1	Revision 3
2	Amphibole as a witness of chromitite formation and fluid
3	metasomatism in ophiolites
4	
5	Qi-Qi Pan ^{1, 2, 3*} , Yan Xiao ^{1, 2*} , Ben-Xun Su ^{2, 3, 4} , Xia Liu ^{2, 3, 4} , Paul T. Robinson ⁴ ,
6	Ibrahim Uysal ⁵ , Peng-Fei Zhang ⁶ , Patrick Asamoah Sakyi ⁷
7	
8	
9	¹ State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese
10	Academy of Sciences, Beijing 100029, China
11	² Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
12	³ University of Chinese Academy of Sciences, Beijing 100049, China
13	⁴ Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of
14	Sciences, Beijing 100029, China
15	⁵ Department of Geological Engineering, Karadeniz Technical University, 61080-Trabzon, Turkey
16	⁶ Department of Earth Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong, China
17	⁷ Department of Earth Science, School of Physical and Mathematical Sciences, University of Ghana, P.
18	O. Box LG 58, Legon-Accra, Ghana

* Corresponding authors:

E-mail address: <u>panqiqi@mail.iggcas.ac.cn</u> (Q.Q. Pan); <u>xiaoyan@mail.iggcas.ac.cn</u> (Y. Xiao)

19

ABSTRACT

20	Here we present new occurrences of amphibole in a suite of chromitites, dunites and
21	harzburgites from the mantle sequence of the Lycian ophiolite in the Tauride Belt, SW
22	Turkey. The amphibole occurs both as interstitial grains among the major constituent
23	minerals and as inclusions in chromite grains. The interstitial amphibole shows generally
24	decreasing trends in Na ₂ O and Al ₂ O ₃ contents from the chromitites (0.14 – 1.54 wt%;
25	0.04 - 6.67 wt%, respectively) and the dunites $(0.09 - 2.37 wt%; 0.12 - 11.9 wt%)$ to the
26	host harzburgites (< 0.61 wt%; $0.02 - 5.41$ wt%). Amphibole inclusions in chromite of
27	the amphibole-bearing harzburgites are poorer in Al_2O_3 (1.12 – 8.86 wt%), CaO (8.47 –
28	13.2 wt%) and Na ₂ O (b.d.l. – 1.38 wt%) than their counterparts in the amphibole-bearing
29	chromitites (Al ₂ O ₃ = $6.13 - 10.0$ wt%; CaO = $12.1 - 12.9$ wt%; Na ₂ O = $1.11 - 1.91$ wt%).
30	Estimated crystallization temperatures for the interstitial amphibole grains and amphibole
31	inclusions range from 706 to 974 °C, with the higher values in the latter. A comparison of
32	amphibole inclusions in chromite with interstitial grains provides direct evidence for the
33	involvement of water in chromitite formation and the presence of hydrous melt/fluid
34	metasomatism in the peridotites during initial subduction of Neo-Tethyan oceanic
35	lithosphere. The hydrous melts/fluids were released from the chromitites after being
36	collected on chromite surfaces during crystallization. Different fluid/wall rock ratios are
37	thought to have controlled the crystallization and composition of the Lycian amphibole
38	and the extent of modification of the chromite and pyroxene grains in the peridotites.
39	Considering the wide distribution of podiform chromitites in this ophiolite, the link

40 between chromitite formation and melt/fluid metasomatism defined in our study may be41 applicable to other ophiolites worldwide.

42 **Keywords:** Amphibole; Peridotite; Chromitite; Hydrous fluid; Ophiolite

- 43
- 44

INTRODUCTION

45 Podiform chromitites are a special category of chrome ore deposit found only in ophiolites, where they typically form just below the petrologic Moho (Cassard et al., 46 1981; Zhou et al., 1994). Hydrous fluids are widely thought to have played a vital role in 47 chromitite formation in ophiolites (e.g., Matveev and Ballhaus, 2002; Johan et al., 2017; 48 Su et al., 2020, 2021), and they are commonly preserved as fluid inclusions and/or 49 hydrous minerals (such as phlogopite and amphibole) in the chromite grains of 50 51 chromitites, dunites and harzburgites (Melcher et al., 1997; Sachan et al., 2007; Zhou et al., 2014; Rollinson et al., 2018). These hydrous minerals and fluid inclusions are 52 considered to represent crystallization products of trapped melts which were clearly 53 54 hydrous and estimated to have contained up to 4 wt% water (Sobolev and Chaussidon, 1996; Falloon and Danyushevsky, 2000; Matveev and Ballhaus, 2002). However, recent 55 studies have proposed that post-magmatic processes (e.g., hydrothermal alteration, 56 metamorphism) locally aided by deformation, could modify the original composition of 57 chromite in chromitites (e.g., Rassios and Smith, 2000; Satsukawa et al., 2015; Kapsiotis 58 et al., 2019). Such processes could also potentially produce hydrous inclusions in 59

chromite during sub-solidus annealing (e.g., Lorand and Ceuleneer, 1989). Therefore, the
role of water in the formation of chromitite in ophiolite is still unclear.

62 Although interstitial amphibole crystals have rarely been reported in ophiolitic chromitite (Melcher et al., 1997; Rollinson, 2008), they have been increasingly found in 63 ophiolitic peridotites (e.g., Liu et al., 2010; Rospabé et al., 2017; Çelik et al., 2018; 64 65 Slovenec and Šegvić, 2018), fore-arc peridotites (e.g., Chen and Zeng, 2007; Nozaka, 2014) and mantle-wedge peridotite xenoliths (e.g., Coltorti et al., 2004; Ionov, 2010). 66 The amphibole in these peridotites has mostly been attributed to hydrous fluid/melt 67 metasomatism related to subduction processes. Thus, determining the potential links 68 between fluid metasomatism in peridotites, the formation of podiform chromitites and 69 70 water extracted from subducting slabs could provide additional insights into the role and 71 source(s) of fluids involved in these processes.

In this contribution, we report a newly discovered suite of interstitial amphibole grains in chromitite, dunite and harzburgite in the mantle section of the Lycian ophiolite in SW Turkey. The occurrence and mineral chemistry of the amphibole reveal that the hydrous fluids were intimately related to chromitite formation and were subsequently infiltrated into the surrounding dunite and harzburgite.

- 77
- 78

GEOLOGY OF THE LYCIAN OPHIOLITE

The ophiolites in SW Anatolia, which lie along the westernmost part of the Tauride Belt, are widely interpreted to be part of a Tethyan suture zone (Fig. 1a). The western

81 Taurides can be subdivided into three main geological units: the Beydağlari autochthon, comprising a thick platform of shallow-marine carbonates of Liassic to Early Miocene 82 age with an unknown crustal basement; the Antalya nappe, emplaced westwards in the 83 Late Cretaceous; and the younger Lycian nappe complex emplaced to the southeast. The 84 Lycian ophiolite is mainly exposed in the Köyceğiz (Muğla) and Yesilova (Burdur) 85 regions (Fig. 1b, c) where it consists, from the base upward, of ophiolitic mélange, 86 metamorphic sole, and mantle tectonites (Fig. 1d). The ophiolite mélange consists of 87 radiolarian chert, siliceous marble, serpentinite, amphibolite, basalt, gabbro and 88 peridotite within a highly deformed matrix of conglomerate, shale and lithic arenite 89 (Collins and Robertson, 1998). The metamorphic sole exhibits an inverted metamorphic 90 gradient from the top downward of pyroxene-bearing amphibolite, amphibolite, 91 epidote-amphibolite and mica schist (Celik, 2002; Celik and Delaloye, 2003). ⁴⁰Ar/³⁹Ar 92 dates of the amphibolites and mica schists indicate that tectonic displacement of the 93 oceanic lithosphere occurred during the Late Cretaceous (ca. 91 – 94 Ma; Celik et al., 94 2006). Above the metamorphic sole the ophiolite consists exclusively of mantle 95 tectonites hosting podiform chromitites enclosed in dunite envelopes (Collins and 96 Robertson, 1998; Çelik and Delaloye, 2003; Uysal et al., 2005, 2009, 2012). The mantle 97 98 tectonites are intruded by isolated pockets of partially brecciated diabase, but otherwise crustal lithologies are typically absent in the ophiolite. 99

100 A suite of amphibole-bearing rocks was collected from the mantle section of the 101 ophiolite in the Köyceğiz region bounded by coordinates $29^{\circ}1'21''E - 29^{\circ}10'29''E$

102 longitude and 36°42'11"N – 36°50'32"N latitude (Fig. 1b). The samples include nine chromitites, two dunites enveloping the chromitites and six harzburgite hosts. Most of the 103 104 samples are overprinted by varying degrees of serpentinization. The degree of serpentinization decreases from chromitite and dunite to harzburgite, leaving 105 considerable amounts of pristine olivine, pyroxene and amphibole in the harzburgite. 106 107 Amphibole occurs as interstitial, mostly euhedral, grains between the major minerals or as anhedral crystals rimming clinopyroxene. Amphibole also occurs as inclusions in 108 chromite grains from both the chromitites and harzburgites. 109

- 110
- 111

ANALYTICAL METHODS

All the samples with polished sections were investigated by a FEI Nova NanoSEM 112 113 450, equipped with an energy dispersive X-ray spectrometer from Oxford Instruments at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS), 114 115 Beijing, China. High-resolution back-scattered electron (BSE) images were obtained at working conditions of 15 kV accelerating voltage and 5.5 nA beam current, with a 116 117 working distance of 6 mm from the pole piece to the sample surface. The spatial resolution of the BSE scanning was approximately 2 µm per pixel. Areas ranging from 118 half to whole thin sections were mapped. Mineral modes of chromitite and dunite were 119 determined from BSE images using Adobe Photoshop and ImageJ software. The spatial 120 distribution of different minerals in the images were resolved using Adobe Photoshop 121 based on their difference in brightness and contrast. Then, an image showing the 122

distribution of each mineral was imported into ImageJ to analyze the modal percentages. However, olivine and orthopyroxene are difficult to distinguish in harzburgite because of their similar brightness and contrast in BSE images. Thus, the mineral modes of harzburgite were determined by point counting (1000 counts for areas of 2.5×4.5 cm). The pixel/point-counting data are listed in Table 1.

128 Major element compositions of minerals and back scattered electron images of 129 samples were obtained using a JEOL JXA8100 electron probe microanalyzer (EPMA) at the IGGCAS. The analyses were carried out at an accelerating voltage of 15 kV, a beam 130 current of 10 nA and a 10 - 30 s counting time on peak. A beam diameter of 5 μ m was 131 used for interstitial minerals and 1 µm for mineral inclusions. Well-characterized natural 132 minerals and synthetic oxides were used for standard calibration. Raw data were reduced 133 134 with an EPMA online correction procedure, including background, dead time and a ZAF-correction program. Accuracy and precision were checked against SPI standards. 135 136 Typical analytical accuracy for all the elements analyzed was better than 2%. Detection limits (in wt%) of oxides were as follows: $SiO_2 0.01$; $TiO_2 0.02$; $Al_2O_3 0.01$; $Cr_2O_3 0.03$; 137 FeO 0.01; MnO 0.06; MgO 0.06; CaO 0.02; Na₂O 0.03; K₂O 0.02; and NiO 0.03. The 138 $Fe^{3+}/\Sigma Fe$ ratio of chromite was calculated based on microprobe analyses using 139 stoichiometric criteria (Droop, 1985). Amphibole formulas were calculated from the 140 microprobe analyses using the method of Ridolfi et al. (2018) for apportioning the 141 amount of Fe³⁺. Classification of amphibole is based on the chemical contents of the 142 standard amphibole formula AB₂C^{VI}₅ T^{VV}₈ O₂₂(OH)₂ (Leake et al., 1997). At least three 143

144	grains of each mineral were analyzed in each thin section, and at least two points were
145	analyzed in the cores and rims of each crystal. The results of olivine, clinopyroxene,
146	orthopyroxene and chromite are reported in Table 2 and amphibole in Table 3.
147	
148	PETROGRAPHY AND MINERAL CHEMISTRY
149	Amphibole occurrences
150	The amphibole-bearing chromitites have mostly disseminated, massive and nodular
151	textures, and consist of chromite (20 – 80 modal%); olivine (78 – 18 %); amphibole (<
152	2 %); ± clinopyroxene (< 1 %) (Table 1 and Fig. 2a-h). Amphibole in the chromitites
153	occurs either as interstitial phases (mostly 0.2 - 0.3 mm; Fig. 2b, c, d, f, g) or as
154	inclusions in chromite grains (Fig. 2h). The amphibole inclusions $(2 - 40 \ \mu m \ across)$ are
155	located well away from fractures, have globular to subhedral shapes and are either
156	monomineralic or contain both amphibole and pyroxene (Fig. 2h).
157	The amphibole-bearing dunites have equigranular textures and contain 5 – 20 modal%
158	euhedral to subhedral chromite grains. Silicate minerals include olivine (92 - 77 %);
159	clinopyroxene (< 1 %); and amphibole (< 2 %) (Table 1 and Fig. 2i). Interstitial
160	amphibole grains occur as minute crystals $(0.1 - 0.5 \text{ mm})$ surrounding chromite grains
161	(Fig. 2j) or intergrown with clinopyroxene $(0.1 - 0.2 \text{ mm})$ (Fig. 2k). A few relatively
162	large amphibole grains, up to 10 mm long (Fig. 21), are present in some dunites near the
163	chromitites (e.g., 18LN07-5).
164	Amphibole-bearing harzburgites have porphyroclastic textures, in which large

165	orthopyroxene porphyroclasts (> 2 mm) are surrounded by small neoblasts (≤ 0.5 mm)
166	(Table 1 and Fig. 3a-l). The harzburgite consists mainly of olivine (~ 85 modal%) and
167	orthopyroxene (~ 10 %), accompanied by minor amounts of clinopyroxene (< 3 %);
168	chromite (< 2 %); and amphibole (< 2 %). Two types of amphibole have been identified
169	in these rocks: 1) Small (< 0.1 mm) interstitial grains rimming clinopyroxene and
170	orthopyroxene crystals (Fig. 3b, c, g, k) or larger, anhedral crystals (mostly $0.3 - 0.4$ mm)
171	among the olivine grains (Fig. 3d, f, j); and 2) rounded inclusions in chromite grains that
172	range from 5 – 50 μ m and that are either monophase or multiphase with orthopyroxene
173	and clinopyroxene (Fig. 3h, l). Some of the inclusions are cut by cracks that extend into
174	the host chromite (Fig. 31). Minerals in the inclusions far from cracks show little or no
175	alteration.

176

177 Mineral chemistry

Olivine. Olivine grains in the amphibole-bearing chromitites have Fo 178 (=100Mg/(Mg+Fe²⁺)) values ranging from 94.7 to 96.9 and NiO contents from 0.50 to 179 180 0.77 wt%. The two amphibole-bearing dunite samples contain olivine grains with lower Fo values of 92.8 - 95.0 and NiO contents of 0.36 - 0.53 wt% (Fig. 4a). In the 181 amphibole-bearing harzburgites, the olivine grains show limited ranges of Fo (90.8 -182 91.6) and NiO (0.24 - 0.43 wt%), comparable in composition to olivine in harzburgites 183 from the Lycian ophiolite (Aladanmaz et al., 2009; Uysal et al., 2012; Xiong et al., 184 2018b) and plotting the fore-arc peridotite field and the olivine mantle array (Fig. 4a). 185

186	Pyroxene. Orthopyroxene grains occur only in the amphibole-bearing harzburgite
187	and have Mg# values of $90.7 - 92.1$ (Table 2), overlapping the range of those reported in
188	previous studies (Aldanmaz et al., 2009; Uysal et al., 2012; Xiong et al., 2018b). In
189	contrast, their Al_2O_3 contents of $0.40 - 2.58$ wt% are slightly lower than those in the
190	orthopyroxene reported by Aldanmaz et al. (2009) $(1.43 - 4.62 \text{ wt\%})$ and Uysal et al.
191	(2012) (1.09 – 5.21 wt%) (Fig. 4b), but are similar to those in Xiong et al. (2018b) (0.70
192	- 1.90 wt%).

The interstitial clinopyroxene grains in the amphibole-bearing chromitites have 193 194 nearly uniform Mg# values (97.1 - 98.2) and CaO contents (24.1 - 25.3 wt%) but variable Al_2O_3 (0.16 – 0.52 wt%) and Na_2O (0.15 – 0.26 wt%) (Fig. 4b). In comparison, 195 clinopyroxene grains in both amphibole-bearing dunites and harzburgites display 196 197 significantly lower Mg# values of 95.8 - 97.0 and 93.5 - 95.7 and Na₂O contents of 0.09 -0.20 wt% and < 0.09 wt%, respectively. Their Al₂O₃ contents vary from 0.21 to 0.67 wt% 198 and 0.21 to 3.19 wt%, respectively, slightly lower than those in amphibole-free 199 200 peridotites reported in previous studies (Fig. 4b).

201 **Chromite.** Similar to previously described chromite in the Lycian ophiolite (Uysal 202 et al., 2005, 2009), chromite grains in the massive, amphibole-bearing podiform 203 chromitites show highly variable TiO₂ contents of 0.08 - 0.23 wt% and Cr# values 204 (=100Cr/(Cr+Al)) of 58.4 – 81.5. Thus, the chromitites are mostly high-Cr varieties (Cr# > 205 60) that formed from boninitic melts (Uysal et al., 2005; Xiong et al., 2018a). Chromite 206 grains in the amphibole-bearing dunites have narrow Cr# variations (79.2 – 81.5), within

the range of those in amphibole-free dunites (Uysal et al., 2012; Xiong et al., 2018b). In contrast, chromite grains in the amphibole-bearing harzburgites have relatively variable Cr# values (37.8 – 73.1), which correlate negatively with their Mg# values and plot in the fore-arc peridotite field (Fig. 4c).

Amphibole. In amphibole-bearing chromitites, interstitial amphibole grains are 211 212 mostly tremolite and magnesiohornblende (Fig. 5). They have variable contents of Na₂O (0.14 - 1.54 wt%), CaO (9.86 - 13.4 wt%), Al₂O₃ (0.04 - 6.67 wt%) and Mg# values of 213 96.5 - 99.7 (Fig. 6a; Table 3), overlapping the ranges of amphibole in the Oman ophiolite 214 215 (Rollinson, 2008). Interstitial amphibole grains in the dunites are tremolite and magnesiohornblende, with a few edenite varieties (Fig. 5). They display larger variations 216 in Na₂O (0.09 - 2.37 wt%), Al₂O₃ (0.12 - 11.9 wt%) and Mg# values (93.1 - 99.1) than 217 218 those in the chromitites. The interstitial amphibole grains in harzburgites are tremolite with generally lower Na₂O (< 0.61 wt%), Al₂O₃ (0.02 – 5.41 wt%) and Mg# values (93.7 219 220 -96.4) (Figs. 5a, b, 6a; Table 3).

