1	Revision 2
2	Zhanghuifenite, Na ₃ Mn ²⁺ 4Mg ₂ Al(PO ₄) ₆ , a new mineral isostructural with
3	bobfergusonite, from the Santa Ana mine, San Luis province, Argentina
4 5 6	Hexiong Yang* ¹ , Anaïs Kobsch ² , Xiangping Gu ³ , Robert T. Downs ¹ , Xiande Xie ⁴
7 8 9	¹ Department of Geosciences, University of Arizona, 1040 E. 4 th Street, Tucson, AZ 85721-0077, USA ² Univ I yon ENSL Univ I yon 1 CNRS I GL-TPE E-69007 I yon Erance
10	³ School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, China
12 13 14	⁴ Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, CAS, and Guangdong Key Laboratory of Mineral Physics and Materials, Guangzhou 510640, China
15	*Corresponding author: hyang@arizona.edu
16	
17	Abstract
18	A new mineral species, zhanghuifenite, ideally Na ₃ Mn ²⁺ 4Mg ₂ Al(PO ₄) ₆ , has been
19	found in the Santa Ana mine, San Luis province, Argentina. It occurs in irregular veinlets
20	or patches, 5 mm thick, in a nodule of beusite interlaminated with lithiophilite. Broken
21	pieces of zhanghuifenite are blocky or tabular. Single crystals are up to 0.8 x 0.5 x 0.5
22	mm. No twinning or parting is observed macroscopically. The mineral is deep green,
23	transparent with pale green streak and vitreous luster. It is brittle and has a Mohs
24	hardness of ~5 with good cleavage on $\{010\}$. The measured and calculated densities are
25	3.63(2) and 3.62 g/cm ³ , respectively. Optically, zhanghuifenite is biaxial (+), with $\alpha =$
26	1.675 (2), $\beta = 1.680$ (2), $\gamma = 1.690$ (2) (white light), 2V (meas.) = 74(2)°, and 2V (calc.) =
27	71°. The calculated compatibility index based on the empirical formula is 0.020
28	(excellent). An electron microprobe analysis yields an empirical formula (based on 24 O
29	apfu)
30	$(Na_{2.80}Ca_{0.11})_{\Sigma 2.91}(Mn^{2+}{}_{3.09}Fe^{2+}{}_{0.47}Mg_{0.36})_{\Sigma 3.92}(Mg_{1.31}Fe^{2+}{}_{0.69})_{\Sigma 2.00}(Al_{0.81}Fe^{3+}{}_{0.19})(PO_4)_6.$
31	Zhanghuifenite is insoluble in water or hydrochloric acid.

32	Zhanghuifenite is isostructural with bobfergusonite, a member of the alluaudite
33	super-group. It is monoclinic, with space group $P2_1/n$, Z =4, and unit-cell parameters $a =$
34	12.8926(3), $b = 12.4658(3)$, $c = 10.9178(2)$ Å, $\beta = 97.9200(10)^{\circ}$, and $V = 1737.93(7)$ Å ³ .
35	The crystal structure of zhanghuifenite contains six octahedral M (= Mn, Fe, Mg, Al)
36	sites and five X (= Na, Mn, Ca) sites with coordination numbers between 6 and 8. The six
37	M octahedra share edges to form two types of kinked chains extending along [101], with
38	one consisting of $M1-M4-M5$ and the other $M2-M3-M6$. These chains are joined by PO ₄
39	tetrahedra to form sheets parallel to (010), which are linked together through corner-
40	sharing between PO ₄ tetrahedra and MO_6 octahedra in the adjacent sheets, leaving open
41	channels parallel to a , where the large X cations are situated. Zhanghuifenite differs from
42	bobfergusonite in two major aspects. One is that the M4 and M5 sites in the former are
43	mainly occupied by Mg, but by Fe^{2+} and Fe^{3+} , respectively, in the latter. The other is that
44	the X2-X5 sites in zhanghuifenite are all nearly or fully filled with Na, resulting in 3 Na
45	apfu in the ideal formula, but X4 and X5 are merely half-occupied in bobfergusonite,
46	giving rise to 2 Na apfu.
47	
48	Key words: zhanghuifenite, wyllieite, alluaudite, crystal structure, X-ray diffraction,
49	Raman spectra
50	
51	Introduction
52	A new mineral species, zhanghuifenite, ideally Na ₃ Mn ²⁺ ₄ Mg ₂ Al(PO ₄) ₆ , has been
53	found in the Santa Ana mine, San Luis province, Argentina. It is named in honor of the
54	late Chinese mineralogist, Prof. Huifen Zhang (1934-2012). Prof. Zhang received her
55	undergraduate and graduate educations in China and the former USSR, respectively. She
56	became a professor at the Institute of Geochemistry (in both Guiyang and Guangzhou),
57	the Chinese Academy of Sciences, where she was the director of the division for mineral
58	physics and materials research from 1980 to 1994. Prof. Zhang established the first

59 Raman spectroscopy laboratory for mineralogical research in China and served as a 60 member of the IMA Commission on Mineral Physics from 1990 to 1994. Her major 61 research interests were particularly focused on synthetic quartz, rutile, pyrophyllite, and 62 turquoise. The new mineral and its name have been approved by the Commission on New 63 Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical 64 Association (IMA 2016-074). The cotype samples have been deposited at the University 65 of Arizona Mineral Museum (Catalogue # 21321) and the RRUFF Project (deposition # 66 R160030) (http://rruff.info).

67 Zhanghuifenite, isotypic with bobfergusonite, is closely related to minerals of the 68 wyllieite and alluaudite groups. However, it differs from all known members of these 69 groups in both chemical composition and structure. Moore and Molin-Case (1974) 70 showed that the crystal structure of wyllieite is a superstructure derivative of the alluaudite structure. Moore and Ito (1979) introduced a nomenclature for the minerals of 71 72 the alluaudite and wyllieite groups. Recently, a new nomenclature of the alluaudite 73 supergroup, which contains totally 16 phosphate and 19 arsenate minerals by 2019, has 74 been presented by Hatert (2019). Khorari et al. (1997) examined the compositional 75 relations between the alluaudite and garnet structures and revealed that the alluaudite 76 structure, like the garnet structure, is extremely chemically compliant. This paper 77 describes the physical and chemical properties of zhanghuifenite and its crystal structure 78 determined from single-crystal X-ray diffraction data, illustrating its structural 79 relationships to bobfergusonite in particular and alluaudite-type minerals in general. 80 81 82 **Sample Description and Experimental Methods** 83 Occurrence, physical and chemical properties, and Raman spectra 84 Zhanghuifenite was found on a specimen collected from the the Santa Ana mine

