\Lambda_{[001]}$ up to 30 GPa form an
167	upper and lower bound, respectively, for the thermal conductivity of brucite. Importantly,
168	during slab subduction, lattice preferred orientation (LPO) could be present in minerals
169	around the interface of slab and mantle, such as in serpentine and talc (Mookherjee and
170	Capitani, 2011). If the LPO exists in brucite whose thermal conductivity is highly
171	anisotropic (Fig. 3(a)), the heat transfer through the slab could be substantially affected
172	by which axis of brucite that preferentially orients parallel to the direction of slab motion.
173	Moreover, Hermann and Mookherjee (2016) predicted that brucite undergoes a
174	phase transition from $P\overline{3}$ to $P4_12_12$ at ~22 GPa and room temperature. Our data show
175	that only the $\Lambda_{[100]}$ presents a small kink coincidentally around 20–23 GPa, which,
176	however, is comparable to the measurement errors. We thus conclude that the potential
177	$P\overline{3}$ to $P4_12_12$ transition, if exists, does not significantly alter the brucite thermal
178	conductivity.
179	In order to estimate the thermal conductivity of brucite under slab's high P - T

180 conditions (see our discussion below), here we first parameterized the pressure

181	dependences of $\Lambda_{[100]}$ and $\Lambda_{[001]}$ (Fig. 3(a)) based on the best-fit third-order-polynomial
182	regression (blue and orange dotted curves in Fig. 3(a)):
183	$\Lambda(P) = (\Lambda_{\text{amb}} + aP + bP^2 + cP^3), \tag{1}$
184	where Λ_{amb} is the thermal conductivity at ambient conditions and <i>a</i> , <i>b</i> , and <i>c</i> are the
185	linear, quadratic, and cubic coefficients, respectively. The parameterization coefficients
186	for $\Lambda_{[100]}$ and $\Lambda_{[001]}$ are listed in Table 2.
187	
188	Thermal conductivity at elevated temperature and ambient pressure
189	In addition to the high-pressure and room-temperature measurements, to understand
190	the effect of temperature on brucite thermal conductivity, we have also performed TDTR
191	measurements at elevated temperature (up to ~480 K) and ambient pressure, see Fig. 3
192	(b). Both $\Lambda_{[100]}$ and $\Lambda_{[001]}$ substantially decrease with increasing temperature, for instance,
193	by ~50% at ~480 K. Note that higher temperature results in a degradation of Al film
194	quality and thus a deterioration in measurement integrity. Though our measurement
195	temperature was limited up to ~480 K, temperature dependences of the $\Lambda_{[100]}$ and $\Lambda_{[001]}$
196	were clearly observed. We fit the data for $\Lambda_{[100]}$ and $\Lambda_{[001]}$ to a power relationship (dashed
197	curves in Fig. 3(b) (Chang et al., 2017; Hofmeister, 1999; Xu et al., 2004; Zhang et al.,
198	2019)), i.e.,

199
$$\Lambda(T) = \Lambda_{\text{amb}} (298/T)^n, \tag{2}$$

200	where T is the temperature (K) and Λ_{amb} the thermal conductivity at ambient conditions.
201	We find that the exponent, <i>n</i> , equals 0.83 ± 0.17 and 0.88 ± 0.24 for the [100] and [001]
202	orientation, respectively. These values of n are in good agreement with previous results
203	for pure materials, whose thermal conductivity typically follows a T^{1} dependence
204	(Dalton et al., 2013; Hofmeister, 1999; Klemens et al., 1962; Zhang et al., 2019). The
205	slight deviation of our <i>n</i> values from the ideal value $(n=1)$ could be caused by the large
206	amounts of hydroxyl (OH ⁻) in brucite which act as impurities to enhance phonon
207	scattering, similar to the roles that iron plays in many iron-bearing minerals (Chang et al.,
208	2017; Xu et al., 2004; Zhang et al., 2019).
209	
210	Discussions and Geophysical Impacts
211	Hacker et al. (2003) suggested that brucite could make up a significant portion (10-
212	15 vol%) of depleted lherzolite and harzburgite, which are the abundant rock
213	compositions relevant to a subducting hydrous crust. Mineral physics experiments
214	(Irifune et al., 1998; Ohtani et al., 2000; Ohtani et al., 1995) have shown that brucite
215	could coexist with phase D at pressures of ~19–27 GPa and temperatures of ~900–1200
216	K, coinciding with the typical geotherm of a subducting slab at ~600-800 km depth. Our

