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Abstract 14 

Tourmaline occurs widely within the Dayishan ore field, Nanling Range, and is associated with 15 

magmatic-hydrothermal rare metal mineralization. Four types of tourmaline are recognized: (1) 16 

tourmaline in coarse-grained monzogranite (Tur-G1); (2) tourmaline in medium-fine grained 17 

monzogranite (Tur-G2); (3) tourmaline aggregates associated with muscovite in greisen (Tur-Gr), 18 

showing a yellow core (Tur-Gry) and blue rim (Tur-Grb); and (4) quartz-vein-hosted tourmaline 19 

(Tur-V). In this study, we performed systematic investigations of in-situ boron isotopic and elemental 20 

compositions of tourmalines in different granite, greisen and quartz veins by EPMA and 21 

LA-MC-ICP-MS. Results show that almost all tourmalines exhibit schorl compositional affinity with 22 
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extremely low Ca contents, high Fe/(Fe + Mg), and the calculated X-site occupancies in tourmalines 23 

show their affinities to alkali group. Substitution processes of major element variations are dominantly 24 

caused by MgFe−1, FeAl−1, (Ca, Mg) (□-1, Al-2) and R (Na, Mg)-1 exchange vectors. Based on 25 

geochemistry and petrology, Tur-G1, Tur-G2 and Tur-Gry precipitated from a boron-rich melt, while 26 

Tur-Grb and Tur-V crystallized from hydrothermal fluid. Many trace element concentrations overlap 27 

and most are < 10 ppm. The significantly higher contents of Sn and Zn and positive Eu anomaly reflect 28 

the influence of an external fluid. Magmatic tourmalines fall into a narrow range of δ11B values 29 

between -15.58 ‰ and -14.09 ‰, indicating a single boron source of the granitic magma. 30 

Hydrothermal tourmalines display slightly lighter B isotopic compositions (-16.31 ‰ to -14.91 ‰), 31 

which are consistent with precipitation from externally-derived fluids with lighter boron. Based on the 32 

isotopic and chemical compositional evidence, Sn and Zn may come from the host rock rather than 33 

granite. 34 

Keywords: Tourmaline; Boron isotope; Sn deposit; Nanling Range; Potential mineralization 35 

 36 

Introduction 37 

Tourmaline has been regarded as a reliable geochemical monitor for mineral exploration because 38 

it is a passive recorder of its depositional environment and is geologically widespread occurrence in 39 

different geological environments including magmatic, hydrothermal, detrital and metamorphic settings 40 

(Chaussidon and Appel, 1992; Henry and Dutrow, 1996, 2012; Trumbull and Chaussidon, 1999; van 41 

Hinsberg, 2011a, b; Drivenes et al., 2015; Duan et al., 2019). Moreover, tourmalines possess highly 42 

variable geochemical compositions and are stable over large P-T ranges, which make tourmaline an 43 
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important tool in petrologic and ore genetic studies for constraining fluid compositions and 44 

hydrodynamics of geological processes (Jiang et al., 1997, 2002, 2004; Van Hinsberg et al., 2006, 45 

2011b; Slack and Turmbull, 2011; Marks et al., 2013; Dutrow and Henry, 2011; 2018). Fractionations 46 

of 11B and 10B between fluid and granitic melt can assist in understanding the boron sources, 47 

hydrothermal fluids evolution and water-rock reaction (Marschall et al., 2009; Codeço et al., 2017; 48 

Dutrow and Henry, 2011; Büttner et al., 2016). Tourmaline may be used to interpret boron isotope 49 

geochemistry because it is the dominant boron-bearing phase in most crustal rocks (Palmer et al., 1992; 50 

Dyar et al., 2001; Dutrow and Henry, 2011; Xavier et al., 2008; Hazarika et al., 2015; Trumbull and 51 

Slack, 2018). Furthermore, boron may be associated with other rare elements and therefore can act as a 52 

proxy to trace ore mineralization (Tonarini et al., 1998, 2003; Jiang et al., 2002; Duchoslav et al., 53 

2017). 54 

The Dayishan ore field, Nanling Range (Fig. 1), is characterized by large-scale Sn-W polymetallic 55 

mineralization related to the Dayishan pluton (Zhou et al., 2005; He et al., 2011; Zeng et al., 2016; Sun 56 

et al., 2018). Tourmalines are widespread throughout the Dayishan ore field, and occur within granite, 57 

greisen and quartz veins. The petrogenesis of these tourmalines (e.g., morphology, species, elemental 58 

and boron geochemical feature) are poorly constrained. In addition, understanding the features of the 59 

genetic relationships between the tourmalines in the granite, greisen and quartz veins in this region 60 

provides insight into the mechanisms of granitic evolution, and for formulating exploration strategies 61 

of rare metal deposits. 62 

 63 
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Geological background 64 

The South China Block (SCB) is composed of the Yangtze and Cathaysia Blocks, which merged 65 

during collisional tectonics in the Neoproterozoic (860 – 800 Ma), forming the Jiangnan orogenic belt 66 

(Fig. 1a; Zhao et al., 2011; Yao et al., 2016). The second stage of evolution was the formation of the 67 

Qin-Hang belt and intracontinental basins, and the final stage of activity was Triassic amalgamation 68 

during the Indosinian orogeny (Fig. 1; Yu et al., 2009; Zhou et al., 2018). Middle Jurassic subduction of 69 

the paleo-Pacific plate beneath the SCB resulted in extensive granitic magmatism and volcanism (Chen 70 

et al., 2008; Mao et al., 2013). From a spatial perspective, these granite plutons are controlled by faults 71 

and have complex genetic types (Wang et al., 2012; Mao et al., 2013; Cao et al., 2018a), which are 72 

associated with W-Sn-Nb-Ta polymetallic mineralization (Mao et al., 2008; Hua et al., 2010). In 73 

addition, most of these granitic plutons are tourmaline-bearing granites (e.g., Qitianling, Fanjingshan 74 

and Shangbao pluton, Guo et al., 2014; Yang et al., 2015b; Lu et al., 2020). 75 

The Nanling W-Sn polymetallic province in South China, occupying an area of 170,000 km2, has 76 

become one of China’s nineteen principal metallogenic belts (Fig. 1b), containing > 83 and 63 percent 77 

of the total tungsten and tin reserves of China, respectively (Fig. 1c; Mao et al., 2007; Chen et al., 78 

2016). The Dayishan ore field is situated in the northern margin of the middle section of Nanling 79 

metallogenic belt in the south China fold belt (Fig. 1). Devonian, Carboniferous, and Permian strata are 80 

widespread in the area and are mainly carbonates with few clastic rocks. (Fig. 2; Liu et al., 2005). The 81 

main structure inventory consists of folds and faults referred to as “faults of Dayishan trend” (Li et al., 82 

2015). In the Dayishan pluton, the granitic rocks display a range of grain sizes with SiO2 83 

concentrations from 69.3 – 74.7 wt. % and K2O + Na2O contents of 7.66 – 8.95 wt. % (Wu et al., 2005; 84 

Zhao et al., 2017). These granites are rich in volatile components (e.g., F, Cl and B) and metals (e.g., W, 85 
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Sn and Bi), which are favorable for Sn mineralization (Zhao et al., 2017). Numbers of Sn, W, Cu, Pb, 86 

Zn, B deposits, hosted in the Dayishan ore field, show a clear distribution pattern which changes from 87 

Sn-W deposits (inner Dayishan pluton) to Cu-Pb-Zn-Sb-As-B deposits (edge of the Dayishan pluton) 88 