85 (32°53'32" S, 65°55'43" W), San Luis province, Argentina (Fig. 1). It is massive in a

86 matrix consisting of beusite and lithiophilite (Fig. 2). Detailed geological and 87 mineralogical studies of the Santa Ana pegmatite have been presented by Galliski et al. 88 (2009) and Roda-Robles et al. (2012). The association zhanghuifenite – beusite – 89 lithiophilite occurs in a granitic pegmatite. According to Galliski et al. (2009), the 90 original primary phosphates of the nodule are believed to have crystallized with a 91 chemical composition of a Li-bearing beusite enriched in Mg, derived possibly by 92 contamination by the host rock after the crystallization of the border and wall zones of 93 the pegmatite. The exsolution of this precursor led to the formation of a lamellar 94 intergrowth of beusite and lithiophilite enriched in Mg. Subsequent crystallization of 95 zhanghuifenite is attributed to veining, produced possibly by a late-stage, fluid-rich 96 peraluminous melt.

97 Zhanghuifenite crystals occur in irregular veinlets or patches, 5 mm thick, in a 98 nodule of beusite interlaminated with lithiophilite (Figs. 1 and 2). Broken pieces of 99 zhanghuifenite are blocky or tabular. Single crystals are found up to 0.8 x 0.5 x 0.5 mm. 100 No twinning or parting is observed macroscopically. The mineral is deep jade-green, 101 transparent with pale green streak and vitreous luster. It is brittle and has a Mohs 102 hardness of ~ 5 ; cleavage is good on $\{010\}$. The measured and calculated densities are 3.63(2) and 3.62 g/cm³, respectively. Optically, zhanghuifenite is biaxial (+), with $\alpha =$ 103 104 1.675 (2), $\beta = 1.680$ (2), $\gamma = 1.690$ (2) (white light), 2V (meas.) = 74(2)°, 2V (calc.) = 71°, 105 and the orientation $\alpha \wedge X = 8^{\circ}$, $\beta = Y$, with X = deep blue green, Y = pale green, Z = 106 yellowish green, and X > Y > Z. The pleochroism is deep green and the dispersion is very 107 strong with $r \gg v$. The calculated compatibility index based on the empirical formula is 108 0.020 (excellent) (Mandarino 1981). Zhanghuifenite is insoluble in water or hydrochloric 109 acid.

The chemical composition was determined using a Cameca SX-100 electron
microprobe (WDS mode, 15 kV, 20 nA, and a beam diameter of 5 μm). The standards
used are listed in Table 1, along with the determined compositions (12 analysis points all

113 from one crystal). The resultant chemical formula, calculated on the basis of 24 O atoms

114 *pfu* (from the structure determination), is

115 $(Na_{2.80}Ca_{0.11})_{\Sigma 2.91}(Mn^{2+}_{3.09}Fe^{2+}_{0.47}Mg_{0.36})_{\Sigma 3.92}(Mg_{1.31}Fe^{2+}_{0.69})_{\Sigma 2.00}(Al_{0.81}Fe^{3+}_{0.19})(PO_4)_{6},$

- 116 which can be simplified to $Na_3Mn^{2+}_4Mg_2Al(PO_4)_6$.
- 117 The Raman spectrum of zhanghuifenite was collected on a randomly oriented
- 118 crystal with a Thermo Almega microRaman system, using a solid-state laser with a
- 119 frequency of 532 nm at the full power of 150 mW and a thermoelectric cooled CCD
- 120 detector. The laser is partially polarized with 4 cm⁻¹ resolution and a spot size of 1 μ m.
- 121

122 X-ray crystallography

Both the powder and single-crystal X-ray diffraction data for zhanghuifenite were collected on a Bruker X8 APEX2 CCD X-ray diffractometer equipped with graphitemonochromatized Mo K_{α} radiation. Listed in Table 2 are the measured powder X-ray diffraction data, along with those calculated from the determined structure using the program XPOW (Downs et al. 1993). The unit-cell parameters obtained from the powder X-ray diffraction data are: a = 12.888(5), b = 12.466(3), c = 10.910(4) Å, $\beta = 97.86(3)^{\circ}$, and V = 1736.4(8) Å³.

130 A nearly equidimensional crystal (0.08 x 0.08 x 0.07 mm) of zhanghuifenite was 131 picked for the structure determination from the large crystal used for the electron 132 microprobe analysis. The X-ray diffraction intensity data were collected with frame 133 widths of 0.5° in ω and 30 s counting time per frame. All reflections were indexed on the 134 basis of a monoclinic unit-cell (Table 3). The intensity data were corrected for X-ray 135 absorption using the Bruker program SADABS. The systematic absences of reflections 136 suggest the unique space group $P2_1/n$. The crystal structure was solved and refined using 137 SHELX2018 (Sheldrick 2015a, 2015b). To facilitate the direct comparison with 138 bobfergusonite, the site nomenclature used by Ercit et al. (1986) and Tait (2004) was

139 adopted for the zhanghuifenite structure, which has 5 X, 6 M, 4 P, and 24 O sites for an 140 asymmetric unit, where X = Na, Ca, and Mn, and M = Mn, Fe, Mg, and Al. 141 A preliminary structure refinement indicated that M1, M2, and X1 are fully 142 occupied by Mn, and X2 and X5 by Na. These sites, therefore, were all fixed in the 143 subsequent refinements. The refinements revealed that Mg is dominant in the M4 and M5 144 sites, and Al in M6. The small amount of Ca was found to be in X3 and some vacancy in 145 X4. For simplicity, in the subsequent refinements, all M and X sites, except for X3, were 146 assumed to be completely filled, which requires a re-normalization of the empirical 147 formula to $(Na_{2.80}Ca_{0.11})_{\Sigma 2.91}(Mn^{2+}{}_{3.15}Fe^{2+}{}_{0.48}Mg_{0.37})_{\Sigma 4.00}(Mg_{1.31}Fe^{2+}{}_{0.69})_{\Sigma 2.00}(Al_{0.81}Fe^{3+}{}_{0.19})_{\Sigma 1.00}\ (PO_4)_6.$ 148 149 Based on this chemical formula, the final refined site occupancies are given in Table 4, 150 together with those determined by Tait et al. (2004) for bobfergusonite from the Nancy 151 pegmatite, San Luis Range, Argentina. Final coordinates and displacement parameters of 152 atoms in zhanghuifenite are listed in Tables 5 and 6, respectively, and selected bond-153 distances in Table 7. 154 It should be pointed out that the M3 site in zhanghuifenite appears to have more Fe^{2+} than any other elements. However, we do not specify it in the ideal chemical 155 156 formula to keep consistency with bobfergusonite, which shows a variation from the Mn^{2+} to Fe^{2+} -rich in its M3 site, but all Fe^{2+} was treated as Mn^{2+} in its ideal formula 157 158 (Ercit et al. 1986; Tait et al. 2004). Another reason for doing so is because X-ray 159 structure analysis is insufficient in distinguishing Fe from Mn due to their similar X-ray 160 scattering powers. 161 162 Crystal structure description and discussion Zhanghuifenite is isostructural with bobfergusonite, Na₂Mn²⁺₅Fe³⁺Al(PO₄)₆ (Ercit 163 164 et al., 1986; Tait et al., 2004), a member of the alluaudite super-group. All these minerals 165 have the same structure topology. They differ from one another mainly in chemical

