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ABSTRACT 14 

 A Raman spectroscopy study of the nature of the As-S substitution in natural 15 

arsenian pyrite (Fe(S,As)2) is presented covering the compositional range (0.01 at% – 16 

4.6 at% As). Three Raman-active modes were resolved in the spectrum of the nearly 17 

pure pyrite: the Eg (344 cm-1), Ag (379 cm-1), and Tg(3) (432 cm-1) modes. The Raman 18 

vibrational modes exhibit the one-mode behavior and the wavenumbers of optical 19 

modes vary continuously and approximately linearly with the As content in the 20 

arsenian pyrite, correlating with the change in bond constants with increasing 21 

substitution of As for S. The linewidth of the Ag mode was also found to increase with 22 

increasing As substitution and this is attributed to the increase in lattice strain 23 

associated with the substitution of As for S. This study provides experimental 24 

evidence for the As-induced structural evolution of pyrite from being stable to 25 

metastable before decomposing into other phases. This study illustrates that a 26 
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systematic Raman spectroscopic investigation of the crystal chemistry of arsenian 27 

pyrite enables us to further understand this process of the structural strain associated 28 

with elemental substitution. The results of this study and the results of another recent 29 

Raman study of arsenian pyrite where As substitution has a more complex form 30 

indicates that it is not possible to use the shift in the Raman bands to establish the As 31 

content, but rather for a given As content it is possible to establish the nature of the As 32 

substitution, As for S or As for Fe or both. 33 

Keywords: arsenian pyrites, Raman spectroscopy, solid solution, lattice defects 34 

 35 

INTRODUCTION 36 

Arsenian pyrite (Fe(S,As)2) is defined as pyrite containing anywhere from several 37 

ppm to ~19 wt% arsenic (e.g., Abraitis et al., 2004; Qian et al., 2013; Reich and 38 

Becker, 2006) and this substitution is commonly associated with the presence of 39 

economically important metals such as Au, Co, Ni, Ag, Cu etc (Deditius et al., 2014; 40 

Large et al., 2014; Reich et al., 2005, 2013). Understanding the crystal chemistry of 41 

arsenian pyrite can help design strategies to control the release of toxic metal(loid)s, 42 

explore the enrichment mechanism of valuable metals, and optimize the methods of 43 

mining and smelting of sulfide/pyritic ores. These factors have motivated the study of 44 

the crystal chemistry of arsenian pyrite over the last three decades (e.g., Abraitis et al., 45 

2004; Cook and Chryssoulis, 1990; Deditius et al., 2008, 2011; Deditius and Reich 46 

2016; Filimonova et al., 2020; Fleet et al., 1993; Merkulova et al., 2019; Reich et al., 47 

2005; Reich and Becker, 2006; Simon et al., 1999a, b). Central to this issue is the 48 

nature of As incorporation and its effect on the pyrite structure. The pyrite structure is 49 
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derived from the NaCl structure with Fe in the Na position in a face centered array 50 

while the Cl ion position is replaced by the disulfide ion, with the orientation of the 51 

S–S bond aligned with the body diagonal of the cell, but such that the symmetry is 52 

lower from Fm3m to Pa3 (Fig. 1). This results in FeS6 octahedra with the corners 53 

linked by the S2
2– ions. Each S is bonded to 3 Fe ions and a S in a tetrahedral 54 

arrangement. The Fe–S and S–S bond lengths are 2.262 Å and 2.177 Å, respectively 55 

(Brostigen and Kjekshus 1969, Vaughan and Craig 1978). Five Raman active modes 56 

(Ag + Eg + 3Tg) are predicated for pyrite based on a group theory analysis of the lattice 57 

vibrations, with these modes involving only the movements of the S ions (Mernagh 58 

and Trudu, 1993; Sourisseau et al., 1991; Vogt et al., 1983). Arsenic can substitute for 59 

S in the disulfide ion or Fe in the octahedral site. Fe-S-As (at%) ternary diagram can 60 

be used to identify the nature of substitutions of As for either Fe or S for a series of 61 

compositional data from a sample; with As3+-pyrite and As1–-pyrite trends being 62 

parallel to the As-Fe and As-S joins, respectively (Deditius et al., 2008; Liang et al., 63 

