1	The crystal structure of Fe ₂ S at 90 GPa based on
2	single-crystal X-ray diffraction techniques
3	
4	Claire C. Zurkowski ^a , Barbara Lavina ^{b,c} , Stella Chariton ^c , Sergey Tkachev ^c , Vitali B.
5	Prakapenka ^c , Andrew J. Campbell ^a
6	
7	^a University of Chicago, Department of the Geophysical Sciences, 5734 S Ellis Ave, Chicago, IL 60637,
8	USA
9	^b X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439,
10	USA
11	^c Center for Advanced Radiation Sources, University of Chicago, 9700 South Cass Avenue, Building
12	434A, Argonne, IL 60439, USA
13	
14	
15	Abstract
16	The Fe-S system was explored in a laser-heated diamond-anvil cell at 89(2) GPa and
17	2380(120) K to better understand the phase stability of Fe ₂ S. Upon temperature quenching,
18	crystallites of Fe ₂ S were identified and their structure was investigated using single-crystal X-ray
19	diffraction techniques. At these conditions, Fe ₂ S adopts the C23 structure (anti-PbCl ₂ , Co ₂ P)
20	with space group $Pnma$ (Z=4). This structure consists of columns of corner-sharing, FeS ₄
21	tetrahedra and columns of edge-sharing FeS_5 square pyramids linked along edges in the b
22	direction. Sulfur is in 9-fold coordination with Fe. This study marks the first high-pressure
23	structural solution and refinement of Fe ₂ S synthesized in a multigrain Fe + FeS sample at 90 GPa

Revision #1

24	and 2400 K and establishes the stability of C23 Fe ₂ S at these conditions. A previous powder
25	diffraction study reports an orthorhombic Fe ₂ S phase with a C37, Co ₂ Si-like unit cell above 190
26	GPa. A C23–C37 structural transition is inferred to explain the previously observed unit-cell
27	parameters at higher pressures and temperatures. These results highlight the utility of applying
28	single-crystal X-ray diffraction techniques to high P-T multigrain samples to explore the
29	structural properties of iron-rich phases in Earth and planetary cores.
30	

31

INTRODUCTION

32 Equations of state studies of solid and liquid iron reveal that the seismically determined 33 density profile through Earth's core is 3-8% less dense than pure iron (Dewaele et al. 2006; 34 Kuwayama et al. 2020). Cosmochemically abundant light elements such as sulfur, oxygen, 35 silicon, carbon, and hydrogen likely account for this density deficit (e.g. Birch 1952; Jephcoat 36 and Olsen 1987). Exploring the phase stability of Fe-(S, Si, O, C, H) alloys at high pressures and temperatures is therefore critical to constraining core chemistry and thermodynamics. This study 37 38 focuses on the structural properties of Fe-S alloys as sulfur is likely a significant core-alloying 39 component due to its abundance in iron meteorites thought to originate from planetary cores and 40 its depletion in the silicate Earth compared to chondrites (Scott and Wasson 1975; McDonough and Sun 1995). 41

Sulfur easily reacts with iron to form numerous high *P-T* iron sulfides including FeS,
Fe₃S₂, Fe₂S, and Fe₃S (e.g. Fei et al. 1995; Fei et al. 1997; Fei et al. 2000; Ozawa et al. 2013;
Tateno et al. 2019). Experimental studies have reported that tetragonal Fe₃S (*I*-4, *Z*=4) is the
stable iron-rich sulfide between 21 and 250 GPa and to high temperatures (Fei et al. 2000; Seagle
et al. 2006; Kamada et al. 2010, 2012; Ozawa et al. 2013; Mori et al. 2017; Yokoo et al. 2019),