166	compositions and M-cation ordering patterns (see Hatert 2019 for a thorough review).
167	The crystal structure of zhanghuifenite contains six octahedral M sites and five X sites
168	that have coordination numbers 6, 8, 8, 7, and 7 for <i>X</i> 1, <i>X</i> 2, <i>X</i> 3, <i>X</i> 4, and <i>X</i> 5, respectively.
169	The six M octahedra share edges to form two types of kinked chains extending along
170	[101], with one consisting of $M1-M4-M5$ (the A chain) and the other $M2-M3-M6$ (the B
171	chain). These octahedral chains are joined by PO ₄ tetrahedra to form sheets parallel to
172	(010) (Figure 3), which are linked together through corner-sharing between PO_4
173	tetrahedra and MO_6 octahedra in the adjacent sheets, leaving open channels parallel to a ,
174	where the large <i>X</i> cations are situated (Figure 4).
175	There is strong cation order over the six M sites in zhanghuifenite (Table 4),
176	which is the cause for the differences among the alluaudite-, wyllieite-, and
177	bobfergusonite-structure types (Ercit et al. 1986, Tait et al. 2004). Among five X sites, the
178	X1 site is filled with Mn^{2+} , whereas X2–X5 sites are predominately or fully occupied by
179	Na. The average bond lengths for <i>M</i> 3, <i>M</i> 4, and <i>M</i> 5 are noticeably shorter than those for
180	M1, $M2$ and $X1$, consistent with the results that the former three sites are primarily
181	occupied by Mg and Fe ²⁺ . The site preference of Mg is $M5 > M4 > M3$, which is
182	opposite to that of Fe^{2+} , in agreement with the decrease in the average bond length from
183	<i>M</i> 3 to <i>M</i> 5.
184	Zhanghuifenite differs from bobfergusonite in two major aspects. One is that the
185	<i>M</i> 4 and <i>M</i> 5 sites in the former are mainly occupied by Mg, but by Fe^{2+} and Fe^{3+} ,
186	respectively, in the latter. The other is that the X2-X5 sites in zhanghuifenite are all nearly

or fully filled with Na, resulting in 3 Na apfu in the ideal formula, but X4 and X5 are
merely half-occupied in bobfergusonite, giving rise to 2 Na apfu. Therefore, based on the

ideal chemical formulas, zhanghuifenite may be obtained from bobfergusonite throughthe following coupled substitution:

192
$$M^{4}Mg + M^{5}Mg + X^{4,X5}(2Na) = M^{4}Fe^{2+} + M^{5}Fe^{3+} + X^{4,X5}[2(Na_{0.5} + \Box_{0.5})]$$

193 194	Zhanghuifenite	Bobfergusonite
195	The Raman spectrum of zhanghuifenite l	between 100 and 4000 cm ⁻¹ was collected
196	(<u>https://rruff.info/R160030</u>), but only the range	from 100 to 1300 cm-1 is displayed in
197	Figure 5, because the spectrum above 1400 cm^{-1}	is flat and featureless. Based on the
198	previous Raman spectroscopic study on qinghei	ite (Frost et al. 2013), which is also a
199	member of the wyllieite group (see below for me	ore discussion), we made the following
200	tentative assignments of the major Raman bands	for zhanghuifenite. The bands between
201	930 and 1160 cm ⁻¹ are ascribable to the P-O stre	tching vibrations within the PO ₄ group,
202	whereas those from 400 to 660 cm ⁻¹ are attribute	ed to the O-P-O bending vibrations. The
203	bands below 400 cm ⁻¹ are mainly associated wit	h the rotational and translational modes
204	of PO_4 tetrahedra, as well as the M-O (M = Mn,	Fe, Mg, Al) interactions and lattice
205	vibrational modes. For comparison, the Raman	spectrum of bobfergusonite from the
206	RRUFF Project (<u>http://rruff.info</u> /R160069) was	also included in Figure 5. The
207	resemblance between the two spectra are appare	nt. The difference in peak intensities
208	between the two spectra principally results from	the different crystal orientations when
209	the data were collected.	
210	Implicati	ons
211	Qingheiite, ideally Na ₂ Mn ²⁺ MgAl(PO ₄) ₃	(Ma et al. 1983), has a similar
212	composition to zhanghuifenite (Table 1). Chemi	cally, zhanghuifenite can be obtained
213	from qingheiite (with the doubled cell content, a	s its unit-cell volume is only half that of
214	zhanghuifenite) by the coupled substitution of 2	Mn^{2+} for (Na + Al). Structurally,
215	qingheiite contains only one type of edge-sharin	g octahedral chains, made of M1 (=Mn),
216	M2a (=Mg), and M2b (=Al) (Figure 6) (Ma et al	l. 1983), rather than two types, as in
217	zhanghuifenite (Figure 3). In other words, due to	the above chemical substitution, the two
218	adjacent, symmetrically-equivalent octahedral c	hains in qingheiite become nonequivalent

219 in zhanghuifenite. Specifically, we have the following structural relationship between the

220	two minerals:	
221	Qingheiite	Zhanghuifenite
222	One chain	A chain B chain
223	$2M1 (= Mn) \longrightarrow$	M1 (= Mn) + M2 (= Mn)
224	$2M2a (= Mg) \longrightarrow$	M4 (= Mg) + M3 (= Mn)
225	$2M2b (= Al) \longrightarrow$	M5 (= Mg) + M6 (= Al)