2013) (Fig. 2). 64 

A suite of experimental studies, that include secondary ionization mass 65 

spectrometry (SIMS), electron microprobe analyzer (EMPA), X-ray photoelectron 66 

spectroscopy (XPS), X-ray absorption near-edge structure (XANES) and extended 67 

X-ray absorption fine structure (EXAFS), have confirmed that As1– substitutes for S1– 68 

in the disulfide ion (S2
2–) as AsS2– pairs (e.g., Cook and Chryssoulis, 1990; Deditius et 69 

al., 2008; Fleet and Mumin, 1993; Fleet et al., 1997; Manceau et al., 2020; Reich et al., 70 

2005; Savage et al., 2000; Simon et al., 1999a). In contrast, a few studies have 71 
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indicated that As can also substitute Fe in pyrite as either As3+ (Deditius et al., 2008) 72 

based on the XPS analysis, or As2+ (Qian et al., 2013) based on the XPS and XANES 73 

analyses. The different valence states of As in arsenian pyrite have been linked to the 74 

physiochemical conditions of pyrite formation, with oxidizing and reducing 75 

conditions forming As3+-pyrite and As1–-pyrite, respectively (Deditius et al., 2008; 76 

Kesler et al., 2011). In addition, arsenic is identified as clusters (As0) in amorphous 77 

Fe-As-S nanoparticles (~50 nm in diameter) in pyrite (Deditius et al., 2009). 78 

The anionic As1– substitution into pyrite causes the breaking of S–S bonds and 79 

hence point defects in pyrite (Fleet and Mumin, 1997). An expansion of the unit cell 80 

of As1–-pyrite relative to end member pyrite has been identified based on the EXAFS 81 

data (Manceau et al., 2020; Savage et al., 2000). Such defects are expected to 82 

facilitate and accommodate larger-size ions (e.g., Au) within the structure. The 83 

positive As-dependence of Au in As1–-pyrite is closely related to the As-induced 84 

defects (Arehart et al., 1993; Fleet et al., 1993; Gopon et al., 2019; Morishita et al., 85 

2018; Reich et al., 2005) and recently interpreted as a possible signature for an 86 

atomic-scale AuAs6 coordination (Merkulova et al., 2019). Additionally, local highly 87 

defective regions could be produced by As-induced lattice strain. Stacking faults 88 

(~10–12 Å wide) are observed within As1–-pyrite and reflect the presence of unit-cell 89 

scale lamellae of marcasite (FeS2) and/or arsenopyrite (FeAsS) (Cabri et al., 1989; 90 

Dodony et al., 1996; Fleet et al., 1989; Simon et al., 1999a). Atomistic calculations 91 

indicate energetically favored tendency of As to form arsenopyrite-type clusters in 92 

As1–-pyrite (Manceau et al., 2020). Such marcasite-like interlayers were not observed 93 
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in As1–-pyrite in some other reports (e.g., Palenik et al., 2004; Savage et al., 2000), but 94 

two types of nanostructures were observed in As1–-pyrite, with one polycrystalline 95 

matrix consisting of Fe-sulfides (arsenian pyrite and arsenopyrite/pyrrhotite), and the 96 

other highly crystalline matrices of pure arsenian pyrite (Palenik et al., 2004). 97 

Despite the numerous studies undertaken into the nature of As substitution in 98 

pyrite, little is known about the As-induced variations in the pyrite structure. The 99 

positions and widths of the optical band gap are highly sensitive to structural 100 

evolution (e.g., Eyert et al., 1998; Yang et al., 1994) yet the only Raman spectroscopic 101 

study of As substitution in pyrite has only recently been published by Zhu et al. 102 

