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Abstract: The Helukou deposit, with proven reserves of 33,752 t WO3, is one of 17 

the newly exploited medium-scale tungsten (W) deposits in the Guposhan ore field, 18 

Nanling Range of South China. Skarn-type and less abundant altered granite-type 19 

tungsten orebodies were identified in this deposit. The ore mineralization in this district 20 
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was a product of two-stage magmatism, as shown by LA–ICP–MS U–Pb dating of 21 

zircons and Re–Os dating of molybdenite. The former yielded U–Pb ages of 184.0 ± 22 

3.6 Ma (MSWD = 0.15) and 163.8 ± 1.5 Ma (MSWD = 0.41) for fine-grained biotite 23 

granite and muscovite granite, respectively, as well as a U–Pb age of 181.5 ± 2.1 Ma 24 

(MSWD = 0.75) for zircon grains from altered granite-type tungsten ore. The latter 25 

yielded molybdenite Re–Os ages of 183.5 ± 2.8 Ma (without MSWD owing to a limited 26 

number of samples) and 163.4 ± 2.8 Ma (MSWD = 0.71) for altered granite-type and 27 

skarn-type tungsten deposits, respectively. Thus, two separate tungsten mineralization 28 

events occurred during the Early Jurassic and Middle Jurassic. Trace-element 29 

compositions suggest that Scheelite Ⅰ was controlled by the coupled substitution 30 

reactions of 2Ca2+ = Na+ + REE3+ and Ca2+ + W6+ = Nb5+ + REE3+, whereas Scheelite 31 

Ⅱ was controlled by the coupled reactions of 2Ca2+ = Na+ + REE3+ and 3Ca2+ = □Ca + 32 

2REE3+ (where □ is a site vacancy). High Mo and low Ce contents suggest that both 33 

Scheelite Ⅰ and Scheelite Ⅱ were precipitated from oxidizing magmatic-hydrothermal 34 

fluids. Based on the mineral assemblage of the altered granite-type ores and 35 

geochemical characteristics of Scheelite I [i.e., negative Eu anomalies (0.02–0.05; 36 

mean = 0.03 and STD = 0.01), and high 87Sr/86Sr ratios (0.70939–0.71932; mean = 37 

0.71345 and STD = 0.00245)], we infer that fluid-rock interaction played an important 38 

role in modifying Early Jurassic ore-forming fluids. Scheelite Ⅱ exhibits a geochemical 39 

composition [i.e., 87Sr/86Sr ratios (0.70277–0.71471; mean = 0.70940 and STD = 40 

0.00190), Eu anomalies (0.14–0.55; mean = 0.26 and STD = 0.09), and Y/Ho ratios 41 

(16.1–33.7; mean = 27.9 and STD = 2.91)] similar to that of the Middle Jurassic 42 

Guposhan granites, suggesting inheritance of these features from granite-related 43 

magmatic-hydrothermal fluids. These results provide new insights into the two-stage 44 

magmatic and metallogenic history of the Nanling Range during the Jurassic Period.  45 
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1 INTRODUCTION 49 

The South China, well-known for its huge resources of tungsten–tin (W–Sn) and 50 

other rare metals, is one of the most significant metallogenic domains in the world (Fig. 51 

1; Mao et al. 2007, 2008, 2013; Chen et al. 2013; Hu et al. 2017; Cao et al. 2018a, 52 

2018b, 2020a; Zhou et al. 2018; Li et al. 2019a; Tang et al. 2019; Xie et al. 2019a, 53 

2019b). Its estimated tungsten and tin reserves are 8,050,000 tons and 5,956,000 tons, 54 

respectively (Fu et al. 2017a). Several large to super-large W–Sn polymetallic deposits 55 

occur in the Nanling Range, with the most representative being the Shizhuyuan, 56 

Xihuashan, Piaotang, Yaogangxian, Furong, Xianghualing, Taoxikeng, Dengfuxian 57 

and Xitian deposits (Fig. 1; Peng et al. 2006; Yuan et al. 2008, 2011; Guo et al. 2011; 58 

Hu et al. 2012; Zhang et al. 2017; Cao et al. 2018a, 2018b; Li et al. 2019b; Jiang et al. 59 

2019; Tang et al. 2020). The ages of these ore deposits mostly range from 165 to 150 60 

Ma, e.g., Xihuashan (157.8 ± 0.9; Hu et al. 2012), Piaotang (159.8 ± 0.3; Zhang et al. 61 

2017), Yaogangxian (154.9 ± 2.6; Peng et al. 2006), Xitian (156.6 ± 0.7 Ma; Cao et al. 62 

2018a) and Furong (159.9 ± 1.9; Yuan et al. 2011), and are similar to the ages of Middle 63 

Jurassic felsic granites in this region (Mao et al. 2007; Li et al. 2017; Jiang et al. 2018a, 64 

2018b; Cao et al. 2018a, 2018b). Recently, using laser ablation inductively coupled 65 

plasma-mass spectrometer (LA–ICP–MS) zircon U–Pb dating technology, numerous 66 

Early Jurassic felsic intrusions were identified in the Nanling Range, which include the 67 

Wengang granite (192 ± 1 Ma; Zhu et al. 2010), the Hanhu granodiorite (193 ± 2 Ma; 68 

Yu et al. 2010), the Xialan granite (196 ± 2 Ma; Yu et al. 2010), the Dabaoshan 69 
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granodiorite (175.8 ± 1.5 Ma; Wang et al. 2011), and the Tiandong granite (188 ± 1 70 

Ma; Zhou et al. 2018). However, none of these intrusions was associated with W–Sn 71 

mineralization. Recently, the ore-forming age of the Dading Fe–Sn deposit in the 72 

southeastern Nanling Range was reported at 185.9 ± 1.2 Ma, using Ar–Ar isotopic 73 

dating technology on phlogopite from stratiform skarn-type ore bodies (Cheng et al. 74 

2016; Fig. 1). This was the first Early Jurassic mineralization event reported from the 75 

Nanling Range, and it was corroborated by a molybdenite Re–Os age of 185.9 ± 4.9 76 

Ma for the skarn-type ore bodies in this deposit (Zhao et al. 2019). These ages are also 77 

consistent with a U–Pb zircon age of 187.5 ± 1.8 Ma (Cheng et al. 2016) and a zircon 78 

U–Pb of 189.0 ± 1.5 Ma for the related Shibei granitic pluton (Zhao et al. 2019). Hence, 79 

the Early Jurassic granitoids of the Nanling Range provide insight into not only the 80 

Early Jurassic magmatism of this region but also its contemporaneous metallogenic 81 

evolution.  82 

As one of the major W-bearing minerals, scheelite (CaWO4) occurs not only in 83 

quartz vein-, skarn-, greisen- and altered granite-type W deposits but also in 84 

hydrothermal Au, Sn and Mo deposits (Ghaderi et al. 1999; Brugger et al. 2002; Guo 85 

et al. 2016; Hazarika et al. 2016; Raju et al. 2016; Fu et al. 2017b; Mackenzie et al. 86 

2017; Orhan 2017; Liu et al. 2019; Sciuba et al. 2019). Scheelite commonly contains 87 

significant amounts of rare earth elements (REEs), Mo, Nb, Na and Sr via substitution 88 

for Ca or W in the crystal structure, and these components provide clues to the source, 89 

physico-chemical conditions, and evolutionary history of the ore-forming fluids 90 

(Raimbault et al. 1993; Ghaderi et al. 1999; Brugger et al. 2000, 2002, 2008; Song et 91 

al. 2014; Kozlik et al. 2016). Recently, laser ablation multiple collector inductively 92 

coupled plasma mass spectrometry (LA–MC ICP–MS) has been widely used to 93 

measure the trace-element and Sr–Nd isotopic compositions of scheelite (e.g., Fu et al. 94 
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2017b; Sun and Chen 2017; Peng et al. 2018; Zhao et al. 2018; Liu et al. 2019; Sun et 95 

al. 2019). This technique is an ideal tool to study tungsten mineralization in order to 96 

constrain the source and physico-chemical conditions of the ore-forming fluids as well 97 

as fluid-rock interaction processes. 98 

The Guposhan district, located in the southwestern Nanling Range, is famous for 99 

its large-scale W–Sn mineralization, with estimated tungsten and tin reserves of 100 

