1	Word count: 7481
3	
4	Heat Capacity and Thermodynamic Functions
5	of Partially Dehydrated Sodium and Zinc Zeolite A (LTA)
6	of Fullung Dengalated Soulain and Ente Econte II (ETII)
7	
8	
9	
10	
11	
12 13	Matthew S. Dickson ¹ , Peter F. Rosen ¹ , Grace Neilsen ¹ , Jason J. Calvin ¹ , Alexandra Navrotsky ² , and Brian F. Woodfield* ¹
14	
15	
16	¹ Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602,
17	U.S.A.
18	
19 20	² School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85281, U.S.A.
21	
22	
23	
24	
25	
26	
27	
20 20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	*Corresponding author. Tel.: +1 801 422 2093; fax: +1 801 422 0153 <i>Email address</i> : <u>brian_woodfield@byu.edu</u> (B. F. Woodfield)

41	
42	Abstract
43	Zeolite A (LTA) is an industrially important zeolite that exhibits sorption-induced
44	framework flexibility, the thermodynamics of which are poorly understood. In this work, we
45	report heat capacity measurements on zinc and sodium zeolite A from 1.8 K to 300 K and
46	compare the heat capacity of water in sodium zeolite A with that of water in other zeolites. The
47	heat capacity of zeolitic water varies significantly depending on hydration level and identity of
48	the host zeolite, and more tightly bound water exhibits strong inflections in its heat capacity
49	curve. This suggests a combination of effects, including differences in water-framework binding
50	strength and hydration-dependent flexibility transitions. We also report fits of the heat capacity
51	data using theoretical functions, and values for $C_{p,m}^{\circ}$, $\Delta_0^T S_m^{\circ}$, $\Delta_0^T H_m^{\circ}$, and Φ_m° from 0 K to 300
52	K. These results contribute to a systematic thermodynamic understanding of the effects of cation
53	exchange, guest molecule confinement, and sorbate-dependent flexibility transitions in zeolites.
54	
55	
56	
57	
58	
59	
60	
61	KEYWORDS: Zeolite, framework flexibility, gate opening, zeolitic water, heat capacity

3

Introduction

63	Zeolite A (also known as Linde-Type A or LTA) is a microporous aluminosilicate
64	material that has found wide application in industry for selective sorption (Auerbach et al., 2003;
65	Kim et al., 2016; Yin et al., 2005), molecular sieving (Auerbach et al., 2003; Yin et al., 2005),
66	ion exchange(Auerbach et al., 2003), gas separation (Auerbach et al., 2003; Kim et al., 2016; Yin
67	et al., 2005), and catalysis (Auerbach et al., 2003; Chen, 1996; Öhlmann et al., 1991). The many
68	uses of zeolite A, like those of other porous crystalline frameworks (e.g. metal-organic
69	frameworks), are based on interactions between the framework itself and guest molecules
70	introduced into its structure. There is evidence that some porous crystalline frameworks,
71	including zeolite A, exhibit novel behaviors such as framework flexibility and the related
72	phenomenon gate opening (Guo and Navrotsky, 2018; Guo et al., 2018). Both phenomena
73	involve structural changes that are induced by guest molecules and alter the material's sorptive
74	properties. Understanding the thermodynamics of such sorption-based phenomena is necessary
75	to design useful new framework materials.
76	Zeolite A is composed of a framework of alternating corner-sharing SiO_4 and AlO_4
77	tetrahedra, which form a cubic structure of eight alpha cages (supercages) and eight beta cages
78	(sodalite) (Loewenstein, 1954). Extra-framework cations (typically Na ⁺) located in the cages of
79	the structure balance the net negative charge caused by substitution of Al^{3+} for Si^{4+} . By
80	exchanging different cations into the structure, it is possible to modify the pore properties,
81	structural properties, and catalytic activity of a zeolite (Armor, 1998; Guo et al., 2018; Sun et al.,
82	2016). Transition-metal-exchanged zeolites are of particular interest for properties such as
83	variable oxidation states and multi-coordination capacity, and they exhibit exceptionally high
84	catalytic activity for a number of useful redox reactions (Armor, 1998; Chatterjee et al., 1992).

4

85 This paper deals with several ion-exchanged versions of zeolite A, which we will refer to using abbreviations of the form M-A, where M is the extra-framework cation (e.g., Na-A and Zn-A). 86 Thermodynamic studies on porous frameworks both with and without guest molecules 87 provide crucial information about the energetics of confinement. The present work is part of a 88 collaborative investigation of the thermodynamics of strategically chosen synthetic zeolites with 89 90 controlled variations in structure, cation content, and sorbate content (Guo and Navrotsky, 2018; Guo et al., 2019; Guo et al., 2018; Sun et al., 2016; Wu and Navrotsky, 2016; Yang and 91 92 Navrotsky, 2000).

93 The Flexibility Transition in Zeolite A

In addition to their industrial importance, the zeolites in this study are of interest for 94 exhibiting a "gate opening" or "flexibility" transition when partially dehydrated, as described by 95 Guo and coworkers (Guo and Navrotsky, 2018; Guo et al., 2018). The presence of the transition 96 defines three distinct hydration regimes: a low hydration phase (which exists from ~0-20%) 97 hydration), a transition or "two-phase" region ($\sim 20-50\%$ hydration, or roughly 0.2–0.6 mol H₂O 98 per Al_xSi_yO₂ tetrahedron), and a high-hydration phase (above \sim 50% hydration). (Note that "100 99 %" or "full" hydration is often defined somewhat arbitrarily as equilibrated with ambient 100 conditions, and we use terms "fully hydrated" and "equilibrated with ambient" interchangeably.) 101 The transition region is marked by a gradual structural change between low- and high-hydration 102 phases, and the exact range over which it occurs depends on the identity of the extra-framework 103 104 cation.

105 The flexibility transition has been studied in the greatest detail for sodium zeolite A (Na-106 A). Time-resolved XRD has shown a complex set of changes, including lattice contraction with 107 increasing hydration prior to the transition followed by rapid expansion during the transition

5

108 (Guo and Navrotsky, 2018). Although these types of sorption-induced lattice changes can have
109 important effects on zeolite performance, limited information on them is available.

110 Low-temperature Heat Capacity Measurements on Zeolites

111 The sensitivity of heat capacity data to changes in a material's density of states offers a 112 unique perspective into sorption-induced flexibility transitions (Dickson et al., 2019; Rosen et 113 al., 2020). Thus, heat capacity is a promising way to investigate the flexibility transition 114 uncovered by Guo and coworkers (Guo and Navrotsky, 2018; Guo et al., 2018) in ion-exchanged 115 zeolite A.

116 There are approximately 40 low-temperature heat capacity measurements on zeolites available in the literature (for a list see Voskov et al., 2019). All use the adiabatic method to 117 measure heat capacity, and all deal with fully hydrated zeolites equilibrated with a variety of 118 ambient humidities except for three studies (Johnson et al., 1982; Johnson et al., 1992; Oiu et al., 119 2000) that involve fully dehydrated zeolites. Four main problems are present in the literature that 120 make it difficult to make meaningful comparisons between zeolites: (1) Characterization is 121 sometimes incomplete (Haly, 1972; Qiu et al., 2006; Qiu et al., 2000). (2) All but three studies 122 (Donahoe et al., 1990; Qiu et al., 2006; Qiu et al., 2000) focus on natural zeolites with widely 123 124 varying compositions, which makes drawing conclusions about the relationship between structure and functional properties difficult (Qiu et al., 2000; Voskov et al., 2019). (3) Some 125 works (Donahoe et al., 1990; Haly, 1972; Hemingway and Robie, 1984; Johnson et al., 1982; 126 127 Johnson et al., 1983) do not clearly take precautions to prevent hydrated zeolites from losing water under vacuum while the sample is being mounted in the calorimeter. (For techniques that 128 129 address this issue see Drebushchak, 1990; Johnson et al., 1985; and Paukov et al., 1997). Since 130 water can comprise 60 % of a zeolite's heat capacity (Johnson et al., 1992), this renders the data

inconsistent. (4) Other works (Hemingway and Robie, 1984; Johnson et al., 1983; Johnson et al., 131 1985; King, 1955) adjust measured heat capacities to predict the heat capacity of samples with an 132 idealized composition or water content without adequately assessing whether these adjustments 133 are appropriate. Such adjustments typically rely on analogies between zeolites and other minerals 134 without accounting for special phenomena that zeolites can exhibit (Hemingway and Robie, 135 1984). In particular, the effect of hydration on zeolite heat capacity is unpredictable due to both 136 possible flexibility transitions (Johnson et al., 1982; Vieillard, 2010) and variable water heat 137 capacity that depends strongly on hydration level and zeolite identity (Hemingway and Robie, 138 139 1984; Neuhoff and Wang, 2007). The low-temperature literature measurements with full characterization and known water 140 content are plotted in Figure 1. Molecular formulas were adjusted to the form (Cations)Al_xSi_yO₂ 141 and are given in Table 1. This comparison shows that the heat capacity (and therefore standard 142 entropy and enthalpy) of zeolites varies widely. Thus, variations in structure, cation content, 143 Si/Al ratio, and water content have major effects on zeolite energetics. However, the issue of 144 variation in water content makes gaining insight from the comparison difficult. Since all 145 available literature measurements deal with either fully hydrated or fully dehydrated specimens, 146 it is difficult to separate the heat capacity effect of variable water surface interactions from that 147 of flexibility transitions in the host zeolite. Thus, systematic heat capacity studies on zeolites to 148 investigate these two aspects of water sorption are needed, particularly in the little-explored 149 150 region of partial hydration. This work is the first in a series reporting the results of heat capacity measurements on 151 zeolites with a variety of hydration levels and no additional guest molecules. This effort will lay 152 153 the groundwork for mapping the free energy landscape of several model zeolites and pave the

154	way for future heat capacity studies on loaded zeolites. These papers will cover eight zeolites:
155	five versions of zeolite A (unmodified Na-A and the exchanged versions Zn-A, Cu-A, Fe-A, and
156	Mn-A) and three versions of the related zeolite RHO (unexchanged Na,Cs-RHO and the
157	exchanged versions Cd,Cs-RHO and Li-H-RHO).
158	The present paper is concerned with Na-A and the ion-exchanged version Zn-A. Both are
159	partially dehydrated, with Zn-A near the high-hydration end of the flexibility transition and Na-A
160	near the low-hydration end. Heat capacities from 1.8 K to 300 K are reported, along with fits of
161	the data and standard thermodynamic functions for each zeolite. The heat capacity of zeolitic
162	water in Na-A is compared with that of water in other zeolites.
163	Experimental Methods
164	Sample Preparation
165	Synthetic zeolite A (NIST Standard Reference Material 8851) was used for the Na-A
166	sample and as the starting material for Zn-A, which was prepared via an aqueous solution
167	exchange (99.2% exchange) described elsewhere (Guo et al., 2018). Phase purity was confirmed
168	by powder X-ray diffraction (XRD) and composition was determined via electron microprobe
169	analysis (Guo et al., 2018; Sun et al., 2016). The samples have been explored previously using
170	gas absorption calorimetry (Guo et al., 2018), time-resolved XRD (Guo and Navrotsky, 2018),
171	differential scanning calorimetry (DSC) (Guo et al., 2018; Sun et al., 2016), and high
172	temperature oxide melt drop solution calorimetry (Sun et al., 2016). Each sample was partially
173	dehydrated in a vacuum oven (Na-A at 300 °C for 12 hours, Zn-A at 200 °C for 2 hours at
174	approximately 6 kPa), and the remaining water content was determined by TGA analysis using a
175	Mettler Toledo TGA/DSC 1 STARe System. TGA curves are provided in the Supplemental
176	Material. Sample compositions, including water content, are listed in Table 2.