(Fig. 2; Zhang et al., 2014; Li et al., 2015; Sun et al., 2018). 89 

 90 

Tourmaline occurrence and sample descriptions 91 

The sample material for this study was collected from the northwestern part of the Dayishan 92 

pluton (Fig. 2). We have identified four types of tourmaline: (1) tourmaline in the coarse-grained 93 

monzogranite (Tur-G1) (Fig. 3a, b, c); (2) tourmaline in the medium–fine-grained monzogranite 94 

(Tur-G2) (Fig. 3a, d, f); (3) tourmaline aggregates associated with muscovite in greisen (Tur-Gr) (Fig. 95 

4a, b); and (4) quartz vein tourmaline (Tur-V) (Fig. 5a, b). Characteristics of these tourmalines are 96 

summarized in Table 1 and described as follows. 97 

Tourmaline in coarse-grained monzogranite (Tur-G1) 98 

The coarse-grained monzogranite is pale gray, with a grain of 5 – 8 mm (Fig. 3a, b). The rock 99 

consists of quartz (30 – 35%), plagioclase (30%), alkali feldspar (30%) and biotite (10%) with 100 

accessory tourmaline, apatite, fluorite, and zircon (Fig. 3a, b, d, e). Tourmaline in coarse-grained 101 

monzogranite is intergranular and therefore difficult to identify in hand specimens (Fig. 3a, b), but thin 102 

section microscopy shows variable optical properties that allow the distinction of different varieties. 103 

Tourmaline is generally sub- to euhedral and is tens to hundreds of micrometers long. It often coexists 104 

with quartz and plagioclase as well as accessory minerals (e.g., zircon, fluorite and apatite) (Fig. 3d, e). 105 
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Tourmaline shows a yellow-brownish absorption color, without obvious compositional zoning in BSE 106 

images. 107 

Tourmaline in medium-fine grained monzogranite (Tur-G2) 108 

The fresh medium-fine grained monzogranite is slightly dark grey (Fig. 2–3a) with grain sizes of 109 

1 – 3mm. The major minerals of the rock are quartz (30-35%), alkali feldspar (30%), plagioclase (30%), 110 

biotite (about 10%), and the accessory minerals include tourmaline, zircon, fluorite and apatite (Fig. 3a, 111 

c, f, j, h). Tourmaline in the medium–fine-grained monzogranite (Tur-G2) forms needle- or short 112 

columnar crystals with 1 – 5mm in length (Fig. 3a, c). In thin section, tourmaline crystals are 113 

sub-euhedral to anhedral. Tourmaline crystals coexist with K-feldspar, plagioclase, quartz and minor 114 

accessory zircon (Fig. 3f, j, h, g, k), exhibit yellowish-brown color (Fig. 3f, g) and lack oscillatory 115 

zoning (Fig. 3g, k), similar to Tur-G1. 116 

Tourmaline in greisen (Tur-Gr) 117 

The greisen is gray to white and coarse-grained. The phenocrysts are mainly composed of quartz, 118 

muscovite, and tourmaline (Fig. 4a – d). Accessory minerals include pyrite and fluorite. Tourmaline in 119 

the greisen (Tur-Gr) occurs as large crystals (up to 15cm) and irregularly shaped aggregates (Fig. 4a, b), 120 

accounting for 20–30 vol% in monzogranite. In thin section, tourmaline usually has euhedral to 121 

subhedral shape and coexists with quartz, muscovite, pyrite and chalcopyrite (Fig. 4c, d, e). The 122 

tourmalines generally have yellow-brown cores (Tur-Gry) and blue rims (Tur-Grb), which (as shown in 123 

section 5) have distinct compositions (Fig. 4c, d, e, f). 124 
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Tourmaline in quartz vein (Tur-V) 125 

Tourmaline in quartz veins exhibits elongated columnar shape or tourmaline aggregates (Fig. 5a, 126 

b). The Tur-V grains are blue and have no optical zoning (Fig. 5c, d). Although single tourmaline 127 

crystals are mostly less than 1 cm in length, the aggregates typically reach tens of centimeters in length 128 

and range from millimeters to centimeters in width. Tur-V also occurs as isolated grains with fluorite 129 

(Fig. 5c, d, e, f). 130 

 131 

Analytical methods 132 

Back-scattered electron (BSE) images 133 

All samples were mounted in epoxy, polished and carbon coated to investigate growth zonation 134 

using a scanning electron microscope (SEM) prior to further analyses. Semiquantitative analyses and 135 

backscattered electron (BSE) images were collected on a Hitachi S-3600N scanning electron 136 

microscope fitted with a Bruker XFlash 5030 detector at the CAS Key Laboratory of Crust-Mantle 137 

Materials and Environments, University of Science and Technology of China (USTC), Hefei, China. 138 

Based on the SEM BSE imaging and energy dispersive spectrum (EDS) measurements, tourmalines 139 

were prepared for major and trace element and boron isotope analysis. 140 

Electron microprobe analysis (EMPA) 141 

The major and minor elements of tourmaline were quantified using the JEOL JXA-8530F Electron 142 

Probe Micro Analyzer at the Hefei Key Laboratory of Crust-Mantle Materials and Environments, 143 
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University of Science and Technology of China. The analytical conditions were: accelerating voltage 144 

15kV, beam current 20nA, and beam diameter 5μm. Data were later corrected on-line using a modified 145 

ZAF (atomic number, absorption, fluorescence) correction procedure. Peak counting time was 10s for 146 

Al, Na, Ca, Fe, Mg, Si and K, and 20s for Mn, Ti, F and Cl. Upper and lower background counting 147 

time was 5s for all elements. The following reference materials were used for instrument calibration: 148 

olivine for Si, pyrope garnet for Fe, Al, diopside for Ca, Mg, jadeite for Na, rhodonite for Mn, rutile for 149 

Ti, sanidine for K, and topaz for F. The relative uncertainty of a single oxide measurement is smaller 150 

than 1.5%. The detailed analytical procedures were similar to that described by Yang and Jiang (2012). 151 

The compositional formulae of tourmaline were calculated with the WinTcac program (Yavuz et al., 152 

2013), based on fifteen cations (T + Z + Y) and thirty-one anions. 153 

In-situ LA-MC-ICP-MS analysis 154 

In-situ trace element analysis of tourmaline was performed by LA-ICP-MS at Beijing Createch 155 

Testing Technology Co., Ltd. The same grains were analyzed by both LA-ICP-MS and EPMA. 156 

Samples were inspected for mineral inclusions prior to analysis. Standards were NIST SRM 610, 612, 157 

USGS BIR-1G, BCR-2G and BHVO-2G. The above standards were analyzed after 10–15 unknowns. 158 

The analytical conditions contain the energy density of ~3J/cm2, a spot beam diameter of 33μm 159 

together with a 10Hz repetition rate for 40s. The internal standard was 29Si, as determined from 160 

electron microprobe analysis. The former USGS reference glasses were used for carrying out external 161 

calibrations. NIST glasses were adopted to correct signal drift. The ICPMSDataCal 12.0 software was 162 

used for performing raw data reduction offline (Liu et al., 2008). 163 

The in-situ boron isotopic compositions of tourmaline were determined on thin polished sections 164 
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by a Neptune Plus MC-ICP-MS and ESI-NWR213 laser-ablation system at the Beijing Createch 165 

Testing Technology Co., Ltd, Beijing, with a spot size of 80μm, repetition rate of 10Hz, and laser 166 

energy of 7 J/cm2. 10B and 11B are received simultaneously statically with Faraday cups. The carrier gas 167 

was helium, which was mixed with argon prior to introduction into the mass spectrometer. Boron 168 

isotope standard tourmaline IAEA-B4 was used as the external standard (Tonarini et al., 2003), and 169 

