1	Revision 2 (Clean)
2	Oxygen isotope evidence for input of magmatic fluids and precipitation of
3	Au-Ag-tellurides in an otherwise ordinary adularia-sericite epithermal system in NE
4	China
5	
6	Shen Gao ^{1, 2*} (<i>Corresponding Author</i>), Albert H. Hofstra ³ , Xinyu Zou ^{1, 2} , John W. Valley ⁴ ,
7	Kouki Kitajima ⁴ , Erin E. Marsh ³ , Heather A. Lowers ³ , David T. Adams ³ , Kezhang Qin ^{1, 2,}
8	⁵ , Hong Xu ⁶
9	¹ Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese
10	Academy of Sciences, Beijing 100029, China
11	² Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029,
12	China
13	³ U.S. Geological Survey, P.O. Box 25046, Denver, CO 80225, USA
14	⁴ WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, 1215 West
15	Dayton Street, Madison, WI 53706, USA
16	⁵ University of Chinese Academy of Sciences, Beijing 100049, China
17	⁶ School of Earth Sciences and Resources, China University of Geosciences (Beijing),
18	Beijing 100083, China
19	
20	Submitted to: American Mineralogist
21	Submission date: 12/21/2020

22

Abstract

23

Tellurium (Te)-rich adularia-sericite epithermal Au-Ag deposits are an important 24 25 current and future source of precious and critical metals. However, the source and 26 evolution of ore-forming fluids in these deposits are masked by traditional bulk analysis 27 of quartz oxygen isotope ratios that homogenize fine scale textures and growth zones. To advance understanding of the source of Te and precious metals, herein, we use 28 petrographic and cathodoluminescence (CL) images of such textures and growth zones to 29 guide high spatial resolution secondary ion mass spectroscopy (SIMS) oxygen isotope 30 analyses (10-µm spot) and spatially correlated fluid inclusion microthermometric 31 measurements on successive quartz bands in contemporary Te-rich and Te-poor 32 33 adularia-sericite (-quartz) epithermal Au-Ag vein deposits in northeastern China. The results show that large positive oxygen isotope shifts from -7.1 to +7.7% in quartz rims 34 35 are followed by precipitation of Au-Ag telluride minerals in the Te-rich deposit, whereas small oxygen isotope shifts of only 4‰ (-2.2 to +1.6‰) were detected in quartz 36 associated with Au-Ag minerals in the Te-poor deposits. Moreover, fluid-inclusion 37 homogenization temperatures are higher in comb quartz rims (avg. 266.4 to 277.5 °C) 38 39 followed by Au-Ag telluride minerals than in previous stages (~250 °C) in the Te-rich deposit. The Te-poor deposit has a consistent temperature (~245 °C) in quartz that pre-40 and postdates Au-Ag minerals. Together, the coupled increase in oxygen isotope ratios 41 42 and homogenization temperatures followed by precipitation of Au-Ag tellurides strongly

43	supports that inputs of magmatic fluid containing Au, Ag, and Te into barren meteoric
44	water-dominated flow systems are critical to formation of Te-rich adularia-sericite
45	epithermal Au-Ag deposits. In contrast, Te-poor adularia-sericite epithermal Au-Ag
46	deposits show little or no oxygen isotope or fluid inclusion evidence for inputs of
47	magmatic fluid.
48	
49	Key words: quartz, SIMS, oxygen isotopes, fluid inclusions, magmatic fluid, Te,
50	epithermal Au-Ag deposits
51	
52	1. Introduction
53	
54	Tellurium (Te)-rich adularia-sericite epithermal Au-Ag deposits are important
55	producers of gold throughout the world (Ahmad et al. 1987; Spry et al. 1996; Cooke and
56	McPhail 2001; Cook and Ciobanu 2005; Ciobanu et al. 2006; Voudouris 2006; Cook et al.
57	2009; Saunders and Brueseke 2012; Goldfarb et al. 2016, 2017; Kelley and Spry 2016;
58	Zhai et al. 2018; Keith et al. 2020). Some of these deposits are associated with alkalic
59	
	volcano-plutonic centers (e.g., Cripple Creek; Kelley et al. 1998) and others with
60	volcano-plutonic centers (e.g., Cripple Creek; Kelley et al. 1998) and others with calc-alkalic volcano-plutonic centers (e.g., Sandaowanzi; Gao et al. 2017). Furthermore,
60 61	volcano-plutonic centers (e.g., Cripple Creek; Kelley et al. 1998) and others with calc-alkalic volcano-plutonic centers (e.g., Sandaowanzi; Gao et al. 2017). Furthermore, the magmatic belts that contain Te-rich Au-Ag deposits can also host Te-poor Au-Ag
60 61 62	volcano-plutonic centers (e.g., Cripple Creek; Kelley et al. 1998) and others with calc-alkalic volcano-plutonic centers (e.g., Sandaowanzi; Gao et al. 2017). Furthermore, the magmatic belts that contain Te-rich Au-Ag deposits can also host Te-poor Au-Ag deposits (e.g., Dong'an; Zhang et al. 2010a and reference therein). The source of Te in

64	lithospheric mantle (SCLM) (e.g., Holwell et al. 2019). These deposits are economically
65	important and are a potential source of Te, which is a critical commodity for modern
66	technology, if current metallurgical impediments are resolved (Spry et al. 2004; Ciobanu
67	et al. 2006; Cook et al. 2009; Goldfarb et al. 2016, 2017; Kelley and Spry 2016; Jenkin et
68	al. 2019).

69

70 In magmatic-hydrothermal systems, Te is generally interpreted to be derived from igneous intrusions (Jensen and Barton 2000; Saunders and Brueseke 2012; Kelley and 71 Spry 2016; Holwell et al. 2019); thus, magmatic fluids have been proposed to be involved 72 in the formation of Te-rich epithermal Au-Ag deposits (e.g., Ciobanu et al. 2006). 73 Recently, high-precision in situ oxygen isotope analyses by ion microprobe are regarded 74 75 to be the most effective way to detect short-lived oxygen isotope variations, which can record transient variations of fluid inputs in hydrothermal ore deposits (Valley and 76 77 Graham, 1996; Smith et al. 1998; Valley et al., 1998; Saunders et al., 2008; Tanner et al., 78 2013; Fekete et al., 2016; Cernuschi et al., 2018; Li et al., 2019; Haroldson et al., 2020). 79 However, in situ isotopic evidence in Te-rich epithermal Au-Ag deposits is scarce; thus, the role of magmatic fluids in Te-rich epithermal Au-Ag deposits is still unclear. The 80 81 large range of oxygen isotope values in quartz obtained by conventional technique from Te-rich epithermal deposits allows several interpretations. The highest $\delta^{18}O(Oz)$ values of 82 up to 20‰ (e.g., Cripple Creek, Colorado, USA; Beaty 1996) are indicative of a 83 magmatic fluid dominated system (e.g., Taylor 1997; Hedenquist et al. 1998). In contrast, 84

many other deposits have lower $\delta^{18}O(Qz)$ values close to 0‰, such as Tongyoung (Korea) 85 86 \sim 3‰ (Shelton et al. 1990) and Sandaowanzi (northeast China) from -3.9 to -0.2‰ (Wu et al., 2005a; Zhai et al. 2018) that are indicative of meteoric water dominated systems 87 (O'Neil and Silberman 1974; Hedenquist and Lowenstern 1994; Simmons 1995; John et 88 al. 2003; Simmons et al. 2005). The low oxygen isotope values raise the question: Is 89 90 magmatic fluid needed to form a Te-rich Au-Ag deposit? If needed, what process causes 91 Au-Ag telluride minerals to precipitate from magmatic fluids in epithermal systems (e.g., fluid boiling, mixing of magmatic fluid with meteoric water, or cooling; Anderson and 92 Eaton 1990; Cooke and McPhail 2001; Zhai et al. 2018)? How do ore-forming processes 93 differ between Te-rich and Te-poor epithermal Au-Ag deposits with low oxygen isotope 94 values (e.g., $\delta^{18}O(Qz) = 7-9\%$ at Hishikari, Japan; $\delta^{18}O(Qz) = -3.0$ to 1.5% at Dong'an, 95 96 northeastern China; Faure et al. 2002; Han 2013)?

97

98 To investigate these questions, we studied the contemporary Te-rich Sandaowanzi 99 and Te-poor Dong'an adularia-sericite epithermal Au-Ag deposits situated in an Early Cretaceous continental magmatic arc in northeastern China. We used mineral textures 100 and cathodoluminescence (CL) imaging to guide high spatial resolution secondary ion 101 102 mass spectroscopy (SIMS) oxygen isotope analyses in combination with fluid inclusion microthermometric measurements of the same generation of quartz to advance 103 104 understanding of the source and evolution of hydrothermal fluids in these two deposits. The results show a large difference in the oxygen isotope ratios of quartz is associated 105

106	with Te-rich vs. Te-poor Au-Ag mineralization in these deposits. In combination with
107	fluid inclusion homogenization temperatures, the results reveal the evolution of
108	hydrothermal fluids and mechanisms of mineral precipitation. This study highlights the
109	role of magmatic fluid inputs to formation of high-grade Au, Ag, and Te veins and the
110	importance of correlating oxygen isotope analyses to fluid inclusion homogenization
111	temperatures on the same generation of quartz in complex banded veins to reveal the
112	source and evolution of ore-forming fluids.
113	
114	2. Geologic setting
115	
116	The Te-rich Sandaowanzi and Te-poor Dong'an epithermal Au-Ag deposits that are
117	the focus of this study are located in the eastern part of the Paleozoic Central Asian
118	Orogenic Belt (CAOB) (Sengör et al. 1993; Jahn et al. 2000; Jahn 2004; Li 2006). It
119	consists of the Erguna and Xing'an Blocks in the northwest, the Songliao Block in the
120	central part, and the Jiamusi Massif in the east, separated by the De'erbugan,
121	Nenjiang-Hehei, and Jiayin-Mudanjiang structures, respectively (Fig. 1a; Wu et al. 2007).
122	Sandaowanzi is in the Xing'an Block and Dong'an is in the Songliao Block (Fig. 1a).
123	
124	The Xing'an Block is dominated by Early Cretaceous volcanic rocks (Ge et al. 2005;
125	Sui et al. 2007; Zhang et al. 2010b; Gao et al. 2017, 2018a, b) and Neoproterozoic-Early
126	Cambrian metamorphic rocks, e.g., Luomahu Group (Qu 2008; Fig. 1a). Although 6

127	sedimentation occurred during the Neoproterozoic and Paleozoic (Miao et al. 2004, 2007,
128	2015), metamorphism and deformation occurred in these blocks during the Jurassic (ca.
129	170-160 Ma; Miao et al. 2015). The Songliao Block is largely covered by Early
130	Cretaceous volcanic rocks (Wang et al. 2002; Zhang et al. 2008) with local exposures of
131	underlying granitoids and Proterozoic rocks (Wu et al. 2000, 2001; Wang et al. 2006; Pei
132	et al. 2007; Gao et al. 2007; Zhang et al. 2008) (Fig. 1a).

133

Regional structures mainly consist of NE- and NW-trending faults. The 134 Nenjiang-Heihe fault and Jiayin-Mudanjiang fault control the distribution of gold 135 deposits in the area (Fig. 1a). Early Cretaceous intrusions consist of granite, granodiorite, 136 and granite porphyry and have been dated at ca. 119-108 Ma (Gao et al. 2017, 2018b; 137 138 Zhao et al., 2019). Although the ore ages are imprecise, Sandaowanzi, Dong'an and several other epithermal Au-Ag deposits in the area are interpreted to be coeval with a 139 140 period of a ca. 122-108 Ma of Early Cretaceous volcanism (Ge et al. 2005; Sui et al. 2007; 141 Zhang et al. 2010a; Gao et al. 2017, 2018a, b). Epithermal Au-Ag mineralization and contemporaneous volcanism occurred in an extensional setting related to subduction of 142 the Paleo-Pacific Plate (e.g., Wu et al. 2005b). 143

144

145 **2.1. Sandaowanzi**

- 146
- 147 Sandaowanzi produced 22 t Au at an average grade of 14 g/t, 127 t Ag at an average

grade of 97 g/t, and 34 t of Te at an average grade of 17 g/t from gold-bearing quartz 148 veins hosted in Early Cretaceous volcanic rocks (Yu et al. 2012; Xu et al. 2012; Liu et al. 149 2013; Zhai and Liu 2014; Gao et al. 2017). Sandaowanzi is hosted in the Lower 150 Cretaceous Longjiang (121.7 Ma) Formation (Fm.). The lower and upper parts of the 151 Longjiang Fm. contain pyroclastic and lava flow facies, respectively, with rock types 152 153 comprising (brecciated) andesite and basaltic andesite. Geochemically, these igneous rocks are enriched in LREEs, Pb, K, and U, depleted in Nb, P, and Ti and are 154 calc-alkaline (Gao et al. 2017). Major structures in the area include NW-SE- and 155 E-W-trending faults, with most deposits localized along NW-trending normal faults. The 156 E-W-trending faults are earlier than the volcanism and crosscut Jurassic intrusive rocks 157 (Fig. 1b). The main igneous intrusion in the area is the gray, medium-grained, 158 159 Sandaowanzi monzogranite (177.2 Ma; Gao et al. 2017). Near ore deposits, Sandaowanzi monzogranite was emplaced under Longjiang Fm. andesite (Fig. 1b). Diabase dikes 160 161 (116.6 Ma; Liu et al. 2011) crosscut the ore bodies. The major ore type at Sandaowanzi 162 consists of Au-Ag-telluride-bearing quartz veins. Ore bodies (40 in three ore belts) occur along WNW-trending normal faults in andesite flows and pyroclastic breccias of the 163 Lower Cretaceous Longjiang Fm. (Fig. 1b). Ore body II is the only current operating 164 165 stope. The lenticular ore body is 213 m long and 0.8-14.3 m thick (averaging ~6 m). It strikes 20-40°, dips 58-77°, and plunges 520 m deep along the dip direction. The average 166 167 Au grade of ore body II is 13.98 g/t (Gao et al. 2017).