47	but <i>ab-initio</i> calculations contrarily predict that only FeS and Fe ₂ S stoichiometries are stable in
48	the 100-400 GPa pressure range (Bazhanova et al. 2017). Experiments at 300 GPa targeting core-
49	relevant compositions have determined that FeS is a low-temperature phase and Fe ₂ S is a high-
50	temperature phase coexisting with Fe at these conditions (Ozawa et al. 2013; Tateno et al. 2019).
51	Fe_2S has emerged as a relevant Fe-rich sulfide, particularly in the context of the high $P-T$
52	conditions of Earth's core (Tateno et al. 2019). Two structures have been reported for Fe ₂ S in the
53	pressure range of 22-306 GPa. TEM analysis of a sample recovered from 22 GPa and 1900 K
54	indicates that Fe ₂ S assumes the C22, Fe ₂ P-type structure at these conditions (Koch-Müller et al.
55	2002). At high temperatures between 190 and 306 GPa, Fe ₂ S has been observed to take an
56	orthorhombic lattice (Tateno et al. 2019), with unit-cell parameters compatible with the $C37$
57	structure (Co ₂ Si type, <i>Pnma</i> , Z=4) (Tateno et al. 2019). These results are supported by <i>ab-initio</i>
58	calculations predicting a <i>Pnma</i> Fe ₂ S phase to 400 GPa at 300 K (Bazhanova et al. 2017). A
59	recent examination of the analogous Fe ₂ P system reveals a pressure-induced C23-C37 transition
60	above 42 GPa (Nakashima et al. 2020), supporting that the C37 structure is a high-pressure
61	polymorph in these $Fe_2X(X = S, P)$ compounds. Furthermore, as the phase relations observed in
62	the iron phosphide system tend to serve as low pressure analogs to the iron sulfide system (e.g.
63	Rundqvist 1962; Ono et al. 2006; Dera et al. 2008; Gu et al. 2016; Tateno et al. 2019), the C23
64	and C37 structures observed in Fe ₂ P may reflect higher pressure phase relations in Fe ₂ S.
65	While experimental and calculated results demonstrate that Fe ₂ S is an important
66	compound to further investigate in relation to Earth's core chemistry, an examination into the
67	crystallography of Fe ₂ S at high pressures has not been carried out. In the current study,
68	crystallites of Fe ₂ S were synthesized in a Fe+FeS starting foil in a laser-heated diamond-anvil
69	cell at 90 GPa and 2400 K, and its crystal structure was determined based on single-crystal X-ray

70	diffraction techniques. Structural solution and refinement of atomic fractional coordinates
71	indicate that the equilibrium phase is a C23, Co ₂ P-type Fe ₂ S. These results suggest a C23-C37
72	transition in Fe ₂ S at higher pressures.
73	
74	METHODS
75	The synthesis of Fe ₂ S was conducted in a laser-heated diamond anvil cell (LHDAC). A
76	starting composition was made mixing Fe (99.9+%, <10 μ m, Alfa Aesar) powder with iron
77	sulfide (FeS, 99.99%, Alfa Aesar) powder in a ratio of 1g Fe to 1.75 g FeS in an agate pestle and
78	mortar. The pressure was generated in a BX-90-type (70° angular opening) diamond anvil cell
79	(Kantor et al. 2012) using Type-I conical anvils with 150 μ m beveled culets and conical seats.
80	Foils of the starting material were obtained by pressing powders between two ungasketed
81	diamond anvils and then loaded into an 80 μ m diameter drilled sample chamber in a rhenium
82	gasket. A ruby ball was then placed near the sample foil and the loaded sample chamber was
83	filled with neon (Rivers et al. 2008). During compression, the ruby fluorescence scale and the Ne
84	equation of state were used to measure pressure (Mao and Bell 1976; Fei et al. 2007). Due to the
85	high compressibility of neon, the sample chamber diameter shrunk to ~15 μm at target pressure.
86	In-situ laser heating and X-ray diffraction experiments took place at beamline 13-ID-D
87	(GeoSoilEnviroCARS) of the Advanced Photon Source, Argonne National Laboratory. The X-
88	ray beam was aligned with the lasers using the fluorescence of the sample (Prakapenka et al.
89	2008). Samples were then laser-heated from both sides using fiber lasers shaped with $\sim 15 \ \mu m$
90	flat tops (Prakapenka et al. 2008). Temperature was measured spectroradiometrically based on a
91	gray body approximation fit to the thermal emission from the central 6 μ m of the laser-heated
92	spot (Heinz and Jeanloz, 1987). A 3% correction was then applied to account for the thermal

Revision #1

gradient through the sample chamber (Campbell et al. 2007, 2009). Heating cycles typically lasted ~15 minutes at target pressure prior to quenching or until sufficient grain growth was observed. The sample was heated 3 times in different locations of the sample chamber with the goal of maximizing Fe₂S grain growth and data collected after the final heating cycle is reported herein. X-ray diffraction patterns were collected during heating with a beam size of 2 μ m x 3 μ m beam at 42 keV (λ = 0.2952 Å).