8

177 Both samples were dehydrated to within the two-phase region of the hydration-dependent flexibility transition. The Na-A sample (Na-A \cdot 0.23 H₂O) was near the low-hydration end of its 178 179 transition, which takes place between 0.18 and 0.50 mol H₂O per mol zeolite (Guo and Navrotsky, 2018) and the Zn-A sample (Zn-A.0.58 H₂O) was near the high-hydration end of its 180 transition, which takes place between 0.35 and 0.63 mol H_2O per mol (Guo et al., 2018). 181 Heat capacity measurements 182 183 The heat capacity of Na-A \cdot 0.23 H₂O and Zn-A \cdot 0.58 H₂O was measured from 1.8 K to 184 300 K on a Physical Property Measurement System (PPMS) from Quantum Design. Each sample was encased in copper foil (0.025 mm thick and 99.999% pure from Alfa Aesar) and compressed 185 into a pellet in preparation for the measurement (Shi et al., 2011), with a coil of copper foil 186 187 embedded in the pellet to improve thermal conductivity. The heat capacity of the sample holder and the Apiezon N grease thermally linking the sample to the holder were accounted for by a 188 correction measurement performed prior to the sample measurement, and the heat capacity of the 189 copper was subtracted from the measured heat capacity. Details on the sample pellets, including 190 the mass of each material included in the measurement, are given in Table 3. 191

192Because fully hydrated zeolites are known to lose water under vacuum above 260 K

193 (Johnson et al., 1985; Paukov et al., 1997), we investigated the tendency of our partially

194 dehydrated samples to lose water during the measurement. Na-A \cdot 0.23 H₂O was placed under

vacuum at room temperature for three hours, which is the length of time the sample spends under

vacuum above 260 K during the measurement. No change in the sample's mass was detected, so

197 we conclude that the water content was stable during the measurement.

198

Results and Discussion

9

199	The measured heat capacities for Na-A+0.23 $\rm H_2O$ and Zn-A+0.58 $\rm H_2O$ are given in Tables
200	4 and 5 and a plot of the data (with literature data for the heat capacity of fully dehydrated Na-A
201	from Qiu et al., 2000) is given in Figure 2. Note that there are likely small compositional
202	differences between our sample of Na-A and the literature sample, which was assumed to have
203	the ideal formula of $Na_{0.5}Si_{0.5}Al_{0.5}O_2$. The heat capacities are smooth and free of anomalies
204 205	across the entire temperature range. Heat Capacity of Zn-A vs Na-A
206	The heat capacity curves of Na-A \cdot 0.23 H ₂ O and Zn-A \cdot 0.58 H ₂ O are expected to have the
207	same general form, with a (minor) difference in shape and (potentially large) difference in
208	magnitude due to unequal numbers of cations and guest water molecules. Apparently, the
209	increase in heat capacity from the extra water molecules in Zn-A is outweighed by the decrease
21	in heat capacity caused by substitution of one Zn^{2+} for every two Na ⁺ , resulting in an overall
211	lower heat capacity in Zn-A. Another contributing factor is possibly stronger ion-framework
212	(Wu and Navrotsky, 2016) and water-framework bonds (Guo et al., 2018) in Zn-A than in Na-A
213	at the hydration levels investigated in this study. Stronger bonds increase the frequency of
214	vibrational modes and cause them to turn on at higher temperatures, resulting in a lower heat
215	capacity at a given temperature. Thus, the low heat capacity of Zn-A relative to Na-A reflects a
216	combination of the effects of bond strength and the number of guest ions and molecules.
217	Heat Capacity of Zeolitic Water
218	The presence of water in Na-A·0.23 H_2O results in a heat capacity up to 16 % higher than

The presence of water in Na-A \cdot 0.23 H₂O results in a heat capacity up to 16 % higher than the literature values for fully dehydrated Na-A. The lack of a broad water fusion anomaly above 260 K indicates that the water in the partially dehydrated sample is relatively tightly bound to the zeolite, with limited opportunity for bulk-like intermolecular interactions. It is important to note

10

222 that the difference between the two data sets for Na-A, which we refer to as "apparent water heat capacity," reflects both the heat capacity of zeolitic water in Na-A and differences in framework 223 heat capacity due to hydration-induced structural differences between the two samples. These 224 changes include lattice contraction from 0 to 0.18 mol H₂O per mol Na-A, followed by a brief 225 but more dramatic expansion from 0.18 to 0.23 mol H₂O (Guo and Navrotsky, 2018). In 226 addition, any lattice changes that occur as a function of temperature would add to the heat 227 capacity over the temperature range of their transition. The change in heat capacity attributable 228 to both lattice changes and the water itself was calculated by taking the difference between fits of 229 230 the two data sets, with the fit of the literature data consisting of one Debye and two Einstein functions. The result is plotted in Figure 3, where it is compared with similar apparant water heat 231 capacities calculated from the literature. 232

Differences between the apparant water heat capacities for the five zeolites in Figure 3 233 demonstrate the upredictable behavior of zeolitic water. All five zeolitic water curves reflect the 234 average behavior of sorbed water, calculated by taking the difference between two heat capacity 235 curves for samples of the same zeolite with distinct hydration levels and dividing by the 236 difference in moles of water. However, the curves in Figure 3 reflect the behavior of different 237 "levels" of water in the zeolites because they were calculated from data on samples at different 238 degrees of hydration. Thus, we refer to the water described in the curve for natrolite (which 239 reflects the average behavior of the water between 0.42 and 0.62 mol H₂O per mol zeolite) as 240 241 "loosely bound," and the water described by the curve for Na-A (0 vs 0.23 mol H₂O; full hydration is around 1 mol) as "tightly bound." The curves for analcime and mordenite reflect the 242 average behavior for both loosely and tightly bound water because they were calculated from the 243

244	difference between data for fully dehydrated samples and samples equilibrated with ambient
245	conditions (0 vs 0.33 mol H_2O for analcime and 0 vs 0.58 mol H_2O for mordenite).
246	The apparent water heat capacity of laumontite is unique in that it describes "very loosely
247	bound" water, reflecting the difference between ambient and above-ambient hydration (0.62 vs
248	0.72 mol H ₂ O). (Note that some authors refer to the ambient-hydration phase of laumontite using
249	the historical term "leonhardite.") Anomalies similar to those at 210 K, 250 K, and above 300 K
250	have been observed in a number of zeolite heat capacities (Basler and Lechert, 1972; Donahoe et
251	al., 1990; Paukov et al., 1998b; Paukov et al., 2005), and are typically attributed to
252	rearrangement in the water-cation subsystem, as they are in this case (Paukov and Fursenko,
253	1998a).
254	While comparisons between different zeolites have limitied quantitative validity, the data
255	in Figure 3 are still useful for identifying qualitative trends about the behavior of water in
256	zeolites. The heat capacity curves used to calculate apparent water heat capacity for analcime,
257	mordenite, natrolite, and Na-A lack dramatic water/cation rearrangement peaks, and therefore
258	show that there are significant differences even in the absence of major extra-framework
259	rearrangements. Note that the curve representing loosely bound water (on natrolite) is the
260	smoothest, while the curve representing tightly bound water (on Na-A) has the strongest
261	inflections, and the curves representing an average of all water "levels" (on mordenite and
262	analcime) have moderate inflections. This suggests that there may be trends in the heat capacity
263	curves of a particular "level" of water across zeolites, with loosely bound water exhibiting a
264	smooth heat capacity and tightly bound water exhibiting a more strongly inflecting heat capacity.
265	The data for the loosely bound water in natrolite is quite similar in form to the heat capacity of
266	the outer layers of water on titania nanoparticles (Calvin et al., 2019), which do not exhibit

flexibility. This suggests that the first water molecules to desorb from a zeolite have little
interaction with the zeolite framework itself, and it seems reasonable that this loosely bound
water would behave similarly between zeolites. If this is true, then all four zeolites may have
strongly inflecting heat capacity curves for their tightly bound water, with the strength of
inflections being partially masked in analcime and mordenite because the loosely bound water is
averaged into the data.

Inflections in the heat capacity of tightly bound zeolitic water have several possible 273 causes. Water mobility can cause broad peaked contributions to zeolite heat capacities, but this 274 275 seems unlikely for the tightly bound water in Na-A. Because the features of the Na-A apparent water heat capacity qualitatively match those in the analcime and mordenite data, it seems 276 probable that they have a common source. A more promising possible explanation is framework 277 flexibility, either due to structural differences between hydrated and dehydrated samples or 278 possibly shifts in lattice parameters that become favorable at low temperatures and appear as a 279 peaked contribution, like those observed in a metal-organic framework by Rosen et al., 2020. 280 The heat capacity of zeolitic water in Na-A is unique in that it is lower than the heat 281 capacity of hexagonal ice for the majority of the measurement's temperature range. One potential 282

cause of low heat capacity is strong bonding, which increases the frequency and energy of lattice

vibrational modes and results in them turning on at higher temperatures. Thus, the low heat

capacity of the zeolitic water in Na-A could reflect tighter binding of the low-level water with
the strongly charged framework/cation system than either water-water hydrogen bonds or waterzeolite bonds in the other zeolites. This is likely aided by the strong charge of the zeolite A
framework, which is the result of zeolite A having the lowest Si/Al ratio possible in a zeolite
(equal to 1, as opposed to 2.1 for analcime or 3.1 for heulandite). The water in analcime and

290	mordenite, on the other hand, has a higher heat capacity than that of hexagonal ice. This is
291	surprising; since these data sets reflect an average of all water in the zeolite, we would expect the
292	water heat capacity to lie between that of the tightly bound water in Na-A and the loosely bound
293	water in natrolite. The high heat capacity may suggest that phenomena other than binding
294	strength are at play, such as structural transformations.
295	While the contributions of unique water-zeolite interactions and framework flexibility are
296	difficult to separate based on the information presently available, future work with different

297 levels of hydration and different sorbates will enable comparisons that will enhance our

understanding of zeolite sorption and framework flexibility.

299 Data Fitting and Thermodynamic Calculations

Fits of the measured heat capacity of Na-A \cdot 0.23 H₂O and Zn-A \cdot 0.58 H₂O were applied to low temperature (<15 K) and high temperature (>50 K) regions, and the two regions were connected using an orthogonal polynomial fit. Parameters for these fits are given in Table 6.