217	results for the pressure-temperature evolution of brucite thermal conductivity (Fig. 3)
218	offer insights into not only its potential impacts on the thermal state around a subduction
219	zone, but also on the occurrence of slab stagnation in the shallow lower mantle. Although
220	the brucite may not be a major mineral phase in the Earth's interior, it could be locally
221	concentrated within a cold and wet subducting slab (Irifune et al., 1998; Ohtani et al.,
222	1995). As such, it could still play a significant role since the effective thermal
223	conductivity of the slab materials largely depends on how the brucite is distributed within
224	the aggregate and on the effect of its decomposition to periclase.
225	
226	Thermal conductivity discontinuity as brucite decomposes to periclase
226 227	Thermal conductivity discontinuity as brucite decomposes to periclase To understand the potential temperature anomaly triggered by the decomposition of
226 227 228	Thermal conductivity discontinuity as brucite decomposes to periclase To understand the potential temperature anomaly triggered by the decomposition of brucite to periclase, we used the <i>P-T</i> dependences of brucite thermal conductivity
226 227 228 229	Thermal conductivity discontinuity as brucite decomposes to periclase To understand the potential temperature anomaly triggered by the decomposition of brucite to periclase, we used the <i>P</i> - <i>T</i> dependences of brucite thermal conductivity (equations (1) and (2)) to model the $\Lambda_{[100]}$ and $\Lambda_{[001]}$ of brucite along a representative
 226 227 228 229 230 	Thermal conductivity discontinuity as brucite decomposes to periclaseTo understand the potential temperature anomaly triggered by the decomposition ofbrucite to periclase, we used the P - T dependences of brucite thermal conductivity(equations (1) and (2)) to model the $\Lambda_{[100]}$ and $\Lambda_{[001]}$ of brucite along a representativegeotherm of a subducting slab (Eberle et al., 2002), see the blue and orange curves in Fig.
 226 227 228 229 230 231 	Thermal conductivity discontinuity as brucite decomposes to periclaseTo understand the potential temperature anomaly triggered by the decomposition ofbrucite to periclase, we used the <i>P-T</i> dependences of brucite thermal conductivity(equations (1) and (2)) to model the Λ _[100] and Λ _[001] of brucite along a representativegeotherm of a subducting slab (Eberle et al., 2002), see the blue and orange curves in Fig.4, respectively. Interestingly, both the Λ _[100] and Λ _[001] are weakly dependent on the depth,
 226 227 228 229 230 231 232 	Thermal conductivity discontinuity as brucite decomposes to periclaseTo understand the potential temperature anomaly triggered by the decomposition ofbrucite to periclase, we used the P - T dependences of brucite thermal conductivity(equations (1) and (2)) to model the $\Lambda_{[100]}$ and $\Lambda_{[001]}$ of brucite along a representativegeotherm of a subducting slab (Eberle et al., 2002), see the blue and orange curves in Fig.4, respectively. Interestingly, both the $\Lambda_{[100]}$ and $\Lambda_{[001]}$ are weakly dependent on the depth,reaching ~6.7 and 2.0 W m ⁻¹ K ⁻¹ , respectively, at ~800 km depth (~30 GPa) where it is
 226 227 228 229 230 231 232 233 	Thermal conductivity discontinuity as brucite decomposes to periclaseTo understand the potential temperature anomaly triggered by the decomposition ofbrucite to periclase, we used the <i>P-T</i> dependences of brucite thermal conductivity(equations (1) and (2)) to model the Λ _[100] and Λ _[001] of brucite along a representativegeotherm of a subducting slab (Eberle et al., 2002), see the blue and orange curves in Fig.4, respectively. Interestingly, both the Λ _[100] and Λ _[001] are weakly dependent on the depth,reaching ~6.7 and 2.0 W m ⁻¹ K ⁻¹ , respectively, at ~800 km depth (~30 GPa) where it isexpected to decompose to periclase (Hermann and Mookherjee, 2016). For the periclase

Confidential manuscript submitted to American Mineralogist

235	Dalton et al. (2013) and assumed its thermal conductivity follows a typical T^{1}
236	dependence (Dalton et al., 2013; Hofmeister, 1999; Klemens et al., 1962; Zhang et al.,
237	2019) along the same slab geotherm. At \sim 800 km depth, the thermal conductivity of
238	periclase increases to ~ 38 W m ⁻¹ K ⁻¹ , much larger than those of brucite along [100] and
239	[001] by a factor of ~6 and 19, respectively. This implies that as the brucite is locally
240	enriched within a slab and subducted to the depth of ~800 km, the decomposition to
241	periclase could result in a significant discontinuity in the effective thermal conductivity at
242	the peridotite layer of the slab, where brucite is locally enriched. We note that the phase
243	diagram of brucite by (Fukui et al., 2005) suggested that at a temperature of ~1000 K
244	(typical slab geotherm around the top of lower mantle (Eberle et al., 2002; Hermann and
245	Mookherjee, 2016)), the brucite would decompose to periclase at pressures of \sim 25 GPa
246	(~660 km), i.e., slightly shallower depth than the 800 km. Nevertheless, the thermal
247	conductivity discontinuity induced by brucite decomposition along with its geophysical
248	impacts, including a potential high-temperature anomaly which promotes slab stagnation
249	and release of water in the shallow lower mantle, remains the same (see our discussions
250	below).
251	It should also be noted that water, either as a liquid or ice VII, may also be a product

of this decomposition (Fukui et al., 2005; Hermann and Mookherjee, 2016), which could