59,2000 tons and 687,000 tons, respectively (Fu et al. 2017a). Previous studies reported 101 

only Middle Jurassic ages for the granitic magmatism and related W–Sn mineralization 102 

in the Guposhan ore district. In this study, we report LA–ICP–MS zircon U–Pb and 103 

molybdenite Re–Os ages for the Helukou W deposit, northern Guposhan district that 104 

document a two-stage (Early and Middle Jurassic) history of granitic magmatism and 105 

related W–Sn mineralization in the Nanling region. In addition, the in-situ trace-106 

element and Sr isotopic compositions of scheelite from the skarn-type and altered 107 

granite-type ores of the Helukou W deposit constrain the nature of the ore-forming 108 

fluids in this magmatic-hydrothermal system. 109 

2 REGIONAL AND ORE DEPOSIT GEOLOGY 110 

2.1 Regional geology 111 

The South China Craton is composed of the Yangtze Block in the northwest and 112 

Cathaysia Block in the southeast (Fig. 1). The Nanling Range, located in the central 113 

part of the Cathaysia Block, is one of the largest metallogenic belts in China and is 114 

characterized by giant W–Sn, and other rare metal deposits (Hua et al. 2005, 2007; Mao 115 

et al. 2007; Hu et al. 2012, 2017; Chen et al. 2013; Chen et al. 2016; Cao et al. 2018b; 116 

Wu et al. 2018; Li et al. 2018a, 2018b, 2018c). In this region, the stratigraphic 117 

succession consists of metamorphosed Proterozoic-Lower Paleozoic siliciclastic and 118 
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volcanic rocks, overlain by Upper Paleozoic-Mesozoic carbonate and siliciclastic rocks 119 

(Cao et al. 2018b). These units were deformed tectonically, which produced folds and 120 

faults widely across the Nanling Range (Wang et al. 2003, 2013; Mao et al. 2007, 2008, 121 

2013). In addition, Mesozoic tectonic events exerted great influence on this region, 122 

leading to development of E–W-trending faults and folds before the Middle Jurassic 123 

(i.e., during the Indosinian Orogeny) and NE-trending faults after the Middle Jurassic 124 

(i.e., during subduction of Paleo-Pacific Plate) (Shu et al. 2004; Mao et al. 2007). 125 

Jurassic intrusives (165–150 Ma), which are widespread in the Nanling Range, are 126 

composed of granitic and minor mafic rocks (Mao et al. 2008, 2011). These intrusives 127 

are highly fractionated and originated from partial melting of Proterozoic basement 128 

rocks of the South China Craton (Chen et al. 2013; Li et al. 2014a, 2014b; Cao et al. 129 

2018b).  130 

The Guposhan ore district, located in the southwestern Nanling Range, hosts a 131 

series of W–Sn deposits such as the Helukou, Shuiyuanba, and Xinlu deposits (Fig. 2; 132 

Li et al. 2015). The ore mineralization ages of these deposits are 160–165 Ma, 133 

consistent with the age of the Guposhan granitic pluton (Gu et al. 2007; Li et al. 2015; 134 

Cao et al. 2020b). Gu et al. (2007) proposed the division of the Guposhan pluton into 135 

three units, namely the East unit (160.8 ± 1.6 Ma), the West unit (165.0 ± 1.9 Ma), and 136 

the Lisong unit (163.0 ± 1.3 Ma). The outcropping granites in the northern part of the 137 

Guposhan ore field belong to the West unit (Fig. 2) and consist mainly of fine-grained 138 

and medium-fine-grained biotite granites.  139 

2.2 Ore deposit geology 140 

The Helukou W deposit, with total estimated tungsten reserves of > 33,752 tons, 141 

is located in southwestern Hunan Province (northeastern Guposhan district; Fig. 2). The 142 

outcropping strata in the mining district mainly consist of Devonian shallow-marine 143 
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siliciclastic and carbonate rocks (Fig. 3a) belonging to the Tiaomajian, Huanggongtang, 144 

and Qiziqiao formations (Zeng et al. 2008). The Huanggongtang Formation comprises 145 

dolomite and impure limestones, and hosts the main ore-bearing strata for the skarn-146 

type W ore bodies (Fig. 3b; Zeng et al. 2008). Faults in the mining district can be 147 

classified into two groups: NW-SE-trending and quasi-N-S-trending faults, with the 148 

latter being the main ore-controlling structures (Fig. 3a; Zeng et al. 2008). 149 

Hydrothermal alteration processes affecting these deposits include skarnization, 150 

greisenization, sericitization, silicification, and albitization, although skarnization and 151 

albitization are primarily associated with the skarn-type and altered granite-type W 152 

deposits, respectively. Magmatic rocks mainly consist of medium to fine-grained biotite 153 

granites with ages of 165.0 ± 1.9 Ma (Gu et al. 2007).  154 

A total of 33 tungsten ore veins, mainly skarn-type and altered granite-type, were 155 

identified in this deposit. The non-exposed altered granite-type ore bodies, which 156 

consist of scheelite-bearing disseminated ore, are hosted by the upper domain of the 157 

Early Jurassic granites (Fig. 4a–4b). The main ore minerals are scheelite, molybdenite, 158 

pyrite, ilmenite, magnetite and galena (Fig. 5a–5d), and gangue minerals include K-159 

feldspar, quartz, fluorite and calcite (Fig. 5a–5d). Scheelite in the altered granite-type 160 

ore bodies (Scheelite Ⅰ) occurs as xenomorphic and/or subhedral crystals, has grain sizes 161 

of 0.01–0.91 mm, and exhibits intergrown textures with plagioclase, fluorite and quartz 162 

(Fig. 5a–5d).  163 

The dominant skarn-type ore bodies, which comprise more than 75% of the total 164 

tungsten reserves, are found mainly within the endo- and exo-contact zones between 165 

Devonian Huanggongtang Formation carbonates and Middle Jurassic Guposhan 166 

granites (Fig. 4c). These stratiform and/or lenticular ore bodies are mostly NE-trending, 167 

with a length of 50–750 m, a thickness of 1–107 m, and a WO3 grade of 0.06–0.70%. 168 
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The scheelite- and molybdenite-bearing skarns with massive structure are composed 169 

mainly of garnet, epidote and vesuvianite (Fig. 4d–4i). Ore minerals of the skarn-type 170 

deposits consist mainly of scheelite, molybdenite, pyrite, chalcopyrite, galena, ilmenite 171 

and xenotime (Fig. 5e–5i), and gangue minerals include hessonite, andradite, almandine, 172 

K-feldspar, apatite, quartz, fluorite and zircon (Fig. 5e–5i). Scheelite in the skarn-type 173 

ores (Scheelite Ⅱ) is xenomorphic-subhedral, has grain sizes of 0.08–3.0 mm, and 174 

displays intergrown textures with garnet, epidote and vesuvianite (Fig. 5e–5i). 175 

3 SAMPLING AND ANALYTICAL TECHNIQUES 176 

3.1 Sample collection and description 177 

Granites and skarn-type ore samples were collected from mining tunnels of the 178 

Helukou W deposit, whereas samples of the altered granite-type ores were collected 179 

from drill cores (Fig. 3a). Prior to mineral chemical analyses, thin sections of rock and 180 

ore samples were prepared and photographed using optical and backscattered electron 181 

(BSE) microscopy. For LA–ICP–MS U–Pb dating, zircon grains were taken from three 182 

samples including a fine-grained muscovite granite (Sample No. HLK-1-1), a fine-183 

grained biotite granite (Sample No. HLK-6), and an altered granite-type ore (Sample 184 

No. HLK-3). For Re–Os dating, molybdenite grains were separated from six skarn-type 185 

and two altered granite-type ore samples. Additionally, scheelites from altered granite 186 

type- (Scheelite Ⅰ) and skarn type-ores (Scheelite Ⅱ) were chosen for in-situ LA–ICP–187 

MS trace-element analyses and in-situ LA–MC–ICP–MS Sr isotopic analyses.  188 

The fine-grained muscovite granites are light grey in color, have a massive 189 

structure and porphyritic texture, and contain K-feldspar (~38%), plagioclase (~25%), 190 

quartz (~30%), muscovite (~5%) and hornblende (~2%), with zircon, apatite, titanite, 191 

sphene, magnetite and ilmenite as accessory minerals (Fig. 6a–6c). The medium-fine-192 
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grained biotite granites have a massive structure and porphyritic texture, and contain 193 