168

Five stages have been identified in the veins (Fig. 2a-e). Telluride minerals in the 169 deposit include calaverite, krennerite, sylvanite, petzite, hessite, stützite, empressite, 170 171 altaite and coloradoite, which coexist with chalcopyrite, sphalerite, tetrahedrite, galena, native gold, and minor pyrite and bornite. Other silver-bearing phases include acanthite, 172 173 pyrargyrite, and kerargyrite. Petzite, sylvanite, calaverite, and native gold assemblages 174 generally occur in bonanza ore veins, and silver-bearing minerals occur mostly in the 175 upper parts of the ore bodies (Yu et al. 2012). Gold-Ag tellurides are the major gold-bearing minerals (>95% of Au production); the remaining ~5% is in native gold. 176 Alteration minerals include quartz, pyrite, sericite, carbonates, anhydrite, chlorite, and 177 epidote. Pyrite, albite, and chlorite are widespread in the alteration halo, which is ~15 m 178 179 in width around the veins. Plagioclase is replaced by epidote, pyrite, calcite, sericite, and 180 chlorite. Other alteration minerals include pyrophyllite and minor siderite. Veins contain quartz, calcite, and anhydrite with euhedral laumontite in vugs (Fig. 2f). Bulk oxygen 181 isotope analyses indicate meteoric sources for the vein-forming fluids with $\delta^{18}O(Oz)$ 182 183 ranging from -3.9 to -0.2, avg. -1.8 (Table 1; Wu et al. 2005a; Zhai et al. 2018). Sericite from the alteration halo yielded ⁴⁰Ar/³⁹Ar plateau, isochron, and total gas dates that 184 overlap within error and yield a preferred age of 122.4 ± 3.9 Ma (Cheng 2017). 185

186

188

189 Dong'an produced 24 t Au at an average grade of 8.8 g/t and 207 t Ag at an average 9

¹⁸⁷ **2.2. Dong'an**

grade of 75.8 g/t from quartz-adularia veins hosted in Early Cretaceous volcanic rocks. 190 Stratigraphy at Dong'an includes Lower Cretaceous Guanghua Fm. volcanic rocks and 191 192 Oligocene-Pliocene sandstone and conglomerate. The Guanghua Fm. consists predominantly of rhyolitic lava and rhyolitic tuff with minor dacitic lava that are 193 underlain by an Early Jurassic coarse- and fine-grained alkali feldspar granitic intrusion. 194 195 The volcanic sequence and granitic intrusion are cut by granite porphyry dikes (Fig. 1c). 196 The area is cut by a series of tensile-shear NS-, NE- and NNE-trending faults. The 14 gold orebodies recognized in the mine are controlled by NS- and NE-striking faults, 197 dipping NW at 70 to 85°. Eight of the orebodies are hosted in rhyolitic lavas, five are 198 hosted in rhyolitic porphyry dykes, and one is hosted in Jurassic granite. Gold-rich 199 orebodies are commonly brecciated and the breccias are bounded by faults. The size of 200 201 the gold veins varies considerably, from 50 to 800 m in length and 1 to 7 m in thickness. They extend to depths of less than 400 m and have grades from 3 to 10 g/t Au. The 202 203 largest vein is 770 m long, 6.7 m thick on average, and has a vertical extent of 358 m, 204 with an average grade of 8.8 g/t Au and 75.8 g/t Ag.

205

Ore minerals occur in sparse disseminations, local dense disseminations, isolated veinlets and stockworks inside the 1 to 7 m thick veins. Five stages have been identified in the veins (Fig. 3). Pyrite, galena, chalcopyrite, sphalerite, hematite, acanthite, native gold, electrum, and native silver are present in the ores (Fig. 4b). Altaite, petzite, hessite, and melonite are rare. Electrum (>95%) is the major gold- and silver-bearing mineral,

211	with the remaining ~5% in Au-Ag tellurides. Quartz, adularia, chlorite, and calcite are the
212	most abundant gangue minerals, with fluorite in places. The gold veins are enclosed by
213	concentrically zoned alteration envelops consisting of quartz, chalcedonic quartz, sericite,
214	adularia, chlorite, and pyrite. Bulk oxygen isotopes indicate meteoric sources for the
215	vein-forming fluids with $\delta^{18}O(Qz)$ from -3.0 to 0.5, avg1.0 (Table 1; Ao et al. 2004;
216	Yang 2008; Han 2013). Sericite yielded a 40 Ar/ 39 Ar date of 107.2 ± 0.6 Ma that is within
217	uncertainty of a zircon U-Pb date of 108.1 ± 2.4 Ma on rhyolite porphyry (Zhang et al.
218	2010a).
219	
220	3. Methods
221	
222	3.1. Sampling and petrography
223	
224	Samples used in this study were collected from vein exposures and drill holes in both
225	vertical and horizontal directions at Sandaowanzi and Dong'an. The sample set includes
226	barren and ore-bearing veins with different textures (Fig. 5; Table 2). Images of samples
227	in reflected and transmitted light were obtained using petrographic microscope at the U.S.
228	Geological Survey Denver Inclusion Analysis Laboratory. Thick sections (~200 μ m) were
229	used, because they are required for fluid inclusion studies. Although the birefringent
230	colors of minerals in thick sections are different from standard thin sections under
231	crossed polars, quartz textures are still evident. Representative samples were selected for

232 CL imaging.

233

3.2. SEM-CL and EDS

235

Cathodoluminescence (CL) images were acquired with a JEOL 5800LV scanning 236 237 electron microscope (SEM) operated at 10 or 15 kV and approximately 5 nA beam current at the U.S. Geological Survey Denver Microbeam Laboratory. Double polished 238 thick sections ($\sim 200 \ \mu m$) and mineral mounts from 35 samples of banded vein material 239 from Sandaowanzi and Dong'an were studied. The major element composition of 240 adularia was determined by energy dispersive X-ray spectroscopy (EDS) with 50 mm² 241 silicon drift detector on a FEI Quanta 450 FEG-SEM operated at 15 kV accelerating 242 voltage. Beam calibration was performed on copper metal and Oxford factory standards. 243 Orthoclase and albite standards were analyzed to check the calibration. The major 244 245 element compositions of adularia were used to calculate secondary ion mass spectrometer (SIMS) bias corrections for δ^{18} O values. 246

247

248 **3.3. Oxygen isotopes**

249

250 The δ^{18} O values of quartz, chalcedony, and adularia from five representative samples 251 were measured using a CAMECA IMS 1280 SIMS at the WiscSIMS Laboratory, 252 University of Wisconsin-Madison (Kita et al. 2009; Valley and Kita 2009; Heck et al. 12

2011). Oxygen isotope ratios were analyzed using a 1.6 nA $^{133}Cs^+$ primary beam of ions 253 focused to a spot of ~10 μ m diameter. Analysis pits were 1-2 μ m deep. Ions of ¹⁶O⁻ and 254 ¹⁸O⁻ were simultaneously collected in two movable Faraday cup detectors with an 255 average ${}^{16}O^{-}$ intensity of 2.7×10^{9} cps and ${}^{16}O^{1}H^{-}$ was collected in the axial Faraday cup 256 to check for traces of water in quartz. The magnetic field strength was held stable using a 257 258 nuclear magnetic resonance (NMR) probe, which was readjusted every 12 h. The mass resolving power (MRP = M/ Δ M), measured at 10% peak height, for δ^{18} O analytical 259 conditions was ~2200 for the movable Faraday detectors and ~5000 for the axial position, 260 allowing ${}^{16}O^{1}H^{-}$ to be resolved from ${}^{17}O^{-}$ (Kita et al. 2009; Wang et al. 2014). Each spot 261 analysis took approximately 4 min, which includes 10 s of presputtering to penetrate the 262 gold coating, ~60 s to stabilize sputtering and automatically center the secondary ions in 263 264 the field aperture, and 80 s (20 cycles of 4 s each) to integrate secondary ions. Detailed descriptions of these analytical conditions and the instrument setup at WiscSIMS have 265 been published previously (Kelly et al. 2007; Kita et al. 2009; Valley and Kita 2009; 266 Heck et al. 2011; Wang et al. 2014). All data were collected with a 267 standard-sample-standard bracketing procedure of four UWQ-1 quartz-standard 268 measurements, 10-16 sample measurements and four UWQ-1 standard measurements. 269 Oster et al. (2017) showed that the SIMS bias is not measurably different for UWQ-1, an 270 anhydrous quartz vs. the hydrous opal standard, BZVV. Bracketing standards were used 271 272 to evaluate the reproducibility of a series of measurements as well as to correct for the instrumental bias and minor instrument drift. The external spot-to-spot reproducibility of 273 13

274	bracketing standards averaged $\pm 0.22\%$ (2 standard deviations, SD) for oxygen isotope
275	analyses. Raw values of isotope ratios measured by SIMS were corrected to the Vienna
276	standard mean oceanic water (VSMOW) scale for oxygen based on values measured for
277	the UWQ-1 bracketing standards (UWQ-1: δ^{18} O = 12.33‰, VSMOW, Kelly et al. 2007;
278	Heck et al. 2011). To ensure that the best precision and accuracy were achieved, all
279	analyses were conducted on spots within 5 mm of the center of a polished 25 mm mount
280	(Kita et al. 2009; Peres et al. 2013).

281

Four feldspar reference materials, Amelia Ab (Or% = 0), MES-4 (Or% = 71), FCS 282 (Or% = 75), and Gem28 (Or% = 93), were measured in the same SIMS session to 283 284 determine the bias as a function of major element chemistry (Pollington 2013). Because 285 we use UWQ-1 as a bracketing standard, all calculations use the difference in the biases of quartz and feldspar to calculate VSMOW values of feldspar (adularia) (Pollington 286 287 2013). Relative bias to UWQ-1 of Amelia Ab was 3.87‰ for end member albite during 288 the analysis session. The relative biases of FC, MES-4, and Gem28 were 4.76‰, 4.98‰, and 4.94‰ for K-feldspar, respectively (Appendix A). The mean measured UWQ-1 289 values are 5.94‰ for SG-1, 5.82‰ for SG-2, and 5.98‰ for SG-3, respectively. All 290 291 measured feldspars (adularia) were measured with SG-3.

292

Values of ${}^{16}O^{1}H^{-/16}O^{-}$ (OH/O hereafter) were background corrected for contaminant OH by subtracting the average OH/O values measured on bracketing analyses of UWQ-1 14

295	quartz standard that comes from a granulite facies quartzite and is assumed to be
296	anhydrous (see Wang et al. 2014). Background corrected ratios of OH/O are not
297	calibrated against a standard but are useful on a relative basis to identify subtle changes
298	in OH content of silica (e.g., chalcedony) as well as aqueous solid and fluid inclusions.
299	
300	3.4. Microthermometry
301	
302	In each of the five representative samples, fluid inclusion assemblages observed in
303	crystalline quartz were spatially correlated with the CL bands analyzed by SIMS. Fluid
304	inclusion petrography and microthermometry were conducted at the U.S. Geological
305	Survey Denver Inclusion Analysis Laboratory. A Linkman 600 heating/freezing stage on
306	an Olympus BX60 microscope was used to measure the ice melting temperature and
307	homogenization temperature of fluid inclusions in each assemblage. A pure H ₂ O standard
308	with an ice melting temperature (T_m) of 0 $^{\circ}\text{C}$ and a critical homogenization temperature
309	(T _h) of 373.6 °C was used to calibrate the stage with the data reproducible to ± 0.2 °C for
310	ice melting temperatures and ± 2.0 °C for homogenization temperatures.
311	
312	4. Results
313	
314	4.1. Petrography of minerals

In this study, we describe quartz textures using terminology from Dong et al. (1995) for adularia-sericite epithermal deposits. Colloform (Fig. 6a-e), jigsaw (Fig. 6b), bladed (Fig. 7a), flamboyant (Fig. 7b), plumose (Fig. 7c), granoblastic and comb (Fig. 6c-e) textures were observed under crossed polars. Other textures such as zonal and cockade are evident on SEM-CL images.