226 By the same token, we can find the chemical and structural relationships between 227 rosemaryite and bobfergusonite, and between ferrorosemaryite and ferrobobfergusonite, 228 as shown in Table 8. These relationships established between the known minerals in the 229 wyllieite and bobfergusonite groups lead us to postulate the existence of three more 230 possible new minerals in the bobfergusonite group, labelled as postulated new minerals 1, 2, and 3 in Table 8. Among them, postulated new mineral 1, $Na_3Fe^{2+}_4Mg_2Al(PO_4)_6$, can 231 be derived from ferrogingheiite through the coupled substitution of $2Fe^{2+}$ for $(Na^+ + Al^{3+})$ 232 233 and may be regarded as "ferrozhanghuifenite". Similarly, postulated new minerals 2 and 234 3 are related to wyllieite and ferrowyllieite, respectively, through the coupled substitutions of $2Mn^{2+}$ for $(Na^+ + Al^{3+})$ and $2Fe^{2+}$ for $(Na^+ + Al^{3+})$. 235 236 The zhanghuifenite sample we examined was originally donated to the RRUFF 237 Project as "qingheiite", which has been studied previously by Galliski et al. (2009) using 238 powder X-ray diffraction and electron microprobe analysis and by Frost et al. (2013) 239 using electron microprobe analysis, along with Raman and IR spectroscopy. Table 1 240 shows the similarity in the chemical compositions between zhanghuifenite and qingheiite 241 from the same locality, as well as that from the type locality, Qinghe, China. However, 242 without single-crystal X-ray structure analysis, it is unclear whether "qingheiite" 243 examined by Galliski et al. (2009) and Frost et al. (2013) is actually zhanghuifenite. This 244 argument then begs question whether or not qingheiite can be distinguished from 245 zhanghuifenite via careful inspection of powder X-ray diffraction data. Figure 7 displays 246 the powder X-ray diffraction patterns of qingheiite and zhanghuifenite calculated from 247 the structure data from Ma et al. (1983) and this study, respectively. Evidently, the major

248	features of two profiles are considerably similar, except for some relatively weak peaks.
249	Therefore, cautions must be exercised when powder X-ray diffraction data are used to
250 251	identify these two minerals.
252	Acknowledgements
253	We are very grateful for the constructive comments by Dr. Mark Cooper.
254	
255	References Cited
256	Downs, R.T., Bartelmehs, K.L., Gibbs, G.V., and Boisen, M.B., Jr. (1993) Interactive
257	software for calculating and displaying X-ray or neutron powder diffractometer
258	patterns of crystalline materials. American Mineralogist, 78, 1104-1107.
259	Ercit, T.S., Hawthorne, F.C., and Černý, P. (1986) The crystal structure of
260	bobfergusonite. Canadian Mineralogist, 24, 605-614.
261	Frost, R.L., Xi, Y., Scholz, R., López, A., Moreira, C. and de Lena, J.C. (2013) Raman
262	spectroscopic study of the mineral qingheiite Na ₂ (Mn ²⁺ ,Mg,Fe ²⁺) ₂ (Al,Fe ³⁺)(PO ₄) ₃ ,
263	a pegmatite phosphate mineral from Santa Ana pegmatite, Argentina.
264	Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 114, 486-
265	490.
266	Galliski, M.A., Oyarzábal, J.C., Márquez-Zavalía, M.F. and Chapman, R. (2009) The
267	association qingheiite – beusite – lithiophilite in the Santa Ana pegmatite, San
268	Luis, Argentina. Canadian Mineralogist, 47, 1213-1223.
269	Hatert, F. (2019) A new nomenclature scheme for the alluaudite supergroup. European
270	Journal of Mineralogy 31, 807-822.
271	Khorari, S., Rulmont, A., and Tarte, P. (1997) The arsenates $NaCa_2M^{2+}_2(AsO_4)_3$ ($M^{2+} =$
272	Mg, Ni, Co): influence of cationic substitutions on the garnet-alluaudite
273	polymorphism. Journal of Solid State Chemistry, 131, 290-297.
274	Ma, Z., Shi, N., and Peng, Z. (1983) Crystal structure of a new phosphatic mineral –

275 qingheiite. Scientia Sinica, Series B, 26, 876-884. 276 Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility 277 concept and its application. Canadian Mineralogist 19, 441-450. 278 Moore, P.B. and Molin-Case, J. (1974) Contribution to pegmatite phosphate giant crystal paragenesis. II. The crystal chemistry of wyllieite, Na₂Fe²⁺₂Al(PO₄)₃, a 279 280 primary phase. American Mineralogist, 59, 280-290. 281 Moore, P.B. and Ito, J. (1979): Alluaudites, wyllieites, arrojadites; crystal chemistry and 282 nomenclature. Mineralogical Magazine, 43, 227-235. 283 Roda-Robles, E., Galliski, M.A., Roquet, M.B., Hatert, F. and Parseval, P. (2012) 284 Phosphate nodules containing two distinct assemblages in the Cema granitic 285 pegmatite, San Luis province, Argentina: paragenesis, composition and 286 significance, Canadian Mineralogist, 50, 913-931. 287 Sheldrick, G. M. (2015a) SHELXT – Integrated space-group and crystal structure 288 determination. Acta Crystallographica, A71, 3-8. 289 Sheldrick, G. M. (2015b) Crystal structure refinement with SHELX. Acta 290 Crystallographica, C71, 3-8. 291 Tait, K.T., Hawthorne, F.C., Černý, P. and Galliski, M.A. (2004) Bobfergusonite from 292 the Nancy pegmatite, San Luis Range, Argentina: crystal-structure refinement and 293 chemical composition. Canadian Mineralogist, 42, 705-716. 294 295 296 297 298 299 300 301