K-feldspar (~30%), plagioclase (~15%), quartz (~45%), and biotite (~8%) and 194 

hornblende (~2%), with zircon, apatite, titanite, sphene, magnetite and ilmenite as 195 

accessory minerals (Fig. 6d–6f).  196 

3.2 Cathodoluminescence (CL) imaging 197 

Zircon and scheelite grains were separated by conventional magnetic and heavy 198 

liquid techniques and hand-picked using a binocular microscope at the Wuhan Sample 199 

Solution Analytical Technology Co., Ltd. (Wuhan, China). They were then mounted in 200 

epoxy resin blocks and polished to obtain flat surfaces. CL imaging permitted 201 

observation of the internal structures of individual zircon and scheelite grains, using a 202 

scanning electron microscope (SEM) housed at the Key Laboratory of Crust-Mantle 203 

Materials and Environments, Chinese Academy of Sciences, University of Science and 204 

Technology of China (Hefei, China). The imaging condition was 10.0–13.0 kV voltage, 205 

80–85 µA current, and two minutes for imaging.  206 

3.3 Zircon U–Pb dating 207 

U–Pb age determinations were performed using a LA–ICP–MS system at the 208 

Mineral Geochemistry Lab, Ore Deposit and Exploration Centre (ODEC), Hefei 209 

University of Technology (Hefei, China). An Agilent 7900 Quadrupole ICP-MS 210 

coupled to a Photon Machines Analyte HE 193-nm ArF Excimer laser ablation system 211 

was used for the analyses. Zircon 91500 and synthetic silicate glass NIST SRM610 212 

were applied as external standards for U–Pb dating and trace-element analyses, 213 

respectively. Helium was used as a carrier gas to enhance the transport efficiency of the 214 

ablated material, and argon was used as the make-up gas and mixed with helium in the 215 

ablation cell before injection into the ICP to maintain stable and optimum excitation 216 
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conditions. The flow rate of helium was set at 0.6 L/min and a laser beam of 32 µm in 217 

diameter with an ablation depth of about 20 µm was adopted. U–Pb ages of zircon were 218 

calculated based on U decay constants of 238U = 1.55125 × 10−10 year−1 and 235U = 219 

9.8454 × 10−10 year−1 (Jaffey et al. 1971). The 91500 standard was dated at 1062 ± 6.6 220 

Ma in this experiment, which is consistent with a previously reported age of 1062 ± 4 221 

Ma for 91500 (Wiedenbeck et al. 1995). Analytical errors for individual samples are 222 

presented as 1σ in Table 1, whereas uncertainties in weighted mean ages are quoted at 223 

2σ (95% confidence) in concordia diagrams. The measurement accuracy was better than 224 

96% (2σ). Quantitative calibrations for zircon U–Pb dating and trace-elements were 225 

performed by ICPMSDataCal 10.7 (Liu et al. 2010). Common Pb was corrected based 226 

on the model of Andersen (2002). Weighted mean age calculations and concordia 227 

diagrams were generated using Isoplot 3.0 (Ludwig 2003).  228 

3.4 Molybdenite Re–Os dating 229 

Molybdenite grains were first separated with a knife and then hand-picked under a 230 

binocular microscope. The procedures of powdered sample digestion, Os distillation 231 

and Re extraction were conducted following the methods described by Stein et al. (2001) 232 

and Du et al. (2004). The Re and Os isotope ratios were determined using an inductively 233 

coupled plasma mass spectrometer (TJA X-series ICP-MS) at the National Research 234 

Center of Geoanalysis, Chinese Academy of Geological Sciences (Beijing, China). The 235 

molybdenite standard GBW04435 (HLP) was used to test analytical reproducibility. 236 

The uncertainty for individual age determinations, representing the sum of uncertainties 237 

associated with the decay constant of 187Re, isotope ratio measurements, and spike 238 

calibrations, was about 0.02%. Average blanks for the total Carius tube procedure were 239 

ca. 10 pg Re and ca. 1 pg Os. The Re–Os isochron age was calculated using Isoplot 3.0 240 

(Ludwig, 2003). The decay constant used in the age calculation was λ187Re = 1.666 × 241 
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10-11 year-1 (Smoliar et al., 1996). 242 

3.5 In-situ LA–ICP–MS trace-element analysis of scheelite  243 

Trace-element analysis of scheelite was conducted by LA-ICP-MS at the Wuhan 244 

Sample Solution Analytical Technology Co., Ltd. (Wuhan, China). Detailed operating 245 

conditions for the laser ablation system and the ICP-MS instrument and data reduction 246 

are the same as given in Zong et al. (2017). Laser sampling was performed using a 247 

GeolasPro laser ablation system consisting of a COMPexPro 102 ArF excimer laser 248 

(wavelength of 193 nm and maximum energy of 200 mJ) and a MicroLas optical 249 

system. An Agilent 7700e ICP-MS instrument was used to acquire ion-signal 250 

intensities. Helium was used as the carrier gas, and argon was used as the make-up gas 251 

and mixed with the carrier gas via a T-connector before injection into the ICP. A “wire” 252 

signal smoothing device was included in this laser ablation system (Hu et al. 2015). The 253 

spot size and frequency of the laser were set to 32 µm and 5 Hz, respectively. Trace-254 

element compositions of minerals were calibrated against various reference materials 255 

(BHVO-2G, BCR-2G, and BIR-1G) without using an internal standard (Liu et al. 256 

2008). Each analysis incorporated a background acquisition of approximately 20-30 s 257 

followed by 50 s period of sample data acquisition. The measurement accuracy was 258 

better than 97% (1σ). An Excel-based software ICPMSDataCal was used to perform 259 

off-line selection and integration of background and analyzed signals, time-drift 260 

correction, and quantitative calibrations (Liu et al. 2008). 261 

3.6 In-situ LA–MC–ICP–MS strontium isotopic analysis of scheelite  262 

Sr isotopic measurements of scheelite were performed using a Neptune Plus MC-263 

ICP-MS (Thermo Fisher Scientific, Bremen, Germany) in combination with a Geolas 264 

HD excimer ArF laser ablation system (Coherent, Göttingen, Germany) at the Wuhan 265 
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Sample Solution Analytical Technology Co., Ltd. (Wuhan, China). The Neptune Plus 266 

was equipped with nine Faraday cups fitted with 1011 Ω resistors. The Faraday 267 

collector configuration of the mass system was composed of an array from L4 to H3 to 268 

monitor Kr, Rb, Er, Yb, and Sr. A combination of a high-sensitivity X-skimmer cone 269 

and Jet-sample cone was employed. In the laser ablation system, helium was used as 270 

the carrier gas for the ablation cell. For single-spot laser ablation, the spot diameter 271 

ranged from 60 to 160 μm depending on Sr signal intensity. The pulse frequency was 272 

from 8 to 15 Hz, and the laser fluence was held constant at ~10 J/cm2. The data 273 

reduction for LA–MC–ICP–MS analysis was conducted using ICPMSDataCal (Liu et 274 

al. 2010). The interference correction strategy was the same as that reported by Tong et 275 

al. (2016). The regions of integration for both gas background and sample were initially 276 

selected, and no additional Kr peak stripping was applied following the background 277 

correction, which removed the background Kr+ signals. Then, interferences were 278 

corrected in the following sequence: (1) interferences of 168Er++ on 84Sr, 170Er++ and 279 

170Yb++ on 85Rb, 172Yb++ on 86Sr, and 174Yb++ on 87Sr were corrected based on the 280 

measured signal intensities of 167Er++, 173Yb++ and the natural isotope ratios of Er and 281 

Yb (Berglund and Wieser 2011); and (2) the isobaric interference of 87Rb on 87Sr was 282 

corrected by monitoring the 85Rb signal intensity and a user-specified 87Rb/85Rb ratio 283 

using an exponential law for mass bias. The user-specified 87Rb/85Rb ratio was 284 

calculated by measuring some reference materials with a known 87Sr/86Sr ratio. 285 