IMR-RB1 was treated as the monitoring standard sample. The IMR RB1 standard yielded a mean δ11B 170 

of -13.77 ± 0.13 (2σ), which is consistent with the values of -12.96‰ ± 0.97‰ (2σ) reported by Hou et 171 

al. (2010) within the limits of experimental error. Detailed description of the analytical methods can be 172 

found in Hou et al. (2010) and Yang and Jiang (2012). 173 

Results 174 

Major element compositions 175 

Major element compositions of tourmaline samples are given in Table 2 and the complete database 176 

(n = 127) is deposited as supplementary Table A. Tourmalines in monzogranite (Tur-G1 and Tur-G1) 177 

display the same major element contents with high concentrations of SiO2 (31.87 – 34.71 wt. %), Al2O3 178 

(31.61 – 33.82 wt. %), TiO2 (0.12 – 0.76 wt. %), FeO (12.29 – 14.91 wt. %) and low contents of MnO 179 

(0.14 – 0.53 wt. %), MgO (1.27 – 4.28 wt. %), CaO (0.04 – 0.41 wt. %), Na2O (1.47 – 2.26 wt. %), 180 

K2O (< 0.1 wt. %) and F (< 0.27 wt. %) (Fig. 6, 7). In addition, tourmalines in greisen (Tur-Gry and 181 

Tur-Grb) also show high contents of SiO2 (33.90 – 35.81 wt. %), Al2O3 (30.06 – 34.05 wt. %), TiO2 182 

(0.01 – 0.94 wt. %), FeO (12.38 – 17.36 wt. %) and low contents of MnO (0.06 – 0.51 wt. %), MgO 183 

(0.03 – 0.51wt. %), CaO (0.02 – 0.30 wt. %), Na2O (1.45 – 2.22 wt. %), K2O (< 0.1 wt. %) and F (< 0.1 184 

wt. %) (Fig. 6, 7). Compared with compositions of tourmaline in the monzogranites, Tur-Grb have 185 
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higher FeO contents and lower MgO and TiO2 (Fig. 7a, b). Major elements of tourmalines from 186 

quartz-vein (Tur-V) show similar contents of SiO2, MnO, Na2O, K2O and F with other types of 187 

tourmalines, but Tur-V has low TiO2 (0.00 – 0.27 wt. %), MgO (0.01 – 0.23 wt. %) and FeO (13.67 – 188 

16.79 wt. %) contents. 189 

The formula of tourmaline is expressed as XY3Z6(T6O18)(BO3)3V3W, where X = Ca2+, Na+, K+, 190 

X□ (vacancy); Y = Mg2+, Fe2+, Mn2+, Al3+, Ti4+; Z = Mg2+, Al3+, Fe3+, Cr3+, V3+; T = Si4+, Al3+, (B3+); V 191 

= OH-, O2-; and W = OH-, F-, O2-. According to compositional variations, the tourmaline series are 192 

mainly divided into ‘three groups’ and listed in supplementary Table B (Hawthorne and Dirlam, 2011). 193 

On the grounds of X-site occupancy calculated by Henry et al. (1996, 2011), nearly all of our 194 

tourmaline samples are alkali group tourmalines (Fig. 6a), and data of all tourmalines show narrow 195 

variation and are plotted in schorl field and the field of Li-poor granite (Fig. 6b, c). Moreover, all 196 

tourmalines are Fe-rich with a slight variation in Fe / (Fe + Mg) ratios (0.62 and 1.00) and Na/(Na + Ca) 197 

ratios (0.93 and 1.00). On the x (□/(□ + Na)) vs. Fe/(Fe + Mg) and x (Ca/(Ca + Na)) vs. Mg/(Mg + Fe) 198 

diagrams (Fig. 7a, b), data of all tourmalines belong to the schorl series. 199 

The tourmaline composition can be expressed as component exchange vectors (Henry and Dutro 200 

1990, 2012; Henry et al., 2011). In the Mg-Fe plot (Fig. 7c, d), tourmalines in granite and greisen 201 

exhibit a linear relationship, having a negative slope of 1:1. This means that MgFe−1 function is the 202 

primary substitution vector, while Tur-V could relate to the FeAl−1 vector (Fig. 7c, d). The (R2++Xvac) 203 

vs. (Al-Xvac) figure displays a negative relationship between Tur-Gr and Tur-V (Fig. 7e), which can be 204 

attributed to the low concentrations of Al possibly from the exchange of FeAl−1. 205 
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Trace elements 206 

Table 3 lists the range and average trace element contents, and supplementary Table C provides 207 

the complete database (n = 55). Most elements show very low concentrations (always < 10 ppm), 208 

occasionally below detection limit, such as W (0 – 0.16), Pb (1.02 – 4.91), Cu (0.00 – 5.72). Higher 209 

concentrations were observed for Li (140 – 487 ppm), Sc (0.00 – 65.98 ppm), Zn (376 – 742 ppm), La 210 

(0.16 – 6.75 ppm), Ce (0.25 – 16.83 ppm) and Sn (115 – 485 ppm). The Tur-V and Tur-Grb show 211 

significantly higher contents of Sn and Zn (average = 285 and 607, respectively) than Tur-G1, Tur-G2 212 

and Tur-Grb (average = 136 and 408, respectively). 213 

All types of tourmaline display compositional variations, but they mainly show low total REE 214 

abundances ranging from 0.94 to 31.30 ppm. Tourmalines in monzogranite have the highest LREE and 215 

the lowest HREE compared to other types of tourmaline. In addition, Tur-G1 and Tur-Gry tourmaline 216 

show the negative Eu anomalies (Fig. 8a, c). However, the Tur-Grb and Tur-V show positive Eu 217 

anomalies (Fig. 8c, d), and all have a concave upward pattern with low amounts at Ho, which gradually 218 

increases towards Lu. In the primitive mantle-normalized spider diagram (Fig. 8b, c, d), there are no 219 

remarkably enriched or depleted large ion lithophile elements (LILE), and high field strength elements 220 

(HFSE) show positive Ti anomalies, negative Ba, Sr and Y anomalies. Element variation diagrams are 221 

shown in Fig. 9, and there is no obvious correlation between these trace elements. 222 

Boron isotopes 223 

Boron possesses two stable isotopes 11B amounting to 80.1% and 10B making up the remaining 224 

19.9% (Barth, 1993). Boron isotopic data of tourmalines are summarized in Table 4 and further plotted 225 

in Fig. 10. Tourmalines in the monzogranite (Tur-G1, Tur-G2 and Tur-Gry) have a limited variation of 226 
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δ11B values varying from -15.58 ‰ to -14.09 ‰ (mean = -14.88 ‰, n = 47). However, Tur-Grb and 227 

Tur-V show slightly lower boron isotope values ranging from -16.15 ‰ to -14.91 ‰ (mean = -15.65 ‰, 228 

n = 13) and –16.31 ‰ to -15.42 ‰ (mean = -15.81 ‰, n = 13), respectively. There is no clear δ11B 229 

variation between the core and rim of Tur-G1, Tur-G2 and Tur-V (Fig. 3i, e; Table 4). 230 

 231 

Discussion 232 

Formation of tourmaline 233 

Tourmaline in the monzogranite (Tur-G1 and Tur-G2) is in textural equilibrium with other phases 234 

(e.g., quartz and feldspar) with planar or arc-shaped contacts, and there are no structural evidence that 235 

they have replaced pre-existing phases, indicating that it was contemporaneous with the crystallization 236 

of the magma (Fig. 3d − h). In addition, all tourmaline samples in the granite are plotted in the field of 237 

Li-poor granite (Fig. 6b, c), and the δ11B values of tourmalines in the monzogranite exhibit a narrow 238 

range between -15.55 ‰ and -14.09 ‰ (Table 4; Fig. 10a), which is significantly different from those 239 

occurring in sedimentary rocks, marine carbonates or Non-marine evaporites (Fig. 10b, Smith and 240 