302	
303	
304	
305	
306	
307	List of Figure Captions
308	
309 210	Fig. 1. The rock specimen on which the new mineral zhanghuifenite was found.
310 311 212	Fig. 2. A microscopic view of massive dark-green zhanghuifenite crystals.
312 313 314 315 316	Fig. 3. Crystal structure of zhanghuifenite, showing a sheet made of two types of edge- sharing MO ₆ octahedral chains (M = Mn, Fe, Mg, Al) connected by PO ₄ tetrahedra. The yellow, green, and red octahedra represent MnO ₆ , MgO ₆ , and AlO ₆ , respectively.
317 318 319 320 321	Fig. 4. Sheets made of MO_6 octahedra and PO_4 tetrahedra parallel to (010) are linked together through corner-sharing between PO_4 tetrahedra and MO_6 octahedra in the adjacent sheets, leaving open channels parallel to <i>a</i> , where the large X cations (spheres) are situated (X = Na, Ca, Mn). The yellow, green, and red octahedra represent MnO ₆ , MgO ₆ , and AlO ₆ , respectively.
322 322 323	Figure 5. Raman spectrum of zhanghuifenite, along with that of bobfergusonite for comparison.
325 326 327	Figure 6. Crystal structure of qingheiite, showing a sheet made of edge-sharing MO_6 octahedral chains (M = Mn, Mg, Al) connected by PO_4 tetrahedra. The structure data were taken from Ma et al. (1983).
328 329 330 331 332 333 334 335	Figure 7. Powder X-ray diffraction patterns for zhanghuifenite (bottom) and qingheiite (top) calculated with Cu radiation from the structure data from this study and Ma et al. (1983), respectively.
336	List of Tables
337 338 220	Table 1. Chemical compositions for qingheiite and zhanghuifenite.
339 340 341	Table 2. Powder X-ray diffraction data for zhanghuifenite.
342	Table 3. Summary of crystallographic data and refinement results for zhanghuifenite.

343

- 344 Table 4. Refined site occupancies for zhanghuifenite.
- 345
- 346 Table 5. Fractional atomic coordinates and equivalent isotropic displacement parameters
- $\begin{array}{l} 347 \qquad (\text{\AA}^2) \text{ for zhanghuifenite.} \\ 348 \end{array}$
- Table 6. Atomic displacement parameters $(Å^2)$ for zhanghuifenite.
- 351 Table 7. Selected bond distances (Å) for zhanghuifenite.
- 352

- 353
- 354

	Qingheiite Santa Ana Argentina	Qingheiite Santa Ana Argentina	Qingheiite Qinghe China	Zhanghuifenite Santa Ana Argentina	
					standards
P ₂ O ₅	45.11	45.67	45.63	45.21(29)	Apatite
Al_2O_3	5.07	4.70	4.53	4.36(5)	Anorthite
Fe ₂ O ₃	4.09	5.96	2.24	1.58*	
MgO	6.21	7.42	9.75	7.14(8)	Forsterite
MnO	24.21	21.76	23.60	23.15(13)	Rhodochrosite
FeO	6.38	4.95	3.94	8.84(8)	Fayalite
ZnO	0.12	0.16	0.23	b.d.	
CaO	0.50	0.71	0.93	0.66(2)	Anorthite
Na ₂ O	9.24	9.26	8.73	9.19(30)	Albite
K_2O	0.02		0.04	b.d.	
Total	100.99	100.63	99.64	100.13	
	(1)	(2)	(3)	This study	

Table 1. Chemical compositions for qingheiite and zhanghuifenite.

References: (1) Galliski et al. (2009); (2) Frost et al. (2013); (3) Ma et al. (1983). Note: (a) *Obtained by adjusting the Fe^{2+}/Fe^{3+} ratio for electroneutrality.

(b) b.d. = below detection.

I	d _{meas}	$d_{\rm calc}$	h k l
7	8.130	8.166	0 1 1
21	6.201	6.233	0 2 0
3	5.258	5.302	-2 1 1
2	4.767	4.795	2 1 1
2	4.436	4.460	2 2 0
2	4.160	4.178	-2 1 2
3	4.073	4.083	0 2 2
13	3.445	3.461	0 1 3
12	3.078	3.083	-4 1 1
8	3.026	3.032	-2 3 2
9	2.928	2.929	-4 0 2
25	2.8//	2.8/4	4 1 1
10	2.750	2.752	-2 4 1
100	2.097	2.700	
8	2.047	2.031	4 0 2
34	2.505	2.577	-4 3 1
5	2.327	2.320	0 2 4
6	2.394	2.397	4 2 2
2	2.319	2.322	2 5 0
4	2.214	2.216	-2 3 4
10	2.187	2.186	-4 3 3
7	2.130	2.130	0 1 5
14	2.096	2.098	6 1 0
12	2.047	2.050	0 5 3
9	1.970	1.973	4 3 3
6	1.936	1.939	0 6 2
4	1.847	1.849	4 2 4
4	1.806	1.806	-2 5 4
4	1.781	1.781	-2 1 6
14	1.742	1.740	-4 3 5
4	1.718	1.715	
8	1.645	1.644	4 4 4
9	1.594	1.591	-8 0 2
15	1.501	1.500	
0 1	1.520	1.525	4 / 1
4	1.307	1.300	4 0 6
5	1.405	1 4 4 4	4 2 6
6	1.421	1.421	8 4 0
6	1.353	1.353	-6 7 2
4	1.351	1.351	0 0 8
4	1.326	1.326	-8 4 4
4	1.296	1.297	672
6	1.284	1.285	-8 0 6

 Table 2. Powder X-ray diffraction data of zhanghuifenite

	Zhanghuifenite	Bobfergusonite	Qingheiite
Ideal chemical formula	$Na_3Mn^{2+}_4Mg_2Al(PO_4)_6$	$Na_2Mn^{2+}{}_{5}Fe^{3+}Al(PO_4)_{6}$	$Na_2Mn^{2+}MgAl(PO_4)_3$
Crystal symmetry	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_{1}/n$	$P2_1/n$	$P2_1/n$
a (Å)	12.8926(3)	12.796(3)	11.856(3)
$b(\mathbf{\hat{A}})$	12.4658(3)	12.465(2)	12.411(3)
<i>c</i> (Å)	10.9178(2)	11.001(2)	6.421(1)
β (°)	97.9200(10)	97.39(3)	114.45(2)
$V(Å^3)$	1737.93(7)	1740.1(5)	860.10(3)
Z	4	4	2
$\rho_{cal}(g/cm^3)$	3.619	3.66	3.610
2θ range for data collection	≤65.18 ≤60.10		≤65.00
No. of reflections collected	25050	13000	3650
No. of independent reflections	6296	5035	3650
No. of reflections with $I > 2\sigma(I)$	4692	2959	2294
No. of parameters refined	373		
R(int)	0.024	0.026	
Final R_1 , wR_2 factors $[I > 2\sigma(I)]$	0.024, 0.063	0.027, 0.064	0.055
Goodness-of-fit	1.013		
Crystal locality	Santa Ana mine, Argentina	Nancy mine, Argentina	Qinghe County China
Reference	This study	Tait et al. (2004)	Ma et al. (1983)