Following the interference corrections, mass fractionation of Sr isotopes was corrected 286 

by assuming 88Sr/86Sr = 8.375209 (Tong et al. 2016) and applying the exponential law. 287 

Two natural apatite crystals (Durango and MAD) were used as unknown samples for 288 

in-situ Sr isotopic analyses of apatite. The uncertainty of the 88Sr/86Sr ratio (2σ) for 289 

single measurements was 0.0003–0.0004. The analyzed 88Sr/86Sr ratios of Durango and 290 
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MAD crystals in this study are 0.706346 ± 0.000516 and 0.711879 ± 0.000157, 291 

respectively, which are within error of the reported ratios of 0.71180 and 0.70632, 292 

respectively (Yang et al. 2014).  293 

4. RESULTS 294 

4.1 Zircon U–Pb ages 295 

LA–ICP–MS zircon U–Pb age data for two granites and one altered granite type 296 

ore sample from the Helukou W deposit are reported in Table 1. Most zircon grains 297 

from the fine-grained muscovite granite (HLK-1-1) are euhedral, have lengths of 100–298 

200 µm and aspect ratios of 1:1 to 3:1, and show internal oscillatory zoning, suggesting 299 

a magmatic origin (Hoskin and Schaltegger 2003; Fig. 7). The Th and U contents of 300 

these zircon grains are 147-458 ppm and 252-1340 ppm, respectively, with Th/U ratios 301 

of 0.25–0.79 (mean = 0.48 and STD = 0.09). Sixteen analyses of magmatic domains 302 

are plotted on the concordia diagrams. The grains yield 206Pb/238U ages ranging from 303 

162 to 169 Ma (Table 1), with a weighted average of 163.8 ± 1.5 Ma (MSWD = 0.41; 304 

Fig. 8a–b). This age can be interpreted as the crystallization age of the fine-grained 305 

muscovite granite.  306 

Zircon grains from the altered granite-type ore (HLK-3) are mostly euhedral or 307 

subhedral and have lengths of 150–200 µm and aspect ratios of 1:1–3:1. CL imaging 308 

revealed that the cores of these zircons show internal oscillatory zoning but the grain 309 

margins did not, with clear boundaries between the edges and cores (Fig. 7). This 310 

pattern suggests that these zircons experienced metamictization, i.e., in which fluids 311 

altered the structure of grain margins to varying degrees (Rivanova et al. 2000; Liatti, 312 

et al. 2002). These zircon grains have variable Th (152–2500 ppm) and U contents 313 

(397–9018 ppm), yielding Th/U ratios of 0.25–0.64 (mean = 0.38 and STD = 0.10). 314 
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Based on their petrographic and Th/U characteristics, these zircons are inferred to have 315 

a magmatic origin, and the U-Pb dates represent their crystallization age, although they 316 

have experienced various degrees of hydrothermal alteration. Twelve analyses of 317 

magmatic domains yield concordant 206Pb/238U and 207Pb/235U ratios and plot on or 318 

close to the concordia curve (Fig. 8c). The 206Pb/238U ages of these zircon grains range 319 

from 177 to 185 Ma (Table 1), yielding a weighted average age of 181.5 ± 2.1 Ma 320 

(MSWD = 0.75; Fig. 8d).  321 

Zircon grains from the fine-grained biotite granite (HLK-6) are mostly euhedral, 322 

have lengths of 50–200 µm and aspect ratios of 1:1–4:1, and display internal oscillatory 323 

zoning, indicating a magmatic origin (Hoskin and Schaltegger 2003; Fig. 7). These 324 

grains have variable Th (79.2–1206 ppm) and U contents (181–7488 ppm), with Th/U 325 

ratios of 0.16–0.49 (mean = 0.36 and STD = 0.06). Eleven of the magmatic zircons 326 

have concordant 206Pb/238U and 207Pb/235U ratios when plotted on concordia diagrams 327 

(Fig. 8e). The 206Pb/238U ages of these zircons range from 180 to 189 Ma (Table 1), 328 

yielding a weighted average 206Pb/238U age of 184.0 ± 3.6 Ma (MSWD = 0.15; Fig. 8f). 329 

This age can be considered as the crystallization age of the fine-grained biotite granite. 330 

4.2 Molybdenite Re–Os ages 331 

The Re–Os isotopic compositions of molybdenite samples from the Helukou 332 

tungsten deposit are given in Supplementary Table 2. The total Re, 187Re and 187Os 333 

contents of six molybdenite samples from the skarn-type ores vary from 10238 to 48518 334 

ppb, 6436 to 30494 ppb, and 18.5 to 85.2 ppb, respectively, yielding a 187Re-187Os 335 

isochron age of 163.4 ± 2.8 Ma (MSWD = 0.71; Fig. 9a). These samples have invariant 336 

Re–Os model ages ranging from 162.9 Ma to 171.9 Ma, yielding a weighted average 337 

age of 168.9± 2.8 Ma (MSWD = 3.5; Fig. 9b). These ages indicate that the skarn-type 338 

tungsten mineralization was related to Middle Jurassic granitic magmatism.  339 
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Two molybdenite samples from the altered granite-type ore have total Re, 187Re 340 

and 187Os contents of 9914–30434 ppb, 6231–19129 ppb, and 18.4–57.9 ppb, 341 

respectively, yielding an isochron age of 183.5 ± 2.8 Ma (Fig. 9c). In addition, the 342 

model ages of these samples are 176.9 Ma and 181.4 Ma, respectively, yielding a 343 

weighted mean age of 179.3 ± 6.7 Ma (MSWD = 8.1; Fig. 9d). This age is consistent 344 

with the zircon age of the fine-grained biotite granite, indicating that the altered granite-345 

type tungsten deposit was related to Early Jurassic granitic magmatism.  346 

4.3 Trace-element compositions of scheelite  347 

The trace-element compositions of scheelite from the Helukou tungsten deposit are 348 

given in Table 3. Scheelite Ⅰ has Na, Sr, Nb, and Mo contents of 18.7–96.3 ppm (mean 349 

38.7 ppm, STD = 18.3 ppm), 98.9–128 ppm (mean 113 ppm, STD = 6.46 ppm), 124–350 

480 ppm (mean 188 ppm, STD = 61.6 ppm), and 4419–6973 ppm (mean 5245 ppm, 351 

STD = 622 ppm), respectively. Relative to it, Scheelite Ⅱ (skarn-type ore) has higher 352 

and more variable Na contents (8.6–184 ppm, mean = 87.6 ppm, STD =39.4 ppm) and 353 

lower Sr, Nb, and Mo contents (32.8–128 ppm, mean 55.6 ppm, STD = 12.7 ppm; 22.7–354 

447 ppm, mean 124 ppm, STD = 59.8 ppm; and 646–3496 ppm, mean 2280 ppm, STD 355 

= 497 ppm, respectively). Both Scheelite Ⅰ and Scheelite Ⅱ have relatively low Rb 356 

concentrations (mostly <0.1 ppm).  357 

In terms of rare earth element (REE) compositions, Scheelite Ⅱ has higher and 358 

more variable ΣREE (267–2272 ppm; mean 1059 ppm and STD = 594 ppm) than 359 

Scheelite Ⅰ (347–724 ppm; mean 467 ppm and STD = 80.1 ppm). Both Scheelite Ⅰ and 360 

Scheelite Ⅱ have negative Eu anomalies (Eu/Eu* = 0.02–0.05 and 0.14–0.55, 361 

respectively) and slight positive Ce anomalies (Ce/Ce* = 1.08–1.20 and 1.20–1.45, 362 

respectively; Fig. 10).  363 
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4.4 Strontium isotopic compositions of scheelite 364 

The strontium isotopic compositions of scheelite from the Helukou tungsten 365 

deposit are given in Table 4. The 87Sr/86Sr ratios of Scheelite Ⅰ and Scheelite Ⅱ vary 366 

from 0.70939 to 0.71932 and 0.70277 to 0.71471, respectively (Fig. 11). In addition, 367 

both Scheelite Ⅰ and Scheelite Ⅱ have relatively low 87Rb/86Sr ratios, ranging from 368 