253	affect the local thermal conductivity. However, the lower viscosity and density of the
254	water will allow it to migrate out of the peridotite layer rapidly enough that its effect
255	should be minimal (Abramson, 2007; Bina and Navrotsky, 2000).
256	
257	Potential local high-temperature anomaly promotes slab stagnation in the shallow
258	lower mantle
259	Global seismic tomography has revealed three main behaviors of subducting slabs in
260	different regions: 1) stagnation at the bottom of the mantle transition zone (~660 km
261	depth); 2) stagnation in the shallow lower mantle (~800–1000 km depth); and 3) further
262	penetration into the lower mantle, potentially reaching the core-mantle boundary
263	(Čížková and Bina, 2019; Fukao and Obayashi, 2013; Fukao et al., 2009; Lee and King,
264	2011). Several mechanisms or effects have been proposed to account for such different
265	slab subduction dynamics and causes of slab stagnation. The mechanisms include, for
266	instance, the negative Clapeyron slope at 660 km depth (Ballmer et al., 2015; Mao and
267	Zhong, 2018; Torii and Yoshioka, 2007), a drastic increase in the ambient mantle
268	viscosity (Alpert et al., 2010; Ballmer et al., 2015; Čížková and Bina, 2019; Mao and
269	Zhong, 2018; Marquardt and Miyagi, 2015), fraction of basalt in pyrolitic mantle
270	(Ballmer et al., 2015), trench retreat, and slab's age and dipping angle (Christensen, 1996;

Confidential manuscript submitted to American Mineralogist

271 Goes et al., 2017; Mao and Zhong, 2018), etc.

272	Mechanisms that flatten a sinking slab in the shallow lower mantle (~800–1000 km
273	depth), however, remain poorly understood as there is no major phase transition of lower
274	mantle minerals within such depth range. Based on the analysis of the long wavelengths
275	of the geoid, (Rudolph et al., 2015) found an increase in mantle viscosity in the depth
276	range of ~800–1200 km that may result in the slab stagnation around this depth range. On
277	the other hand, as we discussed before, the temperature profiles in the mantle and
278	subduction zones are a key parameter to control their density, viscosity, and buoyancy
279	with crucial consequences on the slab dynamics. As such, it is intuitive that the slab
280	thermal conductivity, which controls heat flow into the slab, will be an important factor in
281	understanding the causes of slab stagnation.
282	If the brucite is locally concentrated in a subducting slab and transported to the
283	shallow lower mantle of ~800 km depth and eventually decomposed, the drastic increase
284	in the brucite-rich aggregate thermal conductivity (~6–19 folds) triggered by the brucite
285	decomposition to periclase would considerably enhance the heat transfer from the
286	surrounding mantle into the slab, leading to a local high-temperature anomaly at the core
287	of the slab. Though the decomposition reaction may increase the slab density, it is
288	relatively small amount and localized at the top of the slab. The rise of temperature

289	through the slab, in turn, reduces the slab's density and viscosity, and enhances its
290	buoyancy, hindering the descent of the subducting slab to deeper lower mantle (see the
291	red shaded region within the slab in Fig. 4). Similar to the endothermic ringwoodite to
292	bridgmanite and ferropericlase transition at ~660 km depth that absorbs heat and
293	increases slab's buoyancy (Goes et al., 2017), the scenario by brucite decomposition
294	offers a new mechanism to additionally enhance the effective mantle resistance at ~ 800
295	km depth that could, at least partially, contribute to the stagnation of slabs in the shallow
296	lower mantle as observed by tomographic images.
297	
298	An additional water source to promote low-velocity zones at the top of lower mantle
298 299	An additional water source to promote low-velocity zones at the top of lower mantle In addition to the slab stagnation, seismic tomography has also imaged seismic low-
298 299 300	An additional water source to promote low-velocity zones at the top of lower mantle In addition to the slab stagnation, seismic tomography has also imaged seismic low- velocity zones (LVZs) at the top of lower mantle, ~700–800 km depth, see, e.g., (Fukao
298 299 300 301	An additional water source to promote low-velocity zones at the top of lower mantle In addition to the slab stagnation, seismic tomography has also imaged seismic low- velocity zones (LVZs) at the top of lower mantle, ~700–800 km depth, see, e.g., (Fukao and Obayashi, 2013; Schmandt et al., 2014). Mineral physics experiments coupled with
 298 299 300 301 302 	An additional water source to promote low-velocity zones at the top of lower mantle In addition to the slab stagnation, seismic tomography has also imaged seismic low- velocity zones (LVZs) at the top of lower mantle, ~700–800 km depth, see, e.g., (Fukao and Obayashi, 2013; Schmandt et al., 2014). Mineral physics experiments coupled with electrical conductivity measurements and geodynamics modelling suggest that the LVZs
 298 299 300 301 302 303 	An additional water source to promote low-velocity zones at the top of lower mantle In addition to the slab stagnation, seismic tomography has also imaged seismic low- velocity zones (LVZs) at the top of lower mantle, ~700–800 km depth, see, e.g., (Fukao and Obayashi, 2013; Schmandt et al., 2014). Mineral physics experiments coupled with electrical conductivity measurements and geodynamics modelling suggest that the LVZs at the top of lower mantle may be associated with the formation of partial melts assisted
 298 299 300 301 302 303 304 	An additional water source to promote low-velocity zones at the top of lower mantle In addition to the slab stagnation, seismic tomography has also imaged seismic low- velocity zones (LVZs) at the top of lower mantle, ~700–800 km depth, see, e.g., (Fukao and Obayashi, 2013; Schmandt et al., 2014). Mineral physics experiments coupled with electrical conductivity measurements and geodynamics modelling suggest that the LVZs at the top of lower mantle may be associated with the formation of partial melts assisted by hydrous fluids released either from the hydrous ringwoodite-bridgmanite phase
 298 299 300 301 302 303 304 305 	An additional water source to promote low-velocity zones at the top of lower mantle In addition to the slab stagnation, seismic tomography has also imaged seismic low- velocity zones (LVZs) at the top of lower mantle, ~700–800 km depth, see, e.g., (Fukao and Obayashi, 2013; Schmandt et al., 2014). Mineral physics experiments coupled with electrical conductivity measurements and geodynamics modelling suggest that the LVZs at the top of lower mantle may be associated with the formation of partial melts assisted by hydrous fluids released either from the hydrous ringwoodite-bridgmanite phase transition as the mantle flows downward across the 660 km discontinuity, or from the