Upon quench, a 10 x 10 μ m diffraction map was collected in 2 μ m steps to determine the 99 regions of the laser-heated area that exhibited the largest grain growth (showing high intensity, 100 101 spotty XRD) of the target phase. At selected locations, rotation images were collected across a $\pm 30^{\circ}$ angular range in 0.5° steps with exposure times of 4 s. Diffraction data were processed 102 103 using Dioptas (Prescher and Prakapenka 2015) and CrysAlis Pro (Rigaku OD 2018). Quenched multigrain samples consisted of agglomerates of Fe₂S crystallites (up to $\sim 4 \mu m$ in diameter) with 104 a few grains of hcp-Fe in more Fe-rich regions of the starting foil. Diffraction rings from the Re 105 106 were also detected due to the size of the sample chamber at target pressures, but the volumes of 107 Fe and Fe₂S observed do not support Re reaction with the sample. Grains of the target Fe₂S 108 phase were identified in reciprocal space and separated from the reflections attributable to iron, 109 rhenium, neon, and diamond. For each identified Fe₂S lattice, the unit-cell parameters and 110 structure factors were calculated using CrysAlis Pro (Rigaku OD 2018). Structural solution and 111 refinement were conducted using SHELXT (Sheldrick 2015a) and SHELXL2014/7 (Sheldrick 112 2015b), respectively. Structure solutions were examined during refinement using VESTA 113 (Momma and Izumi 2011). A summarization of the experimental conditions and instrument parameters used in this study are given in the attached CIF file. 114

115

Revision #1

116

RESULTS AND DISCUSSION

117	Heating experiments were conducted at 89(2) GPa. Upon quenching from 2380(120) K,
118	several grains, within a 100 μ m ² region around the laser-heated spot, were identified in the
119	reciprocal space and indexed to an orthorhombic lattice. The grains were found to have similar
120	unit-cell parameters (Table S1), and a selected grain, based on the number of reflections and
121	reduction parameters (Table S2), has the unit-cell lengths: 5.066(2) Å, 3.285(2) Å, and 6.125(2)
122	Å. Analysis of systematic absences constrains a Pnma space group and density considerations
123	suggest 4 formula units per cell Fe ₂ S. The orientation matrices of each grain analyzed is provided
124	in Appendix A1.
125	Despite the limited opening of the DAC and conical seats used to obtain the high $P-T$
126	synthesis conditions; the scattering overlap from diamond, rhenium, and other crystallites in the
127	multigrain sample; and the variation in the volume of the crystal in the path of the beam during
128	the rotational scans, the solution and refinement of all grains at 89 GPa indicate that the
129	synthesized Fe ₂ S crystallites adopt the C23 structure (anti-PbCl ₂ /Co ₂ P-type, Z=4) (Rundqvist
130	1960) (Figure 1). The structural solution and refinement model are robust and repeatable,
131	considering the good agreement of the refined atomic fractional coordinates for each grain
132	(Table S3). After data reduction, 190-260 measured reflections and 82-147 independent
133	reflections were observed for each Fe ₂ S crystallite, and 0-4 outlying reflections were identified
134	based on anomalous differences in observed versus calculated structure factors and omitted in
135	the final structure calculations (Table S2). Due to the limited reflections collected in these high-
136	pressure measurements, not all sites could be refined with anisotropic displacement parameters
137	(Table S3). Instead, when sufficient reflections were observed, the Fe sites were refined with
138	anisotropic displacement parameters while the S site was refined with isotropic displacement

139	parameters (Table S3). Otherwise, all sites were refined with isotropic displacement parameters
140	(Table S3). Within 1%, all sites for all grains are fully occupied. A CIF file of the refined
141	solution model is provided in Supplementary Material. The uniformity of unit-cell parameters
142	and site occupancies suggest invariable stoichiometry and structure from grain to grain.
143	The C23 Fe ₂ S structure can be viewed as corner-sharing columns of FeS ₄ tetrahedra and
144	columns of edge-sharing FeS_5 square pyramids linked along edges in the <i>b</i> direction (Figure 1a).
145	The Fe1, Fe2, and S3 sites occupy Wyckoff position $4c$ with point symmetry <i>m</i> (Table S3).
146	Sulfur is coordinated by 9 iron atoms (Figure 1b, Table 1). The Fe1, Fe2, and S coordination
147	environments observed differentiate this structure from the C37, Co ₂ Si-type structure. M_2X
148	compounds in the $C37$ structure have the same space group and site symmetries as compounds
149	with the C23 structure, but C37 phases have one 10-fold coordinated X site and two 5-fold
150	coordinated <i>M</i> sites (Geller and Wollontis 1955; Rundqvist 1960; Hyde et al. 1992) while <i>C</i> 23
151	phases have one 9-fold coordinated X site, one 4-fold coordinated M site, and one 5-fold
152	coordinated <i>M</i> site. S–Fe interatomic distances in C23 Fe ₂ S range from 1.994(2) Å to $2.357(1)$
153	with the tenth closest Fe atom at 3.077(3) Å, suppoting 9-fold coordination of Fe around the S
154	sites. Fe–S distances in the FeS ₄ tetrahedra range from 2.110(2) Å to 2.359(1) Å with the next
155	nearest S atom at 3.063(3) Å, supporting 4-fold coordinated Fe site. The interatomic distances
156	measured in Fe ₂ S at 89(2) GPa are given in Table 1. These bond lengths are comparable to those
157	measured in Fe ₃ S, FeS, and FeS ₂ (Brostigen and Kjekshus 1969; Lennie et al. 1995; Fei et al.
158	2000) considering the degree of compression of the Fe-S bond at 89 GPa.
159	The integration of the diffraction patterns collected in each rotational scan shows the
160	presence of C23 Fe ₂ S crystallites, and Re and Ne (Figure 2). Unit-cell volumes and site
161	occupancies of the Fe ₂ S grains analyzed (Table S3), verify that Re did not react into the sample.