Amphibole inclusions in chromite mainly range from magnesiohornblende to tremolite, but two analyses yielded edenite compositions (Fig. 5). Compared to the interstitial amphibole, the amphibole inclusions exhibit higher Al₂O₃ and Na₂O contents and lower Mg# values (Fig. 6a, b; Table 3). The amphiboles in the harzburgites are poorer in Al₂O₃ (1.12 – 8.86 wt%), CaO (8.47 – 13.2 wt%) and Na₂O (b.d.l. – 1.38 wt%) contents than their counterparts in the chromitites (Al₂O₃ = 6.13 – 10.0 wt%; CaO = 12.1 -12.9 wt%; Na₂O = 1.11 – 1.91 wt%).

¹⁰

228

229

DISCUSSION

230 The petrographic and mineral chemical data presented here demonstrate that considerable amounts of amphibole occur as interstitial grains and as inclusions in 231 chromite in some of the chromitites, dunites and harzburgites of the mantle section of the 232 233 Lycian ophiolite. In the following, we first discuss the effects of deformation during post-magmatic processes on these rocks, and then explore the origin of the amphibole in 234 them. We then consider possible sources of the fluids from which the amphibole formed 235 236 and investigate the importance of fluids in the formation of inclusions in chromite. Finally, we address the role that the fluids played in the evolution of the Lycian ophiolite. 237 238

The effect of deformation during the post-magmatic evolution on the Lycian ophiolite mantle sequence

Podiform chromitites in ophiolites are normally surrounded by dunite envelopes of variable thickness within mantle harzburgite (Cassard et al., 1981; Lago et al., 1982). For the fluids to penetrate the massive rocks and lead to crystallization of interstitial amphibole, they must have been warm and the rocks must have had significant permeability (Angiboust et al., 2012). Such conditions are expected to prevail only during early stages of crystallization when significant shearing or intrusive pathways would provide access for fluids into the rocks. According to field observations, the harzburgite, dunite and chromitite in the Lycian ophiolite have undergone extensive,

249 late-stage, solid-state fracture but little high temperature shearing (Fig. 7a).

250 Several studies reported that post-magmatic processes (e.g., hydrothermal alteration, metamoprhism) locally aided by deformation could alter chromitites and their 251 surrounding peridotites. Because chromitite is more competent than dunite and 252 253 harzburgite, dunite can preferentially accommodate more strain than the other lithologies 254 as temperatures decrease (e.g., Rassios and Smith, 2000). As temperatures continue to decrease under sustained shear, dunite forms brittle shear zones which may serve as 255 localized permeability pathways, enabling the migration of post-magmatic fluids 256 (Kapsiotis et al., 2019). Such deformed chromitites typically have porphyroclastic 257 textures consisting of coarse-grained porphyroclasts and fine-grained neoblasts 258 259 (Passchier and Trouw, 2005; Satsukawa et al., 2015). In addition, chromite crystals affected by deformation are typically recognized by a presence of porous cores and rims 260 (Colás et al., 2014) or multiphase ferritchromit rims (Mellini et al., 2005; Qiu and Zhu, 261 2017). However, the chromite grains in the chromitites of Lycian ophiolite have no 262 porphyroclatic texture and are homogeneous without pores or core-rim textures (Fig. 2, 3, 263 7b, c). On the other hand, amphibole produced by post-magmatic processes is generally 264 tremolite (Cannat and Seyler, 1995; Nozaka, 2005), commonly associated with 265 serpentine and talc. Although tremolite is found in the Lycian amphibole-bearing 266 chromitites, dunites and harzburgites, the common amphibole is euhedral and 267 magnesiohornblende grading into edenite (Fig. 2, 3, 6a, c). Furthermore, the degree of 268

269	serpentinization in this study decreases from chromitite and dunite to the host harzburgite
270	(Figs. 2, 3), indicating a high temperature, magmatic source for the fluids that penetrated
271	outward. Meanwhile, the crystallization temperatures for both interstitial amphibole and
272	amphibole inclusion, estimated using the geothermometer of Putirka (2016), range from
273	706 to 974 °C (Table 3), which are higher than those of deformed chromitites (500 –
274	700 °C; Satsukawa et al., 2015). Therefore, all these features indicate that the
275	deformation during the post-magmatic evolution does not account for the formation of
276	amphibole in the Lycian ophiolitic rocks.

277

278 Hydrous melt/fluid activity in the formation of ophiolitic chromitites and dunites

Parental melts of most chromitites in ophiolites are thought to be hydrous in nature 279 280 as evidenced by the common presence of hydrous inclusions (e.g., amphibole, phlogopite and fluids) in chromite (e.g., Johan et al., 1983; McElduff and Stumpfl, 1991; Melcher et 281 al., 1997; Schiano et al., 1997; Rollinson, 2008; Borisova et al., 2012; Zhou et al., 2014; 282 Liu et al., 2018; Su et al., 2021). These hydrous minerals are characterized by enrichment 283 284 in alkali components and CaO contents (Fig. 6b), which are widely considered to be favorable for Cr concentration and chromite precipitation (e.g., Pagé and Barnes, 2009; 285 Uysal et al., 2016; Liu, X et al., 2018, 2019; Su et al., 2021). Our current investigation 286 found that the chromitites and dunites in the Lycian ophiolite also have magmatic 287 amphibole in their matrix, which is an uncommon occurrence previously reported only 288 from the Kempirsai (Melcher et al., 1997) and Oman (Rollinson, 2008) ophiolites. 289

290 Our findings in the Lycian chromitites provide direct evidence for the involvement of water in chromitite formation. However, at upper mantle or mantle-crust transition 291 292 depths, where podiform chromitites commonly occur in most ophiolites hydrous minerals are rare. Instead, olivine and subordinate clinopyroxene are the common silicate phases 293 in the chromitites (e.g., Lenaz et al., 2014; Rollinson and Adetunji, 2015; Chen et al., 294 295 2019; Su et al., 2019, 2020). The positively coupled variation between water contents in silicates and chromites implies that water in silicate minerals was probably derived from 296 fluids extracted from the chromite surface (Su et al., 2020), thus, confirming the 297 collection of fluid by chromite during crystallization as proposed by Matveev and 298 Ballhaus (2002). 299

300

301 Chromitite and dunite formation in ophiolitic harzburgites is linked to fluid 302 metasomatism

303 In contrast with amphibole in the Lycian chromitites and dunites, that in the 304 harzburgites occurs as anhedral grains among the silicate minerals and has a close spatial relationship with clinopyroxene and chromite (Figs. 2, 3). These amphiboles have Mg# 305 values similar to those of the clinopyroxene grains, but obviously higher than those of 306 orthopyroxene and olivine (Fig. 9), implying a genetic affinity between the amphibole 307 and clinopyroxene. These features suggest that the amphibole in the harzburgites was 308 formed by reaction with hydrous melts/fluids, during which clinopyroxene was replaced 309 (Ionov et al., 1997). 310

311 Hydrous melts/fluids can have different origins, such as dehydration of a subducted plate (e.g., Ionov and Hofmann, 1995; Penniston-Dorland et al., 2012), hydrothermal 312 313 fluids (Rospabé et al., 2017) and hydrous fluids that were collected on chromite grain surfaces (Matveev and Ballhaus, 2002; Su et al., 2020, 2021). The nature of 314 metasomatizing agents can be identified by the chemical composition of the amphibole in 315 316 the mantle peridotites (Ionov and Hofmann, 1995; Coltorti et al., 2004, 2007). Coltorti et 317 al. (2007) revealed that amphibole in mantle xenoliths from subduction zones generally contains lower Na₂O and TiO₂ than those occurring in xenoliths from intraplate settings 318 319 (Fig. 6a, b). In this study, most interstitial amphibole grains in the chromitite, dunite and 320 harzburgite have lower Na₂O and higher SiO₂ contents than supra-subduction amphibole (S-Amp) and intraplate amphibole (I-Amp) (Fig. 6a), thus ruling out the possibility that 321 322 the rocks were directly metasomatized by mantle-derived and subduction-related hydrous melts/fluids. 323

Rospabé et al. (2017) reported the presence of interstitial amphibole between olivine 324 325 grains and amphibole inclusions in chromite grains from the dunitic transition zone (DTZ) of the Oman ophiolite. They interpreted the interstitial amphibole to have formed by 326 hybridization between mid-oceanic ridge basaltic melt and high-temperature 327 hydrothermal fluid. Those amphibole grains are rich in Na₂O (mostly 1.80 - 3.80 wt%), 328 TiO_2 (mostly 0.03 – 0.80 wt%) and Al_2O_3 (mostly 8.33 – 15.6 wt%) but have relatively 329 low Mg# values (82.6 – 93.1) (Rospabé et al., 2017). The amphiboles analyzed in this 330 study have much lower Na₂O, TiO₂ and Al₂O₃ contents and higher Mg# values than those 331 15

in the DTZ of the Oman ophiolite (Fig. 6a, c, e). Thus, a hydrothermal origin for theLycian amphibole can also be ruled out.

334 In the Lycian ophiolite, most olivine in the chromitites and dunites is partially or completely replaced by serpentine, especially that around chromite grains (Fig. 2b, c, d, f, 335 g, j, k, l). Despite this, a considerable amount of pristine olivine is still present in the 336 337 harzburgite (Fig. 3b, c, d, f, g, j, k). In the Lycian ophiolite, as in ophiolites worldwide, 338 most chromitites are surrounded by dunite envelopes within the mantle harzburgites (Celik and Delaloye, 2003; Uysal et al., 2005, 2012). In our study, the abundance of 339 amphibole decreases from chromitite pod and dunite envelope to the host harzburgite in a 340 trend similar to that observed for chromite. The amphibole grains in the chromitites and 341 342 dunites are much more euhedral than those in the harzburgites (Fig. 2, 3). Thus, we 343 interpret the podiform chromitites as basically crystal cumulates filling magma conduits and small chambers within the mantle peridotite (e.g., Lago et al., 1982). Generally, the 344 345 Al_2O_3 , TiO₂ and Na₂O contents of the amphibole grains also decrease from the chromitites and dunites to the harzburgites (Fig. 6a, c; Table 3) indicating that the fluids 346 from which the amphibole grains crystallized penetrated outward from the chromitites 347 and dunite envelopes to the harzburgites (Fig. 10). Su et al. (2020, 2021) suggested that 348 349 the surface fluids on chromite grains would result in crystallization of clinopyroxene with high CaO (21.0 - 26.0 wt%) and SiO₂ (51.0 - 56.0 wt%) but low TiO₂ (< 0.40 wt%) 350 compositions, which are similar to those in the Lycian chromitites (Fig. 4b; Table 2). 351 Furthermore, the Mg# values of the amphibole grains are in equilibrium with 352

353 clinopyroxene in all three rock types (Fig. 9). Additionally, the interstitial amphibole grains are also calcic and have high SiO₂ and low TiO₂ contents. Thus, we propose that 354 355 the amphibole grains in the Lycian chromitites and dunite were produced by direct crystallization from fluids originally trapped by the chromitites at high fluid/wall rock 356 ratios. The heterogeneity of amphibole compositions and the presence of large amphibole 357 358 grains (up to 10 mm) in the dunite might imply channelized flow of fluids. After 359 crystallization of amphibole in the chromitite and dunite, the remaining fluids penetrated outward into the harzburgites (Fig. 10) and reacted with chromite and/or pyroxene to 360 361 form amphibole at low fluid/rock ratios. The changing fluid/rock ratios may have controlled the mode of melt migration from "channelized flow" to "porous flow" as 362 well as the amphibole compositions. The chromite grains in the Lycian harzburgites, 363 364 particularly those enclosing amphibole and other phases, were most likely formed and/or modified by this mechanism (Fig. 10). In this respect, chromite in the ophiolitic 365 harzburgites cannot be used as an indicator of partial melting due to the effect of 366 367 metasomatism.

368

369

IMPLICATIONS

In addition to the interstitial amphiboles, many calcic amphiboles occur as inclusions in the chromite grains from both the chromitites and harzburgites. These inclusions are round to irregular in morphology and can be either single phase or multi-phase varieties intergrown with pyroxene (Figs. 2h, 3h, 1). Many of these

374 inclusions contain several silicate phases and are therefore distinct from accidental inclusions of pre-existing, early-formed silicates such as olivine (Prichard et al., 2018). In 375 376 addition, euhedral negative crystal inclusions are typical in chromite grains from Lycian chromitites and harzburgites. Several theories explain how negative crystal-shaped 377 inclusions form, including entrapment of primary melt inclusions and annealing/sintering 378 379 of multiple grains around pockets of trapped interstitial melt (Hulbert and Von Grunewald, 1985). The inclusions trapped during annealing/sintering are solitary 380 inclusions, without crystallographic orientation with respect to chromite symmetry (Spry, 381 382 1969). Moreover, ductile deformation tend to generate neoblasts in response to recovery and dynamic recrystallization processes (e.g., Ghosh et al., 2014), which define a 383 polygonal grain-boundary network with well-developed 120° triple (and sometimes 90° 384 quadruple) junctions, giving locally rise to a typical annealing micro-structure (Kapsiotis 385 et al., 2019). In some case, chromite neoblasts show irregular zoning patterns and are 386 387 partly altered to ferrous chromite along their boundaries (Vukmanovic et al., 2013; Kapsiotis et al., 2019). However, the chromite grains in the Lycian chromitites and 388 harzburgites are homogeneous and have no core-rim textures. Therefore, inclusions 389 390 whose form and orientation were imposed by the structure of the host mineral are likely to be melt inclusions trapped during crystallization of the chromite. 391

Amphibole inclusions in chromite from the Lycian ophiolite have slightly lower Na₂O contents than those in inclusions from the DTZ and in ophiolitic chromitites (Fig. 6b and Table 3; Uysal et al., 2009; Borisova et al., 2012; Xiong et al., 2018b), but are

similar to interstitial grains in the Lycian chromitites and harzburgites (Fig. 6a, b). The similar crystallization temperatures of the interstitial amphibole and that in the inclusions (Fig. 8) indicate that the two varieties most likely crystallized simultaneously. Thus, the amphibole inclusions in chromite likely had a similar origin as the coexisting interstitial amphibole. Due to the presence of surface hydrous fluids on chromite grains, the inclusions were probably derived from reaction between surface fluids and the captured melt.

It is not necessary for the captured melt to have specific amounts of water, because 402 403 the water is concentrated on the surfaces of chromite grains during chromitite formation (Matveev and Ballhaus, 2002). These fluids were most likely released from the 404 chromitites and infiltrated into the surrounding dunites and peridotites. Matveev and 405 406 Ballhaus (2002) suggested that basaltic melts that produce chromite deposits should have H₂O contents high enough (up to 4 wt%) to exsolve a water-rich fluid phase. This is most 407 likely to occur in supra-subduction zone environments. The rarity of interstitial 408 409 amphibole in podiform chromitites and mantle peridotites of ophiolites worldwide is probably because amphibole in these rocks was unstable and preferentially melted or 410 altered during multiple stages of melt metasomatism. 411

The well-preserved nature of the interstitial amphibole in the Lycian ophiolite implies rapid emplacement after crystallization. The Lycian ophiolite and other ophiolites in the Tauride Belt, as well as the Oman ophiolite, are characterized by short age gaps (generally less than 3 m.y.) between the ophiolite and its metamorphic sole, which is

416 thought to record the time of initial subduction of the Neo-Tethyan oceanic lithosphere (e.g., Pearce et al., 1984; Robertson, 2002; Soret et al., 2017; Chen et al., 2018; Liu, X et 417 al., 2019). Compared to other ophiolites, another typical feature of the Tauride ophiolites 418 is the occurrence of pristine minerals in the peridotites, and particularly in the chromitites 419 (e.g., Chen et al., 2019; Su et al., 2020, 2021). The interstitial amphibole and 420 421 clinopyroxene grains in the chromitites are thought to have played a vital role in their formation. These grains could have absorbed most of the water in the melts/fluids, 422 thereby mitigating hydration and serpentinization of olivine in the chromitites and the 423 surrounding peridotites (Su et al., 2020). Because podiform chromitites are widely 424 distributed in ophiolites worldwide, the linkage between chromitite formation and 425 melt/fluid metasomatism, as observed in the Lycian ophiolite, may be applicable to other 426 such bodies. As stated above, amphibole and clinopyroxene are rarely found in ophiolitic 427 chromitites, but are relatively common in peridotites. Their compositions can be used to 428 distinguish between different origins (Fig. 6) and thus, can be used to trace the 429 metasomatic melt/fluid sources and to identify the mechanism of chromite 430 mineralization. 431

432

433

ACKNOWLEDGMENTS

434 Constructive and detailed comments from two anonymous reviewers and the editor
435 Sarah Penniston-Dorland are greatly appreciated. This study was financially supported

by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP)
(2019QZKK0801), the National Natural Science Foundation of China (Grants 91755205
and 41772055) and Youth Innovation Promotion Association, Chinese Academy of
Sciences (2017095).

440

REFERENCES CITED

- Aldanmaz, E., Schmidt, M.W., Gourgaud, A., and Meisel, T. (2009) Mid-ocean ridge and 441 supra-subduction geochemical signatures in spinel-peridotites from the Neotethyan 442 ophiolites in SW Turkey: implications for upper mantle melting 443 processes. Lithos, 113, 691-708. 444
- Angiboust, S., Wolf, S., Burov, E., Agard, P., and Yamato, P. (2012) Effect of fluid
 circulation on subduction interface tectonic processes: Insights from
 thermo-mechanical numerical modelling. Earth and Planetary Science Letters,
 357-358, 238-248.
- Ballhaus, C., Berry, R.F., and Green, D.H. (1991) High pressure experimental calibration
 of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the
 oxidation state of the upper mantle. Contributions to Mineralogy and Petrology, 107,
 27-40.
- Borisova, A.Y., Ceuleneer, G., Kamenetsky, V.S., Arai, S., Béjina, F., Abily, B.,
 Bindeman, I.N., Polvé, M., Parseval, P.D., Aigouy, T., and Pokrovski, G.S. (2012) A
 new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses
 of chromite-hosted inclusions. Journal of Petrology, 53, 2411-2440.
- 457 Cannat, M., and Seyler, M. (1995) Transform tectonics, metamorphic plagioclase and
 458 amphibolitization in ultramafic rocks of the Vema transform fault (Atlantic Ocean).
 459 Earth and Planetary Science Letters, 133, 283-298.
- 460 Cassard, D., Nicolas, A., Rabinovitch, M., Moutte, J., Leblanc, M., and Prinzhofer, A.
 461 (1981) Structural classification of chromite pods in southern New Caledonia.
 462 Economic Geology 76, 805-831.
- 463 Çelik, Ö.F. (2002) Geochemical, petrological and geochronological observations on the
 464 metamorphic rocks of the Tauride Belt Ophiolites (S. Turkey). Published Ph.D.
 465 thesis, University of Geneva. Terre Environment, 39, 257.
- 466 Çelik, Ö.F., and Delaloye, M.F. (2003) Origin of metamorphic soles and their
 467 post-kinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW
 468 Turkey. Geological Journal, 38, 235-256.
- 469 Çelik, Ö.F., Delaloye, M.F., and Feraud, G. (2006) Precise ⁴⁰Ar-³⁹Ar ages from the
 470 metamorphic sole rocks of the Tauride Belt Ophiolites, southern Turkey:
 471 implications for the rapid cooling history. Geological Magazine, 143, 213-227.
- 472 Çelik, Ö.F., Marzoli, A., Marschik, R., Chiaradia, M., and Mathur, R. (2018)
 473 Geochemical, mineralogical and Re-Os isotopic constraints on the origin of Tethyan
 474 oceanic mantle and crustal rocks from the Central Pontides, northern Turkey.
 475 Mineralogy and Petrology, 112, 25-44.
- Chen, C., Su, B.X., Jing, J.J., Xiao, Y., Lin, W., Chu, Y., Liu, X., and Bai, Y. (2018)
 Geological records of subduction initiation of Neo-Tethyan Ocean: ophiolites and
 metamorphic soles in southern Turkey. Acta Petrologica Sinica, 34, 3302-3314 (in
 Chinese with English abstract).