Table 3. Comparison of mineralogical data for zhanghuifenite, bobfergusonite, and qingheiite

Site	Site sym	. B.L.	Bobfergusonite (Tait et al. 2004)	B.L.	Zhanghuifenite (This study)
M1	1	2.216	1.00Mn	2.220	1.00Mn
M2	1	2.237	0.89Mn + 0.11Ca	2.238	1.00Mn
M3	1	2.116	$0.38 Fe^{2+} + 0.32 Mn + 0.24 Fe^{3+} + 0.06 Mg$	2.119	$0.48 \text{Fe}^{2+} + 0.37 \text{Mg} + 0.15 \text{Mn}$
M4	1	2.092	$0.53 \text{Fe}^{2+} + 0.25 \text{Fe}^{3+} + 0.22 \text{Mg}$	2.101	$0.59 Mg + 0.41 Fe^{2+}$
M5	1	2.059	$0.28 Fe^{2+} + 0.42 Fe^{3+} + 0.30 Mg$	2.085	$0.72Mg + 0.28Fe^{2+}$
M6	1	1.918	$0.94A1 + 0.06Fe^{3+}$	1.929	$0.81 \text{Al} + 0.19 \text{Fe}^{3+}$
X1	1	2.238	1.00Mn	2.241	1.00Mn
X2	-1	2.550	0.46Na + 0.04□	2.551	0.50Na
X3	-1	2.572	0.44Na + 0.06	2.556	0.39Na + 0.11Ca
X4	1	2.654	0.57Na + 0.43□	2.583	0.91Na + 0.09□
X5	1	2.635	0.53Na + 0.47□	2.602	1.00Na

Table 4. Comparison of cation site occupations between bobfergusonite and zhanghuifenite

Note: Site sym. = site symmetry; B.L. = average bond length.

Atom	x	у	Z	$U_{ m eq}$
M1	0.13336 (2)	0.23653 (2)	-0.00041 (2)	0.00864 (6)
M2	0.63016 (2)	0.23518 (2)	0.00231 (2)	0.00942 (6)
M3	0.29464 (2)	0.15001 (2)	0.72568 (2)	0.00734 (7)
M4	0.79683 (3)	0.15053 (3)	0.72831 (3)	0.00739 (9)
M5	0.46278 (3)	0.16528 (3)	0.28289 (3)	0.00778 (10)
M6	0.96056 (3)	0.16562 (3)	0.28271 (3)	0.00726 (8)
X1	0.24830 (2)	0.00080 (2)	-0.00328 (2)	0.01338 (6)
X2	0.000000	0.000000	0.000000	0.0213 (2)
X3	0.500000	0.000000	0.000000	0.0341 (3)
X4	0.37437 (6)	0.47638 (7)	0.00306 (6)	0.01888 (18)
X5	0.87300 (6)	0.47641 (7)	0.99624 (6)	0.02217 (18)
P1	0.38323 (3)	0.21446 (3)	0.00473 (3)	0.00599 (8)
P2	0.88287 (3)	0.21180 (3)	0.00956 (3)	0.00590 (8)
P3	0.20082 (3)	0.11369 (3)	0.26227 (3)	0.00568 (7)
P4	0.70651 (3)	0.11351 (3)	0.26664 (3)	0.00571 (7)
P5	0.05988 (3)	0.09512 (3)	0.73520 (3)	0.00627 (8)
P6	0.55877 (3)	0.10366 (3)	0.73671 (3)	0.00598 (8)
01	0.29734 (8)	0.21350 (8)	0.54658 (9)	0.0085 (2)
O2	0.79922 (9)	0.21210 (9)	0.54558 (9)	0.0090 (2)
O3	0.46703 (9)	0.22123 (8)	0.45809 (9)	0.0087 (2)
O4	0.96478 (8)	0.21474 (8)	0.44879 (9)	0.0084 (2)
O5	0.33012 (9)	0.37333 (8)	0.41922 (10)	0.0107 (2)
O6	0.82885 (9)	0.36998 (8)	0.41434 (10)	0.0108 (2)
07	0.44045 (9)	0.35694 (8)	0.61502 (10)	0.0104 (2)

Table 5. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^2) for zhanghuifenite ____

==

08	0.94683 (9)	0.35205 (9)	0.60475 (10)	0.0129 (2)
09	0.11134 (9)	0.17025 (8)	0.32053 (10)	0.0090 (2)
O10	0.62394 (9)	0.17601 (8)	0.32651 (10)	0.0096 (2)
011	0.13315 (9)	0.15228 (8)	0.65540 (10)	0.0099 (2)
012	0.63697 (9)	0.15791 (8)	0.66122 (10)	0.0096 (2)
O13	0.10922 (9)	0.41087 (9)	0.37312 (10)	0.0113 (2)
O14	0.61340 (9)	0.41556 (9)	0.37032 (10)	0.0111 (2)
O15	0.17183 (9)	0.40227 (8)	0.62606 (9)	0.0092 (2)
O16	0.66804 (9)	0.40155 (8)	0.62128 (9)	0.0090 (2)
O17	0.29877 (9)	0.18411 (8)	0.28114 (10)	0.0098 (2)
O18	0.80842 (9)	0.18054 (8)	0.27989 (9)	0.0084 (2)
O19	0.46154 (8)	0.17672 (8)	0.73709 (10)	0.0092 (2)
O20	0.95876 (9)	0.15851 (9)	0.73257 (10)	0.0108 (2)
O21	0.27930 (9)	0.50663 (8)	0.17162 (10)	0.0107 (2)
O22	0.77583 (9)	0.50661 (8)	0.16673 (10)	0.0109 (2)
O23	0.46459 (9)	0.48282 (8)	0.82452 (10)	0.0106 (2)
O24	0.97481 (9)	0.49708 (8)	0.82607 (10)	0.0117 (2)