303 The heat capacities below 15 K were fit to the function

$$C_{low T} = \gamma T + B_3 T^3 + B_5 T^5 + B_7 T^7 + B_{gap} T^n e^{-\frac{\delta}{T}} \#(1)$$

where γ , B_3 , B_5 , B_7 , B_{qap} , n, and δ are adjustable parameters. B_3 , B_5 , and B_7 reflect the lattice 304 305 heat capacity, with B_5 and B_7 correcting for anharmonicity in lattice vibrations. The remaining two terms were required to prevent systematic deviations from the fit. The need for the linear 306 term γT , which would typically reflect the electronic heat capacity of a metal, can reflect lattice 307 vacancies in insulators like zeolite A (Schliesser and Woodfield, 2015b). The final term models a 308 Debye heat capacity contribution with a gap in the density of states. B_{aap} reflects the number of 309 excess low-frequency modes with a gap, δ is proportional to the size of the gap, and n is the 310 dimensionality of the vibrations. In this and other cases (Schliesser and Woodfield, 2015a) where 311

14

- zeolite data were fit, n = 1 yielded the best results, which may reflect psudeo-linear vibrations
- that run along the wireframe-like structure of Na-A.
- Above 50 K, the data were fit to the equation

$$C_{high T} = m \cdot D\left(\frac{\Theta_D}{T}\right) + n_1 \cdot E\left(\frac{\Theta_{E1}}{T}\right) + n_2 \cdot E\left(\frac{\Theta_{E2}}{T}\right) \#(2)$$

where $D(\Theta_D/T)$ and $E(\Theta_E/T)$ are Debye and Einstein functions, respectively, and *m*, n_1 , n_2 , Θ_D , Θ_{E1} , and Θ_{E2} are adjustable parameters (Gopal, 2012), with the latter three being characteristic Debye and Einstein temperatures. The Einstein contributions model two energies where the vibrational density of states is high, and the presence of the second Einstein contribution may reflect water or cation vibrations inside the pores.

The region from 10 K to 60 K was fit to an orthogonal polynomial according to the algorithm from Westrum's group (Justice, 1969), transformed into the form

$$C_{mid\,T} = \sum_{n=0,1,2\dots8} A_n T^n \, \#(3)$$

The fit in this temperature range is used to provide a smooth connection between the high and low temperature regions and is not physically meaningful.

The fits discussed above were used to calculate the standard molar thermodynamic 324 functions $C_{p,m}^{\circ}$, $\Delta_0^{T} S_m^{\circ}$, $\Delta_0^{T} H_m^{\circ}$, and Φ_m° from 0 K to 300 K. These functions are given in 325 Tables 7 and 8. The standard molar entropies at 298.15 K are 76.3 and 66.3 $J \cdot K^{-1} \cdot mol^{-1}$ for Na-326 327 $A \cdot 0.23$ H₂O and Zn-A \cdot 0.58 H₂O. Dividing by the number of atoms per formula unit yields an 328 entropy per gram-atom (i.e., per mole of atoms) of $17.6 \text{ J} \cdot \text{K}^{-1} \cdot \text{g-atom}^{-1}$ for Na-A and 13.3 329 J·K⁻¹·g-atom⁻¹ for Zn-A. The higher entropy of Na-A suggests that the entropy contribution of 330 its additional cations outweighs that of the extra water in Zn-A on a per-atom basis. 331 Implications

332	This study provides a thermodynamic perspective into the phenomena of cation
333	exchange, water sorption, and sorbate-induced structural transformations in zeolites.
334	Understanding these phenomena is key for implementing zeolites in their myriad applications, as
335	well as for designing useful new zeolites. The presence of features common to the heat capacity
336	of water in several zeolites, including sodium zeolite A (Na-A), suggests that the hydration-
337	influenced framework flexibility that has been found in zeolite A may be present in other zeolites
338	as well. If this proves correct, it is possible that heat capacity measurements will prove a useful
339	tool for detecting such transformations and probing their thermodynamics. Furthermore, the
340	comparison of zeolite samples that are identical except for cation content contributes to a
341	growing understanding of the effects of cation exchange. Future work will further expand
342	understanding of zeolites by involving different cation content and levels of hydration.
343	Acknowledgements
344	This work was financially supported by a grant from the U.S. Department of Energy
345	under grant DE-SC0016446. Sample synthesis was supported by the U.S. Department of Energy,
346	Office of Basic Energy Sciences, under grant DE-FG02-97ER14749.
347	

16

References

349	
350	Armor, J. (1998) Metal-exchanged zeolites as catalysts. Microporous and mesoporous materials,
351	22(1-3), 451-456.
352	Auerbach, S.M., Carrado, K.A., and Dutta, P.K. (2003) Handbook of zeolite science and
353	technology. CRC press.
354	Basler, W., and Lechert, H. (1972) Molwärmemessungen an adsorbiertem Wasser im Zeolithen
355	Linde 13 X. Zeitschrift für Physikalische Chemie, 78(3_4), 199-204.
356	Calvin, J.J., Rosen, P.F., Ross, N.L., Navrotsky, A., and Woodfield, B.F. (2019) Review of
357	surface water interactions with metal oxide nanoparticles. Journal of Materials
358	Research, 34(3), 416-427.
359	Chatterjee, S., Greene, H.L., and Park, Y.J. (1992) Comparison of modified transition metal-
360	exchanged zeolite catalysts for oxidation of chlorinated hydrocarbons. Journal of
361	Catalysis, 138(1), 179-194.
362	Chen, NY. (1996) Shape selective catalysis in industrial applications. CRC press.
363	Dickson, M.S., Calvin, J.J., Rosen, P.F., and Woodfield, B.F. (2019) Low-temperature heat
364	capacity measurements on insulating powders sealed under pressure. The Journal
365	of Chemical Thermodynamics, 136, 170-179.
366	Donahoe, R.J., Hemingway, B.S., and Liou, J. (1990) Thermochemical data for merlinoite; 1,
367	Low-temperature heat capacities, entropies, and enthalpies of formation at 298.15
368	K of six synthetic samples having various SI/AI and Na/(Na+K) ratios. American $M_{1}^{2} = 1 + 75(1 - 2) + 100 - 200$
369	Mineralogist, $(5(1-2), 188-200)$.
370	Drebusnenak, V. (1990) Calorimetric studies on denydrated zeolites: natrolite, neulandite,
3/1	Chabazite, and mordenite. Geochemistry International, 5, 123-130.
372	The Journal of Chamical Division, 22(6), 1751, 1755
3/3	Ciaugua W and Staut I (1026) The Entropy of Water and the Third I any of Thermodynamics.
374 275	The Heat Canacity of Lee from 15 to 272° K. Journal of the American Chamical
275	Society 58(7) 1144 1150
370	Gonal F (2012) Specific heats at low temperatures Springer Science & Business Media
378	Guo X and Navrotsky A (2018) Hydration dynamics in zeolite A-An X-ray diffraction and
379	infrared spectroscopic study Microporous and Mesoporous Materials 268 197-
380	201
381	Guo X Wu L Corbin D R and Navrotsky A (2019) Thermochemistry of formation of ion
382	exchanged zeolite RHO Microporous and Mesoporous Materials 274 373-378
383	Guo, X., Wu, L., and Navrotsky, A. (2018) Thermodynamic evidence of flexibility in H 2 O and
384	CO 2 absorption of transition metal ion exchanged zeolite LTA. Physical
385	Chemistry Chemical Physics, 20(6), 3970-3978.
386	Haida, O., Matsuo, T., Suga, H., and Seki, S. (1974) Calorimetric study of the glassy state X.
387	Enthalpy relaxation at the glass-transition temperature of hexagonal ice. The
388	Journal of Chemical Thermodynamics, 6(9), 815-825.
389	Haly, A. (1972) Specific heat of a synthetic zeolite and the heat of fusion of its absorbed water.
390	Journal of Physics and Chemistry of Solids, 33(1), 129-137.
391	Handa, Y., and Klug, D. (1988) Heat capacity and glass transition behavior of amorphous ice.
392	The Journal of Physical Chemistry, 92(12), 3323-3325.

393	Hemingway, B.S., and Robie, R.A. (1984) Thermodynamic properties of zeolites: low-
394	temperature heat capacities and thermodynamic functions for phillipsite and
395	clinoptilolite. Estimates of the thermochemical properties of zeolitic water at low
396	temperature. American Mineralogist, 69(7-8), 692-700.
397	Howell, D., Johnson, G., Tasker, I., O'Hare, P., and Wise, W. (1990) Thermodynamic properties
398	of the zeolite stilbite. Zeolites, 10(6), 525-531.
399	Johnson, G., Flotow, H., and O'hare, P. (1982) Thermodynamic studies of zeolites: analcime and
400	dehydrated analcime. American Mineralogist, 67(7-8), 736-748.
401	Johnson, G., Flotow, H., O'Hare, P., and Wise, W. (1983) Thermodynamic studies of zeolites;
402	natrolite, mesolite and scolecite. American Mineralogist, 68(11-12), 1134-1145.
403	Johnson, G., Flotow, H., O'Hare, P., and Wise, W.S. (1985) Thermodynamic studies of zeolites:
404	heulandite. American Mineralogist, 70(9-10), 1065-1071.
405	Johnson, G., Tasker, I., Flotow, H., O'Hare, P., and Wise, W. (1992) Thermodynamic studies of
406	mordenite, dehydrated mordenite, and gibbsite. American Mineralogist, 77(1-2),
407	85-93.
408	Justice, B.H. (1969) Thermal data fitting with orthogonal functions and combined table
409	generation. The FITAB Program. AEC Cryogenics Project, University of
410	Michigan, Ann Arbor, Michigan.
411	Kim, KM., Oh, HT., Lim, SJ., Ho, K., Park, Y., and Lee, CH. (2016) Adsorption equilibria
412	of water vapor on zeolite 3A, zeolite 13X, and dealuminated Y zeolite. Journal of
413	Chemical & Engineering Data, 61(4), 1547-1554.
414	King, E. (1955) Low Temperature Heat Capacity and Entropy at 298.16° K. of Analcite. Journal
415	of the American Chemical Society, 77(8), 2192-2193.
416	Loewenstein, W. (1954) The distribution of aluminum in the tetrahedra of silicates and
417	aluminates. American Mineralogist: Journal of Earth and Planetary Materials,
418	39(1-2), 92-96.
419	Neuhoff, P.S., and Wang, J. (2007) Heat capacity of hydration in zeolites. American
420	Mineralogist, 92(8-9), 1358-1367.
421	Öhlmann, G., Pfeifer, H., and Fricke, R. (1991) Catalysis and adsorption by zeolites. Elsevier.
422	Paukov, I., and Belitskii, I. (2000a) Heat capacity and thermodynamic functions of the natural
423	zeolite ferrierite from 7 to 320 K. Geochemistry International, 38(1), 101-104.
424	(2000b) Thermodynamic properties of thomsonite within the temperature range of 5.8-309 K.
425	Geochemistry International, 38(4), 405-407.
426	Paukov, I., Belitskii, I., and Berezovskii, G. (1998a) Low-temperature thermodynamic properties
427	of a natural zeolite, epistilbite. Geochemistry international, 36(6), 565-567.
428	(1998b) Low-temperature thermodynamic properties of bikitaite. Geochemistry international,
429	36(10), 968-970.
430	Paukov, I., Belitsky, I., Fursenko, B., and Kovalskaya, Y.I. (1997) Thermodynamic properties of
431	natural stellerite at low temperatures. Geokhimiya, 10, 1070-1072.
432	Paukov, I., Belitsky, I., and Kovalevskaya, Y.A. (2001a) Thermodynamic properties of the
433	natural zeolite gmelinite at low temperatures. The Journal of Chemical
434	Thermodynamics, 33(12), 1687-1696.
435	Paukov, I., and Fursenko, B. (1998a) Low-temperature heat capacity and thermodynamic
436	functions of laumontite. Геохимия(12), 1301-1303.
437	(1998b) Low-temperature heat capacity and thermodynamic properties of leonhardite.
438	Geochemistry international, 36(5), 471-473.