0.00149 to 0.02030 and from 0.00351 to 0.07324, respectively.  369 

5. DISCUSSION 370 

5.1 Timing of W–Sn mineralization in the Nanling Range 371 

Previous studies reported that the Guposhan pluton is Middle Jurassic in age with 372 

an early-stage granite at 165.0 ± 1.9 Ma and a late-stage granite at 154.2 ± 3.1 Ma (Gu 373 

et al. 2007; Wang et al. 2014). In the present study of the Helukou deposit (NE 374 

Guposhan district; Fig. 2), a zircon U–Pb age of 163.8 ± 1.5 Ma for fine-grained 375 

muscovite granite conforms to published ages for the early-stage Guposhan granites 376 

(Gu et al. 2007). Furthermore, a Re–Os age of 163.4 ± 2.8 Ma for molybdenite from 377 

the skarn-type tungsten ore is consistent with Ar–Ar ages of ca. 160 Ma for other 378 

tungsten deposits in the northern Guposhan ore field (Li et al. 2015). 379 

The Early Jurassic (205–180 Ma) has long been regarded as an interval of 380 

magmatic and metallogenic quiescence in the Nanling Range (Zhou et al. 2006; Jiang 381 

et al. 2008). However, recent studies have provided evidence of Early Jurassic 382 

magmatism, and some have reported related tungsten and/or tin mineralization events 383 

(Yu et al. 2010; Zhu et al. 2010; Wang et al. 2011; Zhou et al. 2018; Zhao et al. 2019). 384 

In the present study, a zircon U–Pb age of 184.0 ± 3.6 Ma and a molybdenite Re–Os 385 

age of 183.5 ± 2.8 Ma demonstrate coeval magmatism and tungsten mineralization in 386 

the Guposhan ore district during the Early Jurassic. Therefore, our new data, coupled 387 
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with previously reported ages, suggest two stages of magmatism (~184 Ma and ~164 388 

Ma) and two stages of W–Sn mineralization (~180 Ma and ~163 Ma) in the Helukou 389 

tungsten deposit of the Guposhan ore field. These findings provide new evidence for 390 

links between Early Jurassic magmatism and tungsten mineralization in the Nanling 391 

Range, suggesting an extended interval of W mineralization and a potential 392 

metallogenic era in this region. 393 

5.2 REE substitution reactions 394 

The ionic radii of trivalent REEs are similar to that of bivalent Ca, and, therefore, 395 

REE3+ can enter the lattice of scheelite through substitution for Ca2+ (Ghaderi et al., 396 

1999). The most important coupled substitution reactions between REE3+ and Ca2+ are 397 

as follows (Ghaderi et al., 1999):  398 

2Ca2+ = Na+ + REE3+            (Eq. 1) 399 

Ca2+ + W6+ = Nb5+ + REE3+            (Eq. 2) 400 

3Ca2+ = □Ca + 2REE3+, where □ is a site vacancy     (Eq. 3) 401 

In terms of reaction (1), if Na provides the charge balance in scheelite, MREEs 402 

preferentially enter the lattice by substitution in the Ca site because of their similar ionic 403 

radii, which results in MREE-rich patterns and high Na concentrations (Ghaderi et al. 404 

1999; Brugger et al. 2002). Reaction (2) results in Nb concentrations that are high and 405 

nearly equal to ΣREE content (Dostal et al. 2009). Reaction (3) leads to a relatively flat 406 

chondrite-normalized REE pattern (Ghaderi et al. 1999). In the present study, both 407 

Scheelite I and Scheelite II have relatively high Na contents, ranging from 18.7 to 96.3 408 

ppm and from 39.3 to 184 ppm, respectively, indicating that reaction (1) is a likely 409 

candidate, an inference supported by enrichment of Scheelite I in MREEs (Fig. 10a). 410 

Furthermore, some samples of Scheelite II plot along the 1:1 line between Na (atom) 411 
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and REE+Y-Eu (atom), also supporting operation of reaction (1) during formation of 412 

Scheelite II (Fig. 12a).  413 

Reaction (2) was not important in the study units, as shown by the Nb contents of 414 

Scheelite I and Scheelite II (137 to 480 ppm and 22.7 to 447 ppm, respectively) being 415 

lower than their REEs concentrations. Also significant is that Scheelite I plots near the 416 

1:1 line of Nb (atom) and REE+Y-Eu (atom), whereas Scheelite II plots away from the 417 

1:1 line (Fig. 12b). The strong positive correlation between Na+Nb (atom) and REE+Y-418 

Eu (atom) for Scheelite I indicates control of substitutions by coupled reactions (1) and 419 

(2) (Fig. 12c). On the other hand, the similar correlations between Na + Nb (atom) and 420 

REE+Y-Eu (atom) and between Na (atom) and REE+Y-Eu (atom) for Scheelite II 421 

suggest that reaction (2) can be ruled out for this mineral phase (Fig. 12a and 12c). 422 

However, because Scheelite II does not show a strong positive correlation between Na 423 

(atom) and REE+Y-Eu (atom), REE substitution in Scheelite II is unlikely to have been 424 

controlled exclusively by reaction (1). Scheelite II is characterized by relatively flat 425 

chondrite-normalized REE patterns inherited from the source fluids, supporting the 426 

operation of reaction (3) in this mineral phase. 427 

5.3 Geochemical significance of scheelite 428 

Ce can enter the scheelite lattice as either Ce3+ or Ce4+ along with other REE3+ 429 

ions, but Ce3+ enters the scheelite lattice more easily than Ce4+ because of the similar 430 

ionic radii of Ce3+ (1.14 Å) and Ca2+ (1.12 Å) (Shannon 1976; Gaderi et al. 1999; Sun 431 

et al. 2019). Therefore, scheelite precipitated from oxidizing fluids tend to contain low 432 

Ce concentrations. Mo concentrations in scheelite can also be a sensitive tracer of the 433 

redox conditions of the ore-forming fluids (Raimbault et al. 1993; Rempel et al. 2009). 434 

Under oxidizing conditions, Mo6+ readily enters the scheelite lattice via substitution for 435 

W6+, leading to Mo enrichment (Raimbault et al. 1993; Rempel et al. 2009). In contrast, 436 
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under reducing conditions, Mo4+ does not substitute easily for W6+ in scheelite, 437 

resulting in low Mo contents. Both Scheelite Ⅰ and Scheelite Ⅱ have high Mo contents, 438 

646–3496 ppm (mean 2280 ppm) and 4419–6973 ppm (mean 5245 ppm) (Fig. 12d), 439 

respectively, which accords with the high Mo concentrations of scheelite in the nearby 440 

giant Zhuxi tungsten deposit (prograde skarn stage; 1171–3291 ppm; Sun et al. 2019). 441 

Furthermore, negative covariation of Mo and Ce in both Scheelite I and Scheelite II 442 

supports oxidizing conditions in the ore-forming fluids (Fig. 12e).  443 

Due to the similar ionic radii and valences of Y and Ho, Y/Ho ratios tend to remain 444 

fairly stable in a given magmatic-hydrothermal system, allowing their use as a fluid 445 

source indicator (Bau and Dulski 1995; Bau 1996; Irber 1999). Relatively invariant 446 

Y/Ho ratios are shown by both Scheelite Ⅰ (16.9–24.3, mean 19.3) and Scheelite Ⅱ 447 

(16.1–33.7, mean 27.9). In addition, both Scheelite Ⅰ and Scheelite Ⅱ exhibit strong 448 

positive correlations between Y and Ho (R2 = 0.99 and 0.86, respectively (Fig. 12f), 449 

indicating that these two mineral phases were precipitated from a single source fluid. 450 

In addition, it should be noted that the Y/Ho ratios of Scheelite Ⅱ are consistent with 451 

previously published Y/Ho ratios (28–35) for the Middle Jurassic Guposhan granites 452 

(Wang et al. 2014).  453 

Both Scheelite Ⅰ and Scheelite Ⅱ have high Sr concentrations and low Rb 454 

concentrations, yielding negligibly low Rb/Sr ratios, suggesting that the 87Sr produced 455 

by radioactive decay of 87Rb can be ignored and the measured 87Sr/86Sr ratios of 456 

scheelite can be equated with initial ratios at the time of crystallization or element 457 

redistribution (Kozlik et al. 2016). However, the relatively high 87Sr/86Sr ratios of 458 