162	Rhenium diffraction, likely from the gasket-hole edge, is an outcome of the small hole size at
163	these high pressures. Fe ₂ S in the raw diffraction patterns appears as spotty Debye rings, showing
164	a range of grain sizes formed at the synthesis conditions (Figure 2, red tick marks). In the
165	integrated patterns, Fe ₂ S accounts for nearly all of the lower-intensity peaks, compared to Ne and
166	Re (Figure 2). An additional peak at around $2\Theta \sim 9.1^{\circ}$ remains unidentified (Figure 2), but it
167	appears as a weak powder ring in the raw patterns, indicating that it is not diffraction from the
168	synthesized C23 Fe ₂ S crystallites. In Figure 2b and 2c, a few additional reflections are marked as
169	unidentified. No additional lattice-types were identified in the reciprocal space, indicating that
170	these unidentified diffraction spots are not associated with C23 Fe ₂ S and are not a part of a well-
171	formed crystal lattice in the sample chamber. The calculated diffraction lines for C23 Fe ₂ S based
172	on the single-crystal analyses are shown in red below the integrated diffraction pattern in Figure
173	2 and higher intensity miller indices are labeled. The calculated <i>hkl</i> values, d-spacings, 2Θ
174	values, and Q values are provided in Appendix A2.
175	At the sample locations where grains 3-6 were identified (Table S1), crystallites of Fe are
176	also observed, indicating a more iron-rich region of the starting material. In the cases where Fe is
177	present in the diffraction patterns, it is observed in the hcp-phase and identified based on
178	diffraction from the (100), (002), (101), (102), (110), (112), and (201) planes. Sharp, high-
179	intensity spots overlain on faint rings at the hcp-Fe diffraction angles indicate recrystallized iron
180	coexisting with Fe_2S (Figure S1). At other locations, such as the locations where grains 1 and 2
181	were identified (Table S1), all of the initial Fe has reacted with FeS to form Fe ₂ S, such that no
182	diffraction from hcp-Fe are observed (Figure 2). If these sample locations where hcp-Fe is not
183	observed are associated with more S-rich regions of the starting material, than the additional
184	unidentified reflections (Figure 2b, c) may indicate the presence of a coexisting sulfide that is

Revision #1

more S-rich than Fe₂S. Further experiments, aimed at assessing the equilibrium phase relations is
required to explain these observations.

187 Fe₂S has previously been reported to take an orthorhombic structure in the pressure range of 190-306 GPa and up to 3600 K with unit-cell parameters compatible with the C37 structure 188 (Tateno et al. 2019). This C37 Fe₂S structure was proposed without verification from single-189 190 crystal techniques, but insight can be gained from the systematic comparison of the $Co_2 P$ and Co_2Si unit cells, which can serve as analogs of the Fe₂S polymorphs. At ambient conditions, C23 191 Co_2P has a longer *a* axis and shorter *b* and *c* axis than that of C37 Co_2Si (Rundqvist 1960), and 192 193 Co_2P has a c/a ratio of 1.16 while Co_2Si has a c/a ratio of 1.44 (Rundqvist 1960; Geller and Walantis 1955). Between 190 and 300 GPa, Tateno et al. (2019) report Fe₂S c/a ratios in the 194 195 1.35-1.40 range, and at 90 GPa, the current study reports a Fe₂S c/a ratio of 1.21. These relative 196 unit-cell analyses support that the C37 Fe₂S is the stable phase at higher pressures (Tateno et al. 197 2019), while the structural solution and refinement carried out in this study establishes that Fe_2S 198 adopts the C23 structure at 90 GPa.