Confidential manuscript submitted to American Mineralogist

307	B and phase D (Karato, 2011; Ohtani, 2015; Ohtani et al., 2018; Schmandt et al., 2014).
308	The hydrous minerals in the peridotite layer of a subducting slab undergo a series
309	of phase transitions during subduction, in which phase D along with brucite could coexist
310	at the <i>P</i> - <i>T</i> conditions of a subducting slab at \sim 600–800 km depth (Irifune et al., 1998;
311	Ohtani, 2005; Ohtani, 2015; Ohtani et al., 2018). In addition to the DHMS that can
312	release water via dehydration, brucite, which contains large amounts of water (~30 wt%),
313	could also serve as a water source to facilitate the formation of partial melt, leading to the
314	seismic anomalies in the region: when the brucite-rich aggregate is subducted to \sim 800 km
315	depth, the decomposition process releases H_2O that can migrate upwards (see the
316	schematic illustration in Fig. 4) due to its lower density and viscosity (Abramson, 2007),
317	additionally contributing water accumulation around the top of lower mantle. Moreover,
318	the local high-temperature anomaly induced by brucite decomposition to periclase would
319	help destabilize other co-existing hydrous minerals (e.g., phase D) and enhance their
320	dehydration, releasing more water to the ambient mantle. As an additional water source
321	and driver for local higher temperature anomalies, brucite decomposition provides a
322	novel mechanism for the formation of the LVZs at the top of lower mantle with broader
323	implications for the route and budget of the deep water cycle.

324

Confidential manuscript submitted to American Mineralogist

325	Implications
326	Combination of our novel experimental results with data modeling enables us to
327	infer that upon its decomposition, the brucite-rich aggregate within a sinking slab could
328	create a local thermal anomaly, influencing not only slab's subduction dynamics, but also
329	the stability field of minerals and seismic structures in surrounding mantle. Such effects
330	are expected to be general since the hydrous minerals in a sinking slab undergo a series of
331	phase transitions during subduction. Therefore, future experimental studies on the
332	thermal conductivity of other prominent hydrous minerals, such as a series of DHMS,
333	under relevant <i>P</i> - <i>T</i> conditions may uncover additional thermal conductivity
334	discontinuities present across phase transitions. An improved understanding of this
335	thermal conductivity framework has important implications for the local thermal states
336	and the mantle and subducting slab's dynamics. Further combination of our experimental
337	findings and numerical thermo-chemical modelling will significantly advance our
338	understanding of the thermo-chemical structures of subduction zones and their effects on
339	the budget and route of Earth's deep water transportation.
340	
341	Acknowledgments
342	This work was supported by the Academia Sinica and the Ministry of Science and

19

343	Technology (MOST) of Taiwan, Republic of China, under Contract AS-CDA-106-M02,
344	106-2116-M-001-022, and 107-2628-M-001-004-MY3. WPH acknowledges the
345	fellowship from the Foundation for the Advancement of Outstanding Scholarship,
346	Taiwan. We also thank Yoshiyuki Iizuka, Dylan W. Meyer, Yuh-Sheng Wen, Chao-Chih
347	Chen, Yi-Chi Tsao, and Yu-Shiang Wang of Academia Sinica for their help with the
348	experiments and helpful comments.
349	
350	References
351	Abramson, E.H. (2007) Viscosity of water measured to pressures of 6 GPa and
352	temperatures of 300 °C. Physical Review E, 76(5), 051203.
353	Alpert, L., Becker, T., and Bailey, I. (2010) Global slab deformation and centroid moment
354	tensor constraints on viscosity. Geochemistry, Geophysics, Geosystems, 11(12),
355	1-22.
356	Ballmer, M.D., Schmerr, N.C., Nakagawa, T., and Ritsema, J. (2015) Compositional
357	mantle layering revealed by slab stagnation at ~1000-km depth. Science
358	Advances, 1(11), e1500815.
359	Bina, C.R., and Navrotsky, A. (2000) Possible presence of high-pressure ice in cold
360	subducting slabs. Nature, 408(6814), 844-847.
361	Čížková, H., and Bina, C.R. (2019) Linked influences on slab stagnation: Interplay
362	between lower mantle viscosity structure, phase transitions, and plate coupling.
363	Earth and Planetary Science Letters, 509, 88-99.
364	Cahill, D.G. (2004) Analysis of heat flow in layered structures for time-domain
365	thermoreflectance. Review of scientific instruments, 75(12), 5119-5122.
366	Catti, M., Ferraris, G., Hull, S., and Pavese, A. (1995) Static compression and H disorder
367	in brucite, $Mg(OH)_2$, to 11 GPa: a powder neutron diffraction study. Physics and
368	Chemistry of Minerals, 22(3), 200-206.
369	Chang, YY., Hsieh, WP., Tan, E., and Chen, J. (2017) Hydration-reduced lattice
370	thermal conductivity of olivine in Earth's upper mantle. Proceedings of the