- Chen, C., Su, B.X., Xiao, Y., Pang, K.N., Robinson, P.T., Uysal, I., Lin, W., Qin, K.Z.,
 Avcı, E., and Kapsiotis, A. (2019) Intermediate chromitite in Kızıldağ ophiolite (SE
 Turkey) formed during subduction initiation in Neo-Tethys. Ore Geology Reviews,
 104, 88-100.
- 484 Chen, J., and Zeng, Z. (2007) Metasomatism of the peridotites from southern Mariana
 485 fore-arc: Trace element characteristics of clinopyroxene and amphibole. Science in
 486 China Series D: Earth Sciences, 50, 1005-1012.
- 487 Colás, V., González-Jimenéz, J.M., Grifn, W.L., Fanlo, I., Gervilla, F., O'Reilly, S.Y.,
 488 Pearson, N.J., Kerestedjian, T., and Proenza, J.A. (2014) Fingerprints of
 489 metamorphism in chromite: new insights from minor and trace elements. Chemical
 490 Geology, 389, 137-152.
- 491 Collins, A.S., and Robertson, A.H.F. (1998) Processes of Late Cretaceous to Late
 492 Miocene episodic thrust-sheet translation in the Lycian Taurides, SW Turkey.
 493 Journal of the Geological Society, 155, 759-772.
- 494 Coltorti, M., Beccaluva, L., and Bonadiman, C. (2004) Amphibole genesis via
 495 metasomatic reaction with clinopyroxene in mantle xenoliths from Victoria Land,
 496 Antarctica. Lithos, 75, 115-139.
- 497 Coltorti, M., Bonadiman, C., and Faccini, B. (2007) Amphiboles from suprasubduction
 498 and intraplate lithospheric mantle. Lithos, 99, 68-84.
- 499 Droop, G.T.R. (1985) A general equation for estimating Fe³⁺ concentrations in
 500 ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric
 501 criteria. Mineralogical magazine, 361, 431-435.
- Falloon, T.J., and Danyushevsky, L.V. (2000) Melting of refractory mantle at 1.5, 2 and 2.5
 GPa under anhydrous and H₂O undersaturated conditions; implications for the
 petrogenesis of high-Ca boninites and the influence of subduction components on
 mantle melting. Journal of Petrology, 41, 257-283.
- GDMRE (General Directorate of Mineral Research and Exploration), (2002) 1:500.000
 scaled Geological Maps of Turkey (Denizli map section), Ankara-Turkey.
- Ghosh, B., Ray, J., and Morishita, T. (2014) Grain-scale plastic deformation of chromite
 from podiform chromitite of the Naga-manipur ophiolite belt, India: implication for
 mantle dynamics. Ore Geology Reviews, 56, 199-208.
- Huang, Y., Wang, L., Kusky, T., Robinson, P.T., Peng, S., Polat, A., and Deng, H. (2017)
 High-Cr chromites from the late Proterozoic Miaowan Ophiolite Complex, South
 China: implications for its tectonic environment of formation. Lithos, 288, 35-54.
- Hulbert, L.J., and Von Gruenewaldt, G. (1985) Textural and compositional features of
 chromite in the lower and critical zones of the Bushveld complex South of
 Potgietersrus. Economic Geology, 80, 872-895.
- Ionov, D.A., and Hofmann, A.W. (1995) Nb-Ta-rich mantle amphiboles and micas:
 implications for subduction-related metasomatic trace element fractionations. Earth
 and Planetary Science Letters, 131, 341-356.
- 520 Ionov, D.A., Griffin, W.L., and O'Reilly, S.Y. (1997) Volatile-bearing minerals and

521 lithophile trace elements in the upper mantle. Chemical Geology, 141, 153-184.

- Ionov, D.A. (2010) Petrology of mantle wedge lithosphere: new data on supra-subduction
 zone peridotite xenoliths from the andesitic Avacha volcano, Kamchatka. Journal of
 Petrology, 51, 327-361.
- Ishii, T., (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in
 the Izu Ogasawara-Mariana forearc, Leg 125. Proceedings of the Ocean Drilling
 Program, Scientific Results. Ocean Drilling Program, 125, 401-414.
- Johan, Z., Dunlop, H., Le Bel, L., Robert, J.L., and Volfnger, M. (1983) Origin of
 chromite deposits in ophiolitic complexes: evidence for a volatile- and sodium-rich
 reducing fluid phase. Fortschritte der Mineralogie, 61, 105-107.
- Johan, Z., Martin, R.F., and Ettler, V. (2017) Fluids are bound to be involved in the
 formation of ophiolitic chromite deposits. European Journal of Mineralogy, 29,
 543-555.
- Kapsiotis, A., Economou-Eliopoulos, M., Zheng, H., Su, B.X., Lenaz, D., Jing, J.J.,
 Antonelou, A., Velicogna, M., and Xia, B. (2019) Refractory chromitites recovered
 from the Eretria mine, East Othris massif (Greece): Implications for metallogeny
 and deformation of chromitites within the lithospheric mantle portion of a
 forearc-type ophiolite. Geochemistry, 79, 130-152.
- Khedr, M.Z., Arai, S., Python, M., and Tamura, A. (2014) Chemical variations of abyssal
 peridotites in the central Oman ophiolite: evidence of oceanic mantle heterogeneity.
 Gondwana Research, 25, 1242-1262.
- Lago, B.L., Rabinowicz, M., Nicolas, A. (1982) Podiform chromitite ore bodies: a
 genetic model. Journal of Petrology, 23, 103-125.
- Leake, B.E., Woolley, A.R., and Arps, C.E.S. (1997) Nomenclature of amphiboles.
 Reports of the subcommittee on amphiboles of the International Mineralogical
 Association Commission on new minerals and mineral names. European Journal of
 Mineralogy, 9, 623-651.
- Lenaz, D., Adetunji, J., and Rollinson, H. (2014) Determination of Fe³⁺/∑Fe ratios in
 chrome spinels using a combined Mössbauer and single-crystal X-ray approach:
 application to chromitites from the mantle section of the Oman ophiolite.
 Contributions to Mineralogy and Petrology, 167, 1-17.
- Liu, C.Z., Wu, F.Y., Wilde, S.A., Yu, L.J., and Li, J.L. (2010) Anorthitic plagioclase and
 pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite
 (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos, 114,
 413-422.
- Liu, J.G., Hattori, K., and Wang, J. (2017) Mineral inclusions in chromite from the
 chromite deposit in the Kudi ophiolite, Tibet, Proto-Tethys. Acta Geologica
 Sinica-English Edition, 91, 469-485.
- Liu, T., Wu, F.Y., Liu, C.Z., Zhang, C., Ji, W.B., and Xu, Y. (2019) Reconsideration of
 Neo-Tethys evolution constrained from the nature of the Dazhuqu ophiolitic mantle,
 southern Tibet. Contributions to Mineralogy and Petrology, 174, 23.

- Liu, X., Su, B.X., Bai, Y., Chen, C., Xiao, Y., Liang, Z., Yang, S.H., Peng, Q.S., Su, B.C.,
 and Liu, B. (2018) Ca-enrichment characteristics of parental magmas of chromitite
 in ophiolite: inference from mineral inclusions. Earth Science, 43, 1038-1050 (in
 Chinese with English abstract).
- Liu, X., Su, B.X., Xiao, Y., Chen, C., Uysal, I., Jing, J.J., Zhang, P.F., Chu, Y., Lin, W.,
 and Sakyi, P.A. (2019) Initial subduction of Neo-Tethyan Ocean: Geochemical
 records in chromite and mineral inclusions in the Pozanti-Karsanti ophiolite,
 southern Turkey. Ore Geology Reviews, 110, 102926.
- Lorand, J.P., and Ceuleneer, G. (1989) Silicate and base-metal sulfide inclusions in
 chromites from the Maqsad area (Oman ophiolite, Gulf of Oman): a model for
 entrapment. Lithos, 22, 173-190.
- Matveev, S., and Ballhaus, C. (2002) Role of water in the origin of podiform chromitite
 deposits. Earth and Planetary Science Letters, 203, 235-243.
- McElduff, B., and Stumpfl, E.F. (1991) The chromite deposits of the Troodos Complex,
 Cyprus-evidence for the role of a fluid phase accompanying chromite formation.
 Mineralium Deposita, 26, 307-318.
- Melcher, F., Grum, W., Simon, G., Thalhammer, T.V., and Stumpfl, E.F. (1997)
 Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a
 study of solid and fluid inclusions in chromite. Journal of Petrology, 38, 1419-1458.
- Mellini, M., Rumori, C., and Viti, C. (2005) Hydrothermally reset magmatic spinels in
 retrograde serpentinites: formation of 'ferritchromit' rims and chlorite aureoles.
 Contributions to Mineralogy and Petrology, 149, 266-275.
- Nozaka, T. (2005) Metamorphic history of serpentinite mylonites from the Happo ultramafic complex, central Japan. Journal of Metamorphic Geology, 23, 711-723.
- Nozaka, T. (2014) Metasomatic hydration of the Oeyama forearc peridotites: Tectonic
 implications. Lithos, 184, 346-360.
- Pagé, P., and Barnes, S.J. (2009) Using trace elements in chromites to constrain the
 origin of podiform chromitites in the Thetford Mines ophiolite, Quebec, Canada.
 Economic Geology, 104, 997-1018.
- Parlak, O. (2016) The Tauride ophiolites of Anatolia (Turkey): A review. Journal of Earth
 Science, 27, 901-934.
- Passchier, C.W., and Trouw, R.A.J. (2005) Microtectonics. 2nd edition. Springer, Berlin
 Heidelberg, New York.
- Pearce, J.A., Lippard, S.J., and Roberts, S. (1984) Characteristics and tectonics
 significance of supra-subduction zone ophiolites. Geological Society of London
 Special Publications, 16, 77-94.
- Penniston-Dorland, S.C., Bebout, G.E., von Strandmann, P.A.P., Elliott, T., and Sorensen,
 S.S. (2012) Lithium and its isotopes as tracers of subduction zone fluids and
 metasomatic processes: Evidence from the Catalina Schist, California, USA.
 Geochimica et Cosmochimica Acta, 77, 530-545.
- Prichard, H.M., Barnes, S.J., and Godel, B. (2018) A mechanism for chromite growth in

ophiolite complexes: evidence from 3D high-resolution X-ray computed
tomography images of chromite grains in Harold's Grave chromitite in the Shetland
ophiolite. Mineralogical Magazine, 82, 457-470.

- Putirka, K. (2016) Amphibole thermometers and barometers for igneous systems and
 some implications for eruption mechanisms of felsic magmas at arc volcanoes.
 American Mineralogist, 101, 841-858.
- Qiu, T., and Zhu, Y. (2017) Chromian spinels in highly altered ultramafic rocks from the
 Sartohay ophiolitic mélange, Xinjiang, NW China. Journal of Asian Earth Sciences,
 159, 155-184.
- Qiu, T., Yang, J.S., Milushi, I., Wu, W.W., Mekshiqi, N., Xiong, F.H., Zang, C., and Shen,
 T.T. (2018) Petrology and PGE abundances of high-Cr and high-Al podiform
 chromitites and peridotites from the Bulqiza Ultramafic Massif, Eastern Mirdita
 Ophiolite, Albania. Acta Geologica Sinica-English Edition, 92, 1063-1081.
- Rassios, A., and Smith, A.G. (2000) Constraints on the formation and emplacement age
 of western Greek ophiolites (Vourinos, Pindos, and Othris) inferred from
 deformation structures in peridotites. Special Papers-Geological Society of America,
 473-484.
- Ridolfi, F., Zanetti, A., Renzulli, A., Perugini, D., Holtz, F., and Oberti, R. (2018)
 AMFORM, a new mass-based model for the calculation of the unit formula of
 amphiboles from electron microprobe analyses. American Mineralogist, 103,
 1112-1125.
- Robertson, A.H.F. (2002) Overview of the genesis and emplacement of Mesozoic
 ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65, 1-67.
- Rollinson, H. (2008) The geochemistry of mantle chromitites from the northern part of
 the Oman ophiolite: inferred parental melt compositions. Contributions to
 Mineralogy and Petrology, 156, 273-288.
- Rollinson, H., and Adetunji, J. (2015) The geochemistry and oxidation state of podiform
 chromitites from the mantle section of the Oman ophiolite: a review. Gondwana
 Research, 27, 543-554.
- Rollinson, H., Mameri, L., and Barry, T. (2018) Polymineralic inclusions in mantle
 chromitites from the Oman ophiolite indicate a highly magnesian parental melt.
 Lithos, 310, 381-391.
- Rospabé, M., Ceuleneer, G., Benoit, M., Abily, B., and Pinet, P. (2017) Origin of the
 dunitic mantle-crust transition zone in the Oman ophiolite: The interplay between
 percolating magmas and high-temperature hydrous fluids. Geology, 45, 471-474.
- Sachan, H.K., Mukherjee, B.K., and Bodnar, R.J. (2007) Preservation of methane
 generated during serpentinization of upper mantle rocks: Evidence from fluid
 inclusions in the Nidar ophiolite, Indus Suture Zone, Ladakh (India). Earth and
 Planetary Science Letters, 257, 47-59.
- Satsukawa, T., Piazolo, S., González-Jiménez, J.M., Colás, V., Griffin, W.L., O'Reilly,
 S.Y., Gervilla, F., Fanlo, I., and Kerestedjian. T.N. (2015) Fluid-present deformation

- aids chemical modification of chromite: insights from chromites from GolyamoKamenyane, SE bulgaria. Lithos, 228-229, 78-89.
- Schiano, P., Clocchiatti, R., Lorand, J.P., Massare, D., Deloule, E., and Chaussidon, M.
 (1997) Primitive basaltic melts included in podiform chromites from the Oman
 ophiolite. Earth and Planetary Science Letters, 146, 489-497.
- 649 Slovenec, D., and Šegvić, B. (2018) The first record of ultramafic cumulates from the
 650 Mt. Kalnik ophiolite mélange in the SW part of the Zagorje-Mid-Transdanubian
 651 Zone (NW Croatia): mineralogy, petrology, geochemistry and tectono-magmatic
 652 affinity. Geologia Croatica, 71, 185-197.
- Sobolev, A.V., and Chaussidon, M. (1996) H₂O concentrations in primary melts from
 supra-subduction zones and mid-ocean ridges: Implications for H₂O storage and
 recycling in the mantle. Earth and Planetary Science Letters, 137, 45-55.
- Soret, M., Agard, P., Dubacq, B., Plunder, A., and Yamato, P. (2017) Petrological
 evidence for stepwise accretion of metamorphic soles during subduction infancy
 (Semail ophiolite, Oman and UAE). Journal of Metamorphic Geology, 35,
 1051-1080.
- 660 Spry, A. (1969) Metamorphic Textures. Pergamon Press, New York, 350.
- Su, B.X., Zhou, M.F., Jing, J.J., Robinson, P.T., Chen, C., Xiao, Y., Liu, X., Shi, R.D.,
 Lenaz, D., and Hu, Y. (2019) Distinctive melt activity and chromite mineralization
 in Luobusa and Purang ophiolites, southern Tibet: constraints from trace element
 compositions of chromite and olivine. Science Bulletin, 64, 108-121.
- Su, B.X., Robinson, P.T., Chen, C., Xiao, Y., Melcher, F., Bai, Y., Gu, X.Y., Uysal, I., and
 Lenaz, D. (2020) The occurrence, origin and fate of water in chromitites in
 ophiolites. American Mineralogist, 105, 894-903.
- Su, B.X., Liu, X., Chen, C., Robinson, P.T., Xiao, Y., Zhou, M.F., Bai, Y., Uysal, I., and
 Zhang, P.F. (2021). A new model for chromitite formation in ophiolites: Fluid
 immiscibility. Science China Earth Sciences, doi.org/10.1007/s11430-020-9690-4.
- Takahashi, E., Uto, K., and Schilling, J.G. (1987) Primary magma compositions and
 Mg/Fe ratios of their mantle residues along Mid Atlantic Ridge 29°N to 73°N.
 Technical Report of Institute of Studies on the Earth's Interior Series A, 9, 1-14.
- Uysal, I., Sadiklar, M.B., Tarkian, M., Karsli, O., and Aydin, F. (2005) Mineralogy and
 composition of the chromitites and their platinum-group minerals from Ortaca
 (Muğla-SW Turkey): evidence for ophiolitic chromitite genesis. Mineralogy and
 Petrology, 83, 219-242.
- Uysal, I., Tarkian, M., Sadiklar, M.B., Zaccarini, F., Meisel, T., Garuti, G., and Heidrich,
 S. (2009) Petrology of Al-and Cr-rich ophiolitic chromitites from the Muğla, SW
 Turkey: implications from composition of chromite, solid inclusions of
 platinum-group mineral, silicate, and base-metal mineral, and Os-isotope
 geochemistry. Contributions to Mineralogy and Petrology, 158, 659-674.
- Uysal, I., Ersoy, E.Y., Karsli, O., Dilek, Y., Sadıklar, M.B., Ottley, C.J., Tiepolo, M., and
 Meisel, T. (2012) Coexistence of abyssal and ultra-depleted SSZ type mantle

685 peridotites in a Neo-Tethyan ophiolite in SW Turkey: Constraints from mineral 686 composition, whole-rock geochemistry (major-trace-REE-PGE), and Re-Os isotope 687 systematics. Lithos, 132, 50-69.

- Uysal, I., Akmaz, R.M., Saka, S., and Kapsiotis, A. (2016) Coexistence of
 compositionally heterogeneous chromitites in the Antalya-Isparta ophiolitic suite,
 SW Turkey: a record of sequential magmatic processes in the sub-arc lithospheric
 mantle. Lithos, 248-251, 160-174.
- Vukmanovic, Z., Barnes, S.J., Reddy, S.M., Godel, B., and Fiorentini, M.L. (2013)
 Morphology and microstructure of chromite crystals in chromitites from the
 Merensky Reef (Bushveld Complex, South Africa). Contributions to Mineralogy
 and Petrology, 165, 1031-1050.
- Wells, P.R.A. (1977) Pyroxene thermometry in simple and complex systems.
 Contributions to Mineralogy and Petrology, 62, 129-139.
- Wojtulek, P.M., Schulz, B., Delura, K., and Dajek, M. (2019) Formation of chromitites
 and ferrogabbros in ultramafic and mafic members of the Variscan Ślęża ophiolite
 (SW Poland). Ore Geology Reviews, 106, 97-112.
- Xiong, F.H., Yang, J.S., Xu, X.Z., Kapsiotis, A., Hao, X.L., and Liu, Z. (2018a)
 Compositional and isotopic heterogeneities in the Neo-Tethyan upper mantle
 recorded by coexisting Al-rich and Cr-rich chromitites in the Purang peridotite
 massif, SW Tibet (China). Journal of Asian Earth Sciences, 159, 109-129.
- Xiong, F.H., Yang, J.S., Dilek, Y., Wang, C.L., Hao, X.L., Xu, X.Z., and Lian, D.Y.
 (2018b) Petrology and geochemistry of the high-Cr podiform chromitites of the
 Köycegiz ophiolite, southwest Turkey: implications for the multi-stage evolution of
 the oceanic upper mantle. Mineralogy and Petrology, 112, 685-704.
- Zhou, M.F., Robinson, P.T., and Bai, W.J. (1994) Formation of podiform chromites by
 melt-rock interaction in the upper mantle. Mineralium Deposita, 29, 98-101.
- Zhou, M.F., Robinson, P.T., Su, B.X., Gao, J.F., Li, J.W., Yang, J.S., and Malpas, J.
 (2014) Compositions of chromite, associated minerals, and parental magmas of
 podiform chromite deposits: the role of slab contamination of asthenospheric melts
 in suprasubduction zone environments. Gondwana Research, 26, 262-283.