Atom	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
M1	0.00841 (12)	0.00908 (11)	0.00806 (11)	0.00035 (8)	-0.00019 (8)	0.00130 (7)
M2	0.00930 (12)	0.00917 (11)	0.00909 (11)	0.00113 (8)	-0.00121 (9)	-0.00035 (8)
M3	0.00777 (14)	0.00716 (13)	0.00673 (12)	-0.00072 (10)	-0.00028 (9)	0.00015 (9)
M4	0.00740 (17)	0.00726 (16)	0.00722 (15)	-0.00011 (11)	-0.00007 (11)	-0.00015 (11)
M5	0.0080 (2)	0.00916 (18)	0.00602 (17)	0.00049 (13)	0.00036 (13)	-0.00061 (12)
M6	0.00732 (18)	0.00784 (16)	0.00658 (16)	0.00030 (13)	0.00077 (13)	-0.00028 (12)
X1	0.01921 (14)	0.00735 (11)	0.01599 (12)	-0.00092 (9)	0.01102 (10)	-0.00106 (9)
X2	0.0258 (6)	0.0117 (4)	0.0307 (6)	0.0009 (4)	0.0190 (5)	-0.0010 (4)
X3	0.0468 (7)	0.0158 (4)	0.0469 (6)	0.0020 (4)	0.0325 (5)	0.0015 (4)
X4	0.0198 (5)	0.0251 (4)	0.0130 (4)	0.0002 (3)	0.0070 (3)	0.0000 (3)
X5	0.0214 (4)	0.0303 (4)	0.0158 (4)	-0.0007 (3)	0.0062 (3)	0.0012 (3)
P1	0.00620 (17)	0.00646 (16)	0.00545 (16)	0.00019 (12)	0.00132 (13)	0.00000 (11)
P2	0.00603 (17)	0.00597 (16)	0.00594 (16)	-0.00015 (12)	0.00170 (13)	0.00008 (11)
Р3	0.00624 (18)	0.00544 (16)	0.00555 (16)	0.00036 (13)	0.00150 (12)	-0.00002 (12)
P4	0.00623 (17)	0.00532 (15)	0.00575 (15)	0.00020 (13)	0.00139 (12)	-0.00035 (12)
P5	0.00580 (18)	0.00713 (16)	0.00590 (16)	-0.00068 (13)	0.00082 (12)	0.00023 (12)
P6	0.00602 (18)	0.00639 (16)	0.00558 (16)	-0.00032 (13)	0.00096 (12)	0.00022 (12)
01	0.0066 (5)	0.0111 (5)	0.0082 (5)	-0.0037 (4)	0.0021 (4)	0.0008 (4)
O2	0.0067 (5)	0.0126 (5)	0.0079 (5)	-0.0026 (4)	0.0013 (4)	0.0012 (4)
O3	0.0073 (5)	0.0105 (5)	0.0086 (5)	0.0024 (4)	0.0018 (4)	-0.0005 (4)
O4	0.0069 (5)	0.0108 (5)	0.0077 (4)	0.0022 (4)	0.0014 (4)	0.0002 (4)
O5	0.0143 (6)	0.0090 (5)	0.0088 (5)	0.0041 (4)	0.0022 (4)	0.0023 (4)
O6	0.0141 (6)	0.0089 (5)	0.0093 (5)	0.0051 (4)	0.0015 (4)	0.0004 (4)
O7	0.0138 (6)	0.0088 (5)	0.0087 (5)	-0.0035 (4)	0.0018 (4)	-0.0014 (4)
08	0.0180 (6)	0.0119 (5)	0.0084 (5)	-0.0065 (4)	-0.0002 (4)	-0.0004 (4)

Table 6. Atomic displacement parameters $(Å^2)$ for zhanghuifenite.

09	0.0086 (5)	0.0090 (5)	0.0100 (5)	0.0015 (4)	0.0035 (4)	-0.0007 (4)
O10	0.0093 (5)	0.0100 (5)	0.0097 (5)	0.0021 (4)	0.0023 (4)	-0.0019 (4)
011	0.0083 (5)	0.0100 (5)	0.0121 (5)	-0.0003 (4)	0.0042 (4)	0.0034 (4)
012	0.0081 (5)	0.0101 (5)	0.0114 (5)	-0.0001 (4)	0.0035 (4)	0.0022 (4)
013	0.0139 (6)	0.0112 (5)	0.0080 (5)	-0.0003 (4)	-0.0011 (4)	-0.0012 (4)
014	0.0131 (6)	0.0111 (5)	0.0079 (5)	0.0009 (4)	-0.0025 (4)	-0.0001 (4)
015	0.0107 (5)	0.0097 (5)	0.0070 (5)	-0.0008 (4)	0.0011 (4)	0.0017 (4)
016	0.0112 (5)	0.0092 (5)	0.0067 (5)	-0.0005 (4)	0.0013 (4)	0.0009 (4)
017	0.0092 (5)	0.0098 (5)	0.0101 (5)	-0.0018 (4)	0.0009 (4)	0.0000 (4)
O18	0.0074 (5)	0.0088 (5)	0.0090 (5)	-0.0013 (4)	0.0012 (4)	-0.0009 (4)
019	0.0065 (5)	0.0104 (5)	0.0109 (5)	0.0011 (4)	0.0017 (4)	0.0004 (4)
O20	0.0073 (5)	0.0133 (5)	0.0122 (5)	0.0018 (4)	0.0024 (4)	0.0009 (4)
O21	0.0132 (6)	0.0072 (5)	0.0116 (5)	-0.0017 (4)	0.0014 (4)	-0.0026 (4)
O22	0.0124 (6)	0.0077 (5)	0.0126 (5)	-0.0012 (4)	0.0021 (4)	-0.0022 (4)
O23	0.0125 (5)	0.0093 (5)	0.0100 (5)	0.0023 (4)	0.0012 (4)	0.0013 (4)
O24	0.0139 (6)	0.0086 (5)	0.0126 (5)	0.0031 (4)	0.0015 (4)	0.0018 (4)