371	National Academy of Sciences, 114(16), 4078-4081.
372	Chao, KH., and Hsieh, WP. (2019) Thermal conductivity anomaly in (Fe _{0.78} Mg _{0.22})CO ₃
373	siderite across spin transition of Iron. Journal of Geophysical Research: Solid
374	Earth, 124(2), 1388-1396.
375	Chen, B., Hsieh, WP., Cahill, D., Trinkle, D., and Li, J. (2011) Thermal conductivity of
376	compressed H ₂ O to 22 GPa: a test of the Leibfried-Schlömann equation. Phys.
377	Rev. B, 83(13), 132301.
378	Christensen, U.R. (1996) The influence of trench migration on slab penetration into the
379	lower mantle. Earth and Planetary Science Letters, 140(1-4), 27-39.
380	Dalton, D.A., Hsieh, WP., Hohensee, G.T., Cahill, D.G., and Goncharov, A.F. (2013)
381	Effect of mass disorder on the lattice thermal conductivity of MgO periclase
382	under pressure. Scientific Reports, 3, 2400.
383	Deschamps, F., and Hsieh, WP. (2019) Lowermost mantle thermal conductivity
384	constrained from experimental data and tomographic models. Geophysical
385	Journal International, 219, S115-S136.
386	Duffy, T.S., Meade, C., Fei, Y., Mao, HK., and Hemley, R.J. (1995) High-pressure phase
387	transition in brucite, Mg(OH) ₂ . American Mineralogist, 80(3-4), 222-230.
388	Eberle, M.A., Grasset, O., and Sotin, C. (2002) A numerical study of the interaction
389	between the mantle wedge, subducting slab, and overriding plate. Physics of the
390	Earth and Planetary Interiors, 134(3-4), 191-202.
391	Fukao, Y., and Obayashi, M. (2013) Subducted slabs stagnant above, penetrating through,
392	and trapped below the 660 km discontinuity. Journal of Geophysical Research:
393	Solid Earth, 118(11), 5920-5938.
394	Fukao, Y., Obayashi, M., Nakakuki, T., and Deep Slab Project Group. (2009) Stagnant
395	slab: a review. Annual Review of Earth and Planetary Sciences, 37, 19-46.
396	Fukui, H., Inoue, T., Yasui, T., Katsura, T., Funakoshi, KI., and Ohtaka, O. (2005)
397	Decomposition of brucite up to 20 GPa: Evidence for high MgO-solubility in the
398	liquid phase. European journal of mineralogy, 17(2), 261-267.
399	Ge, Z., Cahill, D.G., and Braun, P.V. (2006) Thermal conductance of hydrophilic and
400	hydrophobic interfaces. Physical review letters, 96(18), 186101.
401	Goes, S., Agrusta, R., van Hunen, J., and Garel, F. (2017) Subduction-transition zone
402	interaction: a review. Geosphere, 13(3), 644-664.
403	Hacker, B.R., Abers, G.A., and Peacock, S.M. (2003) Subduction factory 1. Theoretical
404	mineralogy, densities, seismic wave speeds, and H_2O contents. Journal of
405	Geophysical Research: Solid Earth, 108(B1), 1-26.
406	Hermann, A., and Mookherjee, M. (2016) High-pressure phase of brucite stable at Earth's