199

200

IMPLICATIONS

Upon pressurization to 90 GPa and heating to 2400 K, Fe₂S was synthesized and its structure was determined using single-crystal X-ray diffraction techniques on a multigrain Fe+FeS starting material. Structural solution and refinement of 6 crystallites prove that Fe₂S takes a *C*23 structure (*Pnma*, *Z*=4) at these conditions. While Earth's core-mantle boundary (CMB) pressure is 136 GPa, exceeding the pressure conditions of the current study, broad understanding of stable iron sulfide phases is important to assess the behavior of Fe,S-rich systems relevant to Earth's core. Moreover, the C23 Fe₂S phase may be important in the

Revision #1

208	crystallization sequences within smaller terrestrial planets. Future experiments at lower
209	pressures, may elucidate the stability of Fe ₂ S versus Fe ₃ S and Fe ₃ S ₂ at conditions related to the
210	Martian and Mercurian core. A recent multi-anvil press study revealed that Si may expand the
211	stability field of Fe ₂ S at the conditions of the Mercurian inner core boundary (ICB), but no
212	structure information was obtained for this Fe ₂ (S, Si) phase (Tao et al. 2021).
213	In relationship to Earth's core, Fe ₂ S has been observed at Earth's mid-outer-core
214	pressures (190-306 GPa) to have a unit-cell with geometry compatible with a C37 structure
215	(Tateno et al. 2019). Analogous to the Fe ₂ P system (Nakajima et al. 2020), Fe ₂ S may therefore
216	undergo a C23-C37 transition within the 89-190 GPa range. Future crystallographic work,
217	tracking the coordination of Fe ₂ S within this pressure range is needed to determine the C23 and
218	C37 P-T stability fields. This analysis would reveal the structure of Fe ₂ S at Earth's CMB
219	pressures and high temperatures and help characterize the density profile of Fe ₂ S throughout the
220	conditions of the outer core (136-330 GPa, ~4000-6000 K). As both C23 Fe ₂ S and C37 Fe ₂ S take
221	the space group <i>Pnma</i> with $Z=4$, the results from this work and that of Tateno et al., 2019 remain
222	in agreement with <i>ab-initio</i> calculations on Fe ₂ S (Bazhanova et al., 2017) and set a framework
223	for future structural exploration of Fe ₂ S.
224	To further underscore the importance of investigating Fe ₂ S at conditions relevant to
225	Earth's core, this work demonstrates the co-crystallization of hcp-Fe with C23 Fe ₂ S at 90 GPa
226	and 2400 K (Figure S1). C23 Fe ₂ S is, therefore, the stable sulfide in Fe-rich compositions at
227	these P - T conditions, in contrast to previous interpretations of Fe ₂ S coexisting with Fe at high
228	temperatures only above 250 GPa (Ozawa et al., 2013; Tateno et al. 2019). While the focus of

229 this study was not on the Fe-S phase relations, observations of Fe₂S and Fe crystallizing at high

230	pressures and temperatures necessitates consideration of Fe ₂ S in the Fe-rich thermodynamics			
231	occurring in Earth's core.			
232	This work marks the first characterization of the lattice geometry and atomic fractional			
233	coordinates of Fe ₂ S based on data collected at high pressures and quenched from high			
234	temperatures. Synthesis of Fe ₂ S with increasing pressure and temperature will provide key			
235	insight into the material properties of Fe-rich sulfides in Earth's core and, based on the current			
236	results, single-crystal X-ray diffraction is an effective technique for probing the iron-sulfide			
237	phases that stabilize at these extreme conditions.			
238				
239	ACKNOWLEDGEMENTS			
240	Portions of this work were performed at GeoSoilEnviroCARS (The University of			
241	Chicago, Sector 13), Advanced Photon Source (APS), Argonne National Laboratory.			
242	GeoSoilEnviroCARS is supported by the National Science Foundation - Earth Sciences (EAR -			
243	1634415) and Department of Energy- GeoSciences (DE-FG02-94ER14466). This research used			
244	resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of			
245	Science User Facility operated for the DOE Office of Science by Argonne National Laboratory			
246	under Contract No. DE-AC02-06CH11357. This material is based upon work supported by a			
247	National Science Foundation Graduate Research Fellowship to C.C.Z. This work was also			
248	supported by the National Science Foundation by grant EAR-1651017 to A.J.C.			
249				
250	References			
251	Baur, W.H. (1974) The geometry of polyhedral distortions. Predictive relationships for the			