Yardley, 1996; Marschall and Jiang, 2011; ), but relatively consistent with those in the magmatic rocks 241 

(e.g., Xavier et al., 2008; Yang et al., 2015b). Therefore, Tur-G1 and Tur-G2 are most likely 242 

crystallized from the boron-rich silicate melt. 243 

Geisenization is the result of metasomatic alteration of granites (Fig. 4). The cores of tourmaline 244 

in greisen (Tur-Gry) are yellow-brown, subhedral to anhedral, and display similar optical features with 245 

Tur-G1 and Tur-G2. Geochemically, the Tur-Gry tourmalines exhibit high Fe/(Fe + Mg) and Ca/(Ca + 246 

Na) ratios and display chemical features related to Li-poor granites (Fig. 6c, d, 7a, b) and share 247 
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comparable REE patterns with tourmalines in the monzogranite. In addition, the δ11B values of Tur-Gry 248 

are in the narrow range of -15.58 ‰ to -14.43 ‰, which is also similar to the Tur-G1 and Tur-G2 249 

(Fig.10a), thus implying the possibility that Tur-Gry tourmalines were preserved from the magmatic 250 

stage. In contrast to the yellow-brown tourmaline, blue tourmalines in Tur-V and Tur-Grb are distinct in 251 

composition, paragenesis (coexisting with quartz ± muscovite), have higher Fe/(Fe+Mg) ratios, higher 252 

Zn and Sn contents, and lower δ11B ratios. Thus, the contrasting chemical compositions (Fig. 9) and 253 

mode of occurrence of Tur-V indicate the likelihood that they were precipitated from the hydrothermal 254 

fluid (e.g., Jiang, 1999; Trumbull et al., 2011). By analogy, similarities of Tur-V and Tur-Grb indicate 255 

that the latter are hydrothermal in origin (Fig. 8). According to the above discussion, we can summarize 256 

that Tur-G1, Tur-G2 and Tur-Gry formed from the granitic melt, while Tur-Grb and Tur-V precipitated 257 

from hydrothermal fluids. 258 

Chemical variations in magmatic and hydrothermal tourmaline 259 

The tourmaline in the Dayishan monzogranite belongs to the schorl series, and primary 260 

substitution vector of Dayishan tourmaline is MgFe−1 function (Fig. 7), which is consistent with 261 

evolution of the magmatic tourmaline, indicating that the crystallization sequence of tourmaline 262 

(Tur-G1 and Tur-G2) is consistent with the expected changes in composition during the fractionation of 263 

boron-rich magmas. Moreover, in general, in boron-rich granitic systems, magmatic tourmaline is Fe 264 

enriched, while the hydrothermal tourmaline is Mg enriched (e.g., Duchoslav et al., 2017; van Hinsberg 265 

et al., 2011; Yang et al., 2015b). However, the increase of Fe content in Dayishan hydrothermal 266 

tourmaline (Fig. 7a, b) may be due to the addition of exogenous substances. In addition, the sharp 267 

changes of trace elements such as Sr, Sn, Nd, Ta, Cu, Pb and Zn in the hydrothermal tourmaline also 268 
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reflect the influence of external fluid (Fig. 10). There may be two causes for the increase of element 269 

content in hydrothermal tourmaline: one is that when silicate minerals break down, they release 270 

elements from granite that can be added to tourmaline during crystallization; the second is the 271 

extraction of these elements by external fluids (such as deep-circulated meteoric water and 272 

metamorphic fluid) through water-rock interactions (Zhou et al., 2019; Zhao et al., 2019; Hu et al., 273 

2020). However, in the former case, these elements should increase sharply in all hydrothermal 274 

tourmalines, while the content variation of these elements is not evident in Tur-Grb, but significantly 275 

increases in Tur-V. Therefore, we consider the second case is more likely. In addition, the content of Sr 276 

increases dramatically in late hydrothermal stage. Similarly, Duan et al. (2019) and Zhao et al. (2019) 277 

also suggested the higher Sr contents in the vein tourmalines is the result of compositional contribution 278 

from the surrounding strata. Combined with the previous analysis (Yang et al., 2015; Zhao et al., 2019), 279 

it can be concluded that Sr in the strata may be brought into hydrothermal system by meteoric water, 280 

resulting in a sharp increase of Sr in late hydrothermal stage. The fact that Pb is very active in the fluid 281 

and its almost the highest mobility (Kogiso et al., 1997) make it easy to transfer from the strata to the 282 

fluid, and the same explanation applies to Zinc. Moreover, the Nb and Ta are more likely to remain in 283 

melt rather than in fluid (Borodulin et al., 2009). Nevertheless, there is an increase of Nb and Ta from 284 

magmatic tourmalines to hydrothermal tourmalines, further indicating the involvement of external 285 

materials. 286 

There are different REE patterns between magmatic and hydrothermal tourmalines (Fig. 8); for 287 

example, magmatic tourmalines show flat HREE-patterns with negative Eu anomalies, while 288 

hydrothermal tourmalines exhibit concave upward-shaped REE pattern with positive Eu anomalies. 289 

Experimental studies show that tourmaline has a preference for Eu2+ over Eu3+ (van Hinsberg, 2011a), 290 
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indicating that the negative Eu anomalies in the earlier tourmalines is due to the preferential 291 

incorporation of Eu2+ in co-genetic plagioclase. Hence, Tur-G1, Tur-G2 and Tur-Gry type tourmalines 292 

with significantly negative Eu anomaly probably crystallized directly from the magma. The Eu 293 

anomalies in the later hydrothermal tourmalines (Tur-Grb and Tur-V) exhibit obviously positive 294 

characteristic. The ∑REE content of hydrothermal tourmalines is lower than that of magmatic 295 

tourmalines, possibly due to the crystallization of accessory minerals (e.g., apatite and zircon) (Yang et. 296 

al., 2015). Thus, the positive Eu anomalies in the hydrothermal tourmalines (Tur-Grb and Tur-V) may 297 

be a simple indication of differing partition coefficients that the tourmaline prefers Eu2+, but not the 298 

REE3+. 299 

In addition, several possible mechanisms can explain the concave upward-shaped REE patterns: (1) 300 

accessory minerals affect the REE patterns in tourmaline during analysis; (2) early crystallization of 301 

minerals (e.g., amphibole and xenotime) during hydrothermal fluid evolution; (3) REE-fluoride 302 

complexes lead to HREE enrichments. Firstly, most elements show very low concentrations (especially 303 

Zr, Y, Th, U, and Y < 3 ppm), indicating negligible influence of accessory mineral inclusions (zircon, 304 

apatite, monazite, and allanite) on the REE patterns of tourmaline. Secondly, the precipitation of 305 

amphibole and xenotime, which have preference for MREE, may lead to the concave 306 

downward-shaped REE patterns of tourmalines (e.g., Jiang et al., 1997; Aleinikoff et al., 2012a, 2012b). 307 

However, the amphibole and xenotime are not detected in the hydrothermal veins we studied, and 308 

hydrothermal tourmalines have the same MREE contents as magmatic tourmalines. Therefore, the 309 

second mechanism above can be precluded. Hydrothermal tourmalines, possessing similar REE 310 

patterns as our samples, have also been identified in the Qitianling pluton (Yang et al., 2015b) and the 311 