Scheelite Ⅰ (0.70939–0.71932) may not represent the initial 87Sr/86Sr compositions of 459 

the Early Jurassic granites, since fluid-rock interaction may have altered the 87Sr/86Sr 460 

compositions of the primary magmatic-hydrothermal fluids. Fluid-rock interaction 461 
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between fluids and Early Jurassic granites is indicated by extremely negative Eu 462 

anomalies (Eu/Eu* = 0.02–0.05), which are much lower than those of granitic rocks in 463 

the Guposhan region (Wang et al. 2014). The precipitation of abundant K-feldspar from 464 

a granitic melt can consume substantial Eu, leading to Eu depletion of the fluid and a 465 

large negative Eu anomaly, as seen in Scheelite Ⅰ. In addition, fluid-rock interaction 466 

may have resulted in hydrolyzation of mica minerals in the Early Jurassic granites, 467 

leading to release of Rb and higher 87Rb/86Sr ratios in the ore-forming fluids, which 468 

finally elevated their 87Sr/86Sr ratios through production of radiogenic 87Sr (Glodny and 469 

Grauert, 2009; Kozlik et al., 2016; Cao et al. 2020c). The 87Sr/86Sr ratios of Scheelite Ⅱ 470 

(0.70277–0.71471) are in good agreement with those of the ore-related Middle Jurassic 471 

Guposhan granites (Fig. 11; Gu et al. 2007). Together with the similar Eu anomalies of 472 

Scheelite Ⅱ (0.14–0.55) and the Middle Jurassic ore-forming granites (0.09–0.57) and 473 

their relatively flat chondrite-normalized REE patterns, the Sr isotope data indicate that 474 

Scheelite Ⅱ inherited the REE signature of the fluids from which it formed, and that 475 

these signatures represent the initial 87Sr/86Sr compositions of Middle Jurassic granites 476 

in the Guposhan region. Thus, scheelite that crystallizes from primary magmatic-477 

hydrothermal fluids not experiencing intense fluid-rock interactions can retain the Sr 478 

isotopic signature of the related granites, providing a new tool to constrain genetic 479 

relationships between scheelite and ore-related granites.  480 

6. IMPLICATIONS 481 

1) Our study provides evidence of two-stage magmatism and related tungsten 482 

mineralization in the Guposhan region, i.e., an Early Jurassic (~180 Ma) event and a 483 

Middle Jurassic (~163 Ma) event, expanding the known temporal range of these 484 
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processes and the ore-prospecting potential in the Nanling Range, since the Early 485 

Jurassic tungsten mineralization in Nanling range is poorly known to date.  486 

2) Trace elements and Sr isotopes of scheelite can be a good tool to reveal the 487 

physical-chemical conditions of ore-forming fluids and to demonstrate genetic 488 

relationships between scheelite and ore-related granites.  489 
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FIGURE CAPTIONS 833 

FIGURE 1. Geological sketch map of the South China Craton (modified from Zhou et 834 

al. 2006), showing the distribution of Mesozoic granitic-volcanic rocks and the Sn-W 835 

deposits in the Nanling Range. NLR = Nanling Range.   836 

 837 

FIGURE 2. Geological sketch map of Guposhan ore field, showing the location and 838 

ages of the Sn–W deposits (modified from Li et al. 2015). 839 

 840 

FIGURE 3. (a) Geological sketch map of northern Guposhan ore field, showing the 841 

sampling location; (b) No. 30 line geological section of the Helukou deposit (modified 842 

from Zou et al. 2005). 843 

 844 

FIGURE 4. Photographs of ore bodies and tungsten ores from the Helukou deposit. (a) 845 

Hand specimen of altered granite-type ore; (b) Hand specimen of altered granite-type 846 

ore showing location of scheelite (under a tungsten lamp); (c) Field photograph 847 

showing the contact zone between the Middle Jurassic granites and the skarn-type W 848 

ore body; (d) Field photograph of garnet-epidote skarn; (e) Field photograph of garnet-849 

vesuvianite skarn; (f) Field photograph of garnet skarn crossed by quartz vein; (g) Hand 850 

specimen of garnet skarn-type ore; (h) Hand specimen of garnet skarn-type ore showing 851 

the location of scheelite (under a tungsten lamp); (i) Hand specimen of molybdenite-852 

bearing skarn-type ore.  853 

 854 

FIGURE 5. BSE images of skarn-type (a–e) and altered granite-type (f–i) W ores from 855 

the Helukou deposit showing the main mineral assemblages. (a) Scheelite coexisting 856 

with fluorite and apatite; (b) Xenomorphic scheelite surrounded by fluorite; (c) Fluorite 857 
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surrounded by euhedral scheelite; (d) Xenomorphic scheelite coexisting with galena 858 

and magnetite. (e) Sharp contact between garnet and scheelite; (f) Irregular molybdenite 859 

surrounded by andradite; (g) Ilmenite surrounded by xenomorphic scheelite; (h) 860 

scheelite coexisting with pyrite; (i) Chalcopyrite and galena surrounded by K-feldspar. 861 

Alm–almandine; Ap–apatite; Ard–Andradite; Cal–calcite; Ccp–Chalcopyrite; Fi–862 

fluorite; Gn–galena; Grs–grossular; Ilm–ilmenite; Kfs–K-feldspar; Mag–magnetite; 863 

Mo–molybdenite; Py–pyrite; Qtz–quartz; Sch–scheelite; Xtm–xenotime; Zr–zircon. 864 

 865 

FIGURE 6. Hand specimens and photomicrographs of granites from the Helukou 866 

deposit. (a) Hand specimen of fine-grained muscovite granite; (b–c) Photomicrographs 867 

of major mineral assemblages of fine-grained muscovite granite; (d) Hand specimen of 868 

fine-grained biotite granite; (e–f) Photomicrographs of major mineral assemblages of 869 

fine-grained biotite granite. Bt–biotite; Hbl–hornblende; Kfs–K-feldspar; Pl–870 

plagioclase; Ms–muscovite; Qtz–quartz. 871 

 872 

FIGURE 7. Cathodoluminescence (CL) images of representative zircon grains of 873 

samples from the Helukou deposit. White circles represent LA–ICP–MS dating spots; 874 

yellow lines are boundaries between protogenetic and recrystallized areas of zircon 875 

grains. 876 

 877 

FIGURE 8. Zircon U–Pb concordia diagram and weighted-mean ages of zircon grains 878 

of samples from the Helukou deposit. 879 

 880 

FIGURE 9. Molybdenite Re–Os isochron diagram and weighted mean ages of ore 881 

samples from the Helukou deposit. 882 

 883 
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FIGURE 10. Rare earth element distributions in scheelite from the Helukou deposit. 884 

Chondrite normalization based on Taylor and McLennan (1985). 885 

 886 

FIGURE 11. 87Sr/86Sr ratios of scheelite from the Helukou deposit, compared with 887 

Middle Jurassic ore-related granites at Guposhan (Gu et al. 2007). 888 

 889 

FIGURE 12. (a) Na versus ∑REE + Y–Eu (as 100 atoms per CaWO4 formula unit), (b) 890 

Nb versus ∑REE + Y–Eu (as 100 atoms per CaWO4 formula unit), (c) Na + Nb versus 891 

∑REE + Y–Eu (as 100 atoms per CaWO4 formula unit), (d) Eu/ Eu* versus Mo, (e) Mo 892 

versus Ce, and (f) Y versus Ho. Note: (a), (b), and (c) are modified from Ghaderi et al. 893 

1999).  894 

 895 
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TABLE 1. LA–ICP–MS zircon U–Pb dating data for the granites and altered-granite type ore from the Helukou deposit. 
Spot Th(ppm） U(ppm） Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 