439	Paukov, I., Kovalevskaya, Y., and Belitskii, I. (1998c) Heat Capacity and Thermodynamic
440	Properties of Natural Zeolite Erionite from 7 to 322 K. Geochemistry
441	international, $36(7)$, $663-665$.
442	Paukov, I., Kovalevskaya, Y.A., and Belitskii, I. (2001b) Thermodynamic properties of the
443	natural zeolites. Low-temperature heat capacity of brewsterite. Geochemistry
444	International, $39(4)$, $410-413$.
445	Paukov, I., Kovalevskaya, Y.A., Belitskii, I., and Fursenko, B. (2002a) Thermodynamic
446	properties of primary leonnardite within a temperature range of 6-309 K.
447	Deukey L. Kovalavakaya, V.A. Drahyahahak, V. and Saratkin, V.V. (2005) The
448	thermodynamic properties of the thallium substituted natrolite form at low
449	temperatures Russian Journal of Physical Chemistry A $-79(12)$ 1026-1030
450	Paukov I. Moroz N. Kovalevskava V.A. and Belitsky I. (2002b) Low-temperature
451	thermodynamic properties of disordered zeolites of the natrolite group. Physics
452	and Chemistry of Minerals 29(4) 300-306
455	Paukov I E Belitskii I A and Kovalevskava Y A (2002c) Thermodynamic properties of the
455	natural zeolite harmotome at low temperatures. Geokhimiya(5), 568-571
456	Oiu L Laws P A Zhan B -Z and White M A (2006) Thermodynamic investigations of
457	zeolites NaX and NaY Canadian journal of chemistry 84(2) 134-139
458	Oiu, L., Murashov, V., and White, M.A. (2000) Zeolite 4A: heat capacity and thermodynamic
459	properties. Solid state sciences, 2(8), 841-846.
460	Rosen, P.F., Dickson, M.S., Calvin, J.J., Ross, N.L., Friščić, T., Navrotsky, A., and Woodfield,
461	B.F. (2020) Thermodynamic Evidence of Structural Transformations in CO2-
462	Loaded Metal–Organic Framework Zn (MeIm) 2 from Heat Capacity
463	Measurements. Journal of the American Chemical Society, 142(10), 4833-4841.
464	Schliesser, J.M., and Woodfield, B.F. (2015a) Development of a Debye heat capacity model for
465	vibrational modes with a gap in the density of states. Journal of Physics:
466	Condensed Matter, 27(28), 285402.
467	(2015b) Lattice vacancies responsible for the linear dependence of the low-temperature heat
468	capacity of insulating materials. Physical Review B, 91(2), 024109.
469	Shi, Q., Boerio-Goates, J., and Woodfield, B.F. (2011) An improved technique for accurate heat
470	capacity measurements on powdered samples using a commercial relaxation
471	calorimeter. The Journal of Chemical Thermodynamics, 43(8), 1263-1269.
472	Smith, S.J., Lang, B.E., Liu, S., Boerio-Goates, J., and Woodfield, B.F. (2007) Heat capacities
473	and thermodynamic functions of hexagonal ice from $T = 0.5$ K to $T = 38$ K. The
474	Journal of Chemical Thermodynamics, 39(5), 712-716.
475	Sugisaki, M., Suga, H., and Seki, S. (1968) Calorimetric study of the glassy state. IV. Heat
476	capacities of glassy water and cubic ice. Bulletin of the Chemical Society of
4//	Japan, 41(11), 2591-2599.
478	Sun, H., Wu, D., Llu, K., Guo, A., and Navrotsky, A. (2016) Energetics of alkall and alkaline
4/9	to the function of the second
40U 101	13231-13230. Vieillard P (2010) A predictive model for the entropies and heat capacities of zoolitas
401 180	Furonean Journal of Mineralogy 22(6) 823-826
402	European Journal of Wineralogy, 22(0), 623-630.

19

483	Voskov, A.L., Voronin, G.F., Kutsenok, I.B., and Kozin, N.Y. (2019) Thermodynamic database
484	of zeolites and new method of their thermodynamic properties evaluation for a
485	wide temperature range. Calphad, 66, 101623.
486	Wu, L., and Navrotsky, A. (2016) Synthesis and thermodynamic study of transition metal ion
487	(Mn 2+, Co 2+, Cu 2+, and Zn 2+) exchanged zeolites A and Y. Physical
488	Chemistry Chemical Physics, 18(15), 10116-10122.
489	Yang, S., and Navrotsky, A. (2000) Energetics of formation and hydration of ion-exchanged
490	zeolite Y. Microporous and Mesoporous Materials, 37(1-2), 175-186.
491	Yin, X., Zhu, G., Yang, W., Li, Y., Zhu, G., Xu, R., Sun, J., Qiu, S., and Xu, R. (2005)
492	Stainless - Steel - Net - Supported Zeolite NaA Membrane with High Permeance
493	and High Permselectivity of Oxygen over Nitrogen. Advanced Materials, 17(16),
494	2006-2010.
105	

495

Zeolite Name	Chemical Formula		mol extra- framework cations	Si/Al ratio	Ref.
Gmelinite	$(Na_{0.232}K_{0.002}Ca_{0.035}Fe_{0.002})Al_{0.305}Si_{0.695}O_2$	0.978	0.270	2.3	(Paukov et al., 2001a)
Tl Natrolite	$(Tl_{0.374}Na_{0.01}Mg_{0.006})Al_{0.396}Si_{0.604}O_2$	0.466	0.39	1.5	(Paukov et al., 2005)
‡ Laumontite 1	$(Ca_{0.17})Al_{0.33}Si_{0.67}O_2$	0.722	0.17	2.0	(Paukov and Fursenko, 1998a)
<pre>‡ Laumontite 2 (Leonhardite)</pre>	$(Ca_{0.17})Al_{0.33}Si_{0.67}O_2$	0.615	0.17	2.0	(Paukov and Fursenko, 1998b)
‡ Paranatrolite	$(Na_{0.380}K_{0.044}Ca_{0.01})Al_{0.448}Si_{0.552}O_2$	0.620	0.436	1.2	(Paukov et al., 2002b)
‡ Tetranatrolite	$(Na_{0.380}K_{0.044}Ca_{0.01})Al_{0.448}Si_{0.552}O_2$	0.462	0.436	1.2	(Paukov et al., 2002b)
Thompsonite	$(Ca_{0.208}Na_{0.08})Al_{0.496}Si_{0.504}O_2$	0.63	0.29	5.4	(Paukov and Belitskii, 2000b)
Primary Leonhardite	$(Na_{0.055}K_{0.072}Ca_{0.10})Al_{0.330}Si_{0.670}O_2$	0.545	0.228	2.0	(Paukov et al., 2002a)
Scolecite	$(Ca_{0.200}Na_{0.0005})Al_{0.4002}Si_{0.5995}O_2$	0.6010	0.2005	1.5	(Johnson et al., 1983)
‡† Na Zeolite A	$(Na_{0.5})Al_{0.5}Si_{0.5}O_2$	0	0.5	1.0	(Qiu et al., 2000)
Bikitaite	$(Li_{0.35})Al_{0.333}Si_{0.662}O_2$	0.318	0.35	2.0	(Paukov et al., 1998b)
‡ Analcime	$(Na_{0.32})Al_{0.32}Si_{0.68}O_2$	0.33	0.32	2.1	(Johnson et al., 1982)
‡ Analcime dehydrated	$(Na_{0.32})Al_{0.32}Si_{0.68}O_2$	0	0.32	2.1	(Johnson et al., 1982)
‡ Mordenite	$(Ca_{0.0482}Na_{0.0602})Al_{0.157}Si_{0.843}O_{2}$	0.5780	0.1084	5.4	(Johnson et al., 1992)
‡ Mordenite dehydrated	$(Ca_{0.0482}Na_{0.0602})Al_{0.157}Si_{0.843}O_2$	0	0.1084	5.4	(Johnson et al., 1992)
* Brewsterite	$(Sr_{0.081}Ba_{0.041}Na_{0.004}K_{0.001})Al_{0.250}Si_{0.750}O_2$	0.631	0.128	3.0	(Paukov et al., 2001b)
* Chabazite	$(Ca_{0.138}Na_{0.020}K_{0.008})Al_{0.316}Si_{0.688}O_2$	1.04	0.166	2.1	(Drebushchak, 1990)
* Clinoptilolite 1	$(Sr_{0.0020}Mg_{0.00689}Ca_{0.0423}Mn_{0.0001}Ba_{0.0034}\\K_{0.0302}Na_{0.053})Al_{0.192}Fe_{0.00094}Si_{0.80739}O_2$	0.60678	0.138	4.2	(Johnson et al., 1991)
* Clinoptilolite 2	$(Na_{0.016}K_{0.027}Ca_{0.0417}Mg_{0.0342})Al_{0.19}Fe_{0.008}Si_{0.81}O_2$	0.61	0.119	4.3	(Hemingway and Robie, 1984)
* Epistilbite	$(Ca_{0.10}Na_{0.042}K_{0.0075})Al_{0.25}Si_{0.75}O_2$	0.638	0.15	3.0	(Paukov et al., 1998a)
* Erionite	$(Mg_{0.032}Ca_{0.057}Na_{0.013}K_{0.066})Al_{0.237}Si_{0.758}O_2$	0.802	0.168	3.2	(Paukov et al., 1998c)
* Ferrierite	$(Ca_{0.033}Mg_{0.01}Na_{0.070}K_{0.008})Al_{0.170}Fe_{0.002}Si_{0.828}O_2$	0.482	0.12	4.9	(Paukov and Belitskii, 2000a)
* Harmotome	$(Ba_{0.12}Ca_{0.006}Na_{0.029}K_{0.01})Al_{0.298}Si_{0.702}O_2$	0.742	0.17	2.4	(Paukov et al., 2002c)
* Heulandite 1	$(Ba_{0.0072}Sr_{0.0194}Ca_{0.0650}K_{0.0147}Na_{0.0426})Al_{0.2406}Si_{0.7594}O_2$	0.667	0.15	3.2	(Johnson et al., 1985)
* Heulandite 2	$(Na_{0.0406}K_{0.066}Ca_{0.0957})Al_{0.2376}Si_{0.762}O_2$	0.686	0.202	3.2	(Drebushchak, 1990)
*† Merlinoite P-9(NaK)	$(Na_{0.28}K_{0.065})Al_{0.34}Si_{0.660}O_2$	0.724	0.34	1.9	(Donahoe et al., 1990)
*† Merlinoite P-9(KNa)	$(K_{0.27}Na_{0.068})Al_{0.34}Si_{0.660}O_2$	0.616	0.34	1.9	(Donahoe et al., 1990)
*† Merlinoite P-9(K)	$(K_{0.34})Al_{0.34}Si_{0.660}O_2$	0.575	0.34	1.9	(Donahoe et al., 1990)
*† Merlinoite P-8(NaK)	$(Na_{0.29}K_{0.068})Al_{0.36}Si_{0.644}O_2$	0.776	0.36	1.8	(Donahoe et al., 1990)
*† Merlinoite P-8(KNa)	$(K_{0.32}Na_{0.03})Al_{0.36}Si_{0.573}O_2$	0.637	0.36	1.8	(Donahoe et al., 1990)
*† Merlinoite P-8(K)	$(K_{0.36})Al_{0.36}Si_{0.644}O_2$	0.601	0.36	1.8	(Donahoe et al., 1990)
* Phillipsite	$(Na_{0.135}K_{0.1})Al_{0.235}Si_{0.765}O_2$	0.8	0.2	3.3	(Hemingway and Robie, 1984)
* Stellerite	$(Ca_{0.118})Al_{0.228}Si_{0.770}O_2$	0.787	0.118	3.4	(Paukov et al., 1997)
* Stilbite	$(Ca_{0.1132}Na_{0.0151}K_{0.0007})Al_{0.2422}Si_{0.7578}O_2$	0.814	0.1290	3.1	(Howell et al., 1990)
400					