407	mantle transition zone and lower mantle conditions. Proceedings of the National
408	Academy of Sciences, 113(49), 13971-13976.
409	Hofmeister, A. (1999) Mantle values of thermal conductivity and the geotherm from
410	phonon lifetimes. Science, 283(5408), 1699-1706.
411	Hofmeister, A. (2014) Thermal diffusivity and thermal conductivity of single-crystal
412	MgO and Al ₂ O ₃ and related compounds as a function of temperature. Physics and
413	Chemistry of Minerals, 41(5), 361-371.
414	Horai, Ki. (1971) Thermal conductivity of rock-forming minerals. Journal of
415	Geophysical Research, 76(5), 1278-1308.
416	Hsieh, WP. (2015) Thermal conductivity of methanol-ethanol mixture and silicone oil at
417	high pressures. Journal of Applied Physics, 117(23), 235901.
418	Hsieh, WP., Chen, B., Li, J., Keblinski, P., and Cahill, D.G. (2009) Pressure tuning of
419	the thermal conductivity of the layered muscovite crystal. Physical Review B,
420	80(18), 180302.
421	Hsieh, WP., Deschamps, F., Okuchi, T., and Lin, JF. (2017) Reduced lattice thermal
422	conductivity of Fe-bearing bridgmanite in Earth's deep mantle. Journal of
423	Geophysical Research: Solid Earth, 122(7), 4900-4917.
424	Hsieh, WP., Deschamps, F., Okuchi, T., and Lin, JF. (2018) Effects of iron on the
425	lattice thermal conductivity of Earth's deep mantle and implications for mantle
426	dynamics. Proceedings of the National Academy of Sciences, 115(16), 4099-
427	4104.
428	Hsieh, WP., Ishii, T., Chao, KH., Tsuchiya, J., Deschamps, F., and Ohtani, E. (2020)
429	Spin transition of iron in δ -(Al,Fe)OOH induces thermal anomalies in Earth's
430	lower mantle. Geophysical Research Letters, 47(4), e2020GL087036.
431	Irifune, T., Kubo, N., Isshiki, M., and Yamasaki, Y. (1998) Phase transformations in
432	serpentine and transportation of water into the lower mantle. Geophysical
433	Research Letters, 25(2), 203-206.
434	Jiang, F., Speziale, S., and Duffy, T.S. (2006) Single-crystal elasticity of brucite,
435	Mg(OH) ₂ , to 15 GPa by Brillouin scattering. American Mineralogist, 91(11-12),
436	1893-1900.
437	Karato, Si. (2011) Water distribution across the mantle transition zone and its
438	implications for global material circulation. Earth and Planetary Science Letters,
439	301(3-4), 413-423.
440	Klemens, P., White, G., and Tainsh, R. (1962) Scattering of lattice waves by point
441	defects. Philosophical Magazine, 7(80), 1323-1335.
442	Kruger, M., Williams, Q., and Jeanloz, R. (1989) Vibrational spectra of $Mg(OH)_2$ and 22

443	Ca(OH) ₂ under pressure. The Journal of Chemical Physics, 91(10), 5910-5915.
444	Lee, C., and King, S.D. (2011) Dynamic buckling of subducting slabs reconciles
445	geological and geophysical observations. Earth and Planetary Science Letters,
446	312(3-4), 360-370.
447	Mainprice, D., and Ildefonse, B. (2009) Seismic anisotropy of subduction zone minerals-
448	contribution of hydrous phases. In S. Lallemand, and F. Funiciello, Eds.
449	Subduction zone geodynamics, p. 63-84. Springer, Berlin, Heidelberg.
450	Mao, H., Xu, JA., and Bell, P. (1986) Calibration of the ruby pressure gauge to 800 kbar
451	under quasi-hydrostatic conditions. Journal of Geophysical Research: Solid Earth,
452	91(B5), 4673-4676.
453	Mao, W., and Zhong, S. (2018) Slab stagnation due to a reduced viscosity layer beneath
454	the mantle transition zone. Nature Geoscience, 11(11), 876-881.
455	Marquardt, H., and Miyagi, L. (2015) Slab stagnation in the shallow lower mantle linked
456	to an increase in mantle viscosity. Nature Geoscience, 8(4), 311-314.
457	Marzotto, E., Hsieh, WP., Ishii, T., Chao, KH., Golabek, G.J., Thielmann, M., and
458	Ohtani, E. (2020) Effect of water on lattice thermal conductivity of ringwoodite
459	and its implications for the thermal evolution of descending slabs. Geophysical
460	Research Letters, 47(13), e2020GL087607.
461	Mookherjee, M., and Capitani, G.C. (2011) Trench parallel anisotropy and large delay
462	times: Elasticity and anisotropy of antigorite at high pressures. Geophysical
463	Research Letters, 38(9), 1-6.
464	Mookherjee, M., and Stixrude, L. (2006) High-pressure proton disorder in brucite.
465	American Mineralogist, 91(1), 127-134.
466	Nagai, T., Hattori, T., and Yamanaka, T. (2000) Compression mechanism of brucite: an
467	investigation by structural refinement under pressure. American Mineralogist,
468	85(5-6), 760-764.
469	Nishi, M., Irifune, T., Tsuchiya, J., Tange, Y., Nishihara, Y., Fujino, K., and Higo, Y.
470	(2014) Stability of hydrous silicate at high pressures and water transport to the
471	deep lower mantle. Nature Geoscience, 7(3), 224-227.
472	O'Hara, K., Hu, X., and Cahill, D.G. (2001) Characterization of nanostructured metal
473	films by picosecond acoustics and interferometry. Journal of Applied Physics,
474	90(9), 4852-4858.
475	Ohtani, E. (2005) Water in the mantle. Elements, 1(1), 25-30.
476	Ohtani, E. (2015) Hydrous minerals and the storage of water in the deep mantle.
477	Chemical Geology, 418, 6-15.
478	Ohtani, E., Mizobata, H., and Yurimoto, H. (2000) Stability of dense hydrous magnesium 23