(2020). They studied arsenian pyrites from the Shizilishan Sr-(Pb-Zn) deposit in 103 

eastern China and found a significant correlation between an increase in As content 104 

and a downward shift of the position of the Raman bands for As substitution increased 105 

to up to 4.89 wt% (Zhu et al. 2020). The present work reports on the Raman active 106 

modes of As-pyrite and presents evidence for the As-induced structural variations in 107 

pyrite associated with the substitution of As for S in pyrite.  
108 

 109 

MATERIALS AND METHODS 110 

Materials 111 

Ore samples were collected from the Dongyang epithermal gold deposit that is in 112 

the Dehua prospecting region of central Fujian Province, southeast China. This 113 

deposit is a typical low sulfidation epithermal deposit, with characteristics of 114 

mineralization previously reported (Li et al., 2018; Xu et al., 2018, 2019; Zhang et al., 115 
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2018). It should be noted that the conditions (e.g., temperature and pressure) of 116 

arsenian pyrite crystallization might cause variations in crystal chemistry of the 117 

mineral. Thus, this study mainly focuses on arsenian pyrites from the thin-section of 118 

sample DY1033-10 which was previously characterized in detail by Zhang et al (2018; 119 

2020). The samples used in the current study were in the form of 100-μm-thick 120 

polished thin sections (Fig. 3). The pyrite grains were in the size range of 50 –500 μm. 121 

 122 

Electron microprobe analysis 123 

The chemical compositions of arsenian pyrite were determined using electron 124 

microprobe analysis (EMPA) employing a Cameca CAMEBAX SX51 instrument at 125 

Adelaide Microscopy, University of Adelaide. Prior to analysis, the thin-sections were 126 

re-polished, cleaned in ethanol to remove any oxide layers and impurities from the 127 

sample surface. The analytical points were chosen based on the series of the 128 

backscattered electron (BSE) images of arsenian pyrites (“brighter” contrast 129 

corresponding to higher As; Fig. 3). The analyses were undertaken using an 130 

accelerating voltage of 20 kV, a beam current of 20 nA, and a spot size of the electron 131 

beam of 1 μm in diameter. Elements, X-ray lines and standards used were: Fe 132 

Kα/chalcopyrite, S Kα/chalcopyrite, As Lα/gallium arsenide (Astimex Standards Ltd.), 133 

Co Kα/pyrite, Ni Kα/ nickel, Sb Lα/stibnite (Astimex), Ag Lα/silver. The degree of As 134 

substitution was calculated in terms of at% based on Fe + S + As = 3 rather than 135 

assuming a simple binary As for S solid solution. 136 

 137 
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Electron backscatter diffraction analysis 138 

Crystallographic orientation data of pyrite were collected by indexing electron 139 

backscatter diffraction (EBSD) Kikuchi patterns using the SEM-EBSD facility at the 140 

State Key Laboratory for Mineral Deposition Research, Nanjing University, China. 141 

The diffraction patterns were generated by the interaction of a vertical incident 142 

electron beam with a highly polished thin section tilted at 70° in high vacuum mode 143 

by using a scanning electron microscope (JEOL JSM-6490). The analyses were 144 

operated at 20 kV and 17-25 mm working distance. 145 

 146 

Laser Raman analysis 147 

Raman spectra were measured on the polished thin sections of arsenian pyrite 148 

using a Witec alpha300R Raman microscope at an excitation laser wavelength of 532 149 

nm using a 100x objective (numerical aperture 0.90) at Flinders University given a 150 

beam diameter of around 500 nm. Typical integration times for single Raman 151 

spectrum were 30 s for 2-3 accumulations. The highest resolution grating available on 152 

the instrument was used which is 1800 grooves mm–1 and gave a spectral resolution of 153 

~1 cm–1. Laser power levels were kept as low as possible to prevent sample damage 154 

with the power equal to approximately 1.5 mW. Laser power was kept constant during 155 

measurements. A recent article by Bryant et al., (2018) demonstrated that for a pyrite 156 

grain size ~ 1 μm then a laser power ~0.8 mW should avoid or reduce heating effects 157 

while for a pyrite grain size ~100 μm then up to 2.6 mW could be used without 158 

adverse heating effects. Zhu et al., (2020) observed that for their samples, which had 159 
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grain sizes greater than 100 μm, 3.5 mW could be used without significant heating 160 

effects. The effect of laser power was further investigated on two of our samples (one 161 

with ~3.8 at% As and the other ~0.4 at% As) using a Renishaw RW2000 laser Raman 162 

microscope at an excitation wavelength of 514 nm using a 50x objective (numerical 163 

aperture 0.75) at Nanjing University. Typical integration times for single Raman 164 

spectrum were 30 s for 2 accumulations. The highest resolution grating available on 165 

the instrument was used which is 1800 grooves mm–1. It was found that laser induced 166 

heating effect was not significant below 4.5 mW (Fig. S1). This data in combination 167 

with the observations of Bryant et al. (2018) and Zhu et al. (2020) and the grain size 168 

of our samples (50 to 500 m) indicates our estimated laser power will not cause 169 

significant laser heating of the sample surface. All spectral measurements reported in 170 

this work were fitted using combined Gaussian/Lorentzian amplitude functions using 171 