Revision #1

- phosphate group. Acta Crystallographica Section B: Structural Crystallography and
 Crystal Chemistry, 30, 1195–1215.
- 254 Bazhanova, Z.G., Roizen, V.V., and Oganov, A.R. (2017) High-pressure behavior of the Fe-S
- system and composition of the Earth's inner core. Uspekhi Fizicheskih Nauk, 187, 1105–
- 256 1113
- Birch, F. (1952) Elasticity and constitution of the Earth's interior. Journal of Geophysical
 Research, 57, 227–286.
- Brostigen, G. and Kjekshus, A. (1969) Redetermined crystal structure of FeS₂ (Pyrite). Acta
 Chemica Scandinavica, 23, 2186–2188.
- 261 Campbell, A.J., Seagle, C.T., Heinz, D. L., Shen, G., and Prakapenka, V.B. (2007) Partial
- melting in the iron-sulfur system at high pressure: A synchrotron X-ray diffraction study.
 Physics of the Earth and Planetary Interiors, 162, 119–128.
- 264 Campbell, A.J., Danielson, L., Righter, K., Seagle, C.T., Wang, Y. and Prakapenka, V.B. (2009)
- High pressure effects on the iron–iron oxide and nickel–nickel oxide oxygen fugacity
- buffers. Earth and Planetary Science Letters, 286, 556–564.
- 267 Dewaele, A., Loubeyre, P., Occelli, F., Mezouar, M., Dorogokupets, P.I. and Torrent, M. (2006)

Quasihydrostatic equation of state of iron above 2 Mbar. Physical Review Letters, 97,
269 215504.

- 270 Fei, Y., Prewitt, C.T., Mao, H.K. and Bertka, C.M. (1995). Structure and density of FeS at high
- pressure and high temperature and the internal structure of Mars. Science, 268, 1892–
 1894.
- Fei, Y., Bertka, C.M. and Finger, L.W. (1997) High-pressure iron-sulfur compound, Fe₃S₂, and
 melting relations in the Fe–FeS system. Science, 275, 1621–1623.

Revision #1

- Fei, Y., Li, J., Bertka, C.M. and Prewitt, C.T. (2000) Structure type and bulk modulus of Fe₃S, a
 new iron-sulfur compound. American Mineralogist, 85, 1830–1833.
- 277 Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G. and Prakapenka, V. (2007) Toward an
- 278 internally consistent pressure scale. Proceedings of the National Academy of Sciences,
- 104, 9182–9186.
- Geller, S., and Wolontis, V.M. (1955) The crystal structure of Co2Si. Acta Crystallographica, 8,
 83–87.
- 282 Gu, T., Fei, Y., Wu, X. and Qin, S. (2016) Phase stabilities and spin transitions of $Fe_3(S_{1-x}P_x)$ at
- high pressure and its implications in meteorites. American Mineralogist, 101, 205–210.

Heinz, D.L., and Jeanloz, R. (1987) Measurement of the melting curve of Mg_{0.9}Fe_{0.1}SiO₃ at

- 285 lower mantle conditions and its geophysical implications. Journal of Geophysical
 286 Research, 92, 437–444.
- 287 Hyde, B.G., O'Keeffe, M., Lyttle, W.M. and Brese, N.E. (1992) Alternative descriptions of the
- 288 C23 (PbCl₂), C37 (Co₂Si), B8_b (Ni₂In) and related structure types. Acta chemica
 289 scandinavica (Copenhagen. 1989), 46, 216–223.
- Jephcoat, A. and Olson, P., (1987) Is the inner core of the Earth pure iron? Nature, 325, 332–
 335.
- 292 Kamada, S., Terasaki, H., Ohtani, E., Sakai, T., Kikegawa, T., Ohishi, Y., Hirao, N., Sata, N. and
- Kondo, T. (2010) Phase relationships of the Fe–FeS system in conditions up to the
 Earth's outer core. Earth and Planetary Science Letters, 294, 94–100.
- 295 Kantor, I., Prakapenka, V., Kantor, A., Dera, P., Kurnosov, A., Sinogeikin, S., Dubrovinskaia, N.
- and Dubrovinsky, L. (2012) BX90: A new diamond anvil cell design for X-ray
- diffraction and optical measurements. Review of Scientific Instruments, 83, 125102.