715

FIGURE CAPTIONS

Fig. 1. (a) Distribution of major ophiolites in Turkey (after Chen et al., 2018); (b, c)
Simplified geological map of the Lycian ophiolite (after GDMRE, 2002); (d)
Tectonostratigraphy of the Lycian ophiolitic units (after Parlak, 2016).

719

Fig. 2. Scanned photographs of thin-sections and back-scattered electron images of the amphibole-bearing chromitites (a-h) and dunites (i-l) from the Lycian ophiolite. Amphibole commonly occurs along the grain boundaries of chromite (b, c, d, f, g); Amphibole occurs as monophase or multiphase assemblages with clinopyroxene in chromite (h). Interstitial amphibole (j), amphibole intergrowth with clinopyroxene (k) and a large amphibole grain in dunite (l). Mineral abbreviation: Amp, amphibole; Chr, chromite; Cpx, clinopyroxene; Ol, olivine; Srp, serpentine.

727

Fig. 3. Scanned photographs of thin-section and back-scattered electron images of the amphibole-bearing harzburgites from the Lycian ophiolite (a-l). Anhedral amphibole surrounding orthopyroxene (b) or clinopyroxene (c, g, k); Amphibole occurring as discrete grains between adjacent minerals (d, f, j); Amphibole occurring as monophase or multiphase inclusions with clinopyroxene or orthopyroxene in chromite grains (h, l). Mineral abbreviation: Amp, amphibole; Chr, chromite; Cpx, clinopyroxene; Ol, olivine; Opx, orthopyroxene; Srp, serpentine.

736	Fig. 4. Compositions of minerals in the amphibole-bearing chromitites, dunites and
737	harzburgites of the Lycian ophiolite. The dark grey and dark red squares represent
738	chemical compositions of minerals in the harzburgites and chromitites, respectively
739	(Aldanmaz et al., 2009; Uysal et al., 2005, 2009, 2012; Xiong et al., 2018b). The fields of
740	olivine mantle array and fore-arc peridotite in Fig. 4a are from Takahashi et al. (1987)
741	and Ishii (1992), respectively. The fields of abyssal peridotite and fore-arc peridotite in
742	Fig. 4c are from Liu, T et al. (2019). Fields for high-Cr and high-Al chromite are from
743	Zhou et al. (2014).

744

Fig. 5. Classification of amphibole in chromitites, dunites and harzburgites of the Lycian
ophiolite. The amphibole classification diagram is after Leake et al. (1997).

Fig. 6. Compositional variations of amphibole in the chromitites, dunites and 748 749 harzburgites of the Lycian ophiolite. The gray squares and triangles in Fig. 6a-f represent interstitial amphibole (Rollinson, 2008) and amphibole inclusions, respectively (Uysal et 750 751 al., 2009; Borisova et al., 2012; Huang et al., 2017; Liu et al., 2017; Qiu et al., 2018; Xiong et al., 2018b; Wojtulek et al., 2019). The fields of I-Amp (intraplate amphibole) 752 and S-Amp (suprasubduction amphibole) in mantle xenoliths are from Coltorti et al. 753 (2007). The fields of hydrothermal Amp, Amp in DTZ (the dunitic transition zone) and 754 Amp inclusion in chromite of the DTZ are from Rospabé et al. (2017). Data for 755 amphibole in ophiolitic peridotite, shown in dotted line, are from Liu et al. (2010), Khedr 756

757 et al. (2014), Çelik et al. (2018) and Slovenec and Šegvić. (2018).

758

Fig. 7. (a) Field relations among harzburgite, dunite and chromitite of the Lycian ophiolite. Note the lack of strong shearing in any of the rocks; (b, c) back-scattered electron images of the disseminated and nodular chromitites from the ophiolite.

762

Fig. 8. Crystallization temperatures for both interstitial amphibole and amphibole inclusions in chromite of the Lycian chromitites, dunites and harzburgites estimated using the geothermometer of Putirka (2016). The dark grey diamond and light grey circles represent pyroxene temperature (Wells, 1977) and olivine-chromite exchange temperature (Ballhaus et al., 1991), respectively.

768

Fig. 9. Correlation diagrams of interstitial amphibole Mg# with clinopyroxene Mg# (a),

orthopyroxene Mg# (b) and olivine Fo (c) for the chromitites, dunites and harzburgites in

the Lycian ophiolite. The solid lines and dashed lines represent functions of Y = X and Y772 = $X \pm 1$, respectively.

773

Fig. 10. A cartoon model showing infiltration of hydrous fluids released from chromitegrains in chromitite into the surrounding dunite and harzburgite.

Always consult and cite the final, published doc men See http://www.minsocam.org or GeoscienceWorld

Fig. 2

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Sample	Ol	Орх	Срх	Chr	Amp
Harzburgite					
18LN05-1	85.2	10.4	2.9	0.8	0.7
18LN07-1	84.6	9.6	2.8	1.9	1.1
LN15-02	86.3	9.4	2.8	0.9	0.6
LN15-03	84.5	11.2	1.8	1.6	0.9
LN15-07	84.4	10.5	2.8	1.5	0.8
LN15-11	85.3	10.3	2.7	0.9	0.8
Dunite					
18LN07-5	77.4	0	0.9	19.9	1.8
LN15-06	92.3	0	0.8	5.3	1.6
Chromitite					
18LN05-4	33.5	0	0	65.3	1.2
18LN05-6	30.3	0	0	68.3	1.4
18LN05-7	27.3	0	0	71.3	1.4
18LN05-8	23.4	0	0	75.0	1.6
18LN05-9	18.3	0	0	79.9	1.8
18LN07-3	71.4	0	0.5	27.0	1.1
18LN07-9-1	40.6	0	0	58.1	1.3
18LN07-9-2	36.4	0	0	62.4	1.2
18LN07-10	78.3	0	0.2	20.4	1.1

Table 1. Mineral modal	abundance (vol.	%) of the	harzburgite,	dunite and	d chromitite	from
the Lycian ophiolite.						

Note:

Ol: olivine; Opx: orthopyroxene; Cpx: clinopyroxene; Chr: chromite; Amp: amphibole.

Table 2. Representative major element compositions (wt%) of olivine, clinop	yroxene, orthopyroxene and chromite in the harzburgite,	dunite and chromitite from
the Lycian ophiolite.		

Sample	18LN05-1 18LN07-1 I												LN15-02 LN15-03									
Rock	Harzbu	ırgite				Harzburgite Harzburgite								Harzbu	ırgite							
Mineral	Ol	Ol1	Срх	Opx	Chr	Ol	Ol1	Срх	Cpx ¹	Opx	Opx ¹	Chr	Ol	Ol^1	Срх	Opx	Chr	Ol	Ol^1	Срх	Cpx ¹	Opx
SiO ₂	41.3	41.7	54.2	57.1	b.d.l.	41.6	40.6	54.0	54.3	57.9	57.4	b.d.l.	41.3	41.5	54.3	57.3	b.d.l.	40.7	40.9	53.9	53.9	57.5
TiO ₂	b.d.l.	0.01	b.d.l.	0.03	0.04	0.01	b.d.l.	0.03	b.d.l.	0.01	0.02	0.07	0.01	0.03	0.03	b.d.l.	0.03	b.d.l.	b.d.l.	0.01	b.d.l.	0.04
Al ₂ O ₃	b.d.l.	0.03	1.52	2.38	34.2	b.d.l.	b.d.l.	1.58	1.01	1.52	1.11	21.3	b.d.l.	0.04	1.05	1.26	17.7	0.01	0.01	0.86	0.67	0.92
Cr ₂ O ₃	0.07	0.76	0.43	0.65	34.2	b.d.l.	0.32	0.72	1.12	0.66	0.57	47.9	0.03	0.64	0.36	0.53	52.1	b.d.l.	1.08	0.47	1.27	0.47
FeO	8.73	8.42	1.78	5.65	17.1	8.44	7.91	1.92	1.82	5.64	5.62	17.8	8.33	8.26	1.70	5.30	19.2	8.61	6.28	1.66	1.83	5.39
MnO	0.13	0.12	0.06	0.08	0.20	0.11	0.05	0.09	0.02	0.13	0.10	0.32	0.06	0.15	0.02	0.12	0.04	0.06	0.05	0.04	0.07	0.17
MgO	49.5	49.4	18.0	32.7	14.2	49.4	50.4	17.3	18.0	34.3	35.3	12.2	49.5	48.8	18.0	33.5	11.0	49.8	51.4	17.8	17.7	33.7
CaO	0.02	0.02	24,2	0.74	b.d.l.	0.04	b.d.l.	23.9	24.3	0.75	0.30	0.02	0.04	0.02	24.5	1.19	0.02	b.d.l.	b.d.l.	24.4	23.9	1.32
Na ₂ O	0.01	0.07	0.06	0.04	0.05	b. d.l .	b.d.l.	0.03	0.07	b.d.l.	b.d.l.	b.d.l.	0.01	b.d.l.	0.02	b.d.l.	0.01	0.02	b.d.l.	0.02	0.11	b.d.l.
K ₂ O	0.03	0.02	b.d.l.	b.d.l.	0.01	b.d.l.	b.d.l.	0.03	0.01	b.d.l.	b.d.l.	b.d.l.	0.01	b.d.l.	b.d.l.	0.01	b.d.l.	0.01	b.d.l.	b.d.l.	b.d.l.	0.01
NiO	0.38	0.36	0.05	0.05	0.02	0.41	0.31	0.03	0.05	0.06	0.09	0.06	0.34	0.27	0.04	0.06	0.02	0.27	0.33	0.04	0.03	0.09
Total	100	101	100	99.4	99.9	100	99.5	99.7	101	101	100	99.7	99.6	99.7	99.9	99.3	100	99.5	100	99,2	99.5	99.6
Si	1.006	1.008	1.958	1.974	0.000	1.012	0.993	1.965	1.960	1.973	1.965	0.000	1.009	1.012	1.970	1.985	0.000	0.998	0.990	1.972	1.968	1.987
Ti	0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.001	0.000	0.000	0.001	0.002	0.000	0.001	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.001
Al	0.000	0.001	0.065	0.097	1.174	0.000	0.000	0.068	0.043	0.061	0.045	0.780	0.000	0.001	0.045	0.051	0.660	0.000	0.000	0.037	0.029	0.037
Cr	0.001	0.014	0.012	0.018	0.787	0.000	0.006	0.021	0.032	0.018	0.015	1.179	0.001	0.012	0.010	0.014	1.306	0.000	0.021	0.014	0.037	0.013
Fe ²⁺	0.178	0.170	0.054	0.163	0.375	0.172	0.162	0.058	0.055	0.161	0.161	0.426	0.170	0.169	0.052	0.153	0.476	0.177	0.127	0.051	0.056	0.156
Fe ³⁺					0.040							0.038					0.033					
Mn	0.003	0.003	0.002	0.002	0.005	0.002	0.001	0.003	0.001	0.004	0.003	0.008	0.001	0.003	0.001	0.003	0.001	0.001	0.001	0.001	0.002	0.005
Mg	1.796	1.779	0.972	1.683	0.616	1.793	1.836	0.940	0.970	1.742	1.800	0.565	1.801	1.777	0.971	1.727	0.518	1.820	1.855	0.971	0.965	1.737
Ca	0.000	0.001	0.937	0.027	0.000	0.001	0.000	0.931	0.939	0.027	0.011	0.001	0.001	0.001	0.951	0.044	0.001	0.000	0.000	0.956	0.938	0.049
Na	0.001	0.003	0.004	0.003	0.001	0.000	0.000	0.002	0.005	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.001	0.000	0.001	0.007	0.000
K	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Ni	0.008	0.007	0.001	0.001	0.000	0.008	0.006	0.001	0.001	0.002	0.002	0.002	0.007	0.005	0.001	0.002	0.001	0.005	0.006	0.001	0.001	0.002
Total	2.994	2.986	4.005	3.969	3.000	2.988	3.004	3.992	4.006	3.987	4.004	3.000	2.990	2.981	4.002	3.982	2.996	3.003	3.000	4.003	4.003	3.990
Mg#	91.1	91.3	94.8	91.2	62.2	91.3	92.0	94.2	94.7	91.6	91.9	57.0	91.4	91.4	95.0	91.9	52.1	91,2	93.6	95.1	94.6	91.8
Cr#					40.1							60.2					66.4					
T ¹ (°C)					859							828					892					
T ² (°C)					581							680					660					

(Table 2 continued)

Sample	LN15-07 I								LN15-11 18LN07-5				LN15-06			18LN05-4		18	18LN05-6			
Rock	Harzburgite				Harzbu	rgite		Dunite			Dunite			Chromitite Chr			romitite					
Mineral	Opx ¹	Chr	Ol	Ol1	Срх	Cpx ¹	Opx	Opx ¹	Chr	Ol	Срх	Opx	Chr	Ol	Chr	Ol	Срх	Chr	Ol	Ol1	Chr	Ol
SiO ₂	57.7	b.d.l.	40.7	40.8	54.4	54.2	56.4	57.1	b.d.l.	40.9	53.8	57.1	b.d.l.	41.4	b.d.l.	41.9	55.0	b.d.l.	41.9	41.6	b.d.l.	41.7
TiO ₂	b.d.l.	0.02	b.d.l.	b.d.l.	0.01	0.02	0.01	b.d.l.	0.02	b.d.l.	0.06	b.d.l.	0.02	0.01	0.17	0.02	0.01	0.13	b.d.l.	b.d.l.	0.10	0.02
Al ₂ O ₃	0.29	13.7	b.d.l.	b.d.l.	1.53	1.14	2,28	1.16	28.7	b.d.l.	1.29	1.36	19.2	0.02	9.65	b.d.l.	0.21	9.15	b.d.l.	b.d.l.	22.2	b.d.l.
Cr ₂ O ₃	0.61	55.3	b.d.l.	0.11	0.35	1.03	0.70	1.23	39.4	b.d.l.	0.47	0.48	50.1	0.01	60.0	0.01	0.26	60.1	0.01	0.21	47.5	0.01
FeO	5.41	20.1	8.53	7.48	1.89	1.82	5.81	5.58	16.8	8.56	1.97	5.67	18.9	5.16	17.2	6.94	0.99	19.3	4.56	3.80	14.4	4.75
MnO	0.08	b.d.l.	0.10	0.06	0.05	0.05	0.17	0.08	b.d.l.	0.09	0.10	0.10	b.d.l.	0.07	0.33	0.11	0.02	b.d.l.	0.10	0.03	0.20	0.09
MgO	35.5	10.1	50.2	51.3	17.9	17.8	32.9	35.1	13.8	49.1	17.5	34.9	11.6	51.9	12.5	49.9	18.1	10.5	51.8	54.3	15.5	52.5
CaO	0.21	0.03	b.d.l.	b.d.l.	24.5	24.4	0.90	0.25	0.01	0.03	23.8	0.48	0.03	0.02	b.d.l.	0.03	25.6	0.02	0.02	0.01	b.d.l.	b.d.l.
Na ₂ O	0.01	b.d.l.	b.d.l.	0.01	0.03	0.06	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.01	b.d.l.	b.d.l.	b.d.l.	0.11	0.02	b.d.l.	b.d.l.	0.10	0.06
K ₂ O	0.01	0.01	b.d.l.	b. d.l .	b. d.l .	b. d.l .	b.d.l.	0.02	b.d.l.	b.d.l.	0.01	b.d.l.	0.01	0.01	0.02	b.d.l.	b.d.l.	b.d.l.	0.05	b.d.l.	0.03	b.d.l.
NiO	0.06	0.10	0.33	0.34	0.03	0.06	0.11	0.05	0.06	0.36	0.06	0.07	0.05	0.46	0.05	0.42	b.d.l.	0.03	0.54	0.55	0.19	0.56
Total	99.9	99.3	99.9	100	101	101	99.4	101	98.8	99.1	99.1	100	99.9	99.1	100	99.3	100	99.3	99.0	100	100	99.7
Si	1.984	0.003	0.995	0.991	1.960	1.958	1.958	1.957	0.000	1.007	1.970	1.961	0.001	1.004	0.000	1.019	1.988	0.000	1.013	0.990	0.000	1.003
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.004	0.000	0.000	0.003	0.000	0.000	0.002	0.000
Al	0.012	0.525	0.000	0.000	0.065	0.049	0.093	0.047	1.016	0.000	0.056	0.055	0.708	0.000	0.370	0.000	0.009	0.358	0.000	0.000	0.790	0.000
Cr	0.016	1.425	0.000	0.002	0.010	0.030	0.019	0.033	0.935	0.000	0.014	0.013	1.241	0.000	1.543	0.000	0.007	1.577	0.000	0.004	1.133	0.000
Fe ²⁺	0.156	0.503	0.174	0.152	0.057	0.055	0.169	0.160	0.375	0.176	0.060	0.163	0.447	0.105	0.389	0.141	0.030	0.476	0.092	0.076	0.285	0.096
Fe ³⁺		0.044							0.048				0.049		0.079			0.059			0.078	
Mn	0.002	0.000	0.002	0.001	0.002	0.001	0.005	0.002	0.000	0.002	0.003	0.003	0.000	0.001	0.009	0.002	0.001	0.000	0.002	0.001	0.005	0.002
Mg	1.823	0.492	1.828	1.855	0.962	0.960	1.704	1.794	0.619	1.801	0.952	1.789	0.544	1.876	0.604	1.810	0.973	0.520	1.868	1.928	0.697	1.884
Ca	0.008	0.001	0.000	0.000	0.945	0.946	0.033	0.009	0.000	0.001	0.935	0.018	0.001	0.001	0.000	0.001	0.992	0.001	0.000	0.000	0.000	0.000
Na	0.001	0.000	0.000	0.000	0.002	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.000	0.000	0.000	0.001	0.003
К	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
Ni	0.002	0.003	0.007	0.007	0.001	0.002	0.003	0.001	0.001	0.007	0.002	0.002	0.001	0.009	0.001	0.008	0.000	0.001	0.010	0.010	0.005	0.011
Total	4.003	2.996	3.005	3.008	4.003	4.004	3.985	4.004	2.995	2.993	3.994	4.004	2.992	2.996	3.000	2.981	4.008	2.995	2.988	3.008	2.997	2.998
Mg#	92.2	49.5	91.4	92.5	94.5	94.6	91.1	91.9	62.3	91.2	94.1	91.7	52.5	94.8	60.8	92.8	97.0	52.2	95.3	96.3	66.0	95.2
Cr#		73.1							47.9				63.7		80.7			81.5			59	
T ¹ (°C)		946							815				827									
T ² (° C)		681							660				654		739			680			633	
	í																					