        Ratio ±1σ Ratio ±1σ Ratio ±1σ Ratio ±1σ Age (Ma) ±1σ Age (Ma) ±1σ Age (Ma) ±1σ 

Fine-grained muscovite granite (HLK-1-1) 
1 147  597  0.25  0.0494  0.0023  0.1734  0.0080  0.0254  0.0004  0.0084  0.0005  165  139.8  162  7.0  162  2.3  
2 312  719  0.43  0.0498  0.0022  0.1752  0.0070  0.0255  0.0004  0.0091  0.0003  187  103.7  164  6.0  163  2.4  
3 444  560  0.79  0.0492  0.0019  0.1738  0.0067  0.0255  0.0004  0.0077  0.0003  167  88.9  163  5.8  162  2.7  
4 458  1340  0.34  0.0497  0.0021  0.1817  0.0062  0.0265  0.0005  0.0090  0.0004  183  96.3  170  5.4  169  3.1  
5 336  883  0.38  0.0492  0.0039  0.1765  0.0166  0.0257  0.0009  0.0090  0.0004  154  190.7  165  14.4  164  5.5  
6 213  541  0.39  0.0498  0.0040  0.1772  0.0116  0.0259  0.0008  0.0092  0.0004  187  174.0  166  10.0  165  5.2  
7 162  275  0.59  0.0500  0.0042  0.1783  0.0124  0.0261  0.0010  0.0092  0.0006  195  194.4  167  10.7  166  6.0  
8 193  417  0.46  0.0502  0.0030  0.1745  0.0088  0.0256  0.0008  0.0091  0.0004  211  143.5  163  7.6  163  4.8  
9 198  425  0.47  0.0500  0.0024  0.1785  0.0082  0.0260  0.0004  0.0084  0.0003  195  112.9  167  7.1  165  2.5  

10 313  601  0.52  0.0486  0.0016  0.1719  0.0056  0.0255  0.0004  0.0076  0.0002  128  77.8  161  4.9  162  2.5  
11 152  252  0.60  0.0493  0.0023  0.1745  0.0082  0.0254  0.0004  0.0076  0.0003  161  138.9  163  7.1  162  2.7  
12 176  337  0.52  0.0492  0.0033  0.1745  0.0116  0.0255  0.0007  0.0086  0.0005  167  138.9  163  10.1  162  4.2  
13 173  334  0.52  0.0495  0.0023  0.1773  0.0085  0.0259  0.0005  0.0082  0.0004  172  109  166  7.3  165  3.0  
14 165  311  0.53  0.0498  0.0023  0.1776  0.0083  0.0260  0.0005  0.0085  0.0003  183  114  166  7.1  165  3.1  
15 423  902  0.47  0.0496  0.0016  0.1772  0.0059  0.0258  0.0004  0.0075  0.0003  176  78.7  166  5.1  164  2.7  
16 208  548  0.38  0.0484  0.0016  0.1747  0.0061  0.0260  0.0004  0.0075  0.0003  120  77.8  163  5.3  166  2.6  

Altered granite-type tungsten ore (HLK-3) 
1 566  1363  0.42  0.0500  0.0013  0.2009  0.0061  0.0290  0.0005  0.0078  0.0002  195  63.0  186  5.2  184  3.0  
2 813  1484  0.55  0.0516  0.0022  0.2049  0.0078  0.0289  0.0008  0.0085  0.0003  333  98.1  189  6.6  184  4.9  
3 767  1452  0.53  0.0512  0.0019  0.2005  0.0068  0.0284  0.0005  0.0076  0.0002  250  89.8  186  5.8  180  3.1  
4 407  1600  0.25  0.0504  0.0013  0.1976  0.0052  0.0283  0.0004  0.0087  0.0003  213  59.2  183  4.4  180  2.6  
5 412  1131  0.36  0.0505  0.0014  0.2053  0.0066  0.0293  0.0006  0.0090  0.0003  220  64.8  190  5.6  186  3.7  
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6 409  1193  0.34  0.0497  0.0029  0.1969  0.0111  0.0287  0.0007  0.0096  0.0005  189  135  182  9.4  182  4.4  
7 151  574  0.26  0.0518  0.0031  0.1985  0.0113  0.0278  0.0007  0.0093  0.0007  276  139  184  9.6  177  4.3  
8 1032  3481  0.30  0.0513  0.0015  0.2065  0.0084  0.0289  0.0009  0.0093  0.0004  257  66.7  191  7.0  184  5.5  
9 126  199  0.64  0.0511  0.0051  0.1998  0.0218  0.0285  0.0008  0.0093  0.0008  256  209  185  18.5  181  5.2  

10 282  806  0.35  0.0513  0.0025  0.1957  0.0088  0.0278  0.0007  0.0095  0.0003  254  80.5  181  7.5  177  4.2  
11 2500  9018  0.28  0.0516  0.0010  0.2089  0.0052  0.0292  0.0005  0.0089  0.0003  333  38.0  193  4.4  185  3.4  
12 129  397  0.32  0.0513  0.0040  0.1991  0.0169  0.0279  0.0007  0.0114  0.0007  254  184.2  184  14.4  177  4.6  

Fine-grained biotite granite (HLK-6) 
1 1206  7488  0.16  0.0501  0.0039  0.1958  0.0136  0.0283  0.0011  0.0139  0.0007  211  181  182  11.5  180  6.7  
2 497  1525  0.33  0.0546  0.0022  0.2127  0.0114  0.0290  0.0016  0.0108  0.0004  398  90.7  196  9.6  185  10.3  
3 712  2411  0.30  0.0496  0.0022  0.2039  0.0130  0.0297  0.0016  0.0108  0.0007  176  99.1  188  11.0  189  10.2  
4 576  1527  0.38  0.0498  0.0060  0.2015  0.0244  0.0293  0.0012  0.0136  0.0006  187  268.5  186  20.6  186  7.3  
5 79.2  181  0.44  0.0485  0.0052  0.2017  0.0237  0.0296  0.0012  0.0087  0.0014  120  246  187  20.0  188  7.6  
6 174  446  0.39  0.0497  0.0071  0.1979  0.0283  0.0291  0.0015  0.0139  0.0012  183  303.7  183  24.0  185  9.4  
7 449  1316  0.34  0.0498  0.0022  0.2019  0.0115  0.0290  0.0009  0.0120  0.0006  187  102  187  9.8  185  5.6  
8 178  405  0.44  0.0492  0.0048  0.1974  0.0210  0.0290  0.0013  0.0087  0.0008  167  206  183  17.8  184  7.8  
9 268  905  0.30  0.0502  0.0038  0.1984  0.0157  0.0286  0.0009  0.0108  0.0006  206  175.9  184  13.3  182  5.8  

10 269  702  0.38  0.0501  0.0027  0.1991  0.0117  0.0286  0.0007  0.0112  0.0005  211  124.1  184  9.9  182  4.5  
11 85.5  175  0.49  0.0504  0.0047  0.2010  0.0177  0.0291  0.0008  0.0085  0.0009  213  204  186  14.9  185  5.0  
12 483  1219  0.40  0.0509  0.0021  0.2051  0.0089  0.0291  0.0008  0.0091  0.0004  235  92.6  189  7.5  185  4.7  
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TABLE 2. Molybdenite Re–Os isotopic data for the skarn-type tungsten ore from the Helukou 
deposit. 
Sample No. Re (ng/g) 2σ 187Re (ng/g) 2σ 187Os ng/g 2σ T (Ma) 2σ 
Molybdenite from the skarn-type tungsten ore 

GPS-1 48518 623 30494 391 85.24 0.586 167.5 2.9 
GPS-2 40323 358 25345 225 70.18  0.339  166.0 1.7 
GPS-3 41443 609 26048 383 70.80  0.542  162.9 3.1 
GPS-4 41778 703 26258 442 72.57 0.451  165.6 3.4 
GPS-5 22353 269 14050 169 38.71 0.270  165.1 2.8 
GPS-6 10238 45 6436 28 18.46 0.083 171.9 1.08 

Molybdenite from the altered granite-type tungsten ore 
AG-1 30434 210 19129 132 57.89 0.421  181.4 1.8 
AG-2 9914 73 6231 46 18.39  0.140  176.9 2.6 
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TABLE 3. LA–ICP–MS trace element compositions of the scheelite from the skarn- and altered granite-type tungsten ore in the Helukou deposit 
(ppm). 
Spot. No Na Rb Sr Nb Mo La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE δEu δCe Y/Ho 
Scheelite II 

1 90.34  0.07  45.9  122  1866  97.7  452  73.0  448  93.0  7.46  96.3  11.8  80.8  13.0  34.2  2.70  11.2  0.67  402  1422  1171  251  0.24  1.25  30.9  