Mopanshan pluton (Duan et al., 2019). These authors suggested that the HREE enrichment in 312 
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tourmalines may be caused by REE-fluorite complexes for the reason that the HREE are more strongly 313 

complexed than the LREE under geologically reasonable ligand concentrations (Wood, 1990). As the 314 

fluorite exists in the quartz veins, REE-fluorite complexes may exist in the fluid during the 315 

precipitation of hydrothermal tourmalines. Consequently, hydrothermal tourmalines in Dayishan 316 

exhibit concave upward-shaped REE patterns. 317 

If tourmaline is a passive geochemical monitor, then it has significance in the interpretation of 318 

geological processes and mineral exploration. Some authors questioned the passive character of 319 

tourmaline because its trace-element variations typically possess covariant relationship, e.g., V vs. Sc, 320 

Sn vs. Sr. (Yang et al., 2015b; Duchoslav et al., 2017), but these correlations are not found in Dayisham 321 

tourmalines. In addition, this can be distinguished from the diagram of trace elements versus Fe/(Fe 322 

+Mg) (e.g. Marks et al., 2013; Yang et al., 2015b), because if the absorption of trace elements in 323 

tourmaline were largely controlled by its main element composition, the slope of all tourmalines would 324 

be the same. In this study, no correlation between elements and Fe/(Fe + Mg) ratio was observed (Fig. 325 

9j − o), which further indicate the passive character of tourmaline. 326 

Boron source and variations 327 

Tourmaline δ11B values are mostly affected by sources of boron (Palmer and Slack, 1989). The 328 

boron isotopic compositional variations (Fig. 10b) in the magmatic tourmalines (−15.58 ‰ to 329 

−14.09 ‰; mean = −14.90 ‰) from Dayishan are close to the boron isotopic values of other granites in 330 

SCB (Fig. 10b), and slightly lighter than the continental crust composition (−10 ± 3‰; Fig. 10b; van 331 

Hinsberg et al., 2011). In addition, there are no remarkable boron isotopic compositional variations 332 

among the tourmaline (Tur-G1 and Tur-G2) cores and rims, suggesting that magmatic tourmalines 333 
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(Tur-G1 and Tur-G2) had a single source of boron. Besides, at magma temperature, boron isotopic 334 

fractionation between melt and tourmaline is relatively small (~700 °C; Δ Tur-melt = ~1.0‰; Palmer et 335 

al., 1992; Tonarini et al., 1998; Meyer et al., 2008), but with cooling and crystallization, the 336 

fractionation becomes larger. Therefore, Tur-G1 and Tur-G2 should crystallize at the same temperature, 337 

and the composition of δ11B of Dayishan melts may be at -15 ‰ considering the average δ 11B value 338 

recorded by magmatic tourmalines. 339 

However, hydrothermal tourmalines show slightly lighter B isotopic values (−16.31 ‰ to –340 

14.91 ‰; mean = −15.73 ‰) than magmatic tourmalines (Fig. 10a). The difference in boron isotopic 341 

values between tourmalines can be explained by the hydrothermal fluid exsolution from the melt, B 342 

isotopic fractionation or different boron sources (Trumbull et al., 2008, 2013; Marschall et al., 2009; 343 

Drivenes et al., 2015; Zhang et al., 2018; Duan et al., 2019; Qiao et al., 2019; Zhao et al., 2019; Zhen et 344 

al., 2019; Li et al., 2020). For the first model, the experimental results of natural samples showed that 345 

the exsolved fluid and tourmaline crystallized from it would be isotopically heavier than the primary 346 

magma (Jiang and Palmer, 1997; Hervig et al., 2002; Kowalski and Wunder, 2018; Zhao et al., 2019). 347 

Hence, we can exclude this possibility. 348 

Rayleigh fractionation is capable of generating difference in δ11B values (e.g., Trumbull et al., 349 

2008; Pal et al., 2010; Duan et al., 2019). In this study, with the continuous growth of tourmaline and 350 

consumption of liquid as well as the progressive decrease of temperature, the isotopic composition of 351 

boron in tourmaline gradually becomes heavier (Fig. 11). All boron compositions observed in 352 

hydrothermal tourmaline of Dayishan are significantly low. Therefore, this model is unlikely. Although 353 

this model may be true if the temperature is decreased during crystallization and fractionation, the late 354 

addition of an isotopically lighter fluid in the late stage of greisen formation may be a more valid 355 
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explanation for the lighter δ11B composition. Here we offer two lines of isotope and chemical evidence. 356 

First, the high Sn, Zn, Sr contents of hydrothermal tourmaline and positive Eu anomalies indicate the 357 

presence of external materials. Second, the external hydrothermal fluid must be isotopically lighter. To 358 

achieve the δ11B of about -15‰ in the mixed fluid, the fluid may have been in the range of -16/-17‰, 359 

depending upon the ratio of mixing. At 650 ℃ this -15‰ mixed fluid would yield a tourmaline 360 

composition of δ11B ~ -16, which then would develop to heavier values during cooling and 361 

fractionation. That would explain the isotope data in the blue rims and the veins. 362 

Implications for the mineralization 363 

Tin-tungsten mineralization is generally associated with low ƒO2 magmas, whereas Cu-Au 364 

mineralization is associated with high ƒO2 magmas (Sun et al., 2013, 2015; Zhang et al., 2017). All 365 

tourmalines in Dayishan are characterized by an Fe2+, schorl-rich component, suggesting crystallization 366 

in relatively reducing environment (Trumbull et al., 2011), which promoted the enrichment of Sn 367 

(Duchoslav et al., 2017). Additionally, the presence of tourmaline and fluorite indicates the existence of 368 

B, F-rich melt/fluid in the Dayishan ore field, which is also in favor of the Sn mineralization (e.g., 369 

Myint et al., 2018).  370 

Tourmaline has been widely employed to predict and explore new mineral deposits. According to 371 

previous tourmaline studies in Nanling Range (Jiang et al., 1999; Yang et al., 2015b), tourmalines 372 

related to Sn deposit have high contents of Sn: for instance, tourmalines originating from the Dachang 373 

Sn-W deposit located in Guangxi, Nanling Range, have a concentration of Sn at 513 ppm (Jiang et al., 374 

1999); tourmalines from Sn deposits linked to Qitianling pluton have a high Sn content of 227 to 1792 375 

ppm (Yang et al., 2015b); however, tourmaline from barren granites show low Sn contents, mostly < 50 376 
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ppm (e.g., Audétat et al., 2008; Hong et al., 2017; Trumbull et al., 2018). Thus, the characteristic of 377 

high Sn content of tourmaline has potential as an exploration tool. 378 

A number of Sn, Zn deposits have been explored in Dayishan, such as Shimaochong Sn, 379 

Maozaishan Sn and Wanjinwo Pb-Zn-Sn deposits (Li et al., 2000; Liu et al., 2002; Zhao et al., 2017; 380 

Sun et al., 2018). Some deposits are close to the pluton margin and veins transect this margin. Other 381 

deposits may be located close to the pluton roof (that is where greisens commonly form; Fig. 2). Based 382 

on our results, the high concentrations of Sn and Zn that characterize the hydrothermal tourmalines (up 383 

to 485 ppm and 487 ppm, respectively) indicate the existence of Sn- and Zn-rich fluids in the Dayishan 384 

ore field. The lighter 11B values of hydrothermal tourmalines reveal that metals (Sn and Zn) may not 385 

come from the granite, but from the host rock, and are mobilized by the heat of the contact 386 

metamorphism. 387 
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 685 

Figure captions 686 

Fig. 1 (a) Tectonic map of China; (b) Simplified geologic map, showing the distribution of 687 

granites in South China; (c) The range of Nangling (modified after Sun et al., 2006; Che et al., 2019). 688 

Fig. 2 Regional geological map of Dayishan in Hunan Province, South China (modified after 689 

Zhao et al., 2017; Sun et al., 2018). 690 

Fig. 3 Photographs and microstructures of tourmaline samples in the granite from Dayishan. (a) 691 