321

322 At Sandaowanzi, colloform textures (Stage I) are barren of gold and consist of alternating bands of fine-grained quartz with a jigsaw texture and thin layers of quartz 323 with a granoblastic texture (Fig. 6a, b). In thin section, jigsaw texture is characterized by 324 aggregates of microcrystalline to coarse crystalline quartz crystals with interpenetrating 325 grain boundaries (Fig. 6a, b). Fibrous chalcedony with sweeping extinction and a 326 327 botryoidal texture (Stage II) also grows on, or is mantled by, quartz with a granoblastic texture (Fig. 6c). Intervening quartz layers with granoblastic and comb textures (Stage III; 328 329 Fig. 6d, e) usually contain sparse liquid-rich fluid inclusions. Gold-silver telluride bands 330 are associated with a thin overgrowth (Stage IV) on comb quartz (Fig. 6c-f).

331

At Dong'an, bladed texture (Stage I) consists of chalcedony and crystal quartz (Fig. 7a). Flamboyant texture (Stage II), followed by Stage III quartz and chalcedony, contains three dimensional arrays of small liquid- and vapor-rich inclusions that follow crystallographic axes (Fig. 7b). Plumose texture (Stage IV; Fig. 7c) consists of quartz and chalcedony overgrowths on euhedral adularia (Stage IV; Fig. 7d). Colloform textures

(Stage IV) are usually mineralized and consist of alternating bands of fine-grained quartz,
coarse-grained quartz, chalcedony, and fine-grained adularia with electrum, pyrite, and
sphalerite +/- trace amounts of Au-Ag tellurides (Fig. 7d, e, f).

340

341 **4.2. Cathodoluminescence of minerals**

342

343 Cathodoluminescence (CL) images were used to further document the paragenetic relationships among textures of, and zoning within quartz, chalcedony, adularia, and 344 other gangue and ore minerals. The CL images shown in Figures 8 and 9 are of the thick 345 sections that we used for SIMS δ^{18} O and fluid inclusion analyses. Textural complexity is 346 clearly evident. In each panel, the white arrows show the direction of mineral growth 347 348 with stages indicated by Roman numerals. Barren and high-grade material collected from the Sandaowanzi quartz-telluride veins is shown on Figure 8 and Dong'an 349 350 quartz-adularia-electrum veins on Figure 9. Granoblastic and comb quartz is CL-gray 351 (Fig. 8a-c), CL-dark, or CL-bright (Fig. 8d, e), whereas chalcedony is homogeneous and CL-dark (Fig. 8b, c). Adularia is also homogeneous and CL-dark relative to quartz (Fig. 352 9b, c). The multiple generations of quartz identified by CL at Sandaowanzi and Dong'an 353 354 were grouped into five stages based on crosscutting relationships, growth zones, and mineral assemblages as described below. 355

356

357 At Sandaowanzi, the paragenetic sequence is (I) fine-grained quartz + coarse-grained 17

358	quartz, (II) chalcedony + CL-gray quartz + CL-dark quartz + CL-bright quartz, (III)
359	CL-gray comb quartz + CL-dark zonal quartz, (IV) CL-bright quartz + CL-dark quartz +
360	Au-Ag-tellurides, and (V) thin veinlets of CL-bright quartz (Fig. 8). Colloform textures
361	are common at Sandaowanzi, and many are barren (Fig. 8a). Stage I has a colloform
362	texture consisting of alternating fine-grained and coarse-grained quartz bands (Fig. 8a).
363	Fine-grained quartz has a jigsaw texture in thin section, is CL-dark, and lacks fluid
364	inclusions. Coarse-grained quartz is generally CL-gray and contains sparse tiny fluid
365	inclusions. In high-grade veins, Stage I colloform quartz is sometimes brecciated and
366	overgrown by Stage II chalcedony and crystalline quartz (e.g., Fig. 8b). In some sections,
367	Stage II chalcedony forms circles that are overgrown by quartz (Fig. 8c). Stage III quartz
368	consists of CL-gray comb and CL-dark zones that are overgrown by a Stage IV thin rim
369	of CL-bright and dark quartz followed by Au-Ag-tellurides (Fig. 8c-e). Thin (20 ~ 120
370	μ m in width), Stage V veinlets of CL-bright quartz are also present that crosscut the early
371	stages (e.g., Fig. 8b). Fluid inclusions are present in Stages I, II, and III CL-gray and
372	CL-bright quartz crystals.

373

At Dong'an, the paragenetic sequence is (I) bladed chalcedony + bladed quartz, (II) CL-dark quartz + CL-bright quartz, (III) chalcedony + CL-gray quartz + CL-bright quartz, (IV) adularia + chalcedony + CL-dark quartz + CL-gray quartz + electrum, and (V) thin veinlets of CL-dark and bright quartz (Fig. 9). Bladed quartz textures including ghost and lattice are common at Dong'an, and many are barren. Both chalcedony and bladed Stage I 18

379	quartz are CL-dark, whereas Stage II and III quartz are both CL-bright and CL-dark and
380	can have a circular shape (Fig. 9a). Stage II quartz is sometimes brecciated and
381	overgrown by Stage III of chalcedony, CL-gray, and CL-bright quartz with a cockade
382	texture (e.g., Fig. 9b). In ore-bearing veins, earlier stages of quartz are typically
383	brecciated and cemented with Stage IV adularia (Fig. 9b and c). Stage IV adularia is
384	overgrown by chalcedony, CL-dark quartz and CL-gray comb quartz followed by
385	electrum (Fig. 9c). Stage V veinlets of quartz are also present and crosscut the Stage II,
386	III, and IV quartz bands (Fig. 9b and c). Stages I, II, and IV quartz contain fluid
387	inclusions.

388

389 4.3. SIMS oxygen isotopes

390

SIMS oxygen isotope analyses of quartz, chalcedony and adularia from three samples at Sandaowanzi and two samples at Dong'an are presented in Appendix A and displayed on Figures 8-10. Sandaowanzi quartz and chalcedony have a wide range of δ^{18} O values from -7.1 to +7.7‰. A slight decrease from Stage I to Stage III is followed by an abrupt increase in Stage IV quartz, which is mantled by Au-Ag-tellurides (Fig. 10a). At Dong'an, quartz and chalcedony have a narrow range from -2.2 to +1.6‰, and adularia varies from -5.9 to -3.5‰ (Fig. 10b).

398

399 In Stage I barren colloform texture quartz at Sandaowanzi, δ^{18} O values fluctuate 19

400	mildly along the direction of growth (Fig. 8a). Bands of fine-grained quartz (FQ, blue
401	symbols) have δ^{18} O values that are 1-2‰ higher than those of more coarsely crystalline
402	quartz (red symbols) (Fig. 8a). In contrast, the δ^{18} O values of Stage II CL-gray quartz and
403	chalcedony are 3-4‰ lower than brecciated Stage I fine-grained quartz (Fig. 8b, c). Stage
404	III CL-gray comb quartz also has $\delta^{18}O$ values that are 1-2‰ lower than Stage II
405	CL-bright and CL-gray quartz and chalcedony (Fig. 8d, e). Notably, the Stage II quartz
406	and chalcedony and Stage III CL-gray comb quartz have much lower $\delta^{18}O$ values (down
407	to -7.1‰) than the rims of Stage IV CL-dark and CL-bright quartz followed by tellurides
408	(e.g., Fig. 8d, e). The Stage V thin quartz veinlet has an δ^{18} O value of -2.4‰ (e.g., Fig.
409	8b).

410

In Stage I to Stage III barren ghost bladed textures at Dong'an, δ^{18} O values fluctuate 411 from -2.2 to +1.6% with a median of -0.3% (Fig. 9a). In Stage II to Stage III silica bands 412 with a cockade texture, δ^{18} O values have a narrow range from -2.1 to -0.2‰ (Fig. 9b). In 413 ore-bearing veins, the δ^{18} O values of Stage IV quartz followed by electrum have a narrow 414 415 range from -1.6 to -0.2‰ (Fig. 9c) that is within the range of values from the barren bands (Stage I to Stage III). Moreover, the Stage V thin quartz veinlet crosscutting silica 416 bands and cockade texture also has δ^{18} O values from -1.1 to -0.1% that are similar to the 417 other stages (Fig. 9b, c). 418

419

420 **4.4. Fluid inclusion microthermometry**

421

422 Fluid inclusion petrography and microthermometry were conducted on the same samples used for CL imaging and SIMS analysis, which enabled spatial correlation of 423 homogenization temperatures with the δ^{18} O results obtained on specific bands of quartz. 424 Fluid inclusions were only observed in crystalline quartz and they are uncommon (Fig. 425 11). None were observed in fine-grained quartz or chalcedony. Microthermometric 426 427 measurements were generally made on inclusions more than 5 µm in diameter. Most of the inclusions were classified as primary; they have irregular shapes, occur along crystal 428 growth zones, and are liquid-rich with 0 to 25 vol% vapor at room temperature. 429 Secondary inclusions along fractures are also liquid-rich. Thus, the primary liquid-rich 430 inclusions in crystal quartz were trapped prior to, or between, episodes of boiling. 431 432 Microthermometric measurements on liquid-rich inclusions from each band are summarized in Table 3. All of the liquid-rich inclusions are dilute with salinities between 433 434 0 and 1.0 wt.% NaCl equiv. The homogenization temperatures ($T_{\rm h}$) of primary liquid-rich inclusions vary from 237 to 281 °C (Fig. 12) and have higher temperatures than those of 435 secondary inclusions with T_h from 164 to 216 °C. Entrapment temperature is 436 approximately equal to homogenization temperature because of low pressure in 437 438 epithermal systems (Hass, 1971). To evaluate this further, the pressure-corrected temperatures at the conditions of $T_h = 250$ °C and $T_m = -0.5$ °C are 251, 255, and 259 °C 439 440 with the referred pressures of 50, 100, and 150 bars, respectively (Steele-MacInnis et al., 441 2012).

442

443	At Sandaowanzi, fluid inclusions in a band of Stage I quartz with barren colloform
444	texture have a narrow range of high T_h from 268.6 to 270.2 °C (average 269.4 °C); three
445	groups of secondary fluid inclusions with lower T_h are also present (Table 3). Stage II
446	CL-bright quartz has a T_h range from 248.6 to 252.4 °C (avg. 250.9 °C). Fluid inclusions
447	in two bands of Stage III CL-gray quartz have a narrow range of $T_{\rm h}$ with averages of
448	248.2 °C and 250.5 °C. The low δ^{18} O of fluids in equilibrium with such quartz suggest
449	that it precipitated from exchanged meteoric water. In contrast, fluid inclusions in Stage
450	III comb quartz followed by the Stage IV rim associated with Au-Ag-tellurides have
451	higher average T _h values of 276.2, 266.4, and 277.5 °C (Table 3), and the δ^{18} O values of
452	fluids in equilibrium with the Stage IV rim are much higher.

453

At Dong'an, fluid inclusions in Stage I quartz with a ghost bladed texture also have 454 high T_h from 267.6 to 269.5 °C (avg. 268.6 °C) (Table 3). This temperature may be 455 representative of fluids prior to boiling. Fluid inclusions in Stage II CL-bright quartz 456 layers in colloform texture have T_h from 242.1 to 245.0 °C (avg. 243.4 °C). Similarly, the 457 T_h of fluid inclusions in Stage IV CL-gray comb quartz followed by electrum vary 458 between 237.2 and 255.7 °C (avg. 244.6 °C) and between 244.2 and 248.9 °C (avg. 459 246.6 °C) (Table 3), which are within the range of data from barren bands. These data 460 461 indicate that the quartz and adularia bands associated with electrum precipitated at 462 average temperatures, which is unlike Sandaowanzi.