- 479 silicate phases in the systems $Mg_2SiO_4 H_2O$ and $MgSiO_3 H_2O$ at pressures up to 480 27 GPa. Physics and Chemistry of Minerals, 27(8), 533-544.
- 481 Ohtani, E., Shibata, T., Kubo, T., and Kato, T. (1995) Stability of hydrous phases in the
 482 transition zone and the upper most part of the lower mantle. Geophysical
 483 Research Letters, 22(19), 2553-2556.
- 484 Ohtani, E., Yuan, L., Ohira, I., Shatskiy, A., and Litasov, K. (2018) Fate of water
 485 transported into the deep mantle by slab subduction. Journal of Asian Earth
 486 Sciences, 167, 2-10.
- Parise, J.B., Leinenweber, K., Weidnner, D.J., Tan, K., and Von Dreele, R.B. (1994)
 Pressure-induced H bonding: Neutron diffraction study of brucite, Mg(OD)₂, to
 9.3 GPa. American Mineralogist, 79(1-2), 193-196.
- 490 Pawley, A.R., and Wood, B.J. (1996) The low-pressure stability of phase A,
 491 Mg₇Si₂O₈(OH)₆. Contributions to Mineralogy and Petrology, 124(1), 90-97.
- 492 Raugei, S., Silvestrelli, P.L., and Parrinello, M. (1999) Pressure-induced frustration and
 493 disorder in Mg(OH)₂ and Ca(OH)₂. Physical Review Letters, 83(11), 2222-2225.
- Rudolph, M.L., Lekić, V., and Lithgow-Bertelloni, C. (2015) Viscosity jump in Earth's
 mid-mantle. Science, 350(6266), 1349-1352.
- 496 Saxena, S.K., Chatterjee, N., Fei, Y., and Shen, G. (2012) Thermodynamic data on oxides
 497 and silicates: an assessed data set based on thermochemistry and high pressure
 498 phase equilibrium. 322-323 p. Springer Science & Business Media.
- Schmandt, B., Jacobsen, S.D., Becker, T.W., Liu, Z., and Dueker, K.G. (2014)
 Dehydration melting at the top of the lower mantle. Science, 344(6189), 12651268.
- Schmidt, A., Chiesa, M., Chen, X., and Chen, G. (2008) An optical pump-probe
 technique for measuring the thermal conductivity of liquids. Review of Scientific
 Instruments, 79(6), 064902.
- Torii, Y., and Yoshioka, S. (2007) Physical conditions producing slab stagnation:
 Constraints of the Clapeyron slope, mantle viscosity, trench retreat, and dip
 angles. Tectonophysics, 445(3-4), 200-209.
- Xia, X., Weidner, D., and Zhao, H. (1998) Equation of state of brucite: Single-crystal
 Brillouin spectroscopy study and polycrystalline pressure-volume-temperature
 measurement. American Mineralogist, 83(1), 68-74.
- Xu, Y., Shankland, T.J., Linhardt, S., Rubie, D.C., Langenhorst, F., and Klasinski, K.
 (2004) Thermal diffusivity and conductivity of olivine, wadsleyite and
 ringwoodite to 20 GPa and 1373 K. Physics of the Earth and Planetary Interiors,
 143, 321-336.

515	Yagi, T., Ohta, K., Kobayashi, K., Taketoshi, N., Hirose, K., and Baba, T. (2010) Thermal
516	diffusivity measurement in a diamond anvil cell using a light pulse
517	thermoreflectance technique. Measurement Science and Technology, 22(2),
518	024011.
519	Zhang, Y., Yoshino, T., Yoneda, A., and Osako, M. (2019) Effect of iron content on
520	thermal conductivity of olivine with implications for cooling history of rocky
521	planets. Earth and Planetary Science Letters, 519, 109-119.
522	Zhu, X., Guo, X., Smyth, J.R., Ye, Y., Wang, X., and Liu, D. (2019) High-temperature
523	vibrational spectra between Mg(OH) ₂ and Mg(OD) ₂ : Anharmonic contribution to
524	thermodynamics and D/H fractionation for brucite. Journal of Geophysical
525	Research: Solid Earth, 124(8), 8267-8280.
526	
527	
528	
529	List of figure captions
530	Figure 1. Schematic illustration of the optical pump-probe measurements coupled with a
531	diamond-anvil cell (left panel), and an optical microscopic image of the brucite within the
532	diamond-anvil cell (right panel). The brucite sample is coated with an Al thin film that
533	serves as a transducer to absorb heat from the pump beam and to enable measurements of
534	temperature through changes in optical reflectivity. The pressure medium is silicone oil.
535	The pressure is measured by ruby fluorescence.
536	
537	Figure 2. Example time-domain thermoreflectance spectrum of brucite along the [100]
538	axis at (a) ambient conditions and (b) 30.33 GPa and room temperature, along with the
539	heat-flow model calculations. Open symbols show the experimental data for the ratio (-