Photograph of hand specimens of monzogranite, showing coarse-grained and medium–fine-grained, 692 

whose boundary is represented by a red line; (b) Photograph of hand specimens of Tur-G1; (c) 693 

Photograph of hand specimens of Tur-G2; (d, e) Photographs of Tur-G1 enriched regions, showing 694 

sub-euhedral to anhedral morphology, yellowish-brown color; (f, g, h) Photographs of Tur-G2 enriched 695 

regions, which exhibit yellowish-brown in color, and are typically replaced by K-feldspar. (i) BSE 696 

images of Tur-G1, showing no oscillatory zoning and narrow δ11B variation between core and rim. (j, k) 697 

BSE images of Tur-G2, showing no oscillatory zoning. In (i, j, k), the filled red circles represent 698 

analyzed spots for boron isotope. Tur = tourmaline, Qtz = quartz, Pl= plagioclase, Klf = k-feldspar, Mc 699 

= Mica, Fl = fluorite. 700 

Fig. 4 Photographs and microstructures of Tur-Gr from Dayishan. (a, b) Photographs of hand 701 

specimens of Tur-Gr, showing radial to dendritic morphologies with needlelike, long columnar or 702 

massive tourmaline aggregates; (c, d) Photographs of sub- to euhedral tourmalines which are optically 703 
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zoned from yellowish-brown core (Tur-Gry) to blue rim (Tur-Grb); (e, f) BSE images of Tur-Gr 704 

tourmaline. Red circles and labels are analyzed spots for boron isotope. Tur = tourmaline, Qtz = quartz, 705 

Mc = Mica, Fl = fluorite, Py = pyrite. 706 

Fig. 5 Photographs and microstructures of Tur-V from Dayishan. (a, b) Outcrop Photographs of 707 

Tur-V, showing radial to dendritic morphologies with needlelike, long columnar or massive tourmaline 708 

aggregates; (c, d) Photographs of tourmaline, exhibiting blue in color without optical zoning; (e, f) BSE 709 

images of tourmaline. Red circles and labels are analyzed spots for boron isotope. Tur = tourmaline, 710 

Qtz = quartz, Fl = fluorite. 711 

Fig. 6 (a) Classification diagrams of all types of tourmalines from Dayishan based on X-site 712 

occupancy (modified after Henry et al., 2011); (b) Ternary Al-Fe-Mg diagrams showing compositional 713 

variations of tourmalines from the Shangbao deposit; (c) Ca-Fe-Mg ternary diagrams showing 714 

compositional variations of tourmalines from Dayishan. The fields classify the compositions of 715 

tourmalines from different rocks (Henry and Guidotti, 1985). Labelled fields are: 1 = Li-rich granitoids 716 

and associated pegmatites and aplites; 2 = Li-poor granitoids and associated pegmatites and aplites; 3 = 717 

Fe3+-rich quartz–tourmaline rocks (hydrothermally altered granites); 4 = Metapelites and 718 

metapsammites coexisting with an Al-saturating phase; 5 = Metapelites and metapsammites not 719 

coexisting with an Al-saturating phase; 6 = Fe3+-rich quartz–tourmaline rocks, calc silicate rocks, and 720 

metapelites; 7 = Low Ca metaultramafics and Cr, V-rich metasediments; 8 = Metacarbonates and 721 

metapyroxenites; 9 = Ca-rich metapelites, metapsammites, and calc-silicate rocks; 10 = Ca-poor 722 

metapelites, metapsammites, and quartz–tourmaline rocks; 11 = Metacarbonates; 12 = Metaultramafics. 723 

SHT = Sanfang hydrothermal tourmaline (Zhao et al., 2019); SMT = Sanfang magmatic tourmaline 724 

(Zhao et al., 2019); QHT = Qitianling hydrothermal tourmaline (Yang et al., 2015b). 725 
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Fig. 7 (a, b) Classification of tourmalines from Dayishan (modified after Trumbull and 726 

Chaussidon, 1999; Henry and Dutrow, 2012); (c – f) Chemical discrimination diagrams for tourmalines 727 

from Dayishan, showing their compositional evolution trends and exchange vectors (modified after 728 

Henry and Dutrow, 1990, 2012) 729 

Fig. 8 Distributions of REE and trace elements of tourmalines from Dayishan. (a, c, e). 730 

Chondrite-normalized REE distribution patterns; (b, d, f) Spider diagrams of trace elements. The 731 

Chondrite-normalized and primitive mantle-normalized values are from Sun and McDonough, (1989). 732 

Fig. 9 (a – i) Trace element variation diagrams of tourmalines from the Dayishan magmatic–733 

hydrothermal system, showing the compositional differences between different types of tourmaline; (j 734 

– o) Selected element contents vs. Fe/(Fe + Mg) ratios in different types of tourmalines from the 735 

Dayishan granite. 736 

Fig. 10 (a) Diagram showing limited variations of boron isotopic compositions in studied 737 

tourmalines; (b) Comparison of δ11B values of tourmalines from various deposits and earth boron 738 

reservoirs. The δ11B data of boron reservoirs are cited from Barth, (1993) and Marschall and Jiang, 739 

(2011). The referenced specific deposit δ11B data of different types of granite are cited from Tornos et 740 

al. (2012), Iveson et al. (2016), Barton, (2014), Zhao et al. (2019), Zheng et al. (2019), Zheng et al. 741 

(2016), Smith and Yardley, (1996), Jiang, (2001), Duan et al. (2019). 742 

Fig. 11 Boron isotope fractionation curves (after Marschall et al., 2009 and Büttner et al., 2016, 743 

using fractionation values from Meyer et al., 2008), assuming constant fluid temperatures between 700 744 

and 350 ℃. The initial δ11B value is -14.84‰. See also supplementary Table D. 745 
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Table 1 Characteristics of different tourmalines from the Dayishan. 
Tourmaline type Host lithology Tourmaline 

content (vol. %) 

Field Occurrence coexist mineral Microscopic features 

Tur-G1 Coarse-grained 

monzogranite 

2-3 Black, short 

columnar-like crystal, < 

2mm in length 

Quartz, plagioclase, K 

feldspar apatite, zircon, 

fluorite, Mica, 

Sub-euhedral to anhedral grains, exhibit yellowish-brown in 

color and without optical zoning. 

Tur-G2 Medium-fine 

grained 

monzogranite 

5-7 Black, needle- or short 

columnar-like crystals, 

1-5 mm in length 

Quartz, plagioclase apatite, 

zircon, fluorite, Mica, K 

feldspar 

Sub-euhedral to anhedral grains, exhibit yellowish -brown in 

color without optical zoning similar to that of Tur-G1.  

Tur-Gr 

(Tur-Grb, Tur-Gry) 

Greisen 20-30 Black, Reticulate vein- or 

cluster- like aggregate, 

Quartz, Mica, fluorite, 

pyrite, chalcopyrite, 

Euhedral to Sub-euhedral grains. yellow-brown cores 

(Tur-Gry) and blue rims (Tur-Grb), 

Tur-V Quartz vein 10-20 Black, radial like- crystal, 

up to 7cm in length 

Quartz, fluorite Euhedral to sub-euhedral grains. exhibit blue in color without 

optical zoning 

 

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. 
 The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. 