463

5. Discussion

465

464

Box and whisker plots showing the δ^{18} O values of each stage of chalcedony, quartz, 466 and adularia from Sandaowanzi and Dong'an are compared to one another on Figure 10 467 and discussed below. Both Sandaowanzi and Dong'an have similar initial $\delta^{18}O(Oz)$ 468 values (~0‰, Stage-I; Fig. 10a, b) and fluid inclusion homogenization temperatures 469 (~270 °C; Fig. 10c, d). These initial fluids ($\delta^{18}O(H_2O) = -8.6\%$, Stage-I; Fig. 10e, f) are 470 471 indicative of isotopically exchanged meteoric water (e.g., Hedenquist and Lowenstern 1994; Simmons 1995; John et al. 2003; Simmons et al. 2005) and are typical of most 472 other adularia-sericite Au-Ag deposits in the world (e.g., Simmons 1995; Faure et al. 473 474 2002; John et al. 2003). The magmatic fluid signal is thought to be weak in these deposits, because the intrusive source is deep such that magmatic fluids are diluted by a much 475 476 larger volume of meteoric water (e.g., Giggenbach 1992; Hedenquist and Lowenstern 1994; Simmons 1995; Simmons et al. 2005). 477

478

479 At Sandaowanzi, variations in the δ^{18} O of quartz from ~0‰ in Stage I, to ~-4‰ in 480 Stage II, to ~-6‰ in Stage III, to ~+7‰ in Stage IV, to ~-3‰ in Stage V (Fig. 10a) show 481 that, at the micron to millimeter scale only accessible by SIMS (10-µm spots), δ^{18} O 482 fluctuates by 15‰. We infer that this fluctuation reflects a step change in the proportions 483 of meteoric and magmatic and fluid in the veins (Fig. 10a). Evidence for the mixing of

484	meteoric water with magmatic fluids is provided by the low $\delta^{18}O$ values of Stage II-III
485	quartz, the high δ^{18} O value of Stage IV quartz followed by Au-Ag-tellurides, and the low
486	δ^{18} O values of Stage V quartz veins (Fig. 10a). The abrupt positive δ^{18} O shift (up to +7.7)
487	detected in Stage IV quartz followed by Au-Ag telluride minerals at Sandaowanzi (Figs.
488	8c-e and 10a) is similar to those attributed to input of magmatic fluids or vapors in other
489	deposits (Giggenbach 1992; Hedenquist and Lowenstern 1994; Simmons 1995; Spry et al.
490	1996; Taylor 1997; Hedenquist et al. 1998; Simmons et al. 2005; Christie et al. 2007;
491	Saunders et al. 2008; Simpson and Mauk 2011; Simmons et al. 2016).
492	
493	Regarding ore-forming processes at Sandaowanzi, (i) colloform quartz veins (Stage I)
494	are typical textures that form from boiling fluids and are thought to be a product of
495	flashing-intense episodic boiling where the majority of the liquid transforms to steam
496	(Moncada et al. 2012; Shimizu 2014; Simpson et al. 2015; Taksavasu et al. 2018). Layers
497	of chalcedony and fine-grained quartz with a jigsaw texture are thought to form by
498	recrystallization of an amorphous silica precursor that precipitated during episodes of
499	boiling (Fournier 1985; Saunders 1990, 1994; Herrington and Wilkinson 1993; Saunders
500	and Schoenly 1995; Shimizu et al. 1998; John et al. 2003; Shimizu 2014; Prokofiev et al.
501	2016). (ii) The small decrease in oxygen isotope ratios from Stage I to III indicates that
502	hydrothermal fluids were still dominated by meteoric water (Fig. 10e). (iii) The
503	subsequent increase by up to 15‰ during Stage IV records a substantial input of
504	magmatic fluids into the veins. The euhedral comb textures of Stage III and IV quartz are 24

unlike typical textures that form from boiling fluids (e.g., bladed quartz, Dong et al. 1995; 505 Moncada et al. 2012), which suggests that they precipitated from slowly changing 506 507 conditions, such as fluid mixing or gentle boiling (a relatively small portion of the liquid mass is transferred to the vapor phase) or nonboiling (Fournier 1985; Dong et al. 1995; 508 Moncada et al. 2012; Shimizu 2014; Taksavasu et al. 2018). Fluid inclusions in Stage III 509 510 quartz (~280 °C) followed by the Stage IV rim have higher homogenization temperatures than those in Stage II quartz (~250 °C). (iv) After Stage IV magmatic fluid input, Stage V 511 quartz δ^{18} O values decrease to -2.8‰, which reflects dilution by meteoric water with a 512 calculated $\delta^{18}O(H_2O) = -12.3\%$. 513

514

515 Although the positive oxygen isotope shift in Stage IV quartz could theoretically be 516 explained by intense boiling with rapid cooling and oxygen isotope exchange with host rocks, textures (e.g., bladed quartz) with fluid inclusions (e.g., coexisting vapor-rich and 517 518 liquid-rich) that form from boiling fluids are absent, and host rocks were sealed off by 519 earlier stages of quartz. Fluid inclusion data also show that temperature increased (from 250 to 280 °C) in comb quartz followed by tellurides, which indicates that the positive 520 oxygen isotope shift (15%) was accompanied by heating rather than cooling. 521 522 Furthermore, if the fluid moved through underlying metasedimentary rocks, they are unlikely to leach significant amounts of Te because of the low Te concentration in the 523 524 crust (5 ppb; Wedepohl 1995). In addition, the subaerial continental setting of NE China 525 in the Early Cretaceous precludes involvement of seawater in the hydrothermal systems.

526 Thus, the abrupt positive shift in δ^{18} O values in Stage IV quartz and the ensuing 527 precipitation of Au-Ag telluride minerals must be due to a significant input of magmatic 528 fluid.

529

To evaluate this further, the mixing ratios between hot (300, 325, and 350 $^{\circ}$ C) 530 531 magmatic water and cooler 250 °C exchanged meteoric water required to produce a shift 532 from Stage III (average -5‰) to Stage IV (max +7.7‰), are \sim 1.7/1, \sim 1.9/1, and \sim 2.2/1 at corresponding temperatures of 281, 299, and 318 °C, respectively (Fig. 13). These results 533 show that mixing with 300 °C magmatic fluids is required to explain the $\delta^{18}O(Qz)$ shift 534 from -5 to 7.7‰ and the maximum temperature of ~278 °C recorded by fluid inclusions. 535 Higher temperature magmatic fluids produce the same isotopic shift at much higher 536 537 temperatures. Magmatic fluid must have been saturated with dissolved silica because it cooled from magmatic temperatures to 300 °C before mixing with 250 °C exchanged 538 539 meteoric water. Because the difference in silica solubility between 300 °C magmatic fluid and 250 °C exchanged meteoric water is small, only a small amount of quartz 540 precipitated followed by tellurides. The magmatic fluid must also have had a low salinity 541 or the increase in temperature would have been accompanied by a marked increase in 542 543 salinity, which is not observed. We therefore surmise that the magmatic fluid in this system consisted of low salinity condensed magmatic vapor with elevated Te, Au, and Ag 544 545 contents, as postulated by Williams-Jones and Heinrich (2005).

546

547	At Dong'an, although five stages of quartz were also distinguished, the δ^{18} O values
548	of quartz and chalcedony are much more consistent with a narrow range of -2.2 to $+1.6\%$
549	that is indicative of meteoric hydrothermal fluids (Fig. 10b). Although adularia has a
550	lower range from -5.9 to -3.5‰ (Fig. 10b), this difference is mostly due to the \sim 3‰
551	fractionation factor between quartz and K-feldspar at epithermal conditions (Clayton et al
552	1972, 1989; Chiba et al. 1989). In other words, adularia precipitated from the same fluid
553	as quartz and chalcedony.
554	
555	Regarding ore-forming processes at Dong'an, (i) Stage I bladed quartz is a
556	pseudomorphic replacement of bladed calcite that formed by boiling of meteoric water
557	(Simmons and Christenson 1994; Dong et al. 1995; Etoh et al. 2002a) and has oxygen
558	isotope values that fluctuate over a range of ~2.0‰. (ii) Stage II flamboyant texture
559	followed by Stage III quartz and chalcedony also forms from boiling fluids (Bodnar et al.
560	1985; Dong et al. 1995) and oxygen isotope compositions did not change much during
561	precipitation of Stage II and III quartz and chalcedony. (iii) Subsequent boiling during
562	Stage IV was accompanied by an increase in pH and precipitation of quartz, adularia,
563	calcite, electrum, sphalerite, and galena with plumose and colloform textures (Reed 1982;
564	Reed and Spycher 1985; Simmons and Browne 2000; Zhou et al. 2001; Etoh et al. 2002b;
565	Shimizu 2014). Gold-Ag tellurides are notably rare or absent. Fluid inclusions in Stage
566	IV quartz also have homogenization temperatures that are similar to those in Stage II
567	quartz (~245 °C). (iv) Finally, although oxygen isotope evidence for inputs of magmatic 27

568	fluid is not obvious, the trace amount of Au-Ag telluride minerals allows that inputs may
569	have been minute inputs (Fig. 7f). These results confirm that boiling was the main
570	mechanism of Au-Ag mineralization in Stage IV quartz-adularia-electrum bands at
571	Dong'an, which is also similar to other adularia-sericite Au-Ag deposits in the world (e.g.,
572	Hishikari, Japan; Hayashi et al. 2001; Faure et al. 2002).
573	
574	6. Implications
575	
576	This study shows that detailed understanding of the textures, oxygen isotope
577	compositions, homogenization temperatures, and salinities of fluid inclusions within
578	paragenetically complex quartz veins can advance understanding of fluid sources and
	paragenetically compten quarter comb can advance sinderstanding of finde sources and

processes of mineral precipitation in Au-Ag \pm Te bearing epithermal systems. The 579 580 detailed CL patterns, oxygen isotope, and temperature variations documented in these 581 quartz veins show that inputs of magmatic fluid into adularia-sericite epithermal systems 582 are exceedingly difficult to detect without in situ micro analysis spatially correlated to textures. Furthermore, these minerals only record clear evidence of magmatic inputs in 583 thin growth zones of quartz (20-100 µm) that are mantled by Au-Ag-Te minerals. 584 585 Consequently, most of the evidence gathered from gangue minerals in these systems using conventional methods is apt to record convection and episodic boiling of more or 586 587 less barren meteoric hydrothermal fluids. Our results support a growing body of evidence that productive high-grade Au-Ag-telluride ores in adularia-sericite epithermal systems 588

28

form by the input of magmatic fluids into otherwise barren meteoric flow systems. This interpretation is consistent with that proposed to explain the origin of bonanza epithermal Au-Ag deposits in the Northern Great Basin, USA, based on the O and Pb isotope compositions of ore and gangue minerals (Saunders et al., 2008) and thus may have broad applicability.

- 594
- 595

Acknowledgements

596

The authors are grateful to the Bureau of Geology and Mineral Exploration 597 (Heilongjiang), the Geological Brigades of the Heilongjiang Geological Survey, and 598 599 Sandaowanzi and Dong'an Gold Co. Ltd. for their wholehearted support of the field work. 600 Drs. Le Wang and Kaixuan Hui are thanked for their help on the sample collection. Drs. Richard J. Moscati, Thomas Monecke, Benjamin J. Linzmeier, and Mitchell Bennett are 601 602 thanked for their help on the sample preparation, CL images, QGIS maps, and FIs 603 homogenization temperatures. The manuscript benefited from reviews by James A. Saunders, an anonymous referee, and the U.S. Geological Survey reviewers Craig A. 604 Johnson and Jeffrey L. Mauk. Daniel Gregory is thanked for careful editorial handling. 605 606 This study was funded by the Natural Science Foundation of China (Grant No. 41802099), the National Key Research and Development Program of China (Grant No. 607 608 2017YFC0601306), the foundation of the Key Laboratory of Mineral Resources, 609 IGGCAS (Grant No. KLMR2017-08), the CPSF-CAS Joint Foundation for Excellent

610	Postdoctoral Fellows (Grant No. 2017LH016), and the China Postdoctoral Science
611	Foundation (Grant No. 2018M631567). WiscSIMS is supported by the U.S. National
612	Science Foundation (EAR-1658823) and the University of Wisconsin- Madison. JWV
613	and KK are supported by the U.S. Department of Energy, Office of Science, Office of
614	Basic Energy Sciences (Geosciences) under Award Number DE-FG02-93ER14389. Any
615	use of trade, product, or firm names is for descriptive purposes only and does not imply
616	endorsement by the U.S. Government.
617	
618	References cited list
619	
620	Ahmad, M., Solomon, M., and Walshe, J. (1987) Mineralogical and geochemical studies
621	of the Emperor gold telluride deposit, Fiji. Economic Geology, 82, 345–370.
622	Anderson, W.B., and Eaton, P.C. (1990) Gold mineralization at the Emperor Mine,
623	Vatukoula, Fiji. Journal of Geochemical Exploration, 36, 267–296.
624	Ao, G., Xue, M., Zhou, J., Wang, G., and Chen, H. (2004) Genesis of Dong'an gold
625	deposit, Heilongjiang province, NE China. Mineral Resources and Geology, 18, 118–
626	121 (in Chinese with English abstract).
627	Beaty, D.W., Kelley, K.D., Silberman, M.L., and Thompson, T.B. (1996) Oxygen isotope
628	geochemistry of a portion of the Cripple Creek hydrothermal system, Guidebook
629	Series, Society of Economic Geologists, Inc., 26, 55–64.