(Table 2 continued)

Sample			18LN0	5-7		18LN05	-8		18LN05-	9	18LN0	7-3			18LN07	7-9-1		18LN07	-9-2	18LN07	-10		
Rock			Chrom	itite		Chromi	tite		Chromit	ite	Chrom	itite			Chrom	itite		Chromi	tite	Chromi	tite		
Mineral	Cpx ¹	Chr	Ol	Ol1	Chr	Ol	Cpx ¹	Chr	Ol	Chr	Ol	Срх	Cpx ¹	Chr	Ol	Ol1	Chr	Ol	Chr	Ol	Ol1	Chr	DL
SiO ₂	53.9	b.d.l.	42.3	41.7	b.d.l.	42.0	53.9	b.d.l.	43.0	0.09	42.2	55.3	54.3	b.d.l.	41.3	41.8	b.d.l.	41.4	b.d.l.	43.0	41.1	b.d.l.	0.01
TiO ₂	0.03	0.12	b.d.l.	b.d.l.	0.10	0.02	b.d.l.	0.14	b.d.l.	0.15	b.d.l.	0.03	0.04	0.10	b.d.l.	b.d.l.	0.17	b.d.l.	0.15	b.d.l.	0.02	0.20	0.02
Al ₂ O ₃	1.22	22.6	b.d.l.	b.d.l.	21.9	b.d.l.	0.90	22.6	b.d.l.	17.4	b.d.l.	0.52	0.34	9.48	b.d.l.	b.d.l.	10.1	0.02	10.3	b.d.l.	0.01	9.83	0.01
Cr ₂ O ₃	1.14	47.2	b.d.l.	0.19	48.4	b.d.l.	1.07	47.2	0.05	53.1	b.d.l.	0.50	1.13	61.8	b.d.l.	0.25	61.2	0.04	60.2	0.05	0.42	61.2	0.03
FeO	1.33	14.5	4.17	3.74	14.7	4.46	1.28	14.3	3.87	13.4	3.95	0.89	0.70	14.5	4.21	3.00	14.1	3.97	14.5	4.19	2.73	15.5	0.01
MnO	0.02	0.18	0.03	0.04	0.26	0.07	0.01	0.21	0.05	0.27	0.02	0.04	0.03	0.21	0.08	0.02	0.22	0.04	0.26	0.02	0.04	0.30	0.06
MgO	18.1	15.3	53.2	53.9	15.3	52.0	17.8	15.5	53.6	15.9	53.2	17.6	18.2	13.4	53.3	54.7	13.8	53.5	13.7	52.7	54.3	12.7	0.06
CaO	24.4	b. d.l .	0.03	0.03	0.02	0.01	24.4	0.01	0.04	0.01	0.01	24.9	24.1	0.02	0.01	0.02	b.d.l.	0.01	b.d.l.	0.03	0.02	b.d.l.	0.02
Na ₂ O	0.11	0.02	b.d.l.	b.d.l.	b. d.l .	b.d.l.	0.17	0.01	b. d.l .	0.03	b .d.l .	0.22	0.21	0.01	0.04	0.01	b.d.l.	0.01	0.01	0.02	0.02	b.d.l.	0.03
K ₂ O	b.d.l.	0.01	b.d.l.	b.d.l.	b. d.l .	b.d.l.	0.01	b .d.l .	0.01	b.d.l.	b .d.l .	0.01	b.d.l.	b .d.l .	0.02	b .d.l .	0.01	b.d.l.	b.d.l.	0.01	0.02	b.d.l.	0.02
NiO	0.03	0.16	0.72	0.58	0.15	0.69	0.06	0.14	0.73	0.15	0.58	0.03	0.02	0.09	0.59	0.78	0.04	0.53	0.13	0.57	0.51	0.02	0.03
Total	100	100	100	100	101	99.2	99.6	100	101	100	100	100	99.1	99.6	99.5	101	99.7	99.5	99.3	101	99.1	99.7	
Si	1.951	0.000	1.008	0.994	0.000	1.013	1.965	0.000	1.012	0.003	1.008	1.999	1.981	0.000	0.994	0.991	0.002	0.996	0.000	1.020	0.988	0.000	
Ti	0.001	0.003	0.000	0.000	0.002	0.000	0.000	0.003	0.000	0.003	0.000	0.001	0.001	0.002	0.000	0.000	0.004	0.000	0.004	0.000	0.000	0.005	
Al	0.052	0.804	0.000	0.000	0.777	0.000	0.039	0.803	0.000	0.628	0.000	0.022	0.014	0.362	0.000	0.000	0.384	0.001	0.394	0.000	0.000	0.377	
Cr	0.033	1.128	0.000	0.004	1.153	0.000	0.031	1.126	0.001	1.286	0.000	0.014	0.033	1.584	0.000	0.005	1.558	0.001	1.540	0.001	0.008	1.574	
Fe ²⁺	0.040	0.303	0.083	0.075	0.305	0.090	0.039	0.297	0.076	0.266	0.079	0.027	0.021	0.345	0.085	0.059	0.334	0.080	0.334	0.083	0.055	0.382	
Fe ³⁺		0.064			0.065			0.065		0.076				0.049			0.046		0.059			0.039	
Mn	0.001	0.005	0.001	0.001	0.007	0.001	0.000	0.005	0.001	0.007	0.000	0.001	0.001	0.006	0.002	0.000	0.006	0.001	0.007	0.000	0.001	0.008	
Mg	0.976	0.689	1.886	1.918	0.687	1.869	0.964	0.696	1.883	0.725	1.893	0.947	0.991	0.647	1.913	1.935	0.665	1.915	0.658	1.863	1.945	0.614	
Ca	0.948	0.000	0.001	0.001	0.001	0.000	0.954	0.000	0.001	0.000	0.000	0.963	0.944	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	
Na	0.007	0.000	0.000	0.000	0.000	0.000	0.012	0.000	0.000	0.001	0.000	0.015	0.015	0.000	0.002	0.001	0.000	0.000	0.000	0.001	0.001	0.000	
K	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.000	
Ni	0.001	0.004	0.014	0.011	0.004	0.013	0.002	0.003	0.014	0.004	0.011	0.001	0.001	0.002	0.011	0.015	0.001	0.010	0.003	0.011	0.010	0.000	
Total	4.009	2.999	2.992	3.004	3.000	2.987	4.007	3.000	2.988	2.999	2.992	3.990	4.001	3.000	3.007	3.007	3.000	3.004	3.000	2.980	3.009	3.000	
Mg#	96.1	69.5	95.8	96.3	65.2	95.5	96.1	70.1	96.1	68.1	96.0	97.3	97.9	65.2	95.8	97.0	66.5	96.0	66.4	95.8	97.3	59.5	
Cr#		58.4			59.8			58.4		67.2				81.4			80.2		79.6			80.7	
T ¹ (°C)																							
T ² (°C)		642			655			642		641				717			679		766			678	
- (0)		•						·		•••							0.7					0.0	

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Note:

Ol¹: olivine inclusion in chromite; Cpx¹: clinopyroxene inclusion in chromite; Opx¹: orthopyroxene inclusion in chromite; b.d.l.: value below detection limit; DL: detection limit of the oxide; The data in the table represent the average value; a minimum of three grains were analyzed for each mineral phase in a single thin section and at least two points were analyzed in the cores and rims of each crystal.

Mg#: 100Mg / (Mg + Fe²⁺); Cr#: 100Cr / (Cr + Al).

T¹: pyroxene temperature (Wells, 1977); T²: olivine-chromite exchange temperature (Ballhaus et al., 1991).

Famile	101 ND2	1 010111	ciit coi	mposit	10115 ()	vi /0) 0	n amp	101 107	7 1	1141 2.0	ui gite,	uumo	c and c	, in onn		onn ene	Lycia	n opm	onte.		I N115 0	<u></u>
Book	Horzbu	7-1 maita						Horzbu	/-1 maita												Horzbu	2 maita
Minoral			Amm ¹	Amm ¹	1 mm ¹	1 mm ¹	1 mm ¹	Amp ³	Arm ³	Amm ³	Anm ³	Anm ³	Amm ³	Amm ³	Amm ³	Amm ³	Anm ³	Anm ³	Amm ³	Amm ³		Amm ¹
Type	Mbb	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr
SO	527	57.1	565	58.2	57.2	567	55.9	57.2	560	57.0	56.4	561	566	566	57.4	56.9	560	57.2	57.1	57.2	566	55.0
510 ₂	0.07	5/.1 bdl	50.5 hdl	30.2 0.02	57.5	50.7 b.d.1	33.0 0.01	5/5	50.9 h.d.l	57.0 hdl	50.4 b.d.1	50.1 h.dl	0.02	50.0 h.d.1	57. 4 0.02	50.0 h.dl	50,9 0.01	5/.5 hdl	57.1	5/2 bdl	50.0 h.dl	0.01
	5.41	0.05	0.0.1.5	0.05	1.41	1.62	1.55	1.67	2.01	1.00	2.12	2.48	1.05	1.50	1.00	1 91	2.00	1.74	1.64	1 10	0.0.1. 0.0.1.	2.52
	0.46	0.05 hdl	0.15	0.10	0.21	0.11	1.55	1.07	2.01	0.50	2.13	2,40	1.69	1.39	0.57	1.01	2.09	1./4	1.04	1.19	2.50	2.52
E ₂ O ₃	0.40	1.02	0.02	1.05	0.21	0.11 2.10	282	1.72	1.00	1.85	1.10	1,41	1.09	1.67	1.80	1.97	1.01	1.70	1.77	1.09	1.69	1.00
reo Meio	2.57	1.95	2,10	1.00	1./1	2,10	2.05	1.72	1./1	1.05	1.00	1.05	1.90	1.0/ b.d.l	1.00	1.05	1.05	1./9	1.//	1./5	1.00	1.00
MIIO M-O	0.02	0.05	0.00	0.05	0.02	0.07	0.07	0.05	0.02	0.00	0.04	0.05	0.00	0.0.1.	0.04	0.00	0.0.1.	0.01	0.01	0.02	0.05	0.01
MgO C-O	21.5 12.0	25.2 11.0	20.0	23.5 10.6	23.1 12.4	205 12 (23.0 12.4	205 121	12.9	20.0 12.0	23.1 12.9	22.ð 12.0	22.ð 12.9	12.1	12.0	12.9	20.0 12.0	23.2 12.2	12.0	20.0 12.1	23.0 12.0	22.0 12.9
CaO N- O	15.0	11.9	11.2	10.0	13.4	12.0	124	15.1	15.0	15.0	12.8	12.9	12.8	13.1	15.0	15.0	15.0	15.2	15.0	13.1	15.0	12.8
Na ₂ O	0.39	0.09	0.11	0.14	0.00	0.61	0.51	0.04	0.03	0.02	0.02	0.04	0.04	0.01	0.03	0.01	0.04	0.02	D. d.1 .	0.01	0.08	0.11
K ₂ O	D.G.I.	0.02	0.01	0.04	0.01	D.G.I.	0.01	D.C.I.	0.01	D.C.I.	0.01	D.C.I.	0.01	D.d.I.	0.01	0.01	0.01	D.C.I.	D.G.I.	D.G.I.	0.01	D. d.l .
NIU	0.04	D.G.I.	0.02	0.03	0.05	0.06	0.04	0.08	0.07	0.08	0.04	0.11	0.08	0.05	0.10	0.06	0.14	0.04	0.03	0.09	0.09	0.06
TOTAL	96.9	90.3	90.3	90.7	97.4	913	97.0	98.1	97.7	97.8	9/5	97.8	96.9	90.5	98.1	91.5	98.3	98.2	9/5	9/3	9/5	90.5
I(IV):	7 417	7.000	202 (= 0/0	7 047			= = 00	7 77 0		7 7 20		7 70 4	= 025	7 010	= = 01	7 7 24	7 7 04	= 022	7 041	77 74	7 7 24
51	7.417	7.992	79/6	7.968	7.845	7.753	7.746	7.780	7.770	7.764	7.720	7.675	7.794	7.835	7.810	7.781	7.724	7.784	7.832	7.841	7.734	7.724
Al	0.583	0.008	0.024	0.029	0.155	0.248	0.254	0.220	0.230	0.236	0.280	0.325	0.206	0.165	0.190	0.219	0.277	0.216	0.168	0.159	0.266	0.2/6
	0.000	0.000	0.000	0.003	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
C(VI):	0.207	0.000	0.000	0.000	0.073	0.014	0.000	0.047	0.004	0.070	0.064	0.077	0.100	0.004	0.115	0.072	0.057	0.0/2	0.007	0.022	0.115	0.122
AI	0.297	0.000	0.000	0.000	0.072	0.014	0.000	0.047	0.094	0.008	0.064	0.075	0.100	0.094	0.115	0.073	0.057	0.062	0.097	0.033	0.115	0.133
n G	0.007	0.000	0.000	0.000	0.004	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.003	0.000	0.002	0.000	0.001	0.000	0.002	0.000	0.000	0.001
Cr	0.050	0.000	0.003	0.004	0.023	0.012	0.031	0.0/1	0.115	0.064	0.125	0.152	0.068	0.08/	0.062	0.105	0.109	0.104	0.104	0.075	0.072	0.073
Ni+Zn	0.004	0.000	0.002	0.004	0.005	0.006	0.004	0.009	0.007	0.009	0.004	0.012	0.008	0.006	0.011	0.006	0.016	0.004	0.003	0.010	0.010	0.006
Fe	0.172	0.000	0.000	0.000	0.071	0.232	0.000	0.110	0.033	0.110	0.097	0.078	0.043	0.000	0.018	0.046	0.098	0.057	0.000	0.055	0.103	0.098
Mg	4.422	5.259	5.475	5.217	4.716	4.785	4.886	4.751	4.6/3	4.757	4.708	4.654	4.681	4.682	4.704	4.684	4./12	4.705	4.684	4.755	4.686	4.661
Fe	0.101	0.226	0.257	0.214	0.125	0.008	0.328	0.085	0.162	0.101	0.117	0.134	0.185	0.194	0.18/	0.166	0.112	0.146	0.203	0.146	0.089	0.111
Mn	0.002	0.006	0.007	0.003	0.002	0.008	0.008	0.003	0.003	0.007	0.004	0.004	0.007	0.000	0.005	0.007	0.000	0.001	0.001	0.003	0.003	0.001
B:	4.040	-		4		1.040			1 001	1 000		4.000	4 000	1026	1 000	1 000	1 00 1	4.047	4 000	4.000	4 000	4.007
Ca	1.919	1,509	1,256	1.559	1.964	1.848	1.742	1,912	1,901	1.899	1.874	1.892	1.893	1.936	1.889	1.908	1.894	1.916	1.908	1.922	1.898	1.887
Na	0.026	0.000	0.000	0.000	0.017	0.087	0.000	0.011	0.009	0.006	0.006	0.000	0.009	0.001	0.007	0.003	0.001	0.006	0.000	0.003	0.022	0.029
A:																						
Ca	0.000	0.281	0.440	0.002	0.000	0.000	0.102	0.000	0.000	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Na	0.077	0.026	0.030	0.037	0.000	0.075	0.138	0.000	0.000	0.000	0.000	0.010	0.000	0.000	0.000	0.000	0.009	0.000	0.000	0.000	0.000	0.000
K	0.000	0.004	0.003	0.007	0.001	0.000	0.002	0.000	0.002	0.000	0.001	0.000	0.002	0.000	0.001	0.002	0.001	0.000	0.000	0.000	0.002	0.000
Mg#	94.2	95.9	95.5	96.1	96.0	95.2	93.7	96.1	96.0	95.7	95.6	95.6	95.4	96.0	95.8	95.7	95.7	95.9	95.9	96.0	96.1	95.7
T(°C)	789	707	708	713	728	752	744	736	737	736	742	749	732	728	731	734	742	734	727	727	743	744
H ₂ O	3.07	3.68	3.69	3.33	2.63	2.67	2.96	1.88	2.30	2,22	2.51	2.19	3.13	3.48	1.92	2.53	1.70	1.76	2.54	2.66	2.48	3.48

Table 3. Major element compositions (wt%) of amphibole in the harzburgite, dunite and chromitite from the Lycian ophiolite.