DOI: https://doi.org/10.2138/am-2021-7591.  http://www.minsocam.org/

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld



Table 2 Major element compositions of tourmalines from the Dayishan. 
Type Tur-G1 (n=20) Tur-G2 (n=26) Tur-Gry (n=26) Tur-Grb (n=23) Tur-Vb (n=38) 

(wt. %) Range Mean Range Mean Range Mean Range Mean Range Mean 

SiO2 31.87-35.29 0.17 32-12-34.71 33.16 33.90-35.63 34.60 34.10-35.81 34.72 33.81-35.42 34.82 

TiO2 0.17-0.55 0.37 0.12-0.76 0.44 0.03-0.94 0.38 0.01-0.53 0.12 0.00-0.27 0.07 

Al2O3 31.86-33.82 32.86 31.61-33.81 32.59 30.31-34.05 32.83 31.06-33.70 32.30 30.29-33.94 32.52 

FeO 12.29-14.91 13.53 12.53-14.46 13.53 12.38-16.08 13.84 12.52-17.36 15.44 13.67-16.79 15.20 

MnO 014-0.52 0.29 0.14-0.53 0.26 0.06-0.51 0.27 0.10-0.47 0.28 0.25-0.56 0.35 

MgO 2.23-4.28 3.33 1.27-4.22 3.05 0.91-3.52 1.69 0.03-1.72 0.43 0.01-0.23 0.07 

CaO 0.04-0.41 0.16 0.05-0.22 0.15 0.09-0.26 0.16 0.02-0.30 0.12 0.00-0.12 0.06 

Na2O 1.47-2.26 1.99 1.57-2.18 1.95 1.84-2.16 1.93 1..45-2.22 1.95 1.24-2.25 1.85 

K2O 0.02-0.07 0.04 0.02-0.08 0.04 0.03-0.08 0.05 0.02-0.07 0.04 0.01-0.07 0.04 

F 0.00-0.19 0.04 0.00-0.27 0.06 0.00-0.19 0.06 0.00-0.21 0.03 0.00-0.14 0.02 

B2O3* 10.08-10.69 10.27 9.92-10.41 10.19 9.94-10.43 10.19 9.92-10.24 10.04 9.81-10.17 10.00 

H2O* 3.19-3.39 3.27 3.12-3.29 3.22 3.13-3.28 3.20 3.06-3.26 3.18 2.98-3.26 3.14 

Total 98.08-102.66 99.27 97.20-99.60 98.60 98.15-100.42 99.17 97.99-99.40 98.56 96.95-99.04 98.04 

apfu.           

B 3.00-3.04 3.02 3.00-3.05 3.02 2.97-3.01 3.00 2.97-3.00 2.99 2.97-3.00 2.98 

T-site           

Si 5.46-5.79 5.60 5.45-5.86 5.66 5.75-6.03 5.91 5.94-6.13 6.01 5.95-6.16 6.05 

Al 0.21-0.51 0.37 0.14-0.51 0.33 0.00-0.25 0.10 0.00-0.07 0.02 0.00-0.05 0.00 

Z-site           

Al 5.98-6.00 6.00 6.00-6.00 6.00 6.00-6.00 6.00 6.00-6.00 6.00 6.00-6.00 6.00 

Mg 0.00-0.02 0.00 0.00-0.00 0.00 0.00-0.02 0.00 0.00-0.02 0.00 0.00-0.00 0.00 

Fe 0.00-0.00 0.00 0.00-0.00 0.00 0.00-0.00 0.00 0.00-0.00 0.00 0.00-0.00 0.00 

Y-site           
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Al 0.00-0.44 0.18 0.00-0.58 0.22 0.24-0.70 0.51 0.34-0.87 0.57 0.33-0.87 0.66 

Ti 0.02-0.07 0.05 0.03-0.10 0.06 0.00-0.12 0.05 0.00-0.07 0.02 0.00-0.04 0.01 

Fe 1.70-2.11 1.92 1.76-2.09 1.93 1.75-2.35 1.98 1.78-2.54 2.24 1.97-2.49 2.21 

Mg 0.57-1.08 0.84 0.33-1.07 0.77 0.24-0.88 0.43 0.01-0.44 0.11 0.00-0.06 0.02 

Mn 1.70-2.11 1.92 0.02-0.08 0.04 0.01-0.08 0.04 0.02-0.07 0.04 0.04-0.08 0.05 

∑Y 3.00-3.04 3.02 3.00-3.05 3.02 2.97-3.01 3.00 2.87-3.00 2.97 2.84-3.00 2.95 

X-site           

Ca 0.01-0.08 0.03 0.01-0.04 0.03 0.01-0.05 0.03 0.00-0.06 0.02 0.00-0.02 0.01 

Na 0.47-0.76 0.65 0.51-0.73 0.65 0.48-0.73 0.64 0.48-0.75 0.65 0.42-0.77 0.62 

K 0.01-0.02 0.01 0.00-0.02 0.01 0.01-0.02 0.01 0.00-0.02 0.01 0.00-0.02 0.01 

Xvac 0.21-0.51 0.31 0.22-0.46 0.32 0.23-0.48 0.32 0.22-0.51 0.32 0.21-0.57 0.36 

The structural formulae are calculated on the basis of 15 cations in the tetrahedral and octahedral sites (T + Z + Y) of the tourmaline. 
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Table 3 LA-ICP-MS trace element compositions of tourmalines from the Dayishan. 
Type Tur-G1 (n=8) Tur-G2 (n=9) Tur-Gry (n=13) Tur-Grb (n=12) Tur-Vb (n=13) 

(ppm) Range Mean Range Mean Range Mean Range Mean Range Mean 

Li 232-331 274 264-303 278 165-328 226 156-369 255 159-487 278 

Sc 36.73-51.49 44.81 19.19-35.50 29.73 1.28-65.98 26.92 0.00-8.53 1.85 0.00-4.26 1.88 

V 22.80-50.34 38.03 18.44-68.97 40.68 0.00-64.10 33.94 0.00-8.90 2.72 0.00-7.76 2.01 

Co 12.60-15.97 14.19 11.01-17.06 14.07 9.92-17.77 14.10 9.75-17.50 13.01 11.11-13.35 12.08 

Zn 376-422 394 377-401 387 351-669 430 444-742 630 525-673 585 

Pb 1.47-2.62 1.95 1.07-3.47 2.06 1.10-4.21 2.35 1.54-4.91 3.38 1.02-5.70 3.08 

Cu 0.00-1.12 0.35 0.00-1.00 0.30 0.00-2.50 0.70 0.00-5.72 2.60 0.47-4.79 1.73 

Rb 0.00-0..21 0.07 0.00-0.45 0.23 0.02-2.48 0.32 0.00-0.26 0.13 0.05-0.47 0.20 

Sr 0.27-0.39 0.34 0.76-2.83 1.87 0.29-26.30 4.66 2.43-28.32 14.05 0.85-4.22 2.29 

Y 0.05-0.95 0.20 0.03-0.19 0.0 0.01-0.12 0.08 0.00-0.11 0.03 0.01-0.25 0.09 

Zr 0.00-1.51 1.10 0.00-2.90 0.99 1.31-4.74 2.48 0.07-3.21 1.51 0.01-2.86 1.16 

Nb 0.81-1.74 1.24 1.87-3.20 2.53 0.11-3.15 1.15 0.03-1.38 0.55 0.86-2.80 1.72 

Sn 113-154 137 127-160 144 115-166 134 121-418 229 202-485 336 

Ba 0.00-0.27 0.13 0.00-0.40 0.18 0.01-0.08 0.04 0.06-0.23 0.16 0.01-0.86 0.20 

La 2.62-6.75 4.86 1.41-2.65 2.27 0.24-4.80 2.33 0.51-2.74 1.78 0.16-2.06 0.90 

Ce 7.06-16.83 13.14 2.90-4.16 3.68 0.53-14.00 4.64 0.66-3.43 2.24 0.25-2.13 1.02 

Pr 0.80-1.80 1.34 0.23-0.38 0.29 0.03-1.50 0.43 0.01-0.26 0.15 0.01-0.12 0.06 

Nd 2.68-4.88 4.12 0.66-1.39 0.98 0.08-4.44 1.36 0.03-0.60 0.35 0.04-0.31 0.14 

Sm 0.45-1.83 1.14 0.12-0.36 0.19 0.02-1.03 0.25 0.01-0.08 0.04 0.01-0.11 0.03 

Eu 0.01-0.02 0.01 0.02-0.04 0.03 0.00-0.04 0.02 0.03-0.13 0.06 0.00-0.04 0.02 

Gd 0.16-0.40 0.27 0.09-0.31 0.15 0.02-0.33 0.12 0.02-0.16 0.09 0.00-0.08 0.02 

Tb 0.01-0.03 0.02 0.01-0.02 0.01 0.00-0.03 0.01 0.00-0.01 0.00 0.00-0.02 0.01 

Dy 0.00-0.17 0.08 0.00-0.06 0.04 0.01-0.06 0.03 0.01-0.05 0.03 0.01-0.07 0.03 
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Ho 0.00-0.02 0.01 0.00-0.01 0.01 0.00-0.01 0.01 0.00-0.01 0.01 0.00-0.02 0.01 