Table97. Chemical formulas for zeolites with low-temperature heat capacity measurements in the literature. Form**488**s have been normalized to the form (Cations) $Al_xSi_yO_2$.

499 t pictured in Figure 1; heat capacity lies within the grey region bounded by gmelinite and scolecite. **500** nthetic zeolite.

501 sed to calculate zeolitic water heat capacity for Figure 3.

21

503	Table 2. Sample compositions, water content, and color of samples. (Na is not listed with a
504	coefficient <0.01.)

505

	Sample Composition	Exchange	Color before	Color after
		level (%)	Dehydration	dehydration
Na-A	$Na_{0.480}Al_{0.491}Si_{0.509}O_2 \cdot 0.23 H_2O$	N/A	White	White
Zn-A	$Zn_{0.24}Al_{0.52}Si_{0.49}O_2{\cdot}0.58~H_2O$	99.2	White	White

506

Table 3. Details of the PPMS calorimetric measurements including pressures (*p*), sample mass

509 (M_s) , sample molar mass (M), and copper mass (M_{Cu}) . The estimated standard uncertainties in the

510 masses $M_{s,Cu}$ and pressure p are $u(M_{s,Cu}) = 0.06$ mg and u(p) = 0.1 mPa.

	Na-A·0.23 H ₂ O	Zn-A·0.58 H ₂ O
<i>p</i> / mPa	1.2	1.2
M_s / mg	9.86	8.76
$M / g \cdot mol^{-1}$	74.5992	86.00
M_{Cu} / mg	39.20	25.48

511

512 513

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

23

Table 4. Measured molar heat capacity values at constant pressure for Na-A \cdot 0.23 H₂O. M =514

74.5992 g·mol⁻¹ Measurements were performed on a PPMS with a standard uncertainty of 2% $C_{p,m}$ below about T = 10 K and 1% $C_{p,m}$ from T = (10 to 300) K. The standard uncertainty in 515 516

517 temperature is about 4 mK.