PeakFit (version 4.12). 172 

 173 

RESULTS 174 

Chemistry of arsenian pyrite 175 

The samples were examined by reflected light microscopy, where the arsenian 176 

pyrite occurs as light brass-yellow subhedral and anhedral grains or aggregates with 177 

no obvious inclusions of other sulfides. Figure 3 shows arsenic-rich pyrites (Py1) 178 

overgrown by As-deficient pyrite aggregates (Py2), with their chemical compositions 179 

given in Table S1. Arsenic concentrations range from effectively zero (0.01 at%) to 180 

4.55 at%. The compositions fall close to the FeS2-FeAsS join as the concentrations of 181 
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most other impurity elements are at least one order of magnitude lower than the As 182 

concentrations. The antimony levels should, however, be noted with some anomalies 183 

(e.g., 0.49 at% in the sample DY1033-10-2), which also probably has an effect on the 184 

pyrite structure by isomorphic substitution. 185 

 186 

Arsenic substitution in arsenian pyrite 187 

Fe-S-As (at%) ternary diagram is used to identify the nature of substitutions of As 188 

for either Fe or S, with As3+-pyrite and As1–-pyrite trends being parallel to the As-Fe 189 

and As-S joins, respectively (Deditius et al., 2008; Liang et al., 2013). Our data shows 190 

a dispersed trend approximately parallel to the As-S join (arrow 1) in this diagram 191 

(Fig. 2), consistent with the As1– substitution for S1– within the structure. The 192 

deviation from the arrow 1, that indicates ideal one-for-one substitution, might be 193 

caused by the substitution of other trace elements (e.g., Sb) or vacancies in the Fe and 194 

S sites (Deditius et al., 2008). A notable negative correlation (R2 = 0.98) in this binary 195 

diagram (Fig. 2b) does confirm that the substitution takes the form of As1– for S1– in 196 

the disulfide ion, but a poor negative correlation for As for Fe ((R2 = 0.38) (Fig. 2c)).  197 

The compositional data of Zhu et al., (2020) is also plotted on Fig 2 and shows that in 198 

their samples the As substitutes both for Fe and S. This is highlighted in Figures 2b 199 

and c, which shows a strong correlation of As for Fe (R2 = 0.90) and As for S (R2 = 200 

0.95).   201 

 202 

Raman scattering spectra 203 
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Previous studies have reported five Raman-active modes in pyrite (Sourisseau et 204 

al., 1991; Vogt et al., 1983), a doubly degenerate mode (Eg, 343 cm-1), three triply 205 

degenerate modes (Tg(1), 350 cm-1; Tg(2), 377 cm-1; Tg(3), 430 cm-1), and a totally 206 

symmetric mode (Ag, 379 cm-1). The Eg vibrational mode is attributed to 207 

displacements of S– ions perpendicular to the S–S bond axis. The Ag and Tg(2) modes 208 

represents in-phase and out-of-phase S–S stretching vibrations, respectively. Tg(1) 209 

and Tg(3) correspond to a combination of vibrational and stretch motions (Sourisseau 210 

et al., 1991). Of these, only three vibrational modes (Eg, Ag and Tg(3)) have been 211 

reported to be easily observed with the sequence of band energies commonly defined 212 

as ν(Ag) > ν(Eg) > ν(Tg) (Anastassakis and Perry, 1976; Bryant et al., 2018; Kleppe 213 

and Jephcoat, 2004; Mernagh and Trudu, 1993; Ushioda, 1972; Zhu et al., 2020). It is 214 

difficult to resolve the Ag and Tg(2) modes due to their frequencies being only ≤ 2 215 

cm-1 apart and the Ag mode has a stronger intensity than the Tg(2) mode and 216 

dominates the spectrum (Kleppe and Jephcoat, 2004). The Tg(1) mode is also difficult 217 

to be observed due to its low intensity, and is only distinguishable under compression 218 