(Table 3 continued)

Sample	LN15-0	3																				
Rock	Harzbu	rgite																				
Mineral	Amp ¹	Amp ³																				
Туре	Tr	Mhb																				
SiO ₂	57.1	57.3	57.3	56.8	55.8	55.7	54.7	57.9	57.7	56.4	53.8	53.8	52.9	52.7	52,9	52.7	52.5	52.7	52.2	52.5	50.6	51.0
TiO ₂	0.01	b.d.l.	b.d.l.	b.d.l.	0.01	b.d.l.	0.04	b.d.l.	b.d.l.	b.d.l.	0.05	b.d.l.	b.d.l.	0.02	b.d.l.	0.05	0.03	0.06	0.06	0.06	b.d.l.	0.01
Al ₂ O ₃	1.03	1.46	1.38	1.86	2,20	3.33	3.83	0.81	0.77	1.67	4.19	4.24	4.59	4.82	5.25	5.82	5.29	5.65	5.48	5.51	5.15	6.33
Cr ₂ O ₃	0.19	0.39	0.38	0.41	0.75	0.96	1.02	0.31	0.21	0.37	1.83	1.83	1.90	2.43	2.51	1.96	2.11	2.11	2.20	1.89	4.29	2.37
FeO	1.72	1.88	1.80	1.92	1.98	1.94	2.07	1.65	1.80	1.78	2.09	2.16	2.15	2.28	2.17	2.16	2.30	2.22	2.21	2.66	2.51	2,20
MnO	0.01	b.d.l.	0.01	0.02	b.d.l.	0.02	0.01	0.01	0.05	0.02	0.02	0.04	0.02	b.d.l.	0.03	0.04	0.02	0.02	0.01	0.03	0.03	0.05
MgO	23.0	23.1	23.2	23.4	22.6	22.5	21.9	23.6	23.4	22.8	22.0	22,2	22.0	21.7	21.8	21.7	21.7	21.6	21.2	23.2	21.3	21.5
CaO	12.8	12.7	13.0	12.7	12.7	12.8	12.8	13.1	13.3	13.0	12.6	12.7	12.6	12.2	12.1	12.0	12.2	12.3	12.5	10.7	11.6	11.2
Na ₂ O	0.36	0.10	0.14	0.06	0.06	0.50	0.14	0.03	b.d.l.	0.04	0.39	0.38	0.48	0.59	0.95	0.68	0.80	0.74	0.59	0.73	0.63	1.14
K ₂ O	0.02	0.01	0.01	0.01	b.d.l.	0.03	b.d.l.	0.01	0.01	b.d.l.	0.11	0.12	0.14	0.11	0.02	0.03	0.07	0.06	0.18	0.07	0.04	0.05
NiO	0.04	0.06	0.04	0.06	0.05	0.08	0.05	0.07	0.08	0.08	0.11	0.08	0.05	0.10	0.03	0.05	0.12	0.05	0.05	0.02	0.09	0.05
Total	96.3	97.0	97.2	97.3	96.2	97.8	96.5	97.5	97.2	96.2	97.1	97.6	96.9	97.0	97.6	97.2	97.2	97.5	96.6	97.3	96.3	95.9
T(IV):																						
Si	7.884	7.871	7.844	7.768	7.738	7.615	7.569	7.910	7.903	7.816	7.456	7.425	7.363	7.344	7.314	7.302	7.301	7.296	7.294	7.264	7.179	7.170
Al	0.117	0.129	0.157	0.233	0.262	0.386	0.431	0.091	0.097	0.184	0.544	0.575	0.637	0.656	0.686	0.698	0.700	0.704	0.706	0.736	0.821	0.830
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
C(VI):																						
Al	0.050	0.107	0.066	0.067	0.098	0.151	0.194	0.040	0.027	0.088	0.140	0.116	0.115	0.135	0.171	0.252	0.167	0.218	0.197	0.164	0.040	0.220
Ti	0.001	0.000	0.000	0.000	0.001	0.000	0.005	0.000	0.000	0.000	0.005	0.000	0.000	0.003	0.000	0.005	0.003	0.006	0.006	0.006	0.000	0.001
Cr	0.021	0.042	0.041	0.045	0.082	0.104	0.111	0.033	0.023	0.040	0.200	0.199	0.209	0.268	0.275	0.215	0.232	0.231	0.243	0.207	0.481	0.263
Ni+Zn	0.005	0.007	0.004	0.007	0.006	0.008	0.006	0.008	0.009	0.009	0.012	0.009	0.005	0.012	0.004	0.005	0.013	0.005	0.006	0.002	0.010	0.005
Fe ³⁺	0.143	0.008	0.088	0.140	0.097	0.130	0.145	0.028	0.050	0.068	0.070	0.068	0.096	0.041	0.023	0.042	0.059	0.037	0.076	0.036	0.000	0.095
Mg	4.735	4.732	4.739	4.774	4.679	4.576	4.514	4.801	4.775	4.711	4.533	4.573	4.568	4.511	4.490	4.479	4.505	4.455	4.411	4.788	4.501	4.517
Fe ²⁺	0.055	0.209	0.118	0.080	0.133	0.092	0.095	0.160	0.157	0.139	0.173	0.181	0.154	0.224	0.227	0.209	0.208	0.221	0.182	0.273	0.298	0.164
Mn	0.001	0.000	0.001	0.003	0.000	0.002	0.002	0.002	0.006	0.002	0.002	0.005	0.002	0.000	0.004	0.005	0.003	0.002	0.002	0.003	0.003	0.006
B :																						
Ca	1.890	1.869	1.904	1.868	1.888	1.869	1.896	1.917	1.950	1.932	1.866	1.850	1.851	1.807	1.787	1.784	1.810	1.824	1.871	1.521	1.668	1.693
Na	0.096	0.027	0.037	0.016	0.017	0.068	0.033	0.008	0.001	0.011	0.000	0.000	0.000	0.000	0.020	0.004	0.000	0.001	0.007	0.000	0.000	0.035
A:																						
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.034	0.032	0.014	0.000	0.000	0.003	0.000	0.000	0.062	0.097	0.000
Na	0.000	0.000	0.000	0.000	0.000	0.063	0.004	0.000	0.000	0.000	0.104	0.102	0.129	0.160	0.234	0.179	0.216	0.197	0.153	0.196	0.174	0.275
K	0.003	0.001	0.001	0.002	0.000	0.006	0.000	0.002	0.002	0.000	0.020	0.022	0.025	0.020	0.003	0.005	0.012	0.010	0.032	0.012	0.007	0.009
Mg#	96.0	95.6	95.8	95.6	95.3	95.4	95.0	96.2	95.9	95.8	94.9	94.8	94.8	94.4	94.7	94.7	94.4	94.5	94.5	94.0	93.8	94.6
T(°C)	731	724	729	736	740	768	764	719	718	730	786	789	799	804	819	813	816	816	812	816	825	843
H ₂ O	3.70	3.03	2.76	2.69	3.75	2.23	3.51	2.49	2.76	3.84	2.87	2.44	3.07	3.02	2.37	2.84	2.81	2.51	3.43	2.71	3.75	4.07

(Table 3 continued)

.

Sample																						
Rock	43	A3	A3	A3	A3	4	A3	A3	A3	A3	A3	4	A3	A3	4	4	A3	A3	A3	A3	A	A
Type	Апр Мьь	Атр Мьь	Атр Мьь	Апр Мьь	Апр Мьь	Апр Мьь	Апр Мьь	Апр Мьь	Атр Мьь	Атр Мьь	Атр Мьь	Апр Мьь	Апр Мьь	Amp Tr	Amp Tr	Amp Tr	Amp Tr	Amp Tr	Amp Tr	Amp Tr	Amp Tr	Апр Тг
SiO.	51.0	50.9	50.9	51.1	51.1	49.8	48.9	496	496	48.2	54.4	536	51.9	562	55.5	55.5	55.5	55.7	556	553	55.1	55.6
5102 TiO	0.03	0.01	0.05	0.06	0.05	47.0 0.12	40.5	42.0	42.0	40.2	0.04	0.05	0.04	50.2 hdl	0.03	55.5 hdl	55.5 hdl	55.7 hdl	0.03	bdl	0.05	55.0 hdl
AbO	6.23	6.30	6.28	6.52	6.71	7.81	7.77	7.24	7.85	8.37	443	4.46	5.96	1.43	2.38	2.48	2.35	2.49	2.75	2.67	2.64	2.56
Cr ₂ O ₃	2.38	2.51	2.57	2.57	2.34	2.46	3.48	2.75	2.47	3.12	2.17	1.64	2.45	1.37	1.25	1.41	1.40	1.63	1.59	1.56	1.39	1.64
FeO	2.29	2.64	2.53	2.39	2.69	2.62	2.81	2.64	2.70	2.62	3.32	2.16	2.54	1.80	1.91	1.78	1.86	1.97	1.98	1.88	1.90	1.99
MnO	0.05	0.05	0.07	0.06	0.05	0.06	0.05	0.03	0.04	0.09	0.12	0.09	0.07	0.05	0.03	0.03	0.03	0.07	0.04	0.01	0.01	0.03
MgO	21.2	21.1	21.1	21.3	21.1	20.2	19.1	20.7	20.5	19.9	24.2	21.7	21.4	22.7	22.6	22.5	22.6	22.7	22.5	22.7	22.6	24.4
CaO	12.0	12.0	12.0	12.0	12.1	12.0	11.3	11.8	12.1	11.5	8.5	12.2	12.0	12.4	12.6	12.8	13.0	12.5	12.4	12.5	12.6	10.9
Na ₂ O	1.03	1.13	1.17	1.09	1.01	1.14	1.20	1.31	1.21	1.38	0.95	0.75	1.21	0.05	0.14	0.15	0.16	0.27	0.30	0.15	0.23	0.23
K ₂ O	0.02	0.04	0.05	0.04	0.04	0.03	0.04	0.04	0.03	0.06	0.04	0.11	0.10	0.04	0.07	0.08	0.07	0.04	0.03	0.06	0.08	0.03
NiO	0.09	0.12	0.06	0.06	0.04	0.08	0.08	0.10	0.09	0.10	0.04	0.07	0.07	0.07	0.10	0.11	0.07	0.04	0.03	0.11	0.12	0.02
Total	96.3	96.8	96.9	97.2	97.2	96.4	94.8	96.3	96.6	95.4	98.1	96.8	97.6	96.1	96.7	96.8	97.0	97.5	97.2	97.0	96.8	97.4
T(IV):																						
Si	7.168	7.142	7.137	7.133	7.130	7.021	7.011	7.011	6.988	6.885	7.450	7.442	7.206	7.820	7.677	7.668	7.661	7.657	7.647	7.634	7.627	7.620
Al	0.832	0.858	0.863	0.867	0.870	0.979	0.989	0.989	1.012	1.115	0.550	0.558	0.794	0.180	0.324	0.332	0.339	0.343	0.353	0.367	0.373	0.380
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
C(VI):																						
Al	0.199	0.184	0.175	0.206	0.234	0.317	0.324	0.217	0.290	0.296	0.165	0.173	0.182	0.055	0.065	0.072	0.043	0.061	0.093	0.068	0.058	0.034
Ti	0.003	0.001	0.005	0.007	0.005	0.012	0.006	0.005	0.006	0.009	0.004	0.005	0.004	0.000	0.003	0.000	0.000	0.000	0.003	0.000	0.005	0.000
Cr	0.264	0.278	0.285	0.284	0.259	0.274	0.395	0.307	0.275	0.353	0.234	0.180	0.270	0.150	0.137	0.154	0.153	0.177	0.173	0.170	0.152	0.178
Ni+Zn	0.010	0.013	0.007	0.007	0.005	0.009	0.009	0.011	0.010	0.012	0.005	0.008	0.007	0.007	0.012	0.012	0.008	0.005	0.003	0.012	0.014	0.002
Fe ³⁺	0.087	0.064	0.059	0.029	0.046	0.060	0.118	0.075	0.065	0.115	0.000	0.105	0.039	0.000	0.131	0.118	0.123	0.080	0.084	0.091	0.121	0.033
Mg	4.440	4.419	4.419	4.426	4.382	4.248	4.093	4.364	4,292	4.239	4.935	4.496	4.426	4.711	4.656	4.623	4.648	4.652	4.621	4.674	4.652	4.984
Fe ²⁺	0.182	0.245	0.238	0.250	0.268	0.249	0.220	0.237	0.253	0.198	0.380	0.145	0.256	0.210	0.089	0.088	0.092	0.147	0.144	0.126	0.099	0.196
Mn B:	0.006	0.006	0.008	0.007	0.006	0.007	0.006	0.003	0.004	0.011	0.014	0.010	0.009	0.006	0.004	0.004	0.003	0.008	0.005	0.001	0.002	0.004
Ca	1.806	1.790	1.805	1.786	1.795	1.818	1.742	1.780	1.804	1.759	1.243	1.811	1.783	1.843	1.871	1.897	1.914	1.843	1.830	1.852	1.875	1.570
Na	0.004	0.000	0.000	0.000	0.000	0.006	0.087	0.000	0.000	0.009	0.020	0.067	0.024	0.013	0.033	0.032	0.017	0.027	0.044	0.006	0.022	0.000
A:																						
Ca	0.000	0.008	0.003	0.017	0.021	0.000	0.000	0.007	0.017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.035
Na	0.278	0.308	0.319	0.296	0.272	0.306	0.247	0.358	0.330	0.373	0.232	0.137	0.303	0.000	0.006	0.007	0.026	0.045	0.036	0.034	0.039	0.061
K	0.003	0.007	0.009	0.006	0.006	0.005	0.006	0.008	0.005	0.012	0.007	0.019	0.017	0.006	0.012	0.014	0.011	0.007	0.006	0.010	0.015	0.006
Mg#	94.3	93.5	93.7	94.1	93.3	93.2	92.4	93.3	93.1	93.1	92.9	94.7	93.8	95.7	95.5	95.7	95.6	95.3	95.3	95.6	95.5	95.6
T (°C)	840	843	846	846	841	861	862	866	866	885	792	797	838	730	751	753	753	756	759	757	760	760
H ₂ O	3.67	3.16	3.11	2.80	2.77	3.60	5.19	3.73	3.40	4.64	1.86	3.21	2.37	3.92	3.32	3.16	2.96	2.54	2,77	2.95	3.23	2.61

(Table 3 continued)

Sample						LN15-07	7															
Rock						Harzbu	gite															
Mineral	Amp ³	Amp ¹	Amp ³																			
Туре	Tr																					
SiO ₂	55.4	54.7	55.2	54.1	55.8	58.5	58.2	56.9	57.9	58.2	57.5	58.0	57.5	57.8	57.5	56.9	56.6	54.3	56.2	55.9	54.4	53.2
TiO ₂	b.d.l.	0.01	0.02	0.03	0.10	0.02	0.01	b.d.l.	b.d.l.	0.01	0.04	0.02	0.05	0.01	0.01	0.01	0.01	b.d.l.	0.02	b.d.l.	0.04	b.d.l.
Al ₂ O ₃	2.84	2.89	2.90	2.91	2.87	0.08	0.10	0.13	0.92	0.91	0.83	0.96	1.03	0.31	0.44	0.83	1.26	1.14	2.80	3.01	4.64	4.60
Cr ₂ O ₃	1.73	1.63	1.75	1.94	1.60	0.02	0.04	b.d.l.	0.17	0.12	0.15	0.21	0.10	0.29	0.03	0.11	0.27	0.51	0.61	0.84	1.15	0.62
FeO	1.88	1.96	1.90	2.01	2.07	1.58	1.65	1.99	1.61	1.62	1.66	1.68	1.82	1.60	1.66	1.65	1.82	1.90	2.20	2.08	2.37	3.44
MnO	0.04	0.03	0.03	0.03	0.07	0.05	0.07	0.03	0.01	0.06	0.03	0.05	0.07	0.03	0.05	0.03	0.05	0.05	0.08	0.03	0.02	0.06
MgO	22.7	22.7	23.1	22.2	22.6	24.3	24.0	25.3	23.8	23.0	22.7	22.8	22.8	23.9	23.3	23.1	23.2	25.3	22.9	22.8	22.0	22.4
CaO	12.4	12.3	12.4	12.4	12.4	13.2	13.1	11.9	13.1	13.2	13.0	13.1	12.8	12.9	13.4	13.5	13.3	10.0	13.0	13.1	12.8	12.1
Na ₂ O	0.28	0.31	0.29	0.23	0.22	0.20	0.23	0.19	0.08	0.11	0.11	0.07	0.08	0.38	0.01	0.09	0.13	0.53	0.20	0.13	0.32	0.32
K ₂ O	b.d.l.	0.03	0.03	0.05	0.13	b.d.l.	b.d.l.	0.01	0.02	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.04	0.01	b.d.l.	b.d.l.	0.04	0.01	0.01	b.d.l.	0.03
NiO	0.06	0.07	0.09	0.05	0.11	0.09	0.09	0.14	0.02	0.07	0.10	0.07	0.08	0.06	0.08	0.09	0.05	0.05	0.08	0.07	0.12	0.12
Total	97.4	96.6	97.7	96.0	97.9	98.0	97.6	96.5	97.6	97.3	96.1	97.0	96.3	97.3	96.5	96.2	96.7	93.9	98.0	98.0	97.8	96.9
T(IV):																						
Si	7.618	7.583	7.580	7.557	7.638	7.985	7.982	7.979	7.889	7.984	7.982	7.980	7.962	7.948	7.943	7.880	7.795	7.807	7.656	7.624	7.466	7.386
Al	0.382	0.417	0.420	0.443	0.362	0.013	0.017	0.021	0.112	0.016	0.019	0.020	0.038	0.050	0.057	0.120	0.204	0.193	0.344	0.376	0.534	0.614
Ti	0.000	0.000	0.000	0.000	0.000	0.002	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
C(VI):																						
Al	0.078	0.055	0.048	0.036	0.101	0.000	0.000	0.000	0.035	0.131	0.117	0.135	0.130	0.000	0.015	0.015	0.000	0.000	0.105	0.107	0.217	0.139
Ti	0.000	0.001	0.002	0.003	0.010	0.000	0.000	0.000	0.000	0.001	0.004	0.002	0.005	0.000	0.001	0.001	0.000	0.000	0.002	0.000	0.004	0.000
Cr	0.188	0.179	0.190	0.214	0.173	0.002	0.005	0.000	0.018	0.013	0.017	0.023	0.011	0.031	0.003	0.012	0.029	0.058	0.065	0.090	0.125	0.068
Ni+Zn	0.006	0.007	0.010	0.006	0.012	0.010	0.010	0.016	0.002	0.008	0.011	0.007	0.009	0.006	0.009	0.010	0.005	0.006	0.009	0.007	0.013	0.014
Fe ³⁺	0.068	0.112	0.055	0.130	0.044	0.000	0.000	0.000	0.081	0.000	0.000	0.000	0.000	0.000	0.040	0.062	0.209	0.000	0.144	0.129	0.092	0.178
Mg	4.665	4.688	4.723	4.631	4.605	4.935	4.911	5.287	4.825	4.693	4.692	4.676	4.705	4.893	4.791	4.767	4.756	5.422	4.645	4.645	4.492	4.648
Fe ²⁺	0.148	0.116	0.162	0.104	0.193	0.180	0.189	0.233	0.102	0.186	0.193	0.194	0.211	0.184	0.152	0.129	0.000	0.229	0.107	0.109	0.180	0.221
Mn	0.005	0.004	0.004	0.003	0.008	0.006	0.008	0.003	0.001	0.007	0.004	0.006	0.008	0.003	0.005	0.004	0.005	0.006	0.009	0.003	0.002	0.007
В:																						
Ca	1.828	1.828	1.805	1.863	1.826	1.867	1.878	1.460	1.912	1.932	1.933	1.937	1.900	1.883	1.980	2.000	1.959	1.279	1.901	1.909	1.876	1.726
Na	0.014	0.010	0.000	0.008	0.028	0.000	0.000	0.000	0.020	0.029	0.029	0.020	0.021	0.000	0.002	0.000	0.036	0.000	0.013	0.000	0.000	0.000
A:																						
Ca	0.000	0.000	0.020	0.000	0.000	0.057	0.047	0.328	0.000	0.000	0.000	0.000	0.000	0.017	0.000	0.002	0.000	0.266	0.000	0.007	0.004	0.070
Na	0.061	0.073	0.077	0.054	0.030	0.052	0.060	0.051	0.000	0.000	0.000	0.000	0.000	0.101	0.000	0.025	0.000	0.147	0.039	0.034	0.085	0.085
K	0.001	0.004	0.005	0.009	0.023	0.000	0.000	0.002	0.003	0.000	0.000	0.000	0.000	0.006	0.002	0.000	0.000	0.008	0.001	0.002	0.000	0.005
Mg#	95.6	95.4	95.6	95.2	95.1	96.5	96.3	95.8	96.3	96.2	96.0	96.0	95.7	96.4	96.2	96.1	95.8	96.0	94.9	95.1	94.3	92.1
T (°C)	762	767	768	768	758	714	715	711	723	711	712	711	712	724	714	724	736	744	753	756	780	782
H ₂ O	2.64	3.39	2.25	4.03	2.09	2.01	2.42	3.49	2.42	2.74	3.92	3.06	3.70	2.70	3.54	3.79	3.31	6.15	1.99	2.00	2,22	3.15

(Table 3 continued)