- Koch-Müller, M., Fei, Y., Wirth, R. and Bertka, C.M. (2002) Characterization of high-pressure
 iron-sulfur compounds. LPI, 1424.
- 300 Kuwayama, Y., Morard, G., Nakajima, Y., Hirose, K., Baron, A.Q.R., Kawaguchi, S.I.,
- 301 Tsuchiya,
- T., Ishikawa, D., Hirao, N., and Ohishi, Y. (2020) Equation of state of liquid iron under
 extreme conditions. Physical Review Letters, 124, 165701.
- Lennie, A.R., Redfern, S.A., Schofield, P.F. and Vaughan, D.J. (1995). Synthesis and Rietveld
 crystal structure refinement of mackinawite, tetragonal FeS. Mineralogical Magazine, 59,
- **306** 677–683.
- Mao, H.K. and Bell, P.M. (1976) High-pressure physics: the 1-megabar mark on the ruby R1
 static pressure scale. Science, 19, 851–852.
- McDonough, W.F. and Sun, S.S. (1995) The composition of the Earth. Chemical geology, 120,
 223–253.
- 311 Momma, K. and Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal,
- 312 volumetric and morphology data. Journal of applied crystallography, 44, 1272–1276.
- 313 Mori, Y., Ozawa, H., Hirose, K., Sinmyo, R., Tateno, S., Morard, G. and Ohishi, Y. (2017)
- Melting experiments on Fe–Fe₃S system to 254 GPa. Earth and Planetary Science Letters,
 464 135–141.
- 316 Nakajima, Y., Araki, S., Kinoshita, D., Hirose, K., Tateno, S., Kawaguchi, S.I. and Hirao, N.
- 317 (2020) New pressure-induced phase transition to Co_2Si -type Fe₂P. American
- 318 Mineralogist, 105, 1752–1755.
- 319 Ono, S. and Kikegawa, T. (2006) High-pressure study of FeS, between 20 and 120 GPa, using
- 320 synchrotron X-ray powder diffraction. American Mineralogist, 91, 1941–1944.

321	Ozawa, H., Hirose, K., Suzuki, T., Ohishi, Y. and Hirao, N. (2013) Decomposition of Fe ₃ S					
322	above 250 GPa. Geophysical research letters, 40, 4845–4849.					
323	Prakapenka, V.B., Kubo, A., Kuznetsov, A.Laskin, A., Shkurikhin, O., Dera, P., Rivers, M. L.					
324	and Sutton, S.R. (2008) Advanced flat top laser heating system for high pressure research					
325	at GSECARS: application to the melting behavior of germanium. High Pressure					
326	Research, 28, 225–235.					
327	Prescher, C., and Prakapenka, V.B. (2015) DIOPTAS: a program for reduction of two					
328	dimensional X-ray diffraction and data exploration. High Pressure Research, 35(3), 223-					
329	230.					
330	Rigaku Oxford Diffraction (2018) CrysAlisPRO software system, ver. 1.171.39.44a Rigaku					
331	Corporation, Oxford, U.K					
332	Rundqvist, S. (1960) The structures of Co ₂ P, Ru ₂ P and related phases. Acta Chemica.					
333	Scandinavica, 14, 1961–1979.					
334	Rundqvist, S. (1962) Phosphides of the B31 (MnP) structure type. Acta Chemica Scandinavica					
335	16, 287–292.					
336	Tao, R. and Fei, Y. (2021) High-pressure experimental constraints of partitioning behavior of Si					
337	and S at the Mercury's inner core boundary. Earth and Planetary Science Letters 562,					
338	116849.					
339	Tateno, S., Ozawa, H., Hirose, K., Suzuki, T., I-Kawaguchi, S., and Hirao, N. (2019) Fe ₂ S: the					
340	most Fe-rich iron sulfide at the Earth's inner core pressures. Geophysical Research					
341	Letters, 46, 11,944–11,949.					
342	Scott, E.R. and Wasson, J.T. (1975) Classification and properties of iron meteorites. Reviews of					
343	Geophysics, 13, 527–546.					