630	Bodnar, R.J., Reynolds, T.J., and Kuehn, C.A., 1985, Fluid-inclusion systematics in
631	epithermal systems, in Berger, B.R., and Bethke, P.M., eds., Geology and
632	Geochemistry of Epithermal Systems, Society of Economic Geologists, Inc., p. 73-
633	97.
634	Cernuschi, F., Dilles, J.H., Grocke, S.B., Valley, J.W., Kitajima, K., and Tepley, F.J., III
635	(2018) Rapid formation of porphyry copper deposits evidenced by diffusion of
636	oxygen and titanium in quartz. Geology, 46, 611–614.
637	Cheng, L. (2017) Ore genesis of the Sandaowanzi telluride-gold deposit in Heilongjiang
638	province. M.Sc. thesis, Changchun, China, Jilin University, 36-38 (in Chinese with
639	English abstract).
640	Chiba, H., Chacko, T., Clayton, R.N., and Goldsmith, J.R. (1989) Oxygen isotope
641	fractionations involving diopside, forsterite, magnetite, and calcite: Application to
642	geothermometry. Geochimica et Cosmochimica Acta, 53, 2985–2995.
643	Christie, A.B., Simpson, M.P., Brathwaite, R.L., Mauk, J.L., and Simmons, S.F. (2007)
644	Epithermal Au-Ag and related deposits of the Hauraki goldfield, Coromandel
645	volcanic zone, New Zealand. Economic Geology, 102, 785-816.
646	Ciobanu, C.L., Cook, N.J., and Spry, P.G. (2006) Preface - Special Issue: Telluride and
647	selenide minerals in gold deposits - how and why?. Mineralogy and Petrology, 87,
648	163–169.

31

- Clayton, R.N., Goldsmith, J.R., and Mayeda, T.K. (1989) Oxygen isotope fractionation in
 quartz, albite, anorthite, and calcite. Geochimica et Cosmochimica Acta, 53, 725–
 733.
- 652 Clayton, R.N., O'Neil, J.R., and Mayeda, T.K. (1972) Oxygen isotope exchange between
- quartz and water. Journal of Geophysical Research, 77, 3057–3067.
- 654 Cook, N.J., and Ciobanu, C.L. (2005) Tellurides in Au deposits: Implications for
- 655 modelling, in Proceedings Mineral Deposit Research. Meeting the Global Challenge
- 656 2005, Springer, 1387–1390.
- Cook, N.J., Ciobanu, C.L., Spry, P.G., and Voudouris, P. (2009) Understanding
 gold-(silver)-telluride-(selenide) mineral deposits. Episodes, 32, 249–263.
- 659 Cooke, D.R., and McPhail, D. (2001) Epithermal Au-Ag-Te mineralization, Acupan,
- 660 Baguio district, Philippines: Numerical simulations of mineral deposition. Economic
- 661 Geology, 96, 109–131.
- 662 Dong, G., Morrison, G., and Jaireth, S. (1995) Quartz textures in epithermal veins,
- Queensland; classification, origin and implication. Economic Geology, 90, 1841–
 1856.
- Etoh, J., Izawa, E., and Taguchi, S. (2002b) A fluid inclusion study on columnar adularia
- from the Hishikari low-sulfidation epithermal gold deposit, Japan. Resource Geology,
 52, 73–78.
- Etoh, J., Izawa, E., Watanabe, K., Taguchi, S., and Sekine, R. (2002a) Bladed quartz and
- its relationship to gold mineralization in the Hishikari low-sulfidation epithermal 32

gold deposit, Japan. Economic Geology, 97, 1841–1851.

671	Faure, K., Matsuhisa, Y., Metsugi, H., Mizota, C., and Hayashi, S. (2002) The Hishikari
672	Au-Ag epithermal deposit, Japan: Oxygen and hydrogen isotope evidence in
673	determining the source of paleohydrothermal fluids. Economic Geology, 97, 481-
674	498.
675	Fekete, S., Weis, P., Driesner, T., Bouvier, A.S., Baumgartner, L., and Heinrich, C.A.
676	(2016) Contrasting hydrological processes of meteoric water incursion during
677	magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe.
678	Earth and Planetary Science Letters, 451, 263–271.
679	Fournier, R.O. (1985) The behavior of silica in hydrothermal solution, in Berger, B.R.,
680	and Bethke, P.M., eds., Geology and Geochemistry of Epithermal Systems. Society
681	of Economic Geologists, Inc., 45–61.
682	Friedman, I., and O'Neil, J.R. (1977) Compilation of stable isotope fractionation factors
683	of geochemical interest, in Fleisher, M., ed., Data of Geochemistry (Sixth Edition):
684	U.S. Geological Survey Professional Paper 440–KK, 11 p.
685	https://doi.org/10.3133/pp440KK.
686	Gao, F.H., Xu, W.L., Yang, D.B., Pei, F.P., Liu, X.M., and Hu, Z.C. (2007) LA-ICP-MS
687	zircon U-Pb dating from granitoids in southern basement of Songliao basin:
688	Constraints on ages of the basin basement. Science in China (Series D), 50, 995-
689	1004.

33

690	Gao, S. (2017) Study on Mesozoic gold metallogenic system, northern Heihe,
691	Heilongjiang province. Ph.D. thesis, Beijing, China, China University of
692	Geosciences (Beijing), 196 (in Chinese with English abstract).
693	Gao, S., Xu, H., Quan, S.L., Zang, Y.Q., Wang, T. (2018b) Geology, hydrothermal fluids,
694	H-O-S-Pb isotopes, and Rb-Sr geochronology of the Daxintun orogenic gold deposit
695	in Heilongjiang province, NE China. Ore Geology Reviews, 92, 569–587.
696	Gao, S., Xu, H., Zang, Y.Q., and Wang, T. (2018a) Mineralogy, ore-forming fluids and
697	geochronology of the Shangmachang and Beidagou gold deposits, Heilongjiang
698	province, NE China. Journal of Geochemical Exploration, 188, 137–155.
699	Gao, S., Xu, H., Zang, Y.Q., Yang, L.J., Yang, B., and Wang, T. (2017) Late Mesozoic
700	magmatism and metallogeny in NE China: The Sandaowanzi-Beidagou example.
701	International Geology Review, 59, 1413–1438.
702	Ge, W.C., Wu, F.Y., Zhou, C.Y., and Zhang, J.H. (2005) Zircon U-Pb ages and its
703	significance of the Mesozoic granites in the Wulanhaote Region, central Great
704	Xing'an Range. Acta Petrologica Sinica, 21, 749-762 (in Chinese with English
705	abstract).
706	Giggenbach, W.F. (1992) Magma degassing and mineral deposition in hydrothermal
707	systems along convergent plate boundaries. Economic Geology, 87, 1927-44.
708	Goldfarb, R.J., Berger, B.R., George, M.W., and Seal, R.R., II (2017) Tellurium, in
709	Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical
710	Mineral Resources of the United States—Economic and Environmental Geology and 34

711	Prospects for Future Supply. U.S. Geological Survey Professional Paper 1802, R1-
712	R27.
713	Goldfarb, R.J., Hofstra, A.H., Simmons, S.F. (2016) Critical elements in Carlin,
714	epithermal, and orogenic gold deposits, in Verplanck, P.L., and Hitzman, M.W., eds.,
715	Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists,
716	Inc., 217–244.
717	Haas, J.L. (1971) The effect of salinity on the maximum thermal gradient of a
718	hydrothermal system at hydrostatic pressure. Economic Geology, 66, 940–946.
719	Han, S. (2013) Magmatic fluids and gold mineralization of the late Mesozoic epithermal
720	gold system in northern Lesser Xing'an Range, NE China. Ph.D. dissertation,
721	Changchun, China, Jilin University, 47–50 (in Chinese with English abstract).
722	Haroldson, E.L., Brown, P.E., Ishida, A., and Valley, J.W. (2020) SIMS oxygen isotopes
723	indicate Phanerozoic fluids permeated a Precambrian gold deposit. Chemical
724	Geology, 533, 119429.
725	Hayashi, K.I., Maruyama, T., and Satoh, H. (2001) Precipitation of gold in a
726	low-sulfidation epithermal gold deposit: Insights from a submillimeter-scale oxygen
727	isotope analysis of vein quartz. Economic Geology, 96, 211–216.
728	Heck, P.R., Huberty, J.M., Kita, N.T., Ushikubo, T., Kozdon, R., and Valley, J.W. (2011)
729	SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and
730	Paleoproterozoic banded iron formations. Geochimica et Cosmochimica Acta, 75,
731	5879–5891.

- Hedenquist, J.W., and Lowenstern, J.B. (1994) The role of magmas in the formation of
 hydrothermal ore deposits. Nature, 370, 519–527.
- 734 Hedenquist, J.W., Arribas, A., Jr., and Reynolds, T.J. (1998) Evolution of an
- intrusion-centered hydrothermal system; Far southeast-Lepanto porphyry and
 epithermal Cu-Au deposits, Philippines. Economic Geology, 93, 373–404.
- Herrington, R., and Wilkinson, J. (1993) Colloidal gold and silica in mesothermal vein
 systems. Geology, 21, 539–542.
- Holwell, D.A., Fiorentini, M., McDonald, I., Lu, Y., Giuliani, A., Smith, D.J., Keith, M.,
- and Locmelis, M. (2019) A metasomatized lithospheric mantle control on the
- 741 metallogenic signature of post-subduction magmatism. Nature Communications, 10,742 3511.
- Jahn, B.M. (2004) The Central Asian Orogenic Belt and growth of the continental crust in
- the Phanerozoic, in Malpas, J., Fletcher, C.J.N., Ali, J.R., and Aitchison, J.C., eds.,
- Aspects of the Tectonic Evolution of China. Geological Society, London, 73–100.
- Jahn, B.M., Wu, F.Y., and Chen, B. (2000) Massive granitoids generation in central Asia:

747 Nd isotopic evidence and implication for continental growth in the Phanerozoic.

- 748 Episodes, 23, 82–92.
- 749 Jenkin, G.R.T., Graham, H., Smith, D.J., Khan, R., Abbott, A.P., Harris, R.C., Holwell,
- 750 D.A., Graham, S.D., Khan, R., and Stanley, C.J. (2019) Gold and critical element
- recovery with environmentally benign Deep Eutectic Solvents. 15th SGA Biennial
- 752 Meeting abstract, 4, 1512–1515.

753	Jensen, E.P., and Barton, M.D. (2000) Gold deposits related to alkaline magmatism, in
754	Hagemann, S.G., and Brown, P.E., eds., Gold in 2000. Society of Economic
755	Geologists, Inc., 279–314.
756	John, D.A., Hofstra, A.H., Fleck, R.J., Brummer, J.E., and Saderholm, E.C. (2003)
757	Geologic setting and genesis of the Mule Canyon low-sulfidation epithermal
758	gold-silver deposit, north-central Nevada. Economic Geology, 98, 425–463.
759	Keith, M., Smith, D.J., Doyle, K., Holwell, D.A., Jenkin, G.R.T., Barry, T.L., Becker, J.,
760	and Rampe, J. (2020) Pyrite chemistry: A new window into Au-Te ore-forming
761	processes in alkaline epithermal districts, Cripple Creek, Colorado. Geochimica et
762	Cosmochimica Acta, 274, 172–191.
763	Kelley, K.D., and Spry, P.G. (2016) Critical elements in alkaline igneous rock-related
764	epithermal gold deposits, in Verplanck, P.L., and Hitzman, M.W., eds., Rare Earth
765	and Critical Elements in Ore Deposits. Society of Economic Geologists, Inc., 195-
766	216.
767	Kelley, K.D., Romberger, S.B., Beaty, D.W., Pontius, J.A., Snee, L.W., Stein, H.J., and
768	Thompson, T.B. (1998) Geochemical and geochronological constraints on the
769	genesis of Au-Te deposits at Cripple Creek, Colorado. Economic Geology, 93, 981-

770 1012.

- 771 Kelly, J.L., Fu, B., Kita, N.T., and Valley, J.W. (2007) Optically continuous silcrete
- quartz cements of the St. Peter Sandstone: High precision oxygen isotope analysis by
- ion microprobe. Geochimica et Cosmochimica Acta, 71, 3812–3832.

774	Kita, N.T., Ushikubo, T., Fu, B., and Valley, J.W. (2009) High precision SIMS oxygen
775	isotope analysis and the effect of sample topography. Chemical Geology, 264, 43-
776	57.
777	Li, J.Y. (2006) Permian geodynamic setting of Northeast China and adjacent regions:
778	Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal
779	of Asian Earth Sciences, 26, 207–224.
780	Li, Z.Z., Qin, K.Z., Li, G.M., Jin, L.Y., Song, G.X., and Han, R. (2019) Incursion of
781	meteoric water triggers molybdenite precipitation in porphyry Mo deposits: A case
782	study of the Chalukou giant Mo deposit. Ore Geology Reviews, 109, 144–162.
783	Liu, J.L., Bai, X.D., Zhao, S.J., Tran, M.D., Zhang, Z.C., Zhao, Z.D., Zhao, H.B., and Lu,
784	J. (2011) Geology of the Sandaowanzi telluride gold deposit of the northern Great
785	Xing'an Range, NE China: Geochronology and tectonic controls. Journal of Asian
786	Earth Sciences, 41, 107–118.
787	Liu, J.L., Zhao, S.J., Cook, N.J., Bai, X.D., Zhang, Z.C., Zhao, Z.D. and Lu, J. (2013)

- Bonanza-grade accumulations of gold tellurides in the Early Cretaceous
 Sandaowanzi deposit, northeast China. Ore Geology Reviews, 54, 110–126.
- Miao, L.C., Fan, W.M., Zhang, F.Q., Liu, D.Y., Jian, P., Shi, G.H., Tao, H., and Shi, Y.R.
- 791 (2004) Zircon SHRIMP geochronology of the Xinkailing-Kele complex in the
- northwestern Lesser Xing'an Range, and its geological implications. Chinese Science
- 793 Bulletin, 49, 201–209.