(Kleppe and Jephcoat, 2004). 219 

The ambient Raman vibrational spectra of the natural As-pyrites (arsenic 220 

concentrations of 0.4–4.6 at%) were recorded over the 500 cm-1 and 250 cm-1 spectral 221 

range in this study. Representative Raman spectra of the As-pyrite samples are shown 222 

in Figure 4. Three Raman bands are observed in this spectrum at 344, 379, and 432 223 

cm-1 for 0.4 at% As sample (Fig. 4b). These bands are in good agreement with the 224 

previously published data and assigned to the S2 vibration in the Eg mode, the S–S 225 
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in-phase stretching in the Ag mode, and the coupled vibration and stretch in the Tg(3) 226 

mode, respectively (Kleppe and Jephcoat, 2004; Mernagh and Trudu, 1993; Vogt et al., 227 

1983). In comparison, three Raman bands at 331, 363, and 414 cm-1 for 4.6 at% As 228 

samples (Fig. 4a) should be assigned to Eg, Ag and Tg(3) modes, respectively. The 229 

shifts in the Raman spectra with the increasing As concentration are shown in Figure 230 

5, including (1) Raman band positions shifting to the lower wavenumbers; (2) Raman 231 

band broadening; (3) the Eg and Tg(3) modes gradually weakening with increasing As 232 

substitution. 233 

 The Raman band positions, intensities, and the full widths at half maximum 234 

(FWHMs) for As-pyrite samples are summarized in Table S2. Figure 6 shows that the 235 

Raman band wavenumbers and FWHMs plotted against the atomic fraction of As. 236 

The strikingly inverse correlation between As-content and the wavenumbers of the Eg, 237 

Ag and Tg(3) modes of As-pyrite confirms the As-induced redshift of the Raman 238 

bands (Fig. 6a-c), with the maximum offset values of approximately 25 cm-1, 27.5 239 

cm-1 and 30 cm-1 for the three Raman modes, respectively. The effect of the minor 240 

substitution of antimony should also be considered, since it produces some anomalies 241 

in the data with Sb outliers highlighted in red in Figure 6. The distinct influence of Sb 242 

substitution on the correlation between position of the Raman bands and As content in 243 

pyrite is, however, negligible. The deviation from an ideal correlation (Fig. 6a-c), that 244 

would represent an ideal one-for-one shift, possibly results from additional trace 245 

elements in the pyrite or vacancies in the Fe and S sites. The uneven As distribution at 246 

the μm-scale may also be linked to deviation from an ideal correlation. 247 
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The FWHMs of the Raman active modes is weakly dependent on the As content: 248 

the Ag mode shows some indication of positive correlation but those of the Eg and 249 

Tg(3) modes seem random (Fig. 6d-f). The FWHMs of the Eg, Ag and Tg(3) modes 250 

increase from approximately 9.5 cm-1, 12.6 cm-1, and 14 cm-1 at 0.4 at% As, to 18.5 251 

cm-1, 29 cm-1, and 33.8 cm-1 at 4.6 at% As, respectively, but the scatter of values is 252 

high. With the As content increase a splitting of these Raman bands into possible 253 

impurity modes cannot be excluded. However, it should be noted that the Raman 254 

spectra are characterized by symmetric bands and absence of obvious new 255 

impurity-induced bands. 256 

The intensity ratio of Ag mode relative to Eg mode is moderately dependent on the 257 

As content (Fig. 7). Band intensity ratios in Raman spectra for pyrite are recently 258 

reported to markedly depend on the unit cell orientation with respect to the plane of 259 

polarization of the laser (Bryant et al., 2018). EBSD data were acquired for some of 260 

those pyrite grains analyzed by Raman in this study (Table S3). The results of the 261 

orientational dependence is illustrated by the Raman spectra for two pyrite grains with 262 