1.8375 $1.9550 \cdot 10^{-3}$ 7.9024 0.15485 77.367 22.369 1.9188 $2.2559 \cdot 10^{-3}$ 8.2502 0.18222 84.507 25.039 1.9989 $2.6448 \cdot 10^{-3}$ 8.6156 0.21000 92.366 27.569 2.0823 $3.0269 \cdot 10^{-3}$ 8.9947 0.23067 100.95 29.959 2.1707 $3.3410 \cdot 10^{-3}$ 9.3933 0.26904 111.05 33.032 2.2647 $3.5862 \cdot 10^{-3}$ 9.8059 0.30471 121.12 36.069 2.3625 $4.1142 \cdot 10^{-3}$ 10.716 0.40102 141.32 41.575 2.5689 $4.9190 \cdot 10^{-3}$ 11.193 0.45588 151.39 44.341 2.6788 $4.8905 \cdot 10^{-3}$ 11.688 0.51531 161.51 46.952 2.8005 $5.7169 \cdot 10^{-3}$ 12.204 0.58382 171.62 49.474 2.9217 $6.6170 \cdot 10^{-3}$ 12.743 0.66150 18.70 52.243 3.0503 $7.1500 \cdot 10^{-3}$ 13.308 0.74529 91.79 54.671 3.3266 0.01003 14.510 0.94536 211.99 59.326 3.4734 0.011705 15.152 1.0586 222.09 61.565 3.6269 0.012551 15.661 1.1561 232.18 63.565 3.7867 0.014456 17.101 1.4553 242.26 65.747 3.9545 0.015006 18.698 1.8199 252.35 67.944 4	T/K	$C_{\rm p,m}/{\rm J}\cdot{\rm K}^{-1}\cdot{\rm mol}^{-1}$	<i>T</i> /K	$C_{\rm p,m}/{\rm J}\cdot{\rm K}^{-1}\cdot{\rm mol}^{-1}$	<i>T</i> /K	$C_{\rm p,m}/{\rm J}\cdot{\rm K}^{-1}\cdot{\rm mol}^{-1}$
1.9188 2.2559·10 ⁻³ 8.2502 0.18222 84.507 25.039 1.9989 2.6448·10 ⁻³ 8.6156 0.21000 92.366 27.569 2.0823 3.0269·10 ⁻³ 8.9947 0.23067 100.95 29.959 2.1707 3.3410·10 ⁻³ 9.3933 0.26904 111.05 33.032 2.2647 3.5862·10 ⁻³ 9.8059 0.30471 121.12 36.069 2.3625 4.1142·10 ⁻³ 10.254 0.35263 131.24 38.802 2.4638 4.4779·10 ⁻³ 10.716 0.40102 141.32 41.575 2.5689 4.9190·10 ⁻³ 11.193 0.45588 151.39 44.341 2.6788 4.8905·10 ⁻³ 12.204 0.58382 171.62 49.474 2.9217 6.6170·10 ⁻³ 12.204 0.58382 171.62 49.474 2.9217 6.6170·10 ⁻³ 12.743 0.66150 181.70 52.243 3.0503 7.1500·10 ⁻³ 13.308 0.74529 191.79 54.671 3.1846 8.3924·10 ⁻³ 13.894 0.8895 201.89	1.8375	$1.9550 \cdot 10^{-3}$	7.9024	0.15485	77.367	22.369
1.9989 $2.6448 \cdot 10^{-3}$ 8.6156 0.21000 92.366 27.569 2.0823 $3.0269 \cdot 10^{-3}$ 8.9947 0.23067 100.95 29.959 2.1707 $3.3410 \cdot 10^{-3}$ 9.3933 0.26904 111.05 33.032 2.2647 $3.5862 \cdot 10^{-3}$ 9.8059 0.30471 121.12 36.069 2.3625 $4.1142 \cdot 10^{-3}$ 10.254 0.35263 131.24 38.802 2.4638 $4.4779 \cdot 10^{-3}$ 10.716 0.40102 141.32 41.575 2.5689 $4.9190 \cdot 10^{-3}$ 11.193 0.45588 151.39 44.341 2.6788 $4.8905 \cdot 10^{-3}$ 11.204 0.58382 171.62 49.474 2.9217 $6.6170 \cdot 10^{-3}$ 12.244 0.58382 171.62 49.474 2.9217 $6.6170 \cdot 10^{-3}$ 12.743 0.66150 181.70 52.243 3.0503 $7.1500 \cdot 10^{-3}$ 13.394 0.83895 201.89 57.016 3.3266 0.01003 14.510 0.94536 21.99 93.26 3.4734 0.011705 15.152 1.0586 222.09 61.565 3.6269 0.012551 15.661 1.1561 232.18 63.565 3.7867 0.014456 17.110 1.4553 242.26 65.747 3.9545 0.015006 18.698 1.8199 252.35 67.944 4.1297 0.019355 20.426 22.436 26.466 9.826 4.3143 <td>1.9188</td> <td>$2.2559 \cdot 10^{-3}$</td> <td>8.2502</td> <td>0.18222</td> <td>84.507</td> <td>25.039</td>	1.9188	$2.2559 \cdot 10^{-3}$	8.2502	0.18222	84.507	25.039
2.0823 $3.0269 \cdot 10^{-3}$ 8.9947 0.23067 100.95 29.959 2.1707 $3.3410 \cdot 10^{-3}$ 9.3933 0.26904 111.05 33.032 2.2647 $3.5862 \cdot 10^{-3}$ 9.8059 0.30471 121.12 36.069 2.3625 $4.1142 \cdot 10^{-3}$ 10.254 0.35263 131.24 38.802 2.4638 $4.4779 \cdot 10^{-3}$ 10.716 0.40102 141.32 41.575 2.5689 $4.9190 \cdot 10^{-3}$ 11.193 0.45588 151.39 44.341 2.6788 $4.8905 \cdot 10^{-3}$ 12.204 0.58382 171.62 49.474 2.9217 $6.6170 \cdot 10^{-3}$ 12.743 0.66150 181.70 52.243 3.0503 $7.1500 \cdot 10^{-3}$ 13.308 0.74529 191.79 54.671 3.1846 $8.3924 \cdot 10^{-3}$ 13.894 0.83895 201.89 57.016 3.266 0.01003 14.510 0.94536 211.99 59.326 3.4734 0.011705 15.152 1.0586 222.09 61.565 3.6269 0.012551 15.661 1.1561 232.18 63.565 3.7867 0.014456 17.110 1.4553 242.26 65.747 3.9545 0.015006 18.698 1.8199 252.35 67.944 4.1297 0.019355 20.426 2.2436 262.46 69.826 4.3143 0.022040 22.331 2.7595 272.57 71.364 4.5075 0.025865 <td< td=""><td>1.9989</td><td>$2.6448 \cdot 10^{-3}$</td><td>8.6156</td><td>0.21000</td><td>92.366</td><td>27.569</td></td<>	1.9989	$2.6448 \cdot 10^{-3}$	8.6156	0.21000	92.366	27.569
2.1707 $3.3410 \cdot 10^{-3}$ 9.3933 0.26904 111.05 33.032 2.2647 $3.5862 \cdot 10^{-3}$ 9.8059 0.30471 121.12 36.069 2.3625 $4.1142 \cdot 10^{-3}$ 10.254 0.35263 131.24 48.802 2.4638 $4.4779 \cdot 10^{-3}$ 10.716 0.40102 141.32 41.575 2.5689 $4.9190 \cdot 10^{-3}$ 11.193 0.45588 151.39 44.341 2.6788 $4.8905 \cdot 10^{-3}$ 11.688 0.51531 161.51 46.952 2.8005 $5.7169 \cdot 10^{-3}$ 12.204 0.58382 171.62 49.474 2.9217 $6.6170 \cdot 10^{-3}$ 12.743 0.66150 181.70 52.243 3.0503 $7.1500 \cdot 10^{-3}$ 13.308 0.74529 191.79 54.671 3.1846 $8.3924 \cdot 10^{-3}$ 13.894 0.83895 201.89 57.016 3.3266 0.01003 14.510 0.94536 211.99 59.326 3.4734 0.011705 15.152 1.0586 222.09 61.565 3.6269 0.012551 15.661 1.1561 232.18 63.565 3.7867 0.01456 17.110 1.4553 242.26 65.747 3.9545 0.015006 18.698 1.8199 252.35 67.944 4.1297 0.01355 20.426 2.2436 26.466 9.826 4.3143 0.022040 22.331 2.7595 27.57 71.364 4.5075 0.02	2.0823	$3.0269 \cdot 10^{-3}$	8.9947	0.23067	100.95	29.959
2.2647 $3.5862 \cdot 10^{-3}$ 9.8059 0.30471 121.12 36.069 2.3625 $4.1142 \cdot 10^{-3}$ 10.254 0.35263 131.24 38.802 2.4638 $4.4779 \cdot 10^{-3}$ 10.716 0.40102 141.32 41.575 2.5689 $4.9190 \cdot 10^{-3}$ 11.193 0.45588 151.39 44.341 2.6788 $4.8905 \cdot 10^{-3}$ 11.688 0.51531 161.51 46.952 2.8005 $5.7169 \cdot 10^{-3}$ 12.204 0.58382 171.62 49.474 2.9217 $6.6170 \cdot 10^{-3}$ 12.743 0.66150 181.70 52.243 3.0503 $7.1500 \cdot 10^{-3}$ 13.308 0.74529 191.79 54.671 3.1846 $8.3924 \cdot 10^{-3}$ 13.894 0.83895 201.89 57.016 3.3266 0.01003 14.510 0.94536 211.99 59.326 3.4734 0.011705 15.152 1.0586 222.09 61.565 3.6269 0.012551 15.661 1.1561 232.18 63.565 3.7867 0.014456 17.110 1.4553 242.26 65.747 3.9545 0.015006 18.698 1.8199 252.35 67.944 4.1297 0.019355 20.426 2.2436 262.46 69.826 4.3143 0.022040 22.331 2.7595 272.57 71.364 4.5075 0.025865 24.403 3.3592 282.66 72.916 4.7042 0.034383	2.1707	$3.3410 \cdot 10^{-3}$	9.3933	0.26904	111.05	33.032
2.3625 $4.1142 \cdot 10^{-3}$ 10.2540.35263131.2438.8022.4638 $4.4779 \cdot 10^{-3}$ 10.7160.40102141.3241.5752.5689 $4.9190 \cdot 10^{-3}$ 11.1930.45588151.3944.3412.6788 $4.8905 \cdot 10^{-3}$ 11.6880.51531161.5146.9522.8005 $5.7169 \cdot 10^{-3}$ 12.2040.58382171.6249.4742.9217 $6.6170 \cdot 10^{-3}$ 12.7430.66150181.7052.2433.0503 $7.1500 \cdot 10^{-3}$ 13.8940.83895201.8957.0163.32660.01000314.5100.94536211.9959.3263.47340.01170515.1521.0586222.0961.5653.62690.01255115.6611.1561232.1863.5653.78670.01445617.1101.4553242.2665.7473.95450.01500618.6981.8199252.3567.9444.12970.01935520.4262.2436262.4669.8264.31430.02204022.3312.7595272.5771.3644.50750.02586524.4033.3592282.6672.9164.70420.02688926.6634.0671292.7674.4134.91240.03438329.1394.8734302.8676.3305.12690.03783531.8485.81125.35240.04181934.8046.86505.59070.04731338.0398.02915.83660.0779145.430 </td <td>2.2647</td> <td>$3.5862 \cdot 10^{-3}$</td> <td>9.8059</td> <td>0.30471</td> <td>121.12</td> <td>36.069</td>	2.2647	$3.5862 \cdot 10^{-3}$	9.8059	0.30471	121.12	36.069
2.4638 $4.4779 \cdot 10^{-3}$ 10.716 0.40102 141.32 41.575 2.5689 $4.9190 \cdot 10^{-3}$ 11.193 0.45588 151.39 44.341 2.6788 $4.8905 \cdot 10^{-3}$ 11.688 0.51531 161.51 46.952 2.8005 $5.7169 \cdot 10^{-3}$ 12.204 0.58382 171.62 49.474 2.9217 $6.6170 \cdot 10^{-3}$ 12.743 0.66150 181.70 52.243 3.0503 $7.1500 \cdot 10^{-3}$ 13.308 0.74529 191.79 54.671 3.1846 $8.3924 \cdot 10^{-3}$ 13.894 0.83895 201.89 57.016 3.3266 0.01003 14.510 0.94536 211.99 59.326 3.4734 0.011705 15.152 1.0586 222.09 61.565 3.6269 0.012551 15.661 1.1561 232.18 63.565 3.7867 0.014456 17.110 1.4553 242.26 65.747 3.9545 0.015006 18.698 1.8199 252.35 67.944 4.1297 0.019355 20.426 2.2436 262.46 69.826 4.3143 0.022040 22.331 2.7595 272.57 71.364 4.5075 0.025865 24.403 3.3592 282.66 72.916 4.7042 0.026889 26.663 4.0671 292.76 74.413 4.9124 0.034383 29.139 4.8734 302.86 76.330 5.1269 0.07791 45.430 </td <td>2.3625</td> <td>$4.1142 \cdot 10^{-3}$</td> <td>10.254</td> <td>0.35263</td> <td>131.24</td> <td>38.802</td>	2.3625	$4.1142 \cdot 10^{-3}$	10.254	0.35263	131.24	38.802
2.5689 $4.9190 \cdot 10^{-3}$ 11.193 0.45588 151.39 44.341 2.6788 $4.8905 \cdot 10^{-3}$ 11.688 0.51531 161.51 46.952 2.8005 $5.7169 \cdot 10^{-3}$ 12.204 0.58382 171.62 49.474 2.9217 $6.6170 \cdot 10^{-3}$ 12.743 0.66150 181.70 52.243 3.0503 $7.1500 \cdot 10^{-3}$ 13.308 0.74529 191.79 54.671 3.1846 $8.3924 \cdot 10^{-3}$ 13.894 0.83895 201.89 57.016 3.3266 0.010003 14.510 0.94536 211.99 59.326 3.4734 0.011705 15.152 1.0586 222.09 61.565 3.6269 0.012551 15.661 1.1561 232.18 63.565 3.7867 0.014456 17.110 1.4553 242.26 65.747 3.9545 0.015006 18.698 1.8199 252.35 67.944 4.1297 0.019355 20.426 2.2436 262.46 69.826 4.3143 0.022040 22.331 2.7595 272.57 71.364 4.5075 0.025865 24.403 3.3592 282.66 72.916 4.7042 0.026889 26.663 4.0671 292.76 74.413 4.9124 0.034383 29.139 4.8734 302.86 76.330 5.1269 0.070791 45.430 10.841 6.3678 0.074954 49.649 12.298 6.6459 0.090640 <td>2.4638</td> <td>$4.4779 \cdot 10^{-3}$</td> <td>10.716</td> <td>0.40102</td> <td>141.32</td> <td>41.575</td>	2.4638	$4.4779 \cdot 10^{-3}$	10.716	0.40102	141.32	41.575
2.6788 $4.8905 \cdot 10^{-3}$ 11.688 0.51531 161.51 46.952 2.8005 $5.7169 \cdot 10^{-3}$ 12.204 0.58382 171.62 49.474 2.9217 $6.6170 \cdot 10^{-3}$ 12.743 0.66150 181.70 52.243 3.0503 $7.1500 \cdot 10^{-3}$ 13.308 0.74529 191.79 54.671 3.1846 $8.3924 \cdot 10^{-3}$ 13.894 0.83895 201.89 57.016 3.2266 0.010003 14.510 0.94536 211.99 59.326 3.4734 0.011705 15.152 1.0586 222.09 61.565 3.6269 0.012551 15.661 1.1561 232.18 63.565 3.7867 0.014456 17.110 1.4553 242.26 65.747 3.9545 0.015006 18.698 1.8199 252.35 67.944 4.1297 0.019355 20.426 2.2436 262.46 69.826 4.3143 0.022040 22.331 2.7595 272.57 71.364 4.5075 0.025865 24.403 3.3592 282.66 72.916 4.7042 0.026889 26.663 4.0671 292.76 74.413 4.9124 0.034383 29.139 4.8734 302.86 76.330 5.1269 0.07791 45.430 10.841 6.3678 0.074954 49.649 5.9007 0.047313 38.039 8.0291 5.8366 0.074954 49.649 12.298 6.6459	2.5689	$4.9190 \cdot 10^{-3}$	11.193	0.45588	151.39	44.341
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.6788	$4.8905 \cdot 10^{-3}$	11.688	0.51531	161.51	46.952
2.9217 $6.6170 \cdot 10^{-3}$ 12.743 0.66150 181.70 52.243 3.0503 $7.1500 \cdot 10^{-3}$ 13.308 0.74529 191.79 54.671 3.1846 $8.3924 \cdot 10^{-3}$ 13.894 0.83895 201.89 57.016 3.3266 0.010003 14.510 0.94536 211.99 59.326 3.4734 0.011705 15.152 1.0586 222.09 61.565 3.6269 0.012551 15.661 1.1561 232.18 63.565 3.7867 0.014456 17.110 1.4553 242.26 65.747 3.9545 0.015006 18.698 1.8199 252.35 67.944 4.1297 0.019355 20.426 2.2436 262.46 69.826 4.3143 0.022040 22.31 2.7595 272.57 71.364 4.5075 0.025865 24.403 3.3592 282.66 72.916 4.7042 0.026889 26.663 4.0671 292.76 74.413 4.9124 0.034383 29.139 4.8734 302.86 76.330 5.1269 0.037835 31.848 5.8112 5.5907 0.047313 38.039 8.0291 5.8366 0.057173 41.573 9.3510 6.6459 0.090640 54.254 14.061 6.9406 0.10316 59.282 15.900 7.2475 0.11629 64.783 17.833 7.5651 0.13378 70.797 19.884 9.849 $9.$	2.8005	$5.7169 \cdot 10^{-3}$	12.204	0.58382	171.62	49.474
3.0503 $7.1500 \cdot 10^{-3}$ 13.308 0.74529 191.79 54.671 3.1846 $8.3924 \cdot 10^{-3}$ 13.894 0.83895 201.89 57.016 3.3266 0.010003 14.510 0.94536 211.99 59.326 3.4734 0.011705 15.152 1.0586 222.09 61.565 3.6269 0.012551 15.661 1.1561 232.18 63.565 3.7867 0.014456 17.110 1.4553 242.26 65.747 3.9545 0.015006 18.698 1.8199 252.35 67.944 4.1297 0.019355 20.426 2.2436 262.46 69.826 4.3143 0.022040 22.331 2.7595 272.57 71.364 4.5075 0.025865 24.403 3.3592 282.66 72.916 4.7042 0.026889 26.663 4.0671 292.76 74.413 4.9124 0.034383 29.139 4.8734 302.86 76.330 5.1269 0.037835 31.848 5.8112 5.5907 0.047313 38.039 8.0291 5.8366 0.057173 41.573 9.3510 6.6459 0.090640 54.254 14.061 6.3678 0.074954 49.649 12.298 6.6459 0.090640 54.254 14.061 6.9406 0.10316 59.282 15.900 7.2475 0.11629 64.783 17.833 7.5651 0.13378 70.797 19.884	2.9217	$6.6170 \cdot 10^{-3}$	12.743	0.66150	181.70	52.243
3.1846 $8.3924 \cdot 10^{-3}$ 13.894 0.83895 201.89 57.016 3.3266 0.010003 14.510 0.94536 211.99 59.326 3.4734 0.011705 15.152 1.0586 222.09 61.565 3.6269 0.012551 15.661 1.1561 232.18 63.565 3.7867 0.014456 17.110 1.4553 242.26 65.747 3.9545 0.015006 18.698 1.8199 252.35 67.944 4.1297 0.019355 20.426 2.2436 262.46 69.826 4.3143 0.022040 22.331 2.7595 272.57 71.364 4.5075 0.025865 24.403 3.3592 282.66 72.916 4.7042 0.026889 26.663 4.0671 292.76 74.413 4.9124 0.034383 29.139 4.8734 302.86 76.330 5.1269 0.037835 31.848 5.8112 5.3524 0.041819 34.804 6.8650 5.5907 0.047313 38.039 8.0291 5.8366 0.057173 41.573 9.3510 6.0954 0.070791 45.430 10.841 6.3678 0.074954 49.649 12.298 6.6459 0.090640 54.254 14.061 6.9406 0.10316 59.282 15.900 7.2475 0.11629 64.783 17.833 7.5651 0.13378 70.797 19.884	3.0503	$7.1500 \cdot 10^{-3}$	13.308	0.74529	191.79	54.671
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.1846	$8.3924 \cdot 10^{-3}$	13.894	0.83895	201.89	57.016
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.3266	0.010003	14.510	0.94536	211.99	59.326
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.4734	0.011705	15.152	1.0586	222.09	61.565
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.6269	0.012551	15.661	1.1561	232.18	63.565
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.7867	0.014456	17.110	1.4553	242.26	65.747
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.9545	0.015006	18.698	1.8199	252.35	67.944
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.1297	0.019355	20.426	2.2436	262.46	69.826
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.3143	0.022040	22.331	2.7595	272.57	71.364
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.5075	0.025865	24.403	3.3592	282.66	72.916
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.7042	0.026889	26.663	4.0671	292.76	74.413
5.1269 0.037835 31.848 5.8112 5.3524 0.041819 34.804 6.8650 5.5907 0.047313 38.039 8.0291 5.8366 0.057173 41.573 9.3510 6.0954 0.070791 45.430 10.841 6.3678 0.074954 49.649 12.298 6.6459 0.090640 54.254 14.061 6.9406 0.10316 59.282 15.900 7.2475 0.11629 64.783 17.833 7.5651 0.13378 70.797 19.884	4.9124	0.034383	29.139	4.8734	302.86	76.330
5.3524 0.041819 34.804 6.8650 5.5907 0.047313 38.039 8.0291 5.8366 0.057173 41.573 9.3510 6.0954 0.070791 45.430 10.841 6.3678 0.074954 49.649 12.298 6.6459 0.090640 54.254 14.061 6.9406 0.10316 59.282 15.900 7.2475 0.11629 64.783 17.833 7.5651 0.13378 70.797 19.884	5.1269	0.037835	31.848	5.8112		
5.5907 0.047313 38.039 8.0291 5.8366 0.057173 41.573 9.3510 6.0954 0.070791 45.430 10.841 6.3678 0.074954 49.649 12.298 6.6459 0.090640 54.254 14.061 6.9406 0.10316 59.282 15.900 7.2475 0.11629 64.783 17.833 7.5651 0.13378 70.797 19.884	5.3524	0.041819	34.804	6.8650		
5.8366 0.057173 41.573 9.3510 6.0954 0.070791 45.430 10.841 6.3678 0.074954 49.649 12.298 6.6459 0.090640 54.254 14.061 6.9406 0.10316 59.282 15.900 7.2475 0.11629 64.783 17.833 7.5651 0.13378 70.797 19.884	5.5907	0.047313	38.039	8.0291		
6.09540.07079145.43010.8416.36780.07495449.64912.2986.64590.09064054.25414.0616.94060.1031659.28215.9007.24750.1162964.78317.8337.56510.1337870.79719.884	5.8366	0.057173	41.573	9.3510		
6.36780.07495449.64912.2986.64590.09064054.25414.0616.94060.1031659.28215.9007.24750.1162964.78317.8337.56510.1337870.79719.884	6.0954	0.070791	45.430	10.841		
6.64590.09064054.25414.0616.94060.1031659.28215.9007.24750.1162964.78317.8337.56510.1337870.79719.884	6.3678	0.074954	49.649	12.298		
6.94060.1031659.28215.9007.24750.1162964.78317.8337.56510.1337870.79719.884	6.6459	0.090640	54.254	14.061		
7.24750.1162964.78317.8337.56510.1337870.79719.884	6.9406	0.10316	59.282	15.900		
7.5651 0.13378 70.797 19.884	7.2475	0.11629	64.783	17.833		
	7.5651	0.13378	70.797	19.884		