38

794	Miao, L.C., Liu, D.Y., Zhang, F.Q., Fan, W.M., Shi, Y.R., and Xie, H.Q. (2007) Zircon
795	SHRIMP U-Pb ages of the "Xinghuadukou Group" in Hanjiayuanzi and Xinlin areas
796	and the "Zhalantun Group" in Inner Mongolia, Da Hinggan Mountains. Chinese
797	Science Bulletin, 52, 1112–1124.
798	Miao, L.C., Zhang, F.Q., Zhu, M.S., and Liu, D.Y. (2015) Zircon SHRIMP U-Pb dating

- of metamorphic complexes in the conjunction of the Greater and Lesser Xing'an
- ranges, NE China: Timing of formation and metamorphism and tectonic implications.
- Journal of Asian Earth Sciences, 114, 634–648.
- 802 Moncada, D., Mutchler, S., Nieto, A., Reynolds, T.J., Rimstidt, J.D., and Bodnar, R.J.
- 803 (2012) Mineral textures and fluid inclusion petrography of the epithermal Ag-Au
- 804 deposits at Guanajuato, Mexico: Application to exploration. Journal of Geochemical
- 805 Exploration, 114, 20–35.
- 806 O'Neil, J.R., and Silberman, M.L. (1974) Stable isotope relations in epithermal Au-Ag
- deposits. Economic Geology, 69, 902–909.
- O'Neil, J.R., and Taylor, H.P., Jr. (1967) The oxygen isotope and cation exchange
 chemistry of feldspars. American Mineralogist, 52, 1414–1437.
- 810 Oster J. L., Kitajima K., Valley J. W., Rogers B. and Maher K. (2017) An evaluation of
- 811 paired δ^{18} O and $(^{234}U/^{238}U)_0$ in opal as a tool for paleoclimate reconstruction in
- semi-arid environments. Chemical Geology, 449, 236–252.

- 813 Pei, F.P., Xu, W.L., Yang, D.B., Zhao, Q.G., Liu, X.M., and Hu, Z.C. (2007) Zircon U-Pb
- 814 geochronology of basement metamorphic rocks in the Songliao Basin. Chinese
- 815 Science Bulletin, 52, 942–948.
- 816 Peres, P., Kita, N.T., Valley, J.W., Fernandes, F., and Schuhmacher, M. (2013) New
- 817 sample holder geometry for high precision isotope analyses: Surface and Interface
 818 Analysis, 45, 553–556.
- 819 Pollington A.D. (2013) Stable isotope signatures of diagenesis. natural and experimental

studies. Ph.D. thesis, University of Wisconsin, Madison.

- 821 Prokofiev, V.Y., Kamenetsky, V.S., Selektor, S.L., Rodemann, T., Kovalenker, V.A., and
- 822 Vatsadze, S.Z. (2016) First direct evidence for natural occurrence of colloidal silica
- in chalcedony-hosted vacuoles and implications for ore-forming processes. Geology,

824 45, 71–74.

- Qu, G.S. (2008) Lithostratigraphy of Heilongjiang province, China. China University of
 Geosciences Press, Wuhan, China, 1–301 (in Chinese).
- Reed, M.H. (1982) Calculation of multicomponent chemical equilibria and reaction
 processes in systems involving minerals gases and an aqueous phase. Geochimica et
- 829 Cosmochimica Acta, 46, 513–528.
- 830 Reed, M.H. (1998) Calculation of simultaneous chemical equilibria in
- aqueous-mineral-gas systems and its application to modeling hydrothermal processes,
- in Richards, J.P., and Larson, P.B., eds., Techniques in Hydrothermal Ore Deposits
- 833 Geology. Society of Economic Geologists, Inc., 10, 109–124.

834	Reed, M.H. and Spycher, N.F. (1985) Boiling, cooling, and oxidation in epithermal
835	systems: A numerical modeling approach, in Berger, B.R., and Bethke, P.M., eds.,
836	Geology and Geochemistry of Epithermal Systems. Society of Economic Geologists,
837	Inc., 249–272.
838	Saunders, J.A. (1990) Colloidal transport of gold and silica in epithermal precious-metal
839	systems: Evidence from the Sleeper deposit, Nevada. Geology, 18, 757–760.
840	Saunders, J.A. (1994) Silica and gold textures in bonanza ores of the Sleeper deposit,
841	Humboldt County, Nevada; evidence for colloids and implications for epithermal
842	ore-forming processes. Economic Geology, 89, 628–638.
843	Saunders, J.A., and Brueseke, M.E. (2012) Volatility of Se and Te during
844	subduction-related distillation and the geochemistry of epithermal ores of the western
845	United States. Economic Geology, 107, 165–172.
846	Saunders, J.A., and Schoenly, P.A. (1995) Boiling, colloid nucleation and aggregation,
847	and the genesis of bonanza Au-Ag ores of the Sleeper deposit, Nevada. Mineralium
848	Deposita, 30, 199–210.
849	Saunders, J.A., Unger, D.L., Kamenov, G.D., Fayek, M., Hames, W.E., and Utterback,
850	W.C. (2008) Genesis of middle Miocene Yellowstone hotspot-related bonanza
851	epithermal Au-Ag deposits, Northern Great Basin, USA. Mineralium Deposita, 43,
852	715–734.
853	Sengör, A.M.C., Natal'in, B.A., and Burtman, V.S. (1993) Evolution of the Altaid
854	tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364, 299–307.

855	Shelton, K.L., So, C.S., Haeussler, G.T., Chi, S.J., and Lee, K.Y. (1990) Geochemical
856	studies of the Tongyoung gold-silver deposits, Republic of Korea; evidence of
857	meteoric water dominance in a Te-bearing epithermal system. Economic Geology, 85,
858	1114–1132.
859	Shimizu, T. (2014) Reinterpretation of quartz textures in terms of hydrothermal fluid
860	evolution at the Koryu Au-Ag deposit, Japan. Economic Geology, 109, 2051–2065.
861	Shimizu, T., Matsueda, H., Ishiyama, D., and Matsubaya, O. (1998) Genesis of
862	epithermal Au-Ag mineralization of the Koryu mine, Hokkaido, Japan. Economic
863	Geology, 93, 303–325.
864	Simmons, S.F. (1995) Magmatic contributions to low-sulfidation epithermal deposits, in
865	Magmas, fluids and ore deposits. Mineralogical Association of Canada Short Course
866	Series, 23, 455–477.
867	Simmons, S.F., and Browne, P.R.L. (2000) Hydrothermal minerals and precious metals
868	in the Broadlands-Ohaaki geothermal system: Implications for understanding
869	low-sulfidation epithermal deposits. Economic Geology, 95, 971–1000.
870	Simmons, S.F., and Christenson, B.W. (1994) Origins of calcite in a boiling geothermal
871	system. American Journal of Science, 294, 361–400.
872	Simmons, S.F., Brown, K.L., and Tutolo, B.M. (2016) Hydrothermal transport of Ag, Au,
873	Cu, Pb, Te, Zn, and other metals and metalloids in New Zealand geothermal systems:
874	Spatial patterns, fluid-mineral equilibria, and implications for epithermal
875	mineralization. Economic Geology, 111, 589–618. 42

876	Simmons, S.F., White, N.C., and John, D.A. (2005) Geological characteristics of
877	epithermal precious and base metal deposits, in Hedenquist, J.W., Thompson, J.F.H.,
878	Goldfarb, R.J., and Richards, J.P., eds., One Hundredth Anniversary Volume, Society
879	of Economic Geologists, Inc., 485–522.
880	Simpson, M.P., and Mauk, J.L. (2011) Hydrothermal alteration and veins at the
881	epithermal Au-Ag deposits and prospects of the Waitekauri Area, Hauraki Goldfield,
882	New Zealand. Economic Geology, 106, 945–973.
883	Simpson, M.P., Palinkas, S.S., Mauk, J.L., and Bodnar, R.J. (2015) Fluid inclusion
884	chemistry of adularia-sericite epithermal Au-Ag deposits of the southern Hauraki
885	Goldfield, New Zealand. Economic Geology, 110, 763–786.
886	Smith, M.P., Savary, V., Yardley, B.W.D., Valley, J.W. Royer, J.J., and Dubois, M. (1998)
887	The evolution of the deep flow regime at Soultz-sous-Forfts, Rhine Graben, eastern
888	France: Evidence from a composite quartz vein. Journal of Geophysical Research,
889	103, 27,223–27,237
890	Spry, P.G., Chryssoulis, S., and Ryan, C.G. (2004) Process mineralogy of gold: Gold
891	from telluride-bearing ores. JOM, 56, 60-62.
892	Spry, P.G., Paredes, M.M., Foster, F., Truckle, J.S., and Chadwick, T.H. (1996) Evidence
893	for a genetic link between gold-silver telluride and porphyry molybdenum
894	mineralization at the Golden Sunlight deposit, Whitehall, Montana; fluid inclusion
895	and stable isotope studies. Economic Geology, 91, 507–526.

896	Sui, Z.M., Ge, W.C., Wu, F.Y., Zhang, J.H., Xu, X.C., and Cheng, R.Y. (2007) Zircon
897	U-Pb ages geochemistry and its petrogenesis of Jurassic granites in northeastern part
898	of the Da Hinggan Mts. Acta Petrologica Sinica, 23, 461-480 (in Chinese with
899	English abstract).
900	Steele-MacInnis, M., Lecumberri-Sanchez, P., and Bodnar, R.J. (2012)
901	HOKIEFLINCS_H2O-NACL: A Microsoft Excel spreadsheet for interpreting
902	microthermometric data from fluid inclusions based on the PVTX properties of
903	H ₂ O-NaCl. Computers & Geosciences, 49, 334–337.
904	Taksavasu, T., Monecke, T., and Reynolds, T. (2018) Textural characteristics of
905	noncrystalline silica in sinters and quartz veins: Implications for the formation of
906	bonanza veins in low-sulfidation epithermal deposits. Minerals, 8, 331.
907	Tanner, D., Henley, R.W., Mavrogenes, J.A., and Holden, P. (2013) Combining in situ
908	isotopic trace element and textural analyses of quartz from four
909	magmatic-hydrothermal ore deposits. Contributions to Mineralogy and Petrology,
910	166, 1119–1142.
911	Taylor, H.P. (1997) Oxygen and hydrogen isotope relationships in hydrothermal mineral
912	deposits, in Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits. New
913	York, Wiley–Interscience, 229–302.
914	Valley, J.W., and Graham, C.M. (1996) Ion microprobe analysis of oxygen isotope ratios
915	in quartz from Skye granite: Healed micro-cracks, fluid flow, and hydrothermal
916	exchange. Contributions to Mineralogy and Petrology, 124, 225-234.