~ 3.7 at% As but with a difference in orientation of 21° (Fig. 8b) and one exhibits 263 

markedly stronger intensities of Ag and Eg modes but a lower intensity ratio, but there 264 

is no shift in the position of the bands. Another crystal with 1.5 at% As, with an 265 

rotation angle 6o (Fig. 8c) has weaker intensities and intensity ratio of Ag and Eg 266 

modes. In comparison, the spectra for two grains – that contain the same As content 267 

with minor orientational difference (4o) – show nearly identical intensity of Ag mode, 268 

but different intensities of Eg and intensity ratio of Ag relative to Eg (Fig. 8d). These 269 
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results suggest a combined effect of crystal orientation and As contents on the band 270 

intensity in pyrite Raman spectra, but that orientational differences do not affect the 271 

band positions. 272 

DISCUSSION 273 

Interpretation of Raman spectra 274 

Based on “harmonic oscillator model” and Hooke’s law, the wavenumber of 275 

Raman vibrational modes can be shifted with the isomorphic substitution of one 276 

element for another, towards lower wavenumbers with decrease of bond strength and 277 

increase of atomic mass (e.g., Kharbish et al., 2007). The As-induced shifts of the 278 

Raman vibrational modes of pyrite are attributed to the greater atomic mass of As 279 

(74.92) than S (32.01), which results in the lower wavenumbers of the Raman bands 280 

(Figs. 5 and 6), and also affected by the bond strength that is closely related to the 281 

valence, electronegativity, coordination number and, most notably, bond length 282 

between atoms or ions (Eyert et al., 1998; Gordy, 1946). In the case of pyrite, the 283 

stretching vibration (Ag) is strongly controlled by the S–S force constant (Lutz and 284 

Zwinscher, 1996);  while the vibrational mode (Eg), and coupled vibrational and 285 

stretching mode (Tg(3)) are controlled by the Fe–S force constant (Lutz and 286 

Zwinscher, 1996; Sourisseau et al., 1991). Kleppe and Jephcoat (2004) attributed a 287 

pressure-induced blueshift of the Raman vibrational modes of pyrite to a shortening of 288 

the Fe–S and S–S bonds under compression. Pačev ki et al. (2008) attributed a 289 

redshift of the Raman modes of Cu-bearing pyrite to an elongating and weakening of 290 

bonds caused by substitution of Fe by Cu. Arsenic substitution into pyrite induces an 291 
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expansion of the unit-cell (Blanchard et al., 2007; Manceau et al., 2020; Savage et al., 292 

2000), the dimension of which is proportional to the As concentration, as As–S and 293 

As–Fe bonds are approximately 4.6% and 2.8% longer than S–S and Fe–S bonds, 294 

respectively (see Introduction) (Blanchard et al., 2007). Thus, the substitution of As 295 

for S changes the Fe–S and S–S bond constants, and hence causes the redshifts of 296 

Raman vibrational modes observed in this study. Similar phenomenon has been 297 

recently reported by Zhu et al. (2020), with possible effect of other factors (e.g., laser 298 

powers and polishing) also discussed on pyrite Raman band positions. The redshift 299 

they observed were significantly lower than those we found, (~10 cm-1 vs ~20 cm-1 300 

for similar levels of As substitutions (~3 at%). The compositional data from Zhu et al. 301 

(2020) is included in Figure 2 and show strong correlations for As replacing S, and As 302 

replacing Fe in the octahedral sites and it appears that the two modes of As 303 

substitution can occur simultaneously on a submicron scale, given the 1 µm laser 304 

beam diameter in the Raman system. 305 

The As–S substitution may cause local strains and structural variations in pyrite 306 

(e.g., Fleet and Mumin, 1997; Gopon et al., 2019). The crystal quality is expected to 307 

be reflected in line-shapes of Raman spectra, with the shifting and broadening Raman 308 

bands of amorphous material relative to the well-crystalline bulk (Kumar et al., 2010, 309 

2014; Smith et al., 1971; Temple and Hathaway, 1973). Yang et al. (1994) investigated 310 

porous silicon and found that built-in lattice strain causes Raman redshift and line 311 

broadening. Pring et al. (2008) identified a slight line broadening of the infrared 312 

absorption bands for Fe-doped sphalerite and attributed it to the minor structural 313 
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distortions due to Fe2+ substitution for Zn2+, due to a small discrepancy between Fe–S 314 