344	Seagle, C.T., Campbell, A.J., Heinz, D.L., Shen, G. and Prakapenka, V.B. (2006) Thermal
345	equation of state of Fe ₃ S and implications for sulfur in Earth's core. Journal of
346	Geophysical Research: Solid Earth, 111.
347	Sheldrick, G.M. (2015a) SHELXT-Integrated space-group and crystal-structure determination.
348	Acta Crystallographica Section A: Foundations and Advances, 71, 3–8.
349	Sheldrick, G.M. (2015b) Crystal structure refinement with SHELXL. Acta Crystallographica
350	Section C: Structural Chemistry, 71, 3–8.
351	Yokoo, S., Hirose, K., Sinmyo, R. and Tagawa, S. (2019) Melting Experiments on Liquidus
352	Phase Relations in the Fe-S-O Ternary System Under Core Pressures. Geophysical
353	Research Letters, 46, 5137–5145.
354	
355	
356	
357	
358	
359	
360	
361	
362	
363	
364	
365	
366	

Revision #1

367

368 FIGURE CAPTIONS

Figure 1. C23 Fe₂S, synthesized at 89(2) GPa and 2380(112) K with iron atoms in dark blue and

370 sulfur atoms in light pink. a) Polyhedral view of Fe₂S showing Fe-coordination polyhedra. In this

371 view, the unit cell is composed of FeS_4 tetrahedra and FeS_5 square pyramids in a 1:1 ratio. The

tetrahedral and square pyramid building blocks are shown on the right. b) Polyhedral view of

373 Fe₂S showing S-coordination polyhedra. In this view, the unit cell is composed of SFe₉

374 polyhedra. The SFe₉ building block is shown on the right.

375

Figure 2. a) Raw X-ray diffraction pattern at 89(2) GPa produced by combining the images 376 collected across $\pm 30^{\circ}$ rotation in 0.5° steps with 4 s exposure per image. **b**) Zoomed-in portion of 377 the raw diffraction images. Red tick marks indicate the diffraction angles of C23 Fe₂S and the 378 379 respective Miller Indices labeled. Diffraction angles associated with neon (blue) and rhenium (green) are also labeled and rings or spots that were not indexed to these phases are labeled with 380 a question mark (?). The high intensity spot, labeled with a "C," is a diamond reflection. c) 381 382 Integrated X-ray diffraction pattern with the calculated d-spacings based on the C23 Fe₂S analyses shown as the red tick marks below the pattern. Selected higher intensity Fe₂S peaks are 383 labeled with their corresponding Miller indices. Peaks associated with Re and Ne are labeled in 384 green and blue respectively. Unknown peaks are labeled with a question mark. Scattering from 385 diamond has been masked out of the integrated pattern. The Miller indices, intensities, d-386 387 spacings, 2Θ values and Q values calculated for C23 Fe₂S are given in Appendix A2. 388 389

390

Revision #1

391

392

393 **TABLES**

394

397 398

399

400

395 Table 1. Interatomic distances, polyhedra volumes and distortion indices (Baur, 1974) measured

396 in the coordination polyhedra of C23 Fe_2S at 89(2) GPa.

Polyhedron	Sites	Interatomic Distance	Polyhedra Volume	Distortion Index
		(Å)	(Å ³)	
FeS5			8.462	0.042
	Fe1–S3	2.110(2)		
	Fe1–S3	2.190(1)		
	Fe1–S3	2.190(1)		
	Fe1-S3	2.359(1)		
	Fe1–S3	2.359(1)		
FeS5			4.263	0.012
	Fe2–S3	1.994(2)		
	Fe2–S3	2.047(2)		
	Fe2–S3	2.066(1)		
	Fe2–S3	2.066(1)		
SFe9			20.016	0.050
	S3–Fe2	1.994(2)		
	S3–Fe2	2.047(2)		
	S3–Fe2	2.066(1)		
	S3–Fe2	2.066(1)		
	S3–Fe1	2.110(2)		
	S3–Fe1	2.190(1)		
	S3–Fe1	2.190(1)		
	S3–Fe1	2.359(1)		
	S3–Fe1	2.359(1)		

Pnma Fe₂S

Revision #1

- 401
- 402
- 403

- 404 **FIGURES**
- 405 **Figure 1.**

a) Fe- coordination Building Blocks fes_{4} b) S- coordination fes_{4} fes_{4} fes_{4

Revision #1

4	1	8	
		~	

- 419
- 420
- 421
- 422 Figure 2.
- 423

Figure 2

426 427

424 425 Figure 1

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2022-7973. http://www.minsocam.org/

Pnma Fe₂S

Fe- coordination a)

S- coordination b)

Figure 2

	2	
5		1
Э	S	
	C	
	U	

0 1000

15000

0

	Re (101)	Ne (111)		
Re (100)			C	
112		3) (301)	-Re (110)	

