Wang & Yoshino: Electrical conductivity of AlOOH and FeOOH

Revision 2 1 Word count: 5587 2 Electrical conductivity of diaspore, δ-AlOOH and ε-FeOOH 3 Ran Wang*, Takashi Yoshino Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan 4 ABSTRACT Electrical conductivities of diaspore (α -AlOOH), δ -AlOOH and ϵ -FeOOH were measured 5 by impedance spectroscopy with a frequency range from 10^{-1} to 10^{6} Hz at pressures up to 6 7 15, 20 and 20 GPa and temperatures up to 1200, 1200 and 1000 K, respectively, well below the dehydration temperatures of these phases at the relevant pressures. For diaspore, the 8 relationship between electrical conductivity and reciprocal temperature can be well fitted 9 by the Arrhenius formula: $\sigma = \sigma_0 \exp\left[\frac{-(\Delta E + P\Delta V)}{\nu T}\right]$, where σ_0 is the pre-exponential factor, 10 ΔE is activation energy, and ΔV is activation volume of 56.0 ± 1.2 S/m, 0.55 ± 0.02 eV and 11 1.68 ± 0.12 cm³/mol, respectively. The electrical conductivity of diaspore decreases with 12 13 increasing pressure ranging from 8 to 12 GPa by a half order of magnitude, whereas the conductivity becomes almost constant in a pressure range above 12 GPa. δ -AlOOH and ϵ -14 FeOOH show one and two orders of magnitude higher electrical conductivity than diaspore. 15 Electrical conductivities of δ -AlOOH and ϵ -FeOOH, which have isostructural CaCl₂-type 16 hydroxide structure, show the nearly identical activation enthalpies $(0.38 \pm 0.01 \text{ eV}, 0.33 \pm$ 17

18 0.05 eV), which are relatively lower than that of diaspore. The dominant conduction

Wang & Yoshino: Electrical conductivity of AlOOH and FeOOH

19	mechanism of AlOOH phases can be regarded as proton conduction. The conductivity
20	difference between diaspore and δ -AlOOH attributes to result in the different O ₁ H bond
21	lengths of each phase. The reduction of O1H bond length with increasing pressure could
22	enhance the proton migration by reducing the potential barrier, thereby raises the electrical
23	conductivity. Small polaron conduction may contribute to the conductivity of ϵ -FeOOH to
24	generate higher conductivity than δ -AlOOH. Furthermore, hydrogen bond symmetrization
25	will also play an important role on the conductivity discrepancy of these hydrous minerals
26	with CaCl ₂ -type hydroxide structure. For the subducted sedimentary rocks, polymorphs of
27	AlOOH and FeOOH are representative hydrous phases. Al-rich sediments shows
28	conductivity reduction with increasing depth until phase transformation occurs, because
29	diaspore represents negative pressure dependence of conductivity. After transformation to
30	δ -AlOOH, the conductivity will jump up around 18 GPa. If $\epsilon\text{-}FeOOH$ is stable above 5
31	GPa in the highly iron-rich lithology such as banded iron formation (BIF), high
32	conductivity zone with positive pressure dependence could be observed to the deep lower
33	mantle.
34	Keywords: Electrical conductivity, diaspore, δ-AlOOH, ε-FeOOH, hydrogen bond

35

INTRODUCTION

Water has significant influence on dynamics and deep element cycle processes in the Earth's interior such as slab subduction, mantle convection and volcanisms. Recently, many groups focused on studies on the water content of the Earth's interior in terms of electrical