(2.357 Å) and Zn–S (2.345 Å) bond lengths. As such, the remarkable line broadening 315 

(Fig. 5) most likely reflects strain associated with As1– in pyrite. The difference of 316 

atomic size between S (1.03 Å) and As (1.20 Å; Manceau et al., 2020) also supports 317 

the generation of strain associated with the substitution of As1– for S1– in the pyrite 318 

structure.  319 

 320 

Arsenic-induced structural evolution of pyrite 321 

Ternary compounds are classified into two major classes on the basis of the 322 

behavior of optical phonons (e.g., Chang and Mitra, 1968; Kang et al., 2009; Pring et 323 

al., 2008; Peterson et al., 1986; Stingl et al., 1992), including (1) the one-mode 324 

behavior that optical mode wavenumbers vary continuously and approximately 325 

linearly with the concentration between the wavenumbers of the two end-members; (2) 326 

the two-mode behavior that two sets of optical phonon modes occur at wavenumbers 327 

close to two pure end-members, with the intensity of each mode approximately 328 

proportional to the concentration between the wavenumbers of the two end-members. 329 

The premise behind the discussion above is that the two end-members should have the 330 

same structure and similar force constants for a given mixed ternary crystals (e.g., 331 

Pring et al., 2008). However, arsenic is commonly incorporated into pyrite as a trace 332 

or minor element with a restricted solubility (e.g., Abraitis et al., 2004). A continuous 333 

solid-solution series from pyrite (FeS2; Pa3), through arsenopyrite (FeAsS; P21/c), to 334 

löllingite (FeAs2; Pnnm) is not observed in nature due to their different structural 335 
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topologies. Hence, our study only investigates arsenian pyrites with the As content up 336 

to 4.6 at% (8.2 wt%). The continuous redshifts with the increasing As content are 337 

presented for all Raman bands (Figs. 5 and 6), and no impurity-induced Raman bands 338 

occur, and this corresponds to the one-mode behavior. If that is the case, one would 339 

expect that the As–S substitution would not cause the pyrite structure to transform to a 340 

new structure or separate into two separate phases, as consistent with the maximum 341 

solubility of As (~5 at%; Reich and Becker, 2006). Above the maximum As solubility, 342 

for the As for S substitution, fine scale intergrowth of arsenopyrite or marcasite-like 343 

lamellae (~10–12 Å) occur (e.g., Dodony et al., 1996; Fleet et al., 1989; Simon et al., 344 

1999a). Furthermore, the lower sulfur fugacity in hydrothermal systems not only 345 

facilitates increasing substitution of As for S in pyrite (Spycher and Reed, 1989; Reich 346 

et al., 2005), but also stabilizes the marcasite form of FeS2 over pyrite form, as 347 

marcasite is slightly S-deficient and thermodynamically stable at lower sulfur fugacity 348 

than pyrite (Buerger, 1934). 349 

Additionally, calculations by Manceau et al. (2020) indicate the lowest energy 350 

bonding environment of As in pyrite is similar to local structure of As in arsenopyrite. 351 

Blanchard et al. (2007) predicted that AsS2– unit is energetically more favored than 352 

the AsAs2– by density functional theory (DFT) calculations. Are the As-induced 353 

Raman features perhaps indicative of some clustering of As atoms in the pyrite 354 

structure? Here Fe-bearing sphalerite (Fe,Zn)S is taken as a comparison with 355 

As-bearing pyrite. Fe2+–Fe2+ pairs and Fe2+ clusters were identified in the Fe-bearing 356 

sphalerite ((Fe,Zn)S; Balabin and Sack, 2000; Di Benedetto et al., 2005; Twardowski 357 
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et al., 1988), which is reflected by non-monotonic behavior of Raman intensities with 358 

increasing Fe substitution for Zn (Osadchii and Gorbaty, 2010). In the case of As1–
359 

-pyrite, both the Raman band positions and FMHWs appear to vary in a continuous 360 

and linear manner upon As-S exchange, indicating the absence of As1––As1– clusters 361 

in the pyrite structure. In conclusion, the linear behavior of As-induced band redshifts 362 

and line broadening should reflect the structural evolution of pyrite from being stable 363 

to metastable before decomposing into marcasite and/or arsenopyrite. 364 

 365 

IMPLICATIONS 366 

In this contribution, the innovative use of Raman spectroscopy has captured 367 

pyrite structural variations associated with As-S substitution. As-induced lattice 368 

defects and strains within pyrite are potentially crucial in enhancing the capacity of 369 

arsenian pyrite to incorporate valuable metal ions with large effective ionic radii. The 370 