M1—O10 2.1706(11)	M2—011	2.1783(11)
M1—O16 2.1826(11)	M2—O15	2.2022(11)
M1—O3 2.1939(11)	M2—O4	2.2212(11)
M1—O12 2.1966(11)	M2—O1	2.2364(11)
M1—O2 2.2224(11)	M2—O9	2.2923(11)
M1-014 2.3564(11)	M2—013	2.2961(11)
<m1—o> 2.220</m1—o>	<m2—o></m2—o>	2.238
M3 — O22 2.0595(11)	M4 — O21	2.0576(11)
$M_3 - Q_6 = 2.0613(11)$	M4	2 0842(11)
$M_3 = 01$ 2.1142(11)	M4	2 0906(11)
$M3 = 011 \qquad 2.1176(11)$	M4 - 012	2.0920(11)
$M3 = 019 \qquad 2.1640(11)$	M4 - 012	2.0920(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M4 O2	2.1376(11) 2.1418(11)
<m3-o> 2.119</m3-o>	<m4—02< td=""><td>2.101</td></m4—02<>	2.101
M5 1 9395(11)	M6	1 8350(11)
$M5 = 00 \qquad 1.9595(11)$ $M5 = 02 \qquad 2.0206(11)$	M6 - 07	1.0550(11) 1.0049(11)
M5 - 05 = 2.0290(11) $M5 - 010 = 2.0710(12)$	M6 = O4	1.9040(11) 1.0075(11)
$M5 = 010 \qquad 2.0710(12)$	M6 - 04	1.9073(11) 1.0218(12)
M5 = 0.024 2.0790(11)	M6 - 09	1.9518(12)
$M_{13} = 017$ 2.1249(12)	M6	1.9003(11)
M5 = 020 2.2632(12)	M6	2.0279(11)
<m5—o> 2.085</m5—o>	<m6—o></m6—o>	1.929
X1—O5 2.1553(11)		
X1—O6 2.1770(11)		
X1—O15 2.1786(10)		
X1—O16 2.1884(10)		
X1—014 2.3141(11)		
X1—O13 2.4354(11)		
<x1—o> 2.241</x1—o>		
X2—07 2.3692(10) ×2	X3 — O8	2.3228(11) ×2
X2—O14 2.4126(11) ×2	X3 — O13	2.3821(11) ×2
X2—O16 2.6764(11) ×2	X3 — O15	2.7287(11) ×2
X2—O5 2.7452(12) ×2	X3 — O6	2.7932(12) ×2
<x2—o> 2.551</x2—o>	<x3—o></x3—o>	2.557
X4—O21 2.3776(13)	X5—022	2.4121(13)
X4—O23 2.4050(13)	X5 — O24	2.4317(13)
X4—O22 2.4983(14)	X5—O21	2.5035(14)
X4—O2 2.6074(14)	X5—O24	2.5834(14)
X4—O23 2.6526(14)	X5—01	2.6469(14)

Table 7. Selected bond distances (Å) for zhanghuifenite.

X4 — O4	2.7525(14)	X5—O3	2.8022(14)	
X4 — 011	2.7864(13)	X5—O12	2.8338(13)	
<x4—o></x4—o>	2.583	<x5—o></x5—o>	2.602	
P1 — O8	1.5184(11)	P2 —O3	1.5357(11)	
P1 —O2	1.5307(11)	P2 —O1	1.5392(11)	
P1 — O6	1.5437(11)	P2 — O5	1.5413(11)	
P1 — O4	1.5601(11)	P2 — O7	1.5416(11)	
<p1—o></p1—o>	1.538	<p2—o></p2—o>	1.539	
P3 —O21	1.5221(11)	P4 — O22	1.5203(11)	
P3 — O17	1.5285(11)	P4 — O10	1.5361(11)	
P3—O16	1.5507(11)	P4 — O18	1.5469(11)	
Р3 — О9	1.5603(11)	P4 — O15	1.5508(11)	
<p3—o></p3—o>	1.540	<p4—o></p4—o>	1.538	
P5 — O20	1.5213(11)	P6 — O24	1.5299(11)	
P5—O11	1.5447(11)	P6—O12	1.5434(11)	
P5—O14	1.5458(11)	P6 — O19	1.5500(11)	
P5 —O23	1.5581(11)	P6 — O13	1.5513(11)	
<p5—o></p5—o>	1.542	<p6—o></p6—o>	1.544	

Wyllieite-type, $P2_1/n$ $a \approx 11.9$, $b \approx 12.4$, $c \approx 6.4$ Å $\beta \approx 114.5^{\circ}$, $V \approx 850$ Å ³	Coupled substitution	Bobfergusonite-type, $P2_1/n$ $a \approx 12.8$, $b \approx 12.5$, $c \approx 11.0$ Å $\beta \approx 97.5^\circ$, $V \approx 1700$ Å ³
Rosemaryite $2 \times [$ NaMn ²⁺ (Fe ³⁺ Al)(PO ₄) ₃]	$Fe^{3+} + Al^{3+} \longrightarrow 3Mn^{2+}$	Bobfergusonite \Box Na ₂ Mn ²⁺ ₅ Fe ³⁺ Al(PO ₄) ₆
Ferrorosemaryite $2 \times [\Box NaFe^{2+}(Fe^{3+}Al)(PO_4)_3]$	$Fe^{3+} + Al^{3+} \longrightarrow 3Fe^{2+}$	Ferrobobfergusonite \Box Na ₂ Fe ²⁺ ₅ Fe ³⁺ Al(PO ₄) ₆
Qingheiite 2 × [Na ₂ Mn(MgAl)(PO ₄) ₃]	$Na^+ + Al^{3+} \longrightarrow 2Mn^{2+}$	Zhanghuifenite Na ₃ Mn ²⁺ ₄ Mg ₂ Al(PO ₄) ₆
Qingheiite-(Fe ²⁺) 2 × [Na ₂ Fe ²⁺ MgAl(PO ₄) ₃]	$Na^+ + Al^{3+} \longrightarrow 2Fe^{2+}$	$\frac{\text{Ferrozhanghuifenite}?}{\text{Na}_3\text{Fe}^{2+}_4\text{Mg}_2\text{Al}(\text{PO}_4)_6}$
Wyllieite 2 × [Na ₂ Mn(Fe ²⁺ Al)(PO ₄) ₃]	$Na^+ + Al^{3+} \longrightarrow 2Mn^{2+}$	Postulated new mineral 2 Na ₃ Mn ²⁺ ₄ Fe ²⁺ ₂ Al(PO ₄) ₆
Ferrowyllieite 2 × [Na ₂ Fe ²⁺ (Fe ²⁺ Al)(PO ₄) ₃]	$Na^+ + Al^{3+} \longrightarrow 2Fe^{2+}$	Postulated new mineral 3 Na ₃ Fe ²⁺ ₄ Fe ²⁺ ₂ Al(PO ₄) ₆

Table 8. Comparison the minerals with wyllieite-type and bobfergusonite-type structures

Beusite interlaminated with lithiophilite

Zhanghuifenite

4 mm

R160030

Figure 1

2θ (°)