Sample												LN15-1	1	18LN0	7-5							
Rock												Harzbu	ırgite	Dunite								
Mineral	Amp ³	Amp ¹																				
Туре	Tr	Ed	Ed	Ed	Ed	Ed	Ed	Mhb	Mhb	Tr												
SiO ₂	52.4	51.2	50.2	50.2	49.7	48.9	54.8	56.1	55.8	54.2	50.4	58.7	54.5	45.2	47.3	46.8	46.3	46.5	45.7	48.9	47.1	55.1
TiO ₂	0.03	0.10	0.08	0.07	0.11	0.09	0.05	0.02	0.04	0.11	0.13	b.d.l.	0.03	0.48	0.27	0.49	0.48	0.41	0.44	0.12	0.29	0.05
Al_2O_3	5.74	7.01	8.81	8.54	8.58	8.86	1.12	2.78	3.22	5.23	8.54	0.02	2.83	11.6	9.31	10.8	10.8	9.97	11.8	8.83	8.38	2.18
Cr ₂ O ₃	1.86	1.99	2.04	2.38	2.14	1.98	0.63	0.44	0.94	1.54	1.91	b.d.l.	0.59	1.98	2.35	1.70	1.83	2.76	2.09	2.25	2,26	0.61
FeO	2.59	2.60	2.63	2.76	3.29	2.78	1.73	2.91	2.10	2.33	2.70	1.65	2.30	2.00	1.93	2.37	2.49	2.02	2.52	1.87	1.81	1.50
MnO	0.02	0.06	0.05	0.03	0.06	0.05	0.06	0.09	0.04	0.07	0.09	0.04	0.07	0.04	0.05	0.04	0.06	0.04	0.07	0.02	0.07	0.07
MgO	21.1	20.6	19.9	20.3	20.1	19.3	22.4	23.2	22.4	21.1	19.7	23.9	22.4	18.7	19.6	19.8	19.6	20.2	18.9	20.6	19.5	22.9
CaO	12.7	12.8	12.9	12.3	12.3	12.5	12.3	11.8	12.4	12.4	12.6	13.4	12.9	12,2	12,2	12,2	12.5	11.0	12.4	12.3	12.0	12.6
Na ₂ O	0.44	0.61	0.56	0.90	0.54	0.56	0.07	0.17	0.47	0.43	0.72	b.d.l.	0.21	2.37	2.03	2.02	1.98	2.07	2.26	1.73	2.07	0.66
K ₂ O	0.03	0.01	0.01	b.d.l.	0.02	0.03	b.d.l.	0.01	0.01	b.d.l.	0.03	b.d.l.	b.d.l.	0.36	0.21	0.25	0.28	0.20	0.28	0.08	0.19	0.03
NiO	0.06	0.07	0.08	0.04	0.04	0.08	b.d.l.	0.06	0.13	0.09	0.08	0.10	0.03	0.09	0.09	0.14	0.13	0.06	0.10	0.09	0.12	0.15
Total	97.0	97.1	97.2	97.5	96.7	95.1	93.0	97.5	97.6	97.5	96.8	97.8	95.8	95.1	95.3	96.7	96.4	95.2	96.5	96.7	93.7	95.9
T(IV):																						
Si	7.294	7.145	7.000	6.994	6.979	6.958	7.807	7.681	7.644	7.467	7.053	7.998	7.596	6.503	6.754	6.625	6.586	6.661	6.501	6.863	6.828	7.655
Al	0.706	0.855	1.000	1.006	1.021	1.042	0.188	0.319	0.356	0.533	0.947	0.002	0.404	1.497	1.246	1.376	1.414	1.339	1.500	1.137	1.172	0.345
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
C(VI):																						
Al	0.234	0.298	0.449	0.397	0.400	0.445	0.000	0.129	0.163	0.316	0.461	0.000	0.061	0.468	0.322	0.424	0.395	0.346	0.476	0.326	0.259	0.012
Ti	0.004	0.011	0.009	0.008	0.012	0.009	0.000	0.002	0.004	0.011	0.014	0.000	0.003	0.052	0.030	0.052	0.052	0.045	0.047	0.013	0.031	0.005
Cr	0.205	0.219	0.225	0.262	0.238	0.223	0.071	0.047	0.102	0.168	0.211	0.000	0.065	0.226	0.265	0.190	0.205	0.313	0.235	0.250	0.259	0.067
Ni+Zn	0.006	0.008	0.009	0.004	0.005	0.009	0.000	0.006	0.014	0.010	0.009	0.011	0.003	0.011	0.010	0.016	0.015	0.007	0.012	0.010	0.014	0.016
Fe ³⁺	0.076	0.051	0.018	0.008	0.066	0.157	0.206	0.137	0.112	0.038	0.041	0.000	0.255	0.230	0.171	0.137	0.155	0.190	0.140	0.084	0.220	0.174
Mg	4.379	4,290	4.138	4.213	4.201	4.096	4.751	4.728	4.580	4.327	4.099	4.853	4.646	4.013	4.181	4.174	4.149	4.311	4.012	4.317	4.208	4.745
Fe ²⁺	0.225	0.253	0.289	0.313	0.320	0.175	0.000	0.195	0.128	0.230	0.275	0.188	0.014	0.010	0.060	0.144	0.141	0.053	0.160	0.135	0.000	0.000
Mn	0.002	0.007	0.006	0.004	0.007	0.005	0.007	0.011	0.005	0.008	0.010	0.004	0.009	0.004	0.006	0.004	0.007	0.005	0.008	0.003	0.009	0.008
B:																						
Ca	1.868	1.865	1.858	1.790	1.752	1.882	1.873	1.723	1.815	1.831	1.879	1.944	1.923	1.886	1.868	1.855	1.882	1.690	1.887	1.845	1.856	1.884
Na	0.000	0.000	0.000	0.000	0.000	0.000	0.020	0.023	0.078	0.062	0.000	0.000	0.021	0.100	0.087	0.004	0.000	0.040	0.023	0.018	0.144	0.089
A:																						
Ca	0.030	0.051	0.069	0.045	0.095	0.026	0.000	0.000	0.000	0.000	0.003	0.011	0.000	0.000	0.000	0.000	0.016	0.000	0.000	0.000	0.000	0.000
Na	0.119	0.164	0.152	0.244	0.148	0.153	0.000	0.024	0.048	0.053	0.195	0.000	0.037	0.561	0.477	0.550	0.545	0.535	0.600	0.454	0.439	0.088
K	0.005	0.001	0.001	0.000	0.003	0.005	0.000	0.002	0.001	0.000	0.005	0.000	0.001	0.066	0.039	0.044	0.051	0.036	0.051	0.015	0.035	0.005
Mg#	93.6	93.4	93.1	92.9	91.6	92.5	95.9	93.4	95.0	94.2	92.8	96.3	94.5	94.3	94.8	93.7	93.4	94.7	93.0	95.2	95.0	96.5
T (°C)	804	829	847	856	844	851	733	743	763	784	844	706	760	974	929	945	948	944	966	904	922	771
H ₂ O	2.96	2.85	2.78	2.51	3.26	4.87	6.96	2.46	2.40	2.46	3.20	2,22	4.23	4.86	4.66	3.35	3.58	4.84	3.49	3.25	6.27	4.14

(Table 3 continued)

Rock Dumite Chromitie	
- Mineral Amp ¹ Amp ² Amp ² Amp ² Amp ² Amp ¹	¹ Amp ¹ Amp ¹
<u>Type Tr Tr Tr Tr Tr Tr Tr Tr Ed Ed Ed Mhb Tr </u>	Tr Tr
SiO ₂ 54.8 58.8 57.7 58.2 58.7 58.2 57.4 55.9 46.4 45.7 45.8 47.7 56.8 57.2 58.1 57.0 56.9 57.2 57.0 55.	55.7 53.8
TiO ₂ 0.13 b.d.l. b.d.l. 0.02 0.06 0.04 0.02 0.08 0.29 0.50 0.36 0.25 b.d.l. 0.03 0.04 b.d.l. 0.01 0.01 0.04 0.	b.d.l. b.d.l.
Al ₂ O ₃ 2.53 0.15 0.21 0.22 0.23 0.80 0.84 1.75 11.0 10.3 11.9 10.5 0.12 0.12 0.27 1.63 1.61 1.59 1.46 1.	1.71 1.81
Cr ₂ O ₃ 0.78 0.02 0.29 0.20 0.06 0.04 0.24 0.17 1.89 1.94 1.96 1.84 1.14 0.21 0.21 0.42 0.33 0.66 0.76 0.	0.47 0.51
FeO 1.49 0.67 0.37 0.64 0.80 0.83 0.75 0.60 2.07 1.93 2.00 1.92 1.87 1.07 0.65 0.78 1.19 0.68 0.65 0.	0.68 0.67
MnO 0.03 0.01 b.d.l. 0.02 0.03 0.03 0.03 b.d.l. 0.03 0.03 0.04 0.06 0.01 0.04 b.d.l. 0.02 0.03 0.02 0.01 0.	0.01 b.d.l.
MgO 22.9 24.6 23.7 24.1 24.8 24.3 24.0 22.8 19.9 19.1 19.2 20.0 24.4 24.3 24.5 23.3 23.5 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24	23.5 24.2
CaO 12.6 13.0 13.4 13.2 12.9 13.3 13.2 13.3 12.2 12.3 12.3 10.8 13.0 13.6 13.1 13.4 12.5 12.6 12	12.5 11.9
Na2O 0.70 0.12 0.14 0.09 0.12 0.19 0.18 0.36 1.76 2.29 1.92 1.70 0.59 0.55 0.18 0.28 0.36 0.59 0.58 0.	0.59 0.58
K2O 0.05 bd.l. b.d.l. 0.01 b.d.l. 0.01 0.01 0.02 0.10 0.29 0.18 0.12 0.02 0.02 b.d.l. b.d.l. b.d.l. 0.01 0.02 0.	0.01 0.02
NiO 0.20 0.05 0.04 0.12 0.14 0.08 0.10 0.10 0.10 0.13 0.10 0.09 0.06 0.05 0.02 0.05 0.09 0.11 0.13 0.	0.17 0.08
Total 96.2 97.5 95.9 96.7 97.8 97.8 96.8 95.1 95.8 94.3 95.8 96.5 95.8 96.6 97.5 96.7 97.5 97.6 97.5 9	95.3 93.5
T(IV):	
Si 7.605 7.988 7.986 7.963 7.958 7.877 7.863 7.830 6.598 6.602 6.522 6.714 7.980 7.978 7.952 7.826 7.768 7.770 7.764 7.	2 7.731 7.695
Al 0.395 0.012 0.014 0.035 0.037 0.123 0.136 0.170 1.402 1.398 1.478 1.286 0.020 0.019 0.044 0.174 0.232 0.230 0.235 0.2	4 0.269 0.305
Ti 0.000 0.000 0.000 0.002 0.006 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.004 0.000 0.000 0.000 0.001 0.0	4 0.000 0.000
C(VD):	
Al 0.019 0.012 0.021 0.000 0.000 0.005 0.000 0.120 0.445 0.350 0.522 0.464 0.000 0.000 0.000 0.090 0.027 0.025 0.000 0.0	0.011 0.000
Ti 0.014 0.000 0.000 0.000 0.000 0.004 0.001 0.009 0.031 0.054 0.039 0.026 0.000 0.000 0.000 0.000 0.001 0.003 0.0	0.000 0.000
Cr 0.085 0.002 0.032 0.022 0.007 0.005 0.026 0.018 0.212 0.222 0.221 0.205 0.126 0.023 0.022 0.046 0.036 0.071 0.082 0.0	2 0.052 0.058
Ni+Zn 0.023 0.005 0.004 0.013 0.015 0.009 0.011 0.011 0.011 0.015 0.012 0.010 0.007 0.006 0.002 0.006 0.010 0.012 0.014 0.0	3 0.019 0.009
Fe^{3+} 0.173 0.029 0.000 0.067 0.000 0.094 0.086 0.000 0.184 0.234 0.180 0.099 0.000 0.000 0.000 0.090 0.135 0.078 0.074 0.0	5 0.079 0.000
Mg 4.736 4.978 4.900 4.912 5.014 4.897 4.888 4.771 4.229 4.122 4.087 4.200 5.120 5.062 4.987 4.767 4.787 4.909 4.904 4.4	7 4.868 5.159
Fe^{2t} 0.000 0.048 0.043 0.006 0.091 0.000 0.000 0.071 0.062 0.000 0.058 0.128 0.219 0.125 0.075 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.080
Mn 0.003 0.002 0.000 0.002 0.004 0.003 0.003 0.000 0.004 0.004 0.005 0.008 0.001 0.005 0.000 0.002 0.003 0.003 0.001 0.0	3 0.001 0.000
B:	
Ca 1.876 1.894 1.990 1.938 1.869 1.931 1.935 1.999 1.823 1.890 1.877 1.861 1.526 1.780 1.914 1.929 1.964 1.818 1.846 1.4	4 1.856 1.695
Na 0.071 0.031 0.011 0.025 0.000 0.050 0.048 0.001 0.000 0.110 0.000 0.000 0.000 0.000 0.000 0.072 0.036 0.084 0.076 0.	3 0.114 0.000
A:	
Ca 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.038 0.000 0.033 0.001 0.099 0.164 0.073 0.000 0.000 0.000 0.000 0.00	0.000 0.133
Na 0.118 0.000 0.027 0.000 0.030 0.000 0.090 0.096 0.485 0.533 0.530 0.464 0.161 0.149 0.047 0.003 0.059 0.072 0.077 0.0	0 0.044 0.162
K 0.009 0.000 0.001 0.002 0.000 0.002 0.002 0.004 0.019 0.053 0.033 0.021 0.003 0.004 0.000 0.000 0.001 0.002 0.003 0.0	4 0.001 0.004
Mg# 96.5 98.5 99.1 98.5 98.2 98.1 98.3 98.5 94.5 94.6 94.5 94.9 95.9 97.6 98.5 98.1 97.3 98.4 98.5 94	98.4 98.5
T (°C) 780 718 722 722 722 734 736 748 941 960 957 924 723 729 725 743 750 760 761 7	765 770
H2O 3.82 2.55 4.14 3.26 2.20 2.19 3.25 4.89 4.20 5.66 4.24 3.47 4.21 3.43 2.47 3.35 2.51 2.38 2.54 5.	4.66 6.48

(Table 3 continued)

Rock Chromitite Chromitite Chromitite Mineral Amp ¹ Tr	Amp ³ Amp ³ Ed Mhb 47.7 50.8 115 0.09
Mineral Amp ¹	Amp ³ Amp ³ Ed Mhb 47.7 50.8 115 0.09
Type Tr Tr Mhb Tr Tr Tr Ed Mhb Mhb Tr	Ed Mhb 47.7 50.8) 15 0.09
SO EE C E CO E DI E CA EE DAEDAEDAEDAEDAEDAEDAEDAEDAEDAEDE E CA ERE E E E E E E E E E E E E E E E E E	47.7 50.8) 15 0.09
51U2 33,0 30,0 34,1 30,7 30,2 33,2 43,9 43,9 47,9 57,3 57,3 50,7 57,3 50,4 57,3 55,7 54,9 57,7 55,2 57,6	0.09
TiO ₂ 0.01 0.01 0.17 0.02 0.08 0.11 0.19 0.21 0.23 b.d.l. b.d.l. 0.03 0.03 b.d.l. b.d.l. 0.02 0.02 0.04 0.01 0.01	5.15 0.05
Al ₂ O ₃ 2.48 2.59 4.29 1.64 2.30 3.21 10.0 7.94 9.13 0.37 0.37 0.85 0.89 1.09 1.08 1.83 2.09 0.07 0.11 0.15	9.36 6.13
Cr ₂ O ₃ 0.45 0.64 1.24 0.80 0.28 0.93 2.67 2.75 2.41 0.13 0.14 0.05 0.26 0.21 0.10 0.44 0.77 0.09 0.06 0.06	2.52 1.73
FeO 0.69 1.09 1.42 0.69 1.32 0.91 2.11 2.07 1.90 0.53 0.44 0.55 0.63 0.59 0.66 1.05 1.07 0.23 0.28 0.32	2.15 1.78
MnO 0.01 bdl. 0.03 0.03 0.04 0.01 0.02 0.06 0.04 0.03 bdl. 0.01 0.01 0.05 0.05 0.01 bdl. bdl. b.d.	0.06 0.03
MgO 23.4 23.6 21.8 24.4 23.4 22.6 19.3 18.8 20.4 24.0 24.6 23.7 24.3 23.5 24.4 23.5 23.0 24.8 25.8 24.9	20.4 21.3
CaO 12.8 13.1 12.6 11.7 12.7 12.9 12.8 12.6 12.6 13.2 12.8 12.8 13.0 13.0 12.5 13.0 12.8 11.3 11.6 11.7	12.2 12.7
Na2O 0.75 0.69 1.04 0.55 0.58 0.73 1.91 1.41 1.70 0.31 0.32 0.32 0.37 0.38 0.56 0.59 0.65 1.32 0.18 1.31	1.91 1.11
K2O 0.02 0.02 0.07 0.07 0.07 0.05 0.05 0.04 0.04 b.d.l. b.d.l. 0.02 0.03 0.04 b.d.l. 0.02 0.02 0.02 0.02 0.03 0.04	0.03 0.04
NiO 0.16 0.08 0.16 0.14 0.11 0.16 0.14 0.12 0.15 0.12 0.12 0.16 0.14 0.12 0.16 0.11 0.15 0.11 0.28 0.12	0.15 0.17
Total 96.3 97.9 94.9 96.7 97.1 96.7 95.2 91.9 96.5 96.0 96.1 95.2 96.9 95.4 97.1 96.3 95.4 95.6 93.6 96.2	96.6 95.8
T(IV):	
Si 7.659 7.622 7.358 7.764 7.695 7.602 6.604 6.817 6.774 7.939 7.939 7.865 7.854 7.840 7.837 7.700 7.654 7.985 7.980 7.975 (.741 7.154
Al 0.341 0.378 0.642 0.236 0.305 0.398 1.396 1.183 1.226 0.061 0.061 0.135 0.144 0.160 0.163 0.297 0.343 0.011 0.019 0.024	.259 0.846
Ti 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.002 0.003 0.004 0.001 0.001 0.001	.000 0.000
C(VI):	
Al 0.062 0.037 0.073 0.029 0.065 0.123 0.302 0.208 0.295 0.000 0.000 0.004 0.000 0.019 0.010 0.000 000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	.300 0.171
Ti 0.001 0.001 0.018 0.002 0.008 0.012 0.021 0.024 0.025 0.000 0.000 0.003 0.000 000 0.0000 0.0000 0.0000 0.000 0.	.016 0.010
Cr 0.049 0.068 0.138 0.087 0.031 0.102 0.304 0.323 0.270 0.014 0.015 0.005 0.028 0.023 0.011 0.049 0.085 0.010 0.007 0.006 (.282 0.193
Ni+Zn 0.018 0.009 0.018 0.016 0.012 0.018 0.016 0.014 0.017 0.014 0.014 0.018 0.015 0.014 0.017 0.012 0.016 0.012 0.032 0.013 (.017 0.020
Fe^{3+} 0.080 0.124 0.168 0.079 0.151 0.104 0.204 0.169 0.087 0.000 0.000 0.064 0.067 0.069 0.075 0.121 0.125 (0.085 0.176
Mg 4.804 4.799 4.587 4.984 4.783 4.640 4.141 4.167 4.289 4.956 5.083 4.911 4.956 4.869 4.956 4.837 4.777 5.122 5.561 5.141	.305 4.471
Fe^{2+} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.088 0.138 0.061 0.052 0.000 0.005 0.000 0.000 0.000 0.000 0.026 0.034 0.037 (0.169 0.034
Mn 0.001 0.000 0.003 0.003 0.004 0.001 0.002 0.008 0.005 0.003 0.000 0.001 0.001 0.005 0.006 0.002 0.000 0.000 0.001 0.000 0	.008 0.004
B:	
Ca 1.887 1.916 1.907 1.711 1.862 1.900 1.959 2.000 1.875 1.953 1.837 1.905 1.901 1.942 1.822 1.928 1.917 1.671 1.365 1.728	.819 1.911
Na 0.099 0.045 0.089 0.089 0.084 0.100 0.000 0.000 0.000 0.000 0.000 0.086 0.027 0.058 0.102 0.051 0.081 0.159 0.000 0.075 (.000 0.011
A:	
Ca 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.012 0.031 0.009 0.070 0.000 0.000 0.000 0.000 0.000 0.000 0.429 0.000 (.022 0.000
Na 0.100 0.138 0.194 0.058 0.071 0.096 0.533 0.405 0.467 0.083 0.085 0.000 0.071 0.044 0.046 0.107 0.096 0.195 0.049 0.277 (.524 0.292
K 0.003 0.003 0.013 0.012 0.011 0.009 0.008 0.008 0.008 0.000 0.001 0.004 0.005 0.006 0.000 0.004 0.004 0.004 0.005 0.007 (.005 0.007
Mg# 98.4 97.5 96.5 98.4 96.9 97.8 94.2 94.2 95.0 98.8 99.0 98.7 98.6 98.6 98.5 97.6 97.5 99.5 99.4 99.3	94.4 95.5
T (°C) 779 779 824 760 766 786 943 902 916 731 732 742 744 746 751 767 775 756 724 756	924 849
H2O 3.66 2.15 5.12 3.28 2.95 3.28 4.84 8.07 3.55 4.02 3.90 4.82 3.10 4.60 2.95 3.71 4.55 4.37 6.45 3.83	3.40 4.19