Wang & Yoshino: Electrical conductivity of AlOOH and FeOOH

39	conductivity (e.g., Wang et al., 2006; Romano et al., 2009; Yoshino and Katsura, 2013) and
40	potential paths to carry multiform water (hydrogen, hydroxyl and H ₂ O) into transition zone
41	and even lower mantle (e.g., Ohtani et al., 2001; 2018). Many studies have proposed that
42	hydrous minerals such as dense hydrous Mg silicates (DHMS) are potential water carriers
43	to transition zone and lower mantle (Frost et al. 1998; Ono, 1998; Schmidt et al., 1998;
44	Nishi et al., 2014; Pamato et al., 2015). Indeed, hydrous minerals and nominally anhydrous
45	minerals containing significant amount of water were found in diamond inclusion from the
46	kimberlite suite (Wirth et al., 2007; Pearson et al., 2014), suggesting that at least some
47	portions in the Earth's mantle store the water. Meanwhile, recent experimental studies have
48	shown that high pressure polymorphs of AlOOH and FeOOH are stable in the lower mantle
49	along the normal geotherm (Sano et al., 2008; Nishi et al., 2017; Duan et al., 2018; Hu et
50	al., 2016, 2017).
51	Electrical conductivity has been used as an effective tool to determine water contents in
52	the Earth's mantle because the conductivity has been believed to be quite sensitive to water
53	content in nominally anhydrous minerals (e.g., Karato, 1990; Huang et al., 2005; Wang et
54	al., 2006; Yoshino et al., 2006; 2008). Electrical conductivity of hydrous minerals would
55	be useful to constrain water distribution in the Earth's interior, especially the subduction
56	zone. For this purpose, many researchers have measured electrical conductivity of hydrous
57	minerals such as serpentine, lawsonite, mica, DHMS (Guo et al., 2011; Guo and Yoshino,

58 2013; Manthilake et al., 2015; Pommier et al., 2019; Chen et al., 2019). These studies have

59	shown different pressure dependence due to the difference of their crystal structures. For
60	example, brucite shows positive pressure dependence (Guo and Yoshino, 2014), induced
61	by a shortening of O…O distance in hydrogen interlayer between (MgO ₆) octahedron,
62	whereas phengite shows negative pressure dependence (Chen et al., 2017) probably
63	because of absence of face to face hydrogen layer. To understand the pressure effect on
64	electrical conductivity of hydrous minerals, more studies on hydrous minerals with simple
65	structure are more effective. Electrical conductivities of AlOOH and FeOOH, which are
66	hydrous phases with the simplest chemical formulae, have not been reported yet, although
67	these phases are main hydrous phases in subducting sedimentary rocks (Xu et al., 2019;
68	Yoshino et al., 2019).
69	In this study, we measured the electrical conductivity of diaspore (α -AlOOH), δ -AlOOH
69 70	In this study, we measured the electrical conductivity of diaspore (α -AlOOH), δ -AlOOH and ϵ -FeOOH well below their dehydration temperatures (1273K, 1473K and 1073k) to
70	and ϵ -FeOOH well below their dehydration temperatures (1273K, 1473K and 1073k) to
70 71	and ϵ -FeOOH well below their dehydration temperatures (1273K, 1473K and 1073k) to avoid contribution of dehydrated water to the measured conductivity (Suzuki et al., 2000;
70 71 72	and ε -FeOOH well below their dehydration temperatures (1273K, 1473K and 1073k) to avoid contribution of dehydrated water to the measured conductivity (Suzuki et al., 2000; Ohtani et al., 2001). Both δ -AlOOH and ε -FeOOH have the identical crystal structure that
70 71 72 73	and ε -FeOOH well below their dehydration temperatures (1273K, 1473K and 1073k) to avoid contribution of dehydrated water to the measured conductivity (Suzuki et al., 2000; Ohtani et al., 2001). Both δ -AlOOH and ε -FeOOH have the identical crystal structure that are characterized by hydrogen interlayer between (AlO ₆) or (FeO ₆) octahedron,
70 71 72 73 74	and ε -FeOOH well below their dehydration temperatures (1273K, 1473K and 1073k) to avoid contribution of dehydrated water to the measured conductivity (Suzuki et al., 2000; Ohtani et al., 2001). Both δ -AlOOH and ε -FeOOH have the identical crystal structure that are characterized by hydrogen interlayer between (AlO ₆) or (FeO ₆) octahedron, corresponding to the CaCl ₂ -type InOOH crystal structure (Kudoh et al., 2004; Otte et al.,
70 71 72 73 74 75	and ε -FeOOH well below their dehydration temperatures (1273K, 1473K and 1073k) to avoid contribution of dehydrated water to the measured conductivity (Suzuki et al., 2000; Ohtani et al., 2001). Both δ -AlOOH and ε -FeOOH have the identical crystal structure that are characterized by hydrogen interlayer between (AlO ₆) or (FeO ₆) octahedron, corresponding to the CaCl ₂ -type InOOH crystal structure (Kudoh et al., 2004; Otte et al., 2009; Tsuchiya and Tsuchiya, 2009; 2011; Kagi et al., 2010; Sano-Furukawa et al., 2018).