917	Valley, J.W., and Kita, N.T. (2009) In situ oxygen isotope geochemistry by ion
918	microprobe, in Fayek, M., ed., Secondary Ion Mass Spectrometry in the Earth
919	Sciences: Gleaning the big picture from a small spot. Mineralogical Association of
920	Canada, Short Course, 41, 19–63.
921	Valley, J.W., Graham, C.M., Harte, B., Kinny, P., and Eiler, J.M. (1998) Ion microprobe
922	analysis of oxygen, carbon, and hydrogen isotope ratios, in McKibben, M.A., Shanks,
923	W.C., III, and Ridley W.I., eds., Applications of Microanalytical Techniques to
924	Understanding Mineralizing Processes: Society of Economic Geologists, Inc., 7, 73-
925	98.
926	Voudouris, P. (2006) A comparative mineralogical study of Te-rich
927	magmatic-hydrothermal systems in northeastern Greece. Mineralogy and Petrology,
928	87, 241–275.
929	Wang, P.J., Liu, Z.J., Wang, S.X., and Song, W.H. (2002) ⁴⁰ Ar/ ³⁹ Ar and K/Ar dating of
930	the volcanic rocks in the Songliao basin, NE China: Constraints on stratigraphy and
931	basin dynamics. International Journal of Earth Sciences, 91, 331–340.
932	Wang, X.L., Coble, M.A., Valley, J.W., Shu, X.J., Kitajima, K., Spicuzza, M.J., and Sun,
933	T. (2014) Influence of radiation damage on Late Jurassic zircon from southern China:
934	Evidence from in situ measurements of oxygen isotopes, laser Raman, U-Pb ages,
935	and trace elements. Chemical Geology, 389, 122–136.
936	Wang, Y., Zhang, F.Q., Zhang, D.W., Miao, L.C., Li, T.S., Xie, H.Q., Meng, Q.R., and
937	Liu, D.Y. (2006) Zircon SHRIMP U-Pb dating of meta-diorite from the basement of

- the Songliao Basin and its geological significance. Chinese Science Bulletin, 51,
 1877–1883.
- 940 Wedepohl, K.H. (1995) The composition of the continental crust. Geochimica et
- 941 Cosmochimica Acta, 59, 1217–1232.
- 942 Williams-Jones, A.E., and Heinrich, C.A. (2005) Vapor transport of metals and the
- 943 formation of magmatic-hydrothermal ore deposits, in Hedenquist, J.W., Thompson,
- 944 J.F.H., Goldfarb, R.J., and Richards, J.P., eds., One Hundredth Anniversary Volume,
- 945 Society of Economic Geologists, Inc., 1287–1312.
- 946 Wu, F.Y., Lin, J.Q., Wilde, S.A., Zhang, X.O., and Yang, J.H. (2005b) Nature and
- 947 significance of the Early Cretaceous giant igneous event in eastern China. Earth and
 948 Planetary Science Letters, 233, 103–119.
- 949 Wu, F.Y., Sun, D.Y., Li, H.M., and Wang, X.L. (2000) Zircon U-Pb ages of the basement
- 950 rocks beneath the Songliao Basin, NE China. Chinese Science Bulletin, 45, 1514–
 951 1518.
- Wu, F.Y., Sun, D.Y., Li, H.M., and Wang, X.L. (2001) The nature of basement beneath
- 953 the Songliao Basin in NE China: Geochemical and isotopic constraints: Physics and
- 954 Chemistry of the Earth. Part A. Solid Earth and Geodesy, 26, 793–803.
- 955 Wu, F.Y., Yang, J.H., Lo, C.H., Wilde, S.A., Sun, D.Y., and Jahn, B.M. (2007) The
- 956 Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the
- 957 western Pacific margin of northeastern China. Island Arc, 16, 156–172.

958	Wu, Z., Wang, H., Xu, D., and Zhou, Y. (2005a) Geology and geochemistry of the
959	Sandaowanzi gold deposit, Heilongjiang province, NE China. Geological Review, 51,
960	264–267 (in Chinses with English abstract).

- 961 Xu, H., Yu, Y.X., Wu, X.K., Yang, L.J., Tian, Z., Gao, S., and Wang, Q.S. (2012)
- 962 Intergrowth texture in Au-Ag-Te minerals from Sandaowanzi gold deposit
 963 Heilongjiang Province: Implications for ore-forming environment. Chinese Science
 964 Bulletin, 57, 2778–2786.
- Yang, T. (2008) Volcanic rocks and their relationships to the gold mineralization in the
 Dong'an deposit, NE China. M.Sc. thesis, Beijing, China, China University of

967 Geosciences (Beijing), 70–72 (in Chinese with English abstract).

- 968 Yu, Y.X., Xu, H., Wu, X.K., Yang, L.J., Tian, Z., Gao, S., and Wang, Q.S. (2012)
- 969 Characteristics of the Au-Ag-Te minerals and its ore-forming fluids in Sandaowanzi
- 970 gold deposit Heilongjiang Province. Acta Petrologica Sinica, 28, 345–356 (in
 971 Chinese with English abstract).
- Zhai, D., and Liu, J. (2014) Gold-telluride-sulfide association in the Sandaowanzi
 epithermal Au-Ag-Te deposit, NE China: Implications for phase equilibrium and
 physicochemical conditions. Mineralogy and Petrology, 108, 853–871.
- 975 Zhai, D., Williams-Jones, A.E., Liu, J., Tombros, S.F., and Cook, N.J. (2018)
- 976 Mineralogical fluid inclusion and multiple isotope (H-O-S-Pb) constraints on the
- 977 genesis of the Sandaowanzi epithermal Au-Ag-Te deposit, NE China. Economic
- 978 Geology, 113, 1359–1382.

979	Zhang, J.H., Gao, S., Ge, W.C., Wu, F.Y., Yang, J.H., Wilde, S.A., and Li, M. (2010b)
980	Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range
981	northeastern China: Implications for subduction-induced delamination. Chemical
982	Geology, 276, 144–165.
983	Zhang, J.H., Ge, W.C., Wu, F.Y., Wilde, S.A., Yang, J.H., and Liu, X.M. (2008)
984	Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range,
985	northeastern China. Lithos, 102, 138–157.
986	Zhang, Z., Mao, J., Wang, Y., Pirajno, F., Liu, J., and Zhao, Z. (2010a) Geochemistry and
987	geochronology of the volcanic rocks associated with the Dong'an adularia-sericite
988	epithermal gold deposit, Lesser Hinggan Range, Heilongjiang province, NE China:
989	Constraints on the metallogenesis. Ore Geology Reviews, 37, 158–174.
990	Zhao, Z.H., Sun, J.G., Li, G.H., Xu, W.X., Lü, C.L., Wu, S., Guo, Y., Liu, J., and Ren, L.
991	(2019) Early Cretaceous gold mineralization in the Lesser Xing'an Range of NE
992	China: The Yongxin example. International Geology Review, 61, 1522–1549.
993	Zhou, L., Guo, J., Liu, B., and Li, L. (2001) Structural state of adularia from Hishikari,
994	Japan. Chinese Science Bulletin, 46, 950–953.
995	
996	List of figure captions
997	
998	Fig. 1. (a). Regional geologic map showing the location of Au-Ag deposits in north
999	Heilongjiang province, NE China (after Gao 2017; Zhao et al. 2019). The inset shows the

location of the regional map relative to crustal blocks in NE China. Geologic map and
cross section of Sandaowanzi (b) (after Liu et al. 2013; Gao et al. 2017) and Dong'an
deposits (c) (after Zhang et al. 2010a).

1003

Fig. 2. Photos of multiple generations of quartz from Sandaowanzi. (a). Stage I quartz veins hosted by andesite from underground. (b). Brecciated Stage I vein quartz cemented by the Stage II quartz from underground. (c). Stage II and Stage III quartz veins from underground. (d-e). Five stages of quartz and tellurides in the ore. (f). Early quartz vug

1008 with late euhedral laumontite. Roman numeral is quartz stage.

1009 Abbreviations: Lmt=Laumontite. Qz=Quartz. SEE=Southeast-East.

1010

1011 Fig. 3. Photos of multiple generations of quartz from Dong'an. (a). Five generations of 1012 quartz with early bladed and late colloform textures in drill core. Early bladed textures 1013 cross-cut by late colloform textures. (b). Ore-bearing colloform textures from open pit. 1014 Stage I, II, II, IV quartz in vein hosted by altered rhyolite, and crosscut by Stage 5 thin 1015 quartz veinlets. (c). Stage IV quartz, chalcedony, and adularia crosscut by Stage V thin quartz veinlets from open pit. (d). Early bladed quartz textures that are barren of gold. (e). 1016 1017 Colloform texture vein with four stages of quartz hosted in altered rhyolite. (f). 1018 Ore-bearing colloform vein. As in b, four stages of quartz are cut by Stage V thin quartz veinlets. Roman numeral is quartz stage. 1019

1020 Abbreviations: Adl=Adularia. Chc=Chalcedony. Lmt=Laumontite. Qz=Quartz.

1021

Fig. 4. Paragenesis of ore and gangue minerals in the veins. (a). Sandaowanzi deposit. (b).Dong'an deposit.

1024

Fig. 5. Sample locations from underground, open pit, and drill holes. (a). Longitudinal
vertical projection of Sandaowanzi veins. (b). Plane map and cross section of Dong'an
veins.

1028

1029 Fig. 6. Representative photomicrographs of quartz textures under crossed polars in transmitted light (a-e, sample thickness $\sim 200 \text{ }\mu\text{m}$) and ore minerals in reflected light (f) 1030 from Sandaowanzi. (a). Colloform texture consisting of fine-grained quartz with a jigsaw 1031 1032 texture and crystalline quartz with granoblastic texture. (b). Thin colloform texture with alternating bands of fine-grained jigsaw texture quartz and crystalline quartz. (c-e). 1033 Chalcedony, dark quartz, and crystalline quartz with a comb texture followed by 1034 1035 tellurides. (f). Coarse-grained hessite, stützite, and petzite associated with comb quartz 1036 from figure d.

1037 Abbreviations: Chc=Chalcedony. Qz=Quartz. Hes=Hessite. Ptz=Petzite. Stü=Stützite.
1038 CQ=Comb quartz. FQ=Fine-grained quartz.

1039

1040 Fig. 7. Representative photomicrographs of quartz textures under crossed polars in

1041 transmitted light (a-d, sample thickness ~200 μ m) and ore minerals in reflected light (e-f)

1042	from Dong an. (a). Bladed quartz followed by chalcedonic quartz. (b). Quartz crystals									
1043	with liquid- and vapor-rich inclusions in flamboyant texture. (c). Dark adularia crystals									
1044	followed by plumose quartz. (d). Adularia and quartz bands with sulfides, tellurides, and									
1045	electrum. (e). Pyrite, sphalerite, argentite, and electrum in colloform bands from figure d.									
1046	(f). Rare fine-grained hessite, petzite, altaite, and electrum.									
1047	Abbreviations: Act=Acanthite. Adl=Adularia. Alt=Altaite. Chc=Chalcedony.									
1048	Elc=Electrum. Gn=Galena. Hes=Hessite. Ptz=Petzite. Py=Pyrite. Qz=Quartz.									
1049	Sp=Sphalerite. BQ=Bladed quartz. PQ=Plumose quartz.									
1050										

Fig. 8. CL images of quartz and chalcedony from Sandaowanzi. SIMS oxygen isotope 1051 1052 spots are in red, and homogenization temperatures of fluid inclusion assemblages are 1053 outlined in yellow. The orange dashed lines show how each band of quartz correlates with the oxygen isotope profile in red and corresponding fluid composition in blue. The 1054 1055 quartz-water fractionation factor from Clayton et al. (1972) and Friedman and O'Neil 1056 (1977) and fluid inclusion homogenization temperature from each band were used to 1057 calculate $\delta^{18}O(H_2O)$. In bands where fluid inclusions are absent, temperature data from adjacent bands were used. (a). Colloform quartz with thin layer. (b and c). Fine-grained, 1058 drusy, and chalcedonic quartz without tellurides (b) and with abundant tellurides (c). (d 1059 and e). Chalcedonic, fine-grained, and crystal quartz with abundant tellurides. 1060 Abbreviations: Chc=Chalcedony. Qz=Quartz. FQ=Fine-grained quartz. QB=Quartz with 1061 CL-bright. QD=Quartz with CL-dark. QG=Quartz with CL-gray. QV=Quartz vein (Thin). 1062

1063

Fig. 9. CL images of quartz, chalcedony and adularia at Dong'an. SIMS oxygen isotope 1064 1065 spots are in red, and homogenization temperatures of fluid inclusion assemblages are outlined in yellow. The orange dashed lines show how each band of quartz correlates with 1066 the oxygen isotope profile in red and corresponding fluid composition in blue. The 1067 1068 quartz-water fractionation factor from Clayton et al. (1972) and Friedman and O'Neil (1977) and fluid inclusion homogenization temperature from each band were used to 1069 calculate $\delta^{18}O(H_2O)$. The K-feldspar-water fractionation factor from O'Neil and Taylor 1070 1071 (1967) fluid inclusion homogenization temperature from quartz in the same band with adularia were used to calculate $\delta^{18}O(H_2O)$. In bands where fluid inclusions are absent, 1072 1073 temperature data from adjacent bands were used. (a). Barren ghost-bladed texture quartz. (b and c). Colloform and cockade texture (b) and colloform texture (c) with minor Au-Ag 1074 minerals. 1075 1076 Abbreviations: Adl=Adularia. Chc=Chalcedony. Qz=Quartz. QB=Quartz with CL-bright.

1077 QD=Quartz with CL-dark. QG=Quartz with CL-gray. QV=Quartz vein (Thin).

1078

1080 in the Sandaowanzi and Dong'an deposits. (a and b). Measured δ^{18} O data. (c and d).

- 1081 Homogenization temperature of fluid inclusions spatially correlated to measured $\delta^{18}O$
- 1082 data from each band. (e and f). Calculated $\delta^{18}O(H_2O)$ for every SIMS spot. (a, c, and e).
- 1083 Sandaowanzi. (b, d, and f). Dong'an. The orange dashed lines separate each stage.

Abbreviations: FQ=Fine-grained quartz. Adl=Adularia. Chc=Chalcedony. Qz=Quartz.
QB=Quartz with CL-bright. QD=Quartz with CL-dark. QG=Quartz with CL-gray.
QV=Quartz vein (Thin).