(Table 3 continued)

Sample									18LN0	5-9		18LN0	7-3									
Rock	. 3	. 3	. 3	. 3	. 3	. 3	. 3	. 3	Chrom	itite	. 1	Chrom	itite	. 1	. 1	. 1	. 1	. 1	. 1	. 1	. 1	. 1
Mineral	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp [*]	Amp [*]	Amp	Amp	Amp	Amp	Amp	Amp
Type	Mhb	Mhb	Mhb	Mhb	Mhb	Mhb	Mhb	Mhb	-Tr	- Ir	-Tr	Mhb	Mhb	Mhb	1r	- Ir	-Tr	lr	Îr	- Ir	- Ir	<u>Ir</u>
SiO ₂	49,4	49.9	49.5	47.7	48.2	47.7	47.3	47.3	57.8	55.0	57.1	51.7	51.3	49,2	57.7	57.2	57.1	56.6	56.1	57.2	55.4	56.4
1102	0.21	0.17	0.15	0.16	0.19	0.25	0.18	0.19	b.d.l.	0.09	0.06	0.06	0.10	0.11	0.01	b.d.l.	b.d.l.	0.01	b.d.l.	0.07	0.04	0.03
Al ₂ O ₃	7.36	7.82	8.13	8.16	9.04	8.95	9.21	9.51	0.04	0.16	0.20	5.16	5.84	6.67	0.21	0.23	0.60	0.87	0.81	0.84	1.11	1.08
Cr_2O_3	2.04	2.05	2.28	2.33	2.66	2.53	2.48	2.58	0.10	0.15	0.07	1.55	1.80	2.20	0.10	0.04	0.25	0.23	0.19	0.24	0.34	0.31
FeO	1.63	1.71	1.87	2.09	1.96	1.80	1.89	1.74	0.14	0.24	0.21	1.24	1.25	1.29	0.49	0.49	0.48	0.56	0.47	0.53	0.57	0.58
MnO	0.03	0.06	0.07	0.01	0.05	0.01	0.03	0.01	b.d.l.	0.02	b.d.l.	0.02	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.01	0.04	b.d.l.	0.01	b.d.l.	0.01
MgO	20.6	20.9	20.8	20.0	20.8	20.3	20.0	19.8	23.9	26.2	25.0	21.9	21.7	20.9	23.9	23.9	23.8	23.5	23.5	24,2	23.2	23.8
CaO	12.7	12.5	12.5	12.1	12.2	12.8	12.8	12.9	12.3	9.9	11.1	12.5	12.7	12.6	13.4	13.1	13.2	12.8	13.1	13.0	12.8	13.0
Na ₂ O	1.25	1.55	1.66	1.77	1.80	1.59	1.60	1.72	1.09	1.32	1.19	1.18	1.35	1.54	0.17	0.18	0.24	0.32	0.32	0.29	0.33	0.34
K ₂ O	0.05	b.d.l.	0.03	0.10	0.02	0.03	0.05	0.03	0.01	0.03	0.03	0.16	0.14	0.22	0.01	0.02	b.d.l.	0.04	0.01	b.d.l.	0.04	0.02
NiO	0.13	0.15	0.12	0.14	0.17	0.10	0.13	0.12	0.11	0.36	0.38	0.11	0.06	0.10	0.08	0.11	0.11	0.12	0.11	0.15	0.09	0.11
Total	95.4	96.7	97.1	94.6	97.1	96.2	95.8	95.9	95.5	93.4	95.4	95.6	96.2	94.9	96.1	95.3	95.8	95.1	94.7	96.5	93.9	95.6
T(IV):																						
Si	7.006	6.987	6.935	6.852	6.774	6.768	6.742	6.720	8.000	7.964	7.960	7.267	7.185	7.019	7.972	7.963	7.902	7.867	7.866	7.856	7.823	7.821
Al	0.994	1.013	1.065	1.148	1.226	1.232	1.258	1.280	0.000	0.027	0.033	0.733	0.815	0.981	0.028	0.037	0.098	0.133	0.134	0.137	0.177	0.176
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.000	0.003
C(VI):																						
Al	0.237	0.279	0.276	0.234	0.273	0.263	0.289	0.314	0.006	0.000	0.000	0.121	0.149	0.140	0.005	0.000	0.000	0.010	0.000	0.000	0.007	0.000
Ti	0.022	0.018	0.016	0.017	0.020	0.027	0.019	0.021	0.000	0.000	0.000	0.006	0.010	0.012	0.001	0.000	0.000	0.001	0.000	0.000	0.004	0.000
Cr	0.229	0.228	0.252	0.265	0.295	0.284	0.279	0.290	0.010	0.017	0.008	0.172	0.199	0.248	0.011	0.004	0.027	0.026	0.021	0.026	0.038	0.034
Ni+Zn	0.015	0.017	0.013	0.017	0.019	0.011	0.015	0.014	0.013	0.042	0.042	0.012	0.006	0.011	0.009	0.012	0.012	0.013	0.012	0.016	0.010	0.013
Fe ³⁺	0.165	0.087	0.066	0.249	0.052	0.106	0.136	0.121	0.016	0.000	0.000	0.146	0.146	0.154	0.000	0.000	0.056	0.065	0.055	0.061	0.068	0.067
Mg	4.360	4.359	4.330	4.284	4.364	4,299	4.250	4.206	4.937	5.658	5.193	4.587	4.523	4.441	4.917	4.960	4.906	4.881	4.912	4.946	4.873	4.912
Fe ²⁺	0.029	0.113	0.153	0.002	0.179	0.108	0.090	0.086	0.000	0.029	0.025	0.000	0.000	0.000	0.057	0.057	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.004	0.007	0.008	0.002	0.005	0.001	0.004	0.001	0.000	0.002	0.000	0.002	0.000	0.000	0.000	0.000	0.001	0.005	0.000	0.001	0.000	0.001
B:																						
Ca	1.923	1.874	1.878	1.858	1.792	1.901	1.919	1.948	1.828	1.253	1.666	1.886	1.911	1.924	1.982	1.960	1.964	1.910	1.975	1.910	1.934	1.927
Na	0.017	0.019	0.008	0.072	0.000	0.000	0.000	0.000	0.190	0.000	0.067	0.068	0.056	0.071	0.018	0.007	0.036	0.086	0.025	0.039	0.066	0.045
A:																						
Ca	0.000	0.000	0.000	0.000	0.052	0.050	0.036	0.020	0.000	0.277	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Na	0.326	0.402	0.443	0.419	0.490	0.438	0.442	0.475	0.102	0.370	0.255	0.252	0.310	0.356	0.027	0.041	0.029	0.000	0.062	0.039	0.023	0.045
K	0.010	0.000	0.005	0.018	0.004	0.006	0.009	0.005	0.002	0.005	0.005	0.029	0.025	0.040	0.002	0.003	0.001	0.007	0.002	0.000	0.007	0.004
Mg#	95.8	95.6	95.2	94.5	95.0	95.3	95.0	95.3	99.7	99.5	99.5	96.9	96.9	96.7	98.9	98.9	98.9	98.7	98.9	98.8	98.6	98.6
T(°C)	875	884	893	906	918	915	917	925	748	761	756	840	855	883	724	725	735	741	742	743	747	748
HO	4.60	3.28	2.88	5.44	2.90	3.80	4.24	4.10	4.54	6.61	4.65	4.42	3.79	5.15	3.93	4.72	4.22	4.87	5.33	3.51	6.10	4.36
1120	4.00	3.40	4.00	3.44	4,70	5.00	7,47	4.10	7.37	0.01	4.00	-112	3.19	5.15	3.33	-1. /4	"1 ,44	4. 07	5.55	J.J.I	0.10	4.00

(Table 3 continued)

Sample		18LN02	7-9-1										18LN0	7-9-2								
Rock		Chrom	itite										Chrom	itite								
Mineral	Amp ¹																					
Туре	Tr	Mhb	Tr																			
SiO ₂	55.7	58.6	57.4	57.4	57.9	58.2	57.7	56.9	56.0	55.9	56.4	55.9	54.2	58.6	58.2	57.9	57.7	57.3	57.3	57.2	55.5	55.5
TiO ₂	0.06	0.02	0.03	0.03	0.05	b.d.l.	0.09	0.07	0.04	0.09	0.04	0.06	0.11	b.d.l.	b.d.l.	0.01	0.03	0.05	0.02	0.03	0.10	0.15
Al ₂ O ₃	1.55	0.41	1.20	0.72	0.89	1.00	0.88	1.58	1.90	1.86	2.46	2.69	3.30	0.15	0.76	1.21	1.08	1.22	1.19	1.62	2.38	2.61
Cr ₂ O ₃	0.67	0.28	0.29	0.14	0.26	0.18	0.29	0.62	0.70	0.67	1.13	0.86	1.08	0.12	0.39	0.30	0.28	0.34	0.72	0.49	0.69	0.95
FeO	0.60	0.51	0.50	0.44	0.50	0.65	1.09	1.19	0.66	1.29	0.55	1.24	1.35	0.57	0.63	0.67	0.57	0.62	0.91	0.62	1.07	1.24
MnO	0.02	0.03	0.01	0.02	0.04	0.04	0.02	0.02	0.01	0.06	0.02	0.02	0.02	b.d.l.	b.d.l.	0.01	0.05	0.04	0.03	0.03	0.02	0.02
MgO	23.5	24.4	23.5	24.2	24.2	24.5	24.5	25.4	23.2	23.5	23.5	23.5	22.7	24.5	24.1	23.9	24.0	23.9	24.4	23.9	22,9	22.8
CaO	12.8	12.9	13.0	12.9	12.8	12.8	12.7	10.3	12.7	12.8	12.7	12.7	12.9	13.1	13.2	12.9	12.9	13.0	12.2	12.9	13.0	12.7
Na ₂ O	0.45	0.29	0.31	0.45	0.35	0.23	0.37	1.42	0.49	0.64	0.77	0.74	0.98	0.14	0.23	0.33	0.36	0.31	0.39	0.45	0.97	0.67
K ₂ O	0.02	0.02	b.d.l.	b.d.l.	0.02	0.03	0.02	0.02	0.05	0.10	0.05	0.09	0.12	b.d.l.	b.d.l.	0.04	0.02	0.03	0.04	0.02	0.09	0.06
NiO	0.13	0.10	0.12	0.11	0.16	0.12	0.22	0.21	0.15	0.13	0.11	0.20	0.20	0.10	0.16	0.13	0.17	0.12	0.15	0.17	0.18	0.14
Total	95.6	97.5	96.3	96.4	97.2	97.7	97.8	97.8	95.9	97.1	97.8	98.0	97.0	97.2	97.7	97.4	97.1	97.0	97.4	97.4	96.8	96.9
T(IV):																						
Si	7.740	7.950	7.888	7.881	7.873	7.871	7.850	7.740	7.737	7.690	7.675	7.616	7.498	7.977	7.895	7.866	7.853	7.824	7.807	7.779	7.670	7.642
Al	0.254	0.050	0.112	0.116	0.127	0.129	0.141	0.253	0.264	0.301	0.326	0.384	0.502	0.023	0.105	0.135	0.147	0.176	0.191	0.221	0.330	0.358
Ti	0.006	0.000	0.000	0.003	0.000	0.000	0.009	0.007	0.000	0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000
C(VI):																						
Al	0.000	0.015	0.082	0.000	0.015	0.031	0.000	0.000	0.047	0.000	0.070	0.048	0.036	0.001	0.016	0.059	0.027	0.020	0.000	0.039	0.058	0.065
Ti	0.000	0.002	0.003	0.000	0.005	0.000	0.000	0.000	0.004	0.000	0.004	0.006	0.011	0.000	0.000	0.001	0.003	0.005	0.000	0.003	0.011	0.015
Cr	0.074	0.030	0.032	0.015	0.028	0.019	0.031	0.067	0.076	0.073	0.122	0.093	0.118	0.012	0.042	0.033	0.030	0.037	0.078	0.052	0.075	0.103
Ni+Zn	0.014	0.011	0.014	0.012	0.017	0.014	0.024	0.023	0.017	0.015	0.012	0.022	0.022	0.011	0.017	0.014	0.018	0.013	0.017	0.018	0.020	0.016
Fe ³⁺	0.070	0.058	0.057	0.050	0.057	0.073	0.025	0.057	0.076	0.148	0.062	0.130	0.157	0.047	0.071	0.076	0.065	0.071	0.104	0.071	0.063	0.143
Mg	4.875	4.934	4.822	4.953	4.908	4.940	4.963	5.147	4.786	4.812	4.775	4.783	4.674	4.968	4.880	4.839	4.870	4.871	4.958	4.851	4.710	4.685
Fe ²⁺	0.000	0.000	0.000	0.000	0.000	0.000	0.099	0.078	0.000	0.000	0.000	0.011	0.000	0.018	0.000	0.000	0.000	0.000	0.000	0.000	0.060	0.000
Mn	0.002	0.003	0.001	0.002	0.004	0.004	0.002	0.003	0.001	0.007	0.003	0.002	0.002	0.000	0.000	0.002	0.006	0.005	0.003	0.003	0.003	0.003
B:																						
Ca	1.909	1.869	1.907	1.892	1.870	1.854	1.850	1.501	1.884	1.888	1.857	1.851	1.914	1.907	1.913	1.883	1.886	1.901	1.788	1.887	1.918	1.881
Na	0.055	0.076	0.083	0.076	0.093	0.060	0.008	0.125	0.110	0.057	0.096	0.055	0.066	0.037	0.061	0.086	0.095	0.078	0.052	0.077	0.082	0.090
A:																						
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Na	0.067	0.000	0.000	0.045	0.000	0.000	0.091	0.250	0.021	0.115	0.106	0.141	0.198	0.000	0.000	0.000	0.000	0.003	0.051	0.041	0.178	0.089
K	0.004	0.003	0.000	0.000	0.003	0.005	0.003	0.004	0.008	0.018	0.008	0.015	0.022	0.000	0.000	0.007	0.004	0.005	0.007	0.004	0.016	0.010
Mg#	98.6	98.8	98.8	99. 0	98.9	98.5	97.6	97.4	98.4	97. 0	98.7	97.1	96.8	98.7	98.6	98.5	98.7	98.6	97.9	98. 6	97.4	97.0
T (°C)	762	730	739	744	742	737	742	783	763	768	779	781	803	721	734	741	744	746	748	756	782	777
H ₂ O	4.44	2.48	3.65	3.63	2.80	2.33	2,19	2,22	4.10	2.92	2.23	2.01	3.02	2.77	2,29	2.64	2.87	3.02	2.63	2.57	3.20	3.11

(Table 3 continued)

Sample		18LN07	7-10			
Rock		Chrom	itite			
Mineral	Amp ¹					
Туре	Tr	Tr	Tr	Tr	Tr	DL
SiO ₂	55.4	57.8	57.8	57.4	56.4	0.01
TiO ₂	0.11	b.d.l.	0.01	0.08	b.d.l.	0.02
Al ₂ O ₃	2.54	0.16	0.35	0.80	1.17	0.01
Cr ₂ O ₃	1.05	0.07	0.23	0.12	0.37	0.03
FeO	1.46	0.52	0.40	0.40	0.47	0.01
MnO	b.d.l.	b.d.l.	b.d.l.	0.01	0.02	0.06
MgO	22.8	24.1	24.4	24.0	23.4	0.06
CaO	12.8	13.2	13.3	13.4	13.3	0.02
Na ₂ O	0.65	0.14	0.19	0.42	0.36	0.03
K ₂ O	0.05	0.01	b.d.l.	0.01	0.02	0.02
NiO	0.12	0.07	0.12	0.10	0.10	0.03
Total	97.0	96.1	96.8	96.6	95.6	
T(IV):						
Si	7.627	7.975	7.943	7.885	7.841	
Al	0.373	0.026	0.056	0.116	0.159	
Ti	0.000	0.000	0.001	0.000	0.000	
C(VI):						
Al	0.039	0.000	0.000	0.015	0.033	
Ti	0.012	0.000	0.000	0.008	0.000	
Cr	0.115	0.008	0.024	0.013	0.040	
Ni+Zn	0.013	0.008	0.014	0.011	0.011	
Fe ³⁺	0.155	0.003	0.000	0.018	0.013	
Mg	4.688	4.958	4.992	4.907	4.858	
Fe ²⁺	0.012	0.058	0.046	0.028	0.041	
Mn	0.000	0.000	0.000	0.001	0.002	
B:						
Ca	1.896	1.955	1.924	1.970	1.985	
Na	0.071	0.012	0.000	0.030	0.015	
A:						
Ca	0.000	0.000	0.035	0.000	0.000	
Na	0.104	0.025	0.050	0.082	0.083	
K	0.008	0.002	0.001	0.002	0.003	
Mg#	96.5	98.8	99.1	99.1	98.9	
T (°C)	776	722	729	744	746	
H ₂ O	3.00	3.92	3.23	3.37	4.40	

Note:

Amp¹: interstitial amphibole; Amp²: large amphibole grain in dunite; Amp³: amphibole inclusion in the chromite; Tr: tremolite; Mhb: magnesiohornblende; Ed: edenite.

The formula of amphibole is calculated after Ridolfi et al. (2018).

T: Crystallization temperatures of amphibole are estimated after thermometer defined by Putirka (2016).