24

Table 5. Measured molar heat capacity values at constant pressure for Zn-A \cdot 0.58 H₂O. $M = 86.00 \text{ g} \cdot \text{mol}^{-1}$ Measurements were performed on a PPMS with a standard uncertainty of 2% C. 520

521	86.00 g·mol ⁻¹ Measurements were performed on a PPMS with a standard uncertainty of 2% C _{p,m}
F22	heless about $T = 10 K$ and $10 / C$ from $T = (10 to 200) K$. The stendard uncertainty in

522	below about $I = 10$ K and 1% $C_{p,m}$ from $I = (10 \text{ to } 300)$ K. The standard uncertainty in	
523	temperature is about 4 mK.	

 peru	ture is acout i lift.				
<i>T</i> /K	$C_{\rm p,m}/{\rm J}\cdot{\rm K}^{-1}\cdot{\rm mol}^{-1}$	<i>T</i> /K	$C_{\rm p,m}/{\rm J}\cdot{\rm K}^{-1}\cdot{\rm mol}^{-1}$	<i>T</i> /K	$C_{\rm p,m}/{\rm J}\cdot{\rm K}^{-1}\cdot{\rm mol}^{-1}$
1.8347	$2.2992 \cdot 10^{-3}$	7.8851	0.10498	77.366	18.694
1.9052	$2.5956 \cdot 10^{-3}$	8.2360	0.11373	84.517	21.259
1.9875	$2.9279 \cdot 10^{-3}$	8.6000	0.14273	92.375	23.763
2.0731	$2.9471 \cdot 10^{-3}$	8.9813	0.14990	100.95	25.956
2.1650	$3.2954 \cdot 10^{-3}$	9.3793	0.16506	111.05	28.831
2.2603	$3.8977 \cdot 10^{-3}$	9.7932	0.19097	121.10	31.742
2.3595	$4.1933 \cdot 10^{-3}$	10.249	0.22503	131.22	34.451
2.4623	$4.6734 \cdot 10^{-3}$	10.706	0.25338	141.30	37.014
2.5695	$5.0394 \cdot 10^{-3}$	11.179	0.28566	151.36	39.595
2.6791	$4.8942 \cdot 10^{-3}$	11.673	0.32357	161.47	42.029
2.7952	$6.2735 \cdot 10^{-3}$	12.189	0.36689	171.57	44.432
2.9187	$6.6484 \cdot 10^{-3}$	12.730	0.41716	181.65	46.665
3.0457	$7.4692 \cdot 10^{-3}$	13.296	0.47392	191.73	48.959
3.1797	$7.8765 \cdot 10^{-3}$	13.886	0.53748	201.83	51.183
3.3231	$8.6734 \cdot 10^{-3}$	14.503	0.60884	211.92	53.094
3.4688	0.010991	15.142	0.68617	222.02	55.170
3.6167	0.010808	15.651	0.75333	232.10	56.918
3.7753	0.013065	17.100	0.96206	242.18	58.928
3.9434	0.014829	18.684	1.2198	252.27	60.886
4.1175	0.015476	20.407	1.5310	262.37	62.326
4.3015	0.018158	22.320	1.9043	272.48	64.236
4.4898	0.019505	24.392	2.3574	282.57	65.593
4.6864	0.022401	26.653	2.8978	292.66	67.317
4.8934	0.028756	29.124	3.5343	302.75	69.189
5.1098	0.032146	31.830	4.2699		
5.3370	0.032338	34.787	5.1342		
5.5724	0.037815	38.023	6.0854		
5.8192	0.045025	41.564	7.1685		
6.0794	0.044861	45.420	8.4470		
6.3508	0.054527	49.638	9.7004		
6.6296	0.063879	54.241	11.198		
6.9236	0.074276	59.271	12.846		
7.2305	0.079946	64.776	14.608		
7.5520	0.090133	70.789	16.474		

526 **Table 6.** Parameters for low T (< 15 K), mid T (5 K < T < 60 K), and high T (T > 50 K) fits of heat 527 capacity data (in J·K⁻¹·mol⁻¹) for Na-A·0.23 H₂O and Zn-A·0.58 H₂O.