Er 0.00-0.01 0.01 0.00-0.02 0.01 0.01-0.07 0.03 0.01-0.07 0.03 0.00-0.08 0.03 

Tm 0.00-0.02 0.01 0.00-0.01 0.01 0.00-0.03 0.01 0.00-0.03 0.01 0.00-0.02 0.01 

Yb 0.00-0.09 0.04 0.00-0.008 0.04 0.01-0.30 0.07 0.02-0.49 0.12 0.02-0.30 0.13 

Lu 0.00-0.01 0.00 0.00-0.01 0.00 0.00-0.06 0.02 0.00-0.16 0.03 0.00-0.12 0.05 

Hf 0.01-0.04 0.02 0.03-0.08 0.06 0.00-0.50 0.13 0.00-0.19 0.04 0.03-0.58 0.23 

Ta 0.27-0.98 0.67 1.39-3.63 2.27 0.12-28.58 3.53 0.07-7.39 1.83 3.42-15.65 8.00 

W 0.00-0.05 0.01 0.00-0.13 0.02 0.00-0.16 0.06 0.00-0.14 0.04 0.00-0.15 0.06 

Th 0.01-0.06 0.03 0.02-0.15 0.06 0.00-0.17 0.05 0.00-0.48 0.06 0.01-0.12 0.04 

U 0.00-0.01 0.00 0.00-0.01 0.00 0.00-0.05 0.02 0.00-0.40 0.07 0.00-0.05 0.02 

REE 14.63-31.30 25.05 6.17-8.68 7.70 1.10-26.35 9.33 2.09-7.06 4.95 0.94-4.67 2.45 

 

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. 
 The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. 

DOI: https://doi.org/10.2138/am-2021-7591.  http://www.minsocam.org/

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld



Table 4 Boron isotope values for tourmaline from the Dayishan. 

Analysis no. Type δ11B (‰) 1SD (‰) 

DYS-H1-1 Tur-G1 -14.8 0.3 

DYS-H1-2 Tur-G1 -14.82 0.3 

DYS-H1-4 Tur-G1 -15.24 0.4 

DYS-H1-6 Tur-G1 -15.16 0.2 

DYS-H2-1 Tur-G1 -14.17 0.2 

DYS-H2-2 Tur-G1 -15.01 0.2 

DYS-H2-4 Tur-G1 -14.61 0.3 

DYS-H2-5 Tur-G1 -14.47 0.2 

DYS-H2-6 Tur-G1 -14.94 0.3 

DYS-H3-1 Tur-G1 (core) -14.15 0.4 

DYS-H3-1 Tur-G1 (rim) -14.29 0.3 

DYS-H3-3 Tur-G1 -15.55 0.3 

DYS-H3-8 Tur-G1 -14.35 0.3 

DYS-H1-7 Tur-G1 (core) -14.57 0.3 

DYS-H1-7 Tur-G1 (rim) -14.63 0.2 

DYS-H3-9 Tur-G1 (core) -14.92 0.3 

DYS-H3-9 Tur-G1 (rim) -14.86 0.3 

DYS-H4-1 Tur-G2 -15.51 0.2 

DYS-H4-2 Tur-G2 -15.31 0.4 

DYS-H4-3 Tur-G2 -15.42 0.2 

DYS-H4-7 Tur-G2 -14.95 0.3 

DYS-H5-1 Tur-G2 (core) -14.68 0.4 

DYS-H5-1 Tur-G2 (rim) -15.35 0.2 

DYS-H5-3 Tur-G2 -14.84 0.4 

DYS-H5-5 Tur-G2 -15.27 0.2 

DYS-H5-6 Tur-G2 -15.19 0.3 

DYS-H5-8 Tur-G2 -14.09 0.3 

DYS-H6-2 Tur-G2 -14.72 0.2 

DYS-H6-3 Tur-G2 -14.81 0.3 

DYS-H6-4 Tur-G2 -14.64 0.4 

DYS-H4-9 Tur-G2 (core) -14.85 0.4 

DYS-H4-9 Tur-G2 (rim) -14.73 0.4 

DYS-H6-9 Tur-G2 (core) -14.92 0.3 

DYS-H6-9 Tur-G2 (rim) -14.87 0.3 

DYS-G7-5 Tur-Gry -15.02 0.4 

DYS-G7-13 Tur-Gry -14.84 0.4 

DYS-G8-1 Tur-Gry (core)  -14.43 0.2 

DYS-G8-1 Tur-Gry (rim) -14.60 0.2 

DYS-G8-9 Tur-Gry -15.46 0.4 

DYS-G8-13 Tur-Gry -15.09 0.4 

DYS-G8-15 Tur-Gry -15.13 0.3 

DYS-G9-3 Tur-Gry -15.33 0.3 
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DYS-G9-9 Tur-Gry -15.58 0.2 

DYS-G9-13 Tur-Gry -14.77 0.2 

DYS-G9-15 Tur-Gry -14.69 0.4 

DYS-G9-17 Tur-Gry -14.61 0.3 

DYS-G9-19 Tur-Gry -15.03 0.2 

DYS-G7-6 Tur-Grb -14.91 0.2 

DYS-G7-14 Tur-Grb -15.83 0.2 

DYS-G8-2 Tur-Grb -16.15 0.2 

DYS-G8-6 Tur-Grb -15.66 0.2 

DYS-G8-10 Tur-Grb -15.41 0.4 

DYS-G8-14 Tur-Grb -15.75 0.2 

DYS-G9-16 Tur-Grb -15.64 0.3 

DYS-G9-4 Tur-Grb -15.76 0.4 

DYS-G9-10 Tur-Grb -15.43 0.2 

DYS-G9-14 Tur-Grb -16.02 0.3 

DYS-G9-16 Tur-Grb -15.43 0.4 

DYS-G9-18 Tur-Grb -15.29 0.4 

DYS-G9-20 Tur-Grb -16.11 0.4 

DYS-V10-1 Tur-V -15.42 0.2 

DYS-V10-2 Tur-V -15.84 0.3 

DYS-V10-4 Tur-V -15.71 0.4 

DYS-V10-7 Tur-V -15.88 0.4 

DYS-V11-2 Tur-V -16.18 0.2 

DYS-V11-3 Tur-V -15.34 0.3 

DYS-V11-5 Tur-V -16.22 0.4 

DYS-V11-6 Tur-V -15.48 0.2 

DYS-V12-3 Tur-V -15.39 0.4 

DYS-V12-5 Tur-V -16.07 0.2 

DYS-V13-3 Tur-V -15.9 0.3 

DYS-V13-4 Tur-V -16.31 0.4 

DYS-V13-9 Tur-V -15.79 0.4 
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