1087

Fig. 11. Images of fluid inclusion assemblages with their average (Avg.) homogenization 1088 1089 temperatures (T_h) from Sandaowanzi (a-c) and Dong'an (d-f). (a). Fluid inclusion 1090 assemblages from thin colloform texture shown on Figure 8a. (b). Fluid inclusion 1091 assemblages from CL-bright quartz shown on Figure 8d. (c). Fluid inclusion assemblages 1092 from CL-dark quartz near tellurides shown on Figure 8d, e. (d). Fluid inclusion assemblages from ghost-bladed texture shown on Figure 9a. (e). Fluid inclusion 1093 1094 assemblages form CL-bright quartz breccia shown on Figure 9b. (f). Fluid inclusion 1095 assemblages form CL-gray quartz near electrum shown on Figure 9c.

1096

Fig. 12. Histograms of fluid inclusion homogenization temperatures from Sandaowanzi
and Dong'an deposits. Red color is primary fluid inclusions, blue color is secondary fluid
inclusions.

1100

Fig. 13. Diagrams showing the calculated fluid temperature and oxygen isotopic composition of water and quartz as a function of the mixing ratio of magmatic and meteoric water. Meteoric water has an initial temperature of 250 °C (based on stage III quartz fluid inclusion measurements at Sandaowanzi), and magmatic water has an initial

1105	temperature of 300 (a), 325 (b), and 350 $^{\circ}$ C (c), respectively. Oxygen isotope values are 8‰
1106	for magmatic water (Taylor 1997), and -14.7‰ for meteoric water (after stage III quartz
1107	at Sandaowanzi). The temperature of the mixed fluids is based on the enthalpy of water
1108	and the mixing increment. The effects of salinity on the enthalpy of water can generally
1109	be ignored because they are small (Reed 1998). Because the total mass of precipitated
1110	minerals is small in most cases, their heat contributions can be neglected (Reed 1998).
1111	The quartz-water fractionation factor used is from Clayton et al. (1972) as corrected by
1112	Friedman and O'Neil (1977).
1113	
1114	List of tables
1115	
1116	Table 1. Bulk oxygen isotope compositions from Sandaowanzi and Dong'an deposits.
1117	
1118	Table 2. Compilation of the sample material, mineralogy, and applied analytical
1119	techniques.
1120	
1121	Table 3. Microthermometric data on fluid inclusions from Sandaowanzi and Dong'an
1122	deposits.
1123	
1124	Appendix A
1125	54
	.)4

- 1126 Table A1. SIMS oxygen isotope data on quartz, chalcedony, and adularia from
- 1127 Sandaowanzi and Dong'an deposits.

1128

Location	Mineral	δ ¹⁸ O _{SMOW}	$\delta^{18}O_{H2O}$	Referred T (°C)	Reference			
	Quartz in vein	-2.3	-14.7	190				
	Quartz in vein	-2	-13.3	207				
	Quartz in vein	-1.8	-11.4	237				
	Quartz in vein	-0.2	-11.3	210				
	Quartz in vein	-1.8	-11.4	238	Way at al. 2005			
	Quartz in vein	-2.2	-11.6	240	wu et al., 2005			
	Quartz in vein	-0.7	-10.9	226				
	Quartz in vein	-1.5	-9.3	276				
	Quartz in vein	-1.7	-10.6	252				
C	Quartz in vein	-1.9	-11	247				
Sandaowanzi	Quartz in vein	-2.5	-10.6	326				
	Quartz in vein	-0.4	-8.3	276				
	Quartz in vein	-0.3	-10.1	276				
	Quartz in vein	-1.9	-9.7	275				
	Quartz in vein	-3.3	-12.9	242	71 . 1 0010			
	Quartz in vein	-1.8	-9.8	246	Zhai et al., 2018			
	Quartz in vein	-3.9	-12	246				
	Quartz in vein	-0.3	-7.6	246				
	Quartz in vein	-3.5	-13.6	203				
	Quartz in vein	-2.6	-10.9	195				
	Quartz in igneous rock	6.9	5.3	550				
	Quartz in igneous rock	7.5	5.9	550				
	Quartz in vein	0	-8.9	250	Han 2012			
	Quartz in vein	0.1	-8.9	250	Han, 2015			
	Quartz in vein	-1.8	-10.9	250				
	Quartz in vein	-1.1	-12.8	180				
	Quartz in vein	0.3	-10.1	250				
	Quartz in vein	-1.1	-8.5	250				
Develop	Quartz in vein	0.5	-10.3	250	A = =t =1 2004			
Dong an	Quartz in vein	-1.3	-11.1	250	Ao et al., 2004			
	Quartz in vein	-2.1	-10.5	250				
	Quartz in vein	-1.5	-11.1	250				
	Quartz in vein	-3	-10.7	280				
	Quartz in vein	-2.1	-10.6	250				
	Quartz in vein	-1.6	-10.5	250	V 2000			
	Quartz in vein	-1.5	-9.6	250	r ang, 2008			
	Quartz in vein	-0.6	-7.5	250				
	Quartz in vein	1.5	-10.1	250				

Table 1. Bulk oxygen isotope compositions from Sandaowanzi and Dong'an deposits.

Site	Sample no.	Туре	Ore texture	Mineralogy	Hot-CL	SEM-CL	SIMS	FIs
	130-1	High-grade	Comb	Quartz and tellurides		\checkmark		
	130CM21-6	Barren	Comb	Quartz		\checkmark		
	130CM23-10	Barren	Colloform	Quartz	\checkmark	\checkmark	\checkmark	\checkmark
	130CM23-14-1	High-grade	Multistage including colloform, coarse-grained, and comb	Quartz, chalcedony, and tellurides	\checkmark	\checkmark		
	130CM23-14-2	High-grade	Multistage including colloform, coarse-grained, and comb	Quartz, chalcedony, and tellurides	\checkmark	\checkmark	\checkmark	\checkmark
	130CM23-14-7	High-grade	Multistage including colloform, coarse-grained, and comb	Quartz, chalcedony, and tellurides	\checkmark	\checkmark	\checkmark	\checkmark
	130CM23-21	Barren	Colloform	Quartz	\checkmark	\checkmark		
	130CM23-4	Barren	Coarse-grained	Quartz		\checkmark		
	130CM23-5	Barren	Colloform	Quartz		\checkmark		
Sandaowanzi	170CM3	Barren	Comb	Quartz		\checkmark		
SanuaOwanzi	210CM11-7	Barren	Coarse-grained	Quartz		\checkmark		
	210CM4	Barren	Comb quartz vein cross cutting andesite	Quartz		\checkmark		
	240CM10-3	Barren	Coarse-grained	Quartz	\checkmark	\checkmark		
	240CM9	Barren	Comb quartz vein cross cutting andesite	Quartz		\checkmark		
	50CM31	Barren	Coarse-grained	Quartz		\checkmark		
	50CM35-5	Barren	Coarse-grained	Quartz		\checkmark		
	90CM11	Barren	Coarse-grained	Quartz		\checkmark		
	90CM21-1	High-grade	Comb	Quartz and tellurides	\checkmark	\checkmark		
	90CM4	Barren	Coarse-grained	Quartz		\checkmark		
	SDW25B	High-grade	Multistage including colloform, coarse-grained, and comb	Quartz, chalcedony, and tellurides		\checkmark		
	17-2-187	Barren	Coarse-grained	Quartz				
	18-1-164	Low-grade	Colloform	Quartz, chalcedony, adularia, and electrum	\checkmark	\checkmark		
	DA-100	Barren	Bladed and flamboyant	Quartz	\checkmark			
	DA-103	Barren	Coarse-grained	Quartz	\checkmark	\checkmark		
	DA-106	Barren	Coarse-grained	Quartz	\checkmark			
	DA-107	Barren	Colloform	Quartz, chalcedony, and adularia	\checkmark			
	DA-135	Low-grade	Colloform	Quartz, chalcedony, adularia, and electrum				
Dong'an	DA-144	Barren	Comb	Quartz	\checkmark			
	DA-35	Barren	Coarse-grained	Quartz	\checkmark			
	DA-47	Barren	Colloform	Quartz and chalcedony	\checkmark			
	DA-53	Barren	Bladed and flamboyant	Quartz, chalcedony, and adularia	\checkmark	\checkmark	\checkmark	\checkmark
	DA-66	Barren	Colloform	Quartz and chalcedony	\checkmark			
	DA-77	Low-grade	Colloform	Quartz, chalcedony, adularia, and electrum		\checkmark		
	DA-80	Low-medium-grade	Colloform	Quartz, chalcedony, adularia, and electrum	\checkmark	\checkmark	\checkmark	\checkmark
	DA-90	Low-grade	Colloform	Quartz, chalcedony, adularia, and electrum	\checkmark			

Table 2. Compilation of the sample material, mineralogy, and applied analytical techniques.

Location	Sample no.	Area no.	Host mineral	CL	Stage	Assemblage no.	Type	Homogenization (T _b)	Ice melting (Tm im)
Location	Sample no.	ni cu no.	nost miler ai	CL.	Stuge	rissemblage no.	L-V	256.1	-0.1
							L-V	255.2	-0.1
						G 1	L-V	256.6	-0.1
		A 3	Quartz	Bright	Π	-	L-V	255.8	-0.1
		-		U			L-V	257.1	-0.1
						- 1	L-V	257.2	-0.1
						G_2	L-V	257.9	-0.1
							L-V	267.1	-0.3
		A_5	Quartz	Dark	III	G_1	L-V	265.7	-0.3
	12000022 14 7						L-V	266.3	-0.3
	130CM23-14-7						L-V	272.8	-0.4
		A_4	Quartz	Dark	III	G_1	L-V	278.8	-0.4
							L-V	280.8	-0.4
						G 2	L-V	248.6	-0.3
		A 1	Quartz	Grav	п	0_2	L-V	252.4	-0.3
		A_1	Quartz	Giay	п	G 3	L-V	203.2	-0.5
Sandaowanzi						0_5	L-V	200.4	-0.1
SandaOwanizi							L-V	248.5	-0.2
		A_2	Quartz	Gray	II	G_1	L-V	254.7	-0.2
							L-V	249.6	-0.2
		A 1	Quartz	Grav	п	G 1	L-V	244.8	-0.4
		<u></u> 1	Quartz	Glay	п	0_1	L-V	251.6	-0.4
	130CM23-14-2	A_2 Qu					L-V	273.4	-0.4
			Quartz	Dark	III	G_2	L-V	277.9	-0.4
							L-V	277.4	-0.4
	130CM23-21	A 1	Quartz	Grav	Secondary	G 1	L-V	167.3	-0.1
			Quantiz.	onuj	Secondary		L-V	168.4	-0.1
		A 2	Ouartz	Grav	Secondary	G 1	L-V	216.4	-0.3
		A_3	(L-V	213.6	-0.3
			Quartz	Gray	Secondary	G 1	L-V	187.5	-0.4
						-	L-V	185.2	-0.4
		A_4	Quartz		Ι	G_1	L-V	268.6	-0.3
				Gray			L-V	269.5	-0.3
							L-V	270.2	-0.3
						0.1	L-V	237.2	-0.3
			Oracita	C	13.7	G_I	L-V	255.7	-0.3
		A_I	Quartz	Gray	IV		L-V	240.8	-0.3
	DA-80					G_2	L-V L-V	248.9	-0.5
							L-V	244.2	-0.5
		A 2	Quantz	Duight	п	C 1	L-V L-V	242.1	-0.1
		A_2	Quartz	ындпі	11	0_1	L-V L V	243	-0.1
Dong'an							L-V L V	166.1	-0.1
Doing an							L-V L V	172.0	-0.0
					Secondary	G_1	L-V L-V	172.9	-0.6
		A_1	Quartz	Bright			L-V L-V	164.3	-0.6
	DA-53						L-V L-V	269 5	-0.1
	DA-53				Ι	G_2	L-V	267.6	-0.1
							L-V	207.0	-0.3
		A 2 Quartz B	Bright	Secondary	G 1	L-V	210.4	-0.3	
			n_2	Zumiz	Dirgin	Secondary	5_1	L-V	207 5
							L 1		0.0

Table 3. Microthermometric data on fluid inclusions from Sandaowanzi and Dong'an deposits.

(-)							
(a)	Mineral	Alteration		Ore			
		Stage I	Stage II	Stage III	Stage IV	Stage V	
Quartz mas coar collo zona com	z sive se-grained oform-crustiform al b					_	
Chalco Sericit Calcite Epidot Anhyo Clinoo Laumo Clays	edony ie e te trite shlore ontite						
Pyrite Galen Tetrah Bornit Sphale Chalco Altaite Sylvar Petzitk Hessit Stützit Empre Colora Colavy Native Electri Argen Pyrarg	a eedrite e erite opyrite hite e essite adoite erite erite erite e gold um tite yyrite yyrite yyrite					Ξ	

Fig. 4

Fig. 6

Fig. 10

Fig. 11

Fig. 13