	Parameter	Na-A·0.23 H ₂ O	Zn-A·0.58 H ₂ O
	$\gamma / J \cdot K^{-2} \cdot mol^{-1}$	$4.8689 \cdot 10^{-4}$	$8.5878 \cdot 10^{-4}$
	$B_3 / \mathrm{J} \cdot \mathrm{K}^{-4} \cdot \mathrm{mol}^{-1}$	$2.0795 \cdot 10^{-4}$	$1.3218 \cdot 10^{-4}$
	$B_5 / J \cdot K^{-6} \cdot mol^{-1}$	$1.0964 \cdot 10^{-8}$	$3.0090 \cdot 10^{-7}$
Fits	$B_7 / \mathrm{J} \cdot \mathrm{K}^{-8} \cdot \mathrm{mol}^{-1}$	$-2.7525 \cdot 10^{-10}$	$-6.5592 \cdot 10^{-10}$
Ţ	B_{gap}	0.10669	$1.3734 \cdot 10^{-2}$
MO	n	1	1
Π	δ	22.342	11.863
	%RMS	3.78	1.14
	Range / K	1.83-11.53	1.83-8.24
	$A_0 / \operatorname{J·K}^{-1} \cdot \operatorname{mol}^{-1}$	-9.5956·10 ⁻²	0.10738
	$A_1 / \operatorname{J·K}^{-2} \cdot \operatorname{mol}^{-1}$	$6.5577 \cdot 10^{-2}$	$-5.6575 \cdot 10^{-2}$
	$A_2 / \operatorname{J·K}^{-3} \cdot \operatorname{mol}^{-1}$	$-1.6117 \cdot 10^{-2}$	$1.2212 \cdot 10^{-2}$
	$A_3 / \mathrm{J} \cdot \mathrm{K}^{-4} \cdot \mathrm{mol}^{-1}$	$2.1934 \cdot 10^{-3}$	$-1.1865 \cdot 10^{-3}$
Fits	$A_4 / \mathrm{J} \cdot \mathrm{K}^{-5} \cdot \mathrm{mol}^{-1}$	$-1.0653 \cdot 10^{-4}$	$9.2839 \cdot 10^{-5}$
Ē	$A_5 / \mathrm{J} \cdot \mathrm{K}^{-6} \cdot \mathrm{mol}^{-1}$	$2.9553 \cdot 10^{-6}$	$-3.6479 \cdot 10^{-6}$
Mid	$A_6 / \operatorname{J·K}^{-7} \cdot \operatorname{mol}^{-1}$	$-4.8570 \cdot 10^{-8}$	$7.5423 \cdot 10^{-8}$
-	$A_7/ \mathrm{J}\cdot\mathrm{K}^{-8}\cdot\mathrm{mol}^{-1}$	$4.3582 \cdot 10^{-10}$	$-7.9096 \cdot 10^{-10}$
	A_8 / J·K ⁻⁹ ·mol ⁻¹	$-1.6364 \cdot 10^{-12}$	$3.3174 \cdot 10^{-12}$
	%RMS	0.16	2.48
	Range / K	11.53-49.22	8.24-55.375
	m / mol	0.70826	0.91488
	Θ_D / K	166.22	230.57
its	n_1 / mol	1.3526	1.3657
ΓE	Θ_{EI} / K	341.50	448.06
gh	n_2 / mol	2.2769	1.8853
Hi	Θ_{E2} / K	904.36	1069.7
	%RMS	0.32	0.48
	Range / K	49.22-302.86	55.375-302.75

528

26

_

Table 7. Standard thermodynamic functions of partially dehydrated Na-A·0.23	$H_2O. M =$
--	-------------

74.5992 g·mol⁻¹ All calculated thermodynamic values have an estimated standard uncertainty of about 0.02 X below 10 K and 0.01 X above 10 K where X represents the thermodynamic 531 532

533	property
555	property.

T/K	$C_{\rm p,m}/\rm{J}\cdot\rm{K}^{-1}\cdot\rm{mol}^{-1}$	$\Delta^{\mathrm{T}}_{\mathrm{o}}S_{\mathrm{m}}$ % J·K ⁻¹ ·mol ⁻¹	$\Delta^{\mathrm{T}}_{\mathcal{A}}H_{\mathrm{m}}$ %kJ·mol ⁻¹	$\Phi_{\rm m}$ $J \cdot K^{-1} \cdot {\rm mol}^{-1}$
0	0	0	0	0
1	$6.948 \cdot 10^{-4}$	$5.562 \cdot 10^{-4}$	$2.954 \cdot 10^{-7}$	$2.608 \cdot 10^{-4}$
2	$2.641 \cdot 10^{-3}$	$1.529 \cdot 10^{-3}$	$1.806 \cdot 10^{-6}$	$6.255 \cdot 10^{-4}$
3	$7.264 \cdot 10^{-3}$	$3.353 \cdot 10^{-3}$	$6.458 \cdot 10^{-6}$	$1.200 \cdot 10^{-3}$
4	0.01686	$6.603 \cdot 10^{-3}$	$1.798 \cdot 10^{-5}$	$2.107 \cdot 10^{-3}$
5	0.03456	0.01209	$4.289 \cdot 10^{-5}$	$3.510 \cdot 10^{-3}$
6	0.06330	0.02074	$9.079 \cdot 10^{-5}$	$5.610 \cdot 10^{-3}$
7	0.10539	0.03348	$1.739 \cdot 10^{-4}$	$8.628 \cdot 10^{-3}$
8	0.16243	0.05110	$3.066 \cdot 10^{-4}$	0.01278
9	0.23553	0.07429	$5.042 \cdot 10^{-4}$	0.01827
10	0.32541	0.10361	$7.832 \cdot 10^{-4}$	0.02529
15	1.0324	0.35481	$3.999 \cdot 10^{-3}$	0.08821
20	2.1363	0.79456	0.01177	0.20586
25	3.5435	1.4177	0.02587	0.38300
30	5.1663	2.2045	0.04757	0.61890
35	6.9322	3.1321	0.07777	0.91012
40	8.7739	4.1775	0.11702	1.2521
45	10.632	5.3182	0.16553	1.6397
50	12.467	6.5339	0.22331	2.0678
60	16.101	9.1265	0.36606	3.0256
70	19.765	11.884	0.54543	4.0925
80	23.314	14.757	0.76096	5.2451
90	26.670	17.699	1.0111	6.4649
100	29.827	20.674	1.2937	7.7369
110	32.820	23.658	1.6070	9.0486
120	35.693	26.638	1.9497	10.390
130	38.485	29.605	2.3206	11.754
140	41.219	32.558	2.7192	13.135
150	43.909	35.494	3.1449	14.528
160	40.556	38.412	3.3972	15.929
1/0	49.155	41.313	4.0/58	1/.33/
180	51.099	44.195	4.5802	18.749
190	54.178 56.591	4/.03/	5.1090	20.104
200	50.584	49.097	5.0055	21.380
210	50.900 61 146	55 507	6.2410	22.993
220	62 202	59 272	0.0414	24.410
230	65 245	50.275	7.4030 8.1060	23.022
240	67 303	01.010 63.718	8.1009	27.231
250	60 167	66 304	8.7702 0.4526	20.037
200	70 030	60.038	9.4320	31 /33
270	70.939	69.864	10.135	31.872
275.15	77 621	71 648	10.370	37.873
280	74 215	74 225	11.605	34 206
290	75 451	76 299	12 215	35 329
290.15	75 725	76 766	12.215	35 583
500	10.140	/ 0. / 00	12.000	55.505

27

T/K	$C_{\rm nm}/{\rm J}\cdot{\rm K}^{-1}\cdot{\rm mol}^{-1}$	$\Lambda^{T}S_{m}$ %J·K ⁻¹ ·mol ⁻¹	$\Lambda^{T}H_{m}$ %kJ·mol ⁻¹	$\Phi_{\rm m}/J\cdot {\rm K}^{-1}\cdot {\rm mol}^{-1}$
0	0	0	0	0
1	$9914 \cdot 10^{-4}$	9029.10^{-4}	$4625 \cdot 10^{-7}$	4404.10^{-4}
2	$2.857 \cdot 10^{-3}$	$2.081 \cdot 10^{-3}$	$2.266 \cdot 10^{-6}$	$9.482 \cdot 10^{-4}$
3	$7.007 \cdot 10^{-3}$	$3.919 \cdot 10^{-3}$	$6.937 \cdot 10^{-6}$	$1.607 \cdot 10^{-3}$
4	0.01502	$6.925 \cdot 10^{-3}$	$1.757 \cdot 10^{-5}$	$2.531 \cdot 10^{-3}$
5	0.02811	0.01158	$3.867 \cdot 10^{-5}$	$3.844 \cdot 10^{-3}$
6	0.04727	0.01830	$7.581 \cdot 10^{-5}$	$5.662 \cdot 10^{-3}$
7	0.07352	0.02746	$1.356 \cdot 10^{-4}$	$8.090 \cdot 10^{-3}$
8	0 10797	0.03943	$2.256 \cdot 10^{-4}$	0.01123
9	0 15254	0.05461	$3.549 \cdot 10^{-4}$	0.01517
10	0 20774	0.07344	$5.342 \cdot 10^{-4}$	0.02003
15	0.66428	0.23331	$2.582 \cdot 10^{-3}$	0.02009
20	1 4492	0.52416	$7.730 \cdot 10^{-3}$	0.13764
20	2 5201	0.95810	0.01755	0.25597
30	3 7831	1 5270	0.03325	0.41864
35	5 1671	2 2128	0.05558	0.62468
40	6 6 5 5 8	2.2120	0.08509	0.87134
40	8 2535	3 8739	0.12233	1 1555
50	9.9123	4 8293	0.16774	1.1335
50 60	13 109	6 9190	0.28283	2 2050
70	16 342	9 1825	0.43009	3.0384
80	19 563	11 575	0.60964	3 9548
90	22 727	14.063	0.82116	4 9390
100	25 788	16.617	1.0638	5 9786
110	28.700	19 214	1 3365	7.0635
120	31 522	21 834	1.5505	8 1851
120	34 200	21.054	1.0578	9 3 3 6 1
140	36 772	27.092	2 3215	10 511
140	39 253	29.715	2.3213	11 703
160	41 656	32 325	3 1063	12 911
170	43.990	34 921	3 5345	14 129
180	46 261	37 500	3 9859	15 356
190	48.470	40.060	4 4596	16 589
200	50.619	42 601	4 9551	17.826
200	52 705	45 122	5 4717	19.066
220	54 727	47 621	6.0090	20 307
220	56 684	50.097	6 5661	21.549
230	58 572	52 549	7 1424	22.2789
250	60 391	54 977	7 7373	24 028
250	62 141	57 380	8 3500	25.265
200	63 821	59 757	8 9799	26.499
273 15	64 335	60 501	9 1817	26.886
273.13	65 431	62 108	9 6262	20.000
200	66 972	64 431	10 288	27.720
290	68 179	66 304	10.200	20.234
270.15	00.177	UU.JUT	10.057	4J.J+J

Table 8. Standard thermodynamic functions of partially dehydrated Zn-A \cdot 0.58 H₂O. M = 86.00534

28

Figure 1. Low-temperature zeolite heat capacities from the literature, with
formulas standardized to the form (Cations)Al_xSi_yO₂. 19 densely spaced data
sets were excluded; their heat capacity curves fall within the shaded region
bounded by gmelinite and scolecite. Three high data points for Tl natrolite
were also excluded.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

539

540

541

Figure 2. Heat capacity as a function of temperature for Na-A·0.23 H₂O and
Zn-A·0.58 H₂O, with literature data (Qiu et al., 2000) for fully dehydrated NaA. Fits are provided behind the data points. Inset shows data below 10 K.
Literature data are not included in the low-T inset because they do not extend
below 37 K.

554

Figure 3. Heat capacity of zeolitic water in zeolites Na-A, mordenite
(Johnson et al., 1992), analcime (Johnson et al., 1982), natrolite (Paukov et al.,
2002b), and laumontite (Paukov and Fursenko, 1998a; Paukov and Fursenko,
1998b) with literature data for hexagonal ice (Flubacher et al., 1960; Giauque
and Stout, 1936; Haida et al., 1974; Handa and Klug, 1988; Smith et al., 2007;
Sugisaki et al., 1968). Arrows highlight inflection points in the data set
representing water in Na-A. Inset shows the data with different scaling for comparison with zeolitic water in laumontite.