2 101.94  0.02  52.5  114  2346  26.1  170  34.9  257  64.9  4.55  76.0  9.06  59.6  9.37  23.3  1.67  6.12  0.38  250  743  557  185  0.20  1.32  26.7  

3 89.06  0.00  48.2  43.7  2415  18.6  138  26.7  177  42.5  6.68  44.1  4.85  33.0  4.57  10.9  0.91  2.89  0.14  123  511  409  101  0.47  1.45  27.0  

4 8.64  0.02  49.4  206  3496  16.3  106  24.4  192  45.7  1.95  25.2  1.74  8.41  0.92  1.64  0.12  0.54  0.043  27.6  425  387  39  0.18  1.25  30.1  

5 13.39  0.04  52.9  27.0  2355  36.7  182  29.9  184  50.7  6.94  68.3  9.84  75.8  12.6  33.5  2.55  9.44  0.47  413  703  491  213  0.36  1.29  32.7  

6 13.61  0.02  38.1  22.7  2816  11.9  65.2  11.3  72.9  20.7  2.86  26.3  3.67  27.8  4.72  13.5  1.07  4.77  0.30  145  267  185  82  0.37  1.32  30.7  

7 70.33  0.04  63.9  112  1753  293  1108  152  819  149  7.22  135  15.2  94.9  13.5  31.1  2.16  7.09  0.47  454  2827  2528  299  0.16  1.23  33.7  

8 39.23  0.01  41.3  96.5  2409  77.6  401  62.8  367  78.9  6.38  85.0  10.8  77.3  12.5  33.3  2.57  10.7  0.61  389  1226  994  233  0.24  1.35  31.1  

9 118.20  0.06  65.9  163  1719  12.8  75.7  17.1  141  52.2  3.01  81.8  11.0  76.0  12.0  30.7  2.31  9.86  0.65  313  526  301  224  0.14  1.20  26.1  

10 175.26  0.11  60.3  126  1926  82.4  425  69.3  397  72.5  6.08  59.7  6.53  39.3  5.08  11.6  0.84  2.70  0.15  139  1178  1052  126  0.28  1.32  27.4  

11 95.03  0.02  54.7  124  2094  131  636  93.1  509  75.3  3.19  60.4  5.96  35.0  5.05  11.7  0.83  2.99  0.16  139  1569  1447  122  0.14  1.35  27.5  

12 105.69  0.00  46.7  30.6  2643  17.5  129  25.5  180  44.8  3.65  51.9  6.64  45.4  7.19  19.1  1.31  5.44  0.39  177  538  400  137  0.23  1.43  24.6  

13 123.89  0.04  32.8  447  3492  32.2  208  41.8  300  81.0  5.17  104  13.7  96.7  16.5  42.8  3.24  12.6  0.68  462  959  668  290  0.17  1.33  28.0  

14 184.24  0.07  128  125  646  356  1081  122  554  141  22.2  110  15.5  98.6  13.3  36.4  4.24  32.9  4.43  214  2591  2276  315  0.55  1.21  16.1  

15 85.04  0.03  53.4  94.7  2228  11.8  71.9  15.2  116  39.0  3.50  50.3  6.97  48.6  7.83  22.3  1.88  9.84  0.87  205  406  257  149  0.24  1.26  26.2  

Scheelite I 

1 18.73  0.00  118  180  5720  33.1  126  20.7  115  30.7  0.33  29.2  3.64  17.1  2.76  5.88  0.58  2.15  0.28  60.8  387  326  61.5  0.03 1.13  22.0  

2 31.52  0.14  109  165  4778  37.2  148  24.6  129  32.3  0.23  29.5  3.63  16.8  2.84  5.98  0.61  2.17  0.24  60.8  433  371  61.8  0.02 1.14  21.4  

3 47.14  0.13  108  168  4419  23.6  126  26.5  171  49.5  0.40  53.0  6.63  30.8  5.50  10.9  1.01  3.22  0.36  92.8  509  397  111.4  0.02 1.18  16.9  

4 34.05  0.06  114  174  4721  31.7  141  26.3  156  42.7  0.41  38.9  4.61  21.2  3.23  5.81  0.51  2.07  0.22  58.8  475  399  76.6  0.03 1.14  18.2  

5 45.18  0.04  109  137  5637  22.7  123  25.5  169  47.3  0.41  49.7  5.59  26.0  4.02  7.41  0.61  2.43  0.34  71.1  484  388  96.0  0.03 1.19  17.7  

6 21.24  0.22  128  174  4672  22.3  96.8  18.7  116  32.0  0.43  35.4  4.72  23.2  4.29  8.62  0.87  3.52  0.41  76.1  367  286  81.0  0.04 1.11  17.7  
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7 48.56  0.16  111  132  5071  29.2  141  27.5  166  44.6  0.41  43.8  5.15  24.4  3.88  7.65  0.66  2.30  0.26  67.5  497  408  88.1  0.03 1.17  17.4  

8 25.01  0.08  122  124  6068  17.7  89.0  18.7  121  32.9  0.42  32.6  3.85  19.0  3.11  5.94  0.65  2.53  0.34  58.9  347  279  68.0  0.04 1.15  18.9  

9 96.32  1.25  98.9  141  4983  31.5  159  30.5  180  47.1  0.47  48.0  6.11  31.7  5.35  11.4  1.17  3.89  0.39  98.2  556  448  108  0.03 1.20  18.3  

10 37.66  0.00  103  480  4649  20.1  110  25.9  193  91.5  1.21  111  15.5  85.0  15.5  36.1  3.95  14.2  1.41  295  724  441  283  0.04 1.13  19.0  

11 19.71  0.03  117  192  6973  42.1  133  19.9  95.2  23.1  0.34  22.3  2.64  13.2  2.28  5.18  0.56  2.33  0.29  55.4  362  314  48.7  0.05 1.08  24.3  

 

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. 
 The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. 

DOI: https://doi.org/10.2138/am-2021-7678.  http://www.minsocam.org/

Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld



TABLE 4. LA–MC–ICP–MS Sr isotopes of the scheelite from the Helukou deposit. 
Spot No. 84Sr/86Sr 2σ 84Sr/88Sr 2σ 87Rb/86Sr 2σ 87Sr/86Sr 2σ 
Scheelite I 

1 0.0575  0.0047  0.00687  0.00056  0.00172  0.000184  0.71142  0.00081  
2 0.0572  0.0050  0.00682  0.00059  0.00487  0.000133  0.70939  0.00082  
3 0.0571  0.0044  0.00681  0.00052  0.01530  0.005317  0.71698  0.00268  
4 0.0585  0.0042  0.00699  0.00050  0.00167  0.000117  0.71281  0.00061  
5 0.0499  0.0068  0.00596  0.00081  0.00771  0.000756  0.71507  0.00104  
6 0.0578  0.0050  0.00690  0.00059  0.00345  0.000657  0.71271  0.00085  
7 0.0595  0.0040  0.00710  0.00048  0.00149  0.000114  0.71210  0.00064  
8 0.0557  0.0043  0.00665  0.00052  0.00155  0.000128  0.71125  0.00071  
9 0.0551  0.0043  0.00658  0.00051  0.02030  0.000843  0.71932  0.00078  

Scheelite II  
1 0.0436  0.0023  0.00520  0.00028  0.01688  0.000266  0.70852  0.00042  
2 0.0549  0.0101  0.00655  0.00120  0.00389  0.000253  0.70970  0.00143  
3 0.0577  0.0105  0.00689  0.00125  0.00455  0.000295  0.71027  0.00191  
4 0.0617  0.0104  0.00737  0.00124  0.00382  0.000297  0.71079  0.00167  
5 0.0535  0.0151  0.00639  0.00180  0.00410  0.000397  0.71040  0.00241  
6 0.0156  0.0155  0.00186  0.00185  0.07324  0.000467  0.70277  0.00266  
7 0.0132  0.0161  0.00158  0.00192  0.06863  0.001111  0.71471  0.00279  
8 0.0497  0.0089  0.00593  0.00106  0.00351  0.000217  0.71003  0.00129  
9 0.0487  0.0122  0.00582  0.00145  0.00524  0.000342  0.70852  0.00186  

10 0.0438  0.0115  0.00523  0.00137  0.00890  0.000442  0.70824  0.00160  
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