As-induced lattice defects are also inferred to play an important role in accelerating 371 

the weathering of arsenian pyrite and thus releasing of toxic heavy ions into the 372 

environment, with previous study reporting faster oxidation, hydrolysis, and 373 

dissolution of arsenian pyrite than pure pyrite (e.g., Savage et al., 2000). This study 374 

provides experimental evidence for the As-induced structural evolution of pyrite 375 

before decomposing into other mineral phases. Such information is of significance in 376 

understanding the mechanisms of isomorphic substitution in solid solution series. 377 

Generally, the further application of Raman spectroscopy has the potential to 378 

intuitively clarify the effects of elemental substitution on the crystal structure. Our 379 
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results and those of Zhu et al (2020) show that it is not possible to simply use the size 380 

of the Raman redshift on the arsenian pyrite spectra to simply determine the As 381 

composition, as the nature of the substitution mechanism has a major effect on 382 

redshift. Rather it should be possible from the redshift and compositional data to 383 

establish the nature of the substitution As for S or As for Fe. 384 

 385 
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Figure Captions 597 

Fig. 1. The structure of pyrite represented in terms of FeS6 octahedra projected along 598 

[0 0 1]. Yellow spheres correspond to sulfur ions and red ones to iron ions. The unit 599 

cell is indicated by black lines. 600 

Fig. 2. Results of electron microprobe analyses (EMPA) of arsenian pyrite (in at%). (a) 601 

Ternary Fe-S-As diagram. The compositions of arsenian pyrites from the Dongyang 602 

gold deposit (black circle) (arrow 1) were compared with those from Deditius et al. 603 

(2008) (grey triangle) and Zhu et al. (2020) (open circles). The former indicates 604 

substitution of As1– for S1– (arrow 1), whereas the Detitius et al. (2008) indicates the 605 

substitution of As3+ for Fe2+ (arrow 2). The compositional trend from Zhu et al. (2020) 606 

indicates a mixture of As1– for S1– and As3+ for Fe2+ substitutions (arrow 3). (b) 607 

Diagram showing variations in the concentrations of As1– and S1– within arsenian 608 

pyrite for this study and Zhu et al. (2020). (c) Diagram showing variations in the 609 

concentrations of As3+ and Fe2+ within arsenian pyrite for this study and Zhu et al. 610 

(2020). 611 

Fig. 3. Backscatter electron (BSE) images showing the As distribution within 612 

investigated arsenian pyrite. EMPA positions and associated As concentrations are 613 

highlighted in yellow circles and values (in at%). Abbreviations: Py = pyrite. 614 

Fig. 4. Fitting of As1–-pyrite (0.4 at% As and 4.6 at% As) Raman spectrum using the 615 

PeakFit program. Goodness of fitting (r2) > 0.998. 616 

Fig. 5. Representative room-temperature Raman spectra of natural As1–-pyrites 617 

between 250 and 500 cm-1. Composition expressed as at% As in FeS2. 618 

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. 
 The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. 

DOI: https://doi.org/10.2138/am-2021-7806.  http://www.minsocam.org/

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld



29 
 

Fig. 6. Variation in wavenumber and FWHM of Raman bands as a function of atomic 619 

fraction of arsenic in pyrite. A linear baseline was subtracted from all the spectra. 620 

Fig. 7. (a) Variation in intensity ratios of the Ag band relative to the Eg band as a 621 

function of atomic fraction of arsenic in pyrite. (b-d) Comparison of wavenumber and 622 

intensity of Raman bands for pyrite grains with different crystal orientations and As 623 

contents. Crystal orientation expressed as Euler angles. The intensity ratio of Ag 624 

relative to Eg is calculated for each spectrum. 625 
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Figure 1 630 
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Figure 2 634 
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Figure 3 637 
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Figure 4 640 
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Figure 5 643 
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Figure 7 650 
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