Confidential manuscript submitted to American Mineralogist

540	$V_{\rm in}/V_{\rm out}$) as a function of delay time. Brucite thermal conductivities of 11.5 W m ⁻¹ K ⁻¹ at
541	ambient pressure and 20.0 W m^{-1} K ⁻¹ at 30.33 GPa provide best-fits to the data, assuming
542	the input parameters listed in Table 1. Red curves represent the best fit to the data with
543	the minimum value of mean-square error (MSE). The blue and light green dashed curves
544	represent the \pm 5% and \pm 20% uncertainty at ambient pressure and 30.33 GPa,
545	respectively.
546	
547	Figure 3. (a) Pressure dependence of the thermal conductivity of brucite along [100]
548	(blue circles) and [001] (orange squares) at room temperature. Several runs of
549	measurements yield consistent results. Blue and orange dotted curves are third-order
550	polynomial fits to the data (see text for details). Literature data for polycrystalline brucite
551	at ambient conditions (open triangles) (Horai, 1971) are plotted for comparison. (b)
552	Temperature dependence of the thermal conductivity of brucite along [100] (blue circles)
553	and [001] (orange squares) at ambient pressure. Blue and orange dashed curves are the
554	best fits for each dataset according to a temperature-dependent power regression, $\Lambda(T) =$
555	$\Lambda_{\text{amb}}(298/T)^n$, where $n = 0.83 \pm 0.17$ and 0.88 ± 0.24 for [100] and [001], respectively.
556	

557 Figure 4. Modeled thermal conductivity profiles of brucite (blue and orange curves for

558	[100] and [001], respectively) and periclase (green curve) along a typical cold slab
559	geotherm (Eberle et al., 2002) and a schematic illustration of brucite-rich aggregate in a
560	slab subducted to ~800 km depth. The large thermal conductivity discontinuity (dotted
561	arrow, ~6-19-fold increase) through the decomposition of brucite to periclase could
562	trigger a local high-temperature (T) anomaly within the slab (red shaded region), which
563	decreases slab's viscosity (η) and density (ρ), while increases its buoyancy. These effects
564	offer a novel mechanism to promote slab stagnation around 800 km depth. Moreover, the
565	water released from brucite decomposition (blue droplets) would migrate upward to the
566	uppermost lower mantle (~700-800 km depth) and facilitate the formation of dehydration
567	melt, resulting in a seismic low-velocity zone (LVZ).

Confidential manuscript submitted to American Mineralogist

Model Parameters		Pressure (GPa)		
(unit)		10 ⁻⁴	30.33	
r ^a	(µm)	7.6	7.6	
C _{brucite} ^b	(J cm ⁻³ K ⁻¹)	3.12	3.12	
C_{Al}^{c}	(J cm ⁻³ K ⁻¹)	2.42	2.66	
C_{Si}^{d}	(J cm ⁻³ K ⁻¹)	N/A	1.4	
Λ_{Al}^{e}	$(W m^{-1} K^{-1})$	200	200	
$\Lambda_{\mathrm{Si}}{}^{\mathrm{f}}$	$(W m^{-1} K^{-1})$	N/A	1.753	
h _{brucite} g	(μm)	30	30	
$\mathbf{h_{Al}}^{\mathbf{h}}$	(nm)	84.61	91.98	
$\mathbf{h_{Si}}^{i}$	(μm)	N/A	10	
$\mathbf{G}^{\mathbf{j}}$	$(MW m^{-2} K^{-1})$	43	182	

Table 1. Input parameters used in the heat-flow model for brucite along the [100] axis at ambient conditions and at 30.33 GPa and room temperature.

^aLaser spot size (in radius, measured in this study). ^bVolumetric heat capacity of brucite (Saxena et al., 2012), which was assumed to only depend on temperature, not pressure. ^cVolumetric heat capacity of Al (Hsieh et al., 2009). ^dVolumetric heat capacity of silicone oil (Hsieh, 2015). ^eThermal conductivity of Al (Hsieh et al., 2009). ^fThermal conductivity of silicone oil (Hsieh, 2015). ^gThickness of brucite sample. ^hThickness of Al film (measured at ambient pressure using picosecond acoustics). ⁱThickness of silicone oil layer between diamond anvil and sample. ^jThermal conductance at Al-brucite and Al-silicone oil interfaces. Note that for measurements at ambient pressure, the silicone oil was not used and thus its heat capacity, thermal conductivity, and thickness were not taken into account in the heat-flow model.

568

569

Confidential manuscript submitted to American Mineralogist

Minerals	$\Lambda_{ m amb}$	a	b (10 ⁻²)	c (10 ⁻⁴)	Adj. R ² *
Brucite [100]	11.12 ± 0.51	0.41 ± 0.03	-1.68 ± 0.15	4.37 ± 0.48	0.92
Brucite [001]	1.03 ± 0.12	0.33 ± 0.05	$\textbf{-0.88} \pm 0.08$	1.01 ± 0.13	0.93
Periclase[100] [#]	53.82 ± 1.79	1.34 ± 0.11	2.46 ± 0.28	-2.86 ± 0.54	0.98

Table 2. Parameterization coefficients for $\Lambda(P) = (\Lambda_{amb} + aP + bP^2 + cP^3)$ to fit the brucite thermal conductivity data in Figure 3(**a**).

*Adjusted coefficient of determination (R^2) for the third-order polynomial fit.

[#]Experimental data for periclase (MgO) up to 60 GPa at room temperature was taken from Dalton et al. (2013).

Confidential manuscript submitted to American Mineralogist

Figure 1. 570

573 Figure 2.

Confidential manuscript submitted to American Mineralogist

578 **Figure 3.**

580

582

581 **Figure 4**.