Wang & Yoshino: Electrical conductivity of AlOOH and FeOOH

of crystal structure especially the change of O_1 -H···O₂ bond length during compression on the electrical conductivity of hydrous minerals.

81

EXPERIMENTAL METHODS

82 Starting material

The starting material for FeOOH was reagent-grade goethite (α -FeOOH) powder from 83 84 Alfa Aeser. The starting material for AlOOH was powder prepared from a single crystal of natural diaspore from Turkey, which contains considerable amounts of Fe₂O₃ (0.82 \pm 85 0.08 wt%) (Yoshino et al., 2019). The sintered aggregates were used for the conductivity 86 87 measurement to reduce porosity of the sample, and synthesized in a Kawai-type multianvil apparatus installed in the Institute for Planetary Materials, Okayama University. The 88 cell assemblies for synthesis experiments are composed of a Cr₂O₃-doped MgO 89 90 octahedral pressure medium, ZrO₂ thermal insulator, graphite or LaCrO₃ heater, MgO spacer and the powdered AlOOH and FeOOH samples were sealed in Pt and Au capsules, 91 respectively. The octahedron edge lengths of the pressure medium and truncations edge 92 93 length of anvils for synthesis experiments are summarized in Table 1. Diaspore aggregate was sintered at 8 GPa and 973 K. Starting samples of δ -AlOOH and ϵ -FeOOH aggregates 94 were synthesized at 19 GPa, 1273 K and 9 GPa, 700 K, respectively, based on the 95 sintering procedure by Suzuki et al. (2000) and Suzuki (2016). The phases of run 96 products (Fig. 1 and Table 1) were identified by X-ray diffraction patterns using 97 microfocus X-ray diffraction in reflection geometry (collimator with 0.1 mm diameter). 98

5

Wang & Yoshino: Electrical conductivity of AlOOH and FeOOH

99	No change was observed in the x-ray diffraction patterns before and after the experiment.
100	If dehydration occurred during the measurements, some peaks of other phases such as
101	corundum (Al ₂ O ₃) and hematite (Fe ₂ O ₃) could be observed in the XRD patterns. The
102	XRD patterns infer that there is no obvious dehydration occurring in the samples. The
103	recovered samples were observed by field emission scanning electron microscope. Fig. 2
104	shows the backscattered electron images on the polished section of the recovered
105	samples. No phases such as corundum and hematite produced by dehydration reaction
106	was found in all the recovered samples. The grain sizes of these recovered samples are
107	shown in Table 2 (Kong et al., 2005).
108	Electrical conductivity measurement
109	The cell design for electrical conductivity measurements in a Kawai-type cell was
110	developed by Yoshino (2010). The load-pressure relation for this cell assembly determined
111	by Yoshino et al. (2017) was used for the pressure estimation. Electrical conductivity
112	measurements were performed using a complex impedance analyzer (Solartron 1260) with
113	a frequency range from 10^{-1} to 10^{6} Hz. One wire from each thermocouple were connected
114	to a Solartron 1296 interface for measuring the electrical conductivity of the sample.

Alternating current with amplitude of 1 V was applied to the measurement circuit. The impedance spectra show semi-circular shape and its intersection on horizontal axis represents the real resistance of the sample. Resistance (R)-capacitance (C) parallel circuit was used to fit the impedance spectrum obtained from the electric circuit. The sample

Wang & Yoshino: Electrical conductivity of AlOOH and FeOOH

conductivity was calculated from the following equation: $\sigma = \frac{1}{\rho} = \frac{L}{RS}$, where ρ is 119 electrical resistivity, L is sample length, and S is cross sectional area of the sample. The 120 details of experimental conditions are summarized in Table 3. 121 122 RESULTS All the conductivity measurements were performed below the dehydration temperature 123 124 (1273K, 1473K and 1073k) of each phase (Ohtani et al., 2001; Yoshino et al., 2019). Fig. 3 shows examples of impedance spectra of diaspore, δ -AlOOH, and ϵ -FeOOH at 8, 20 and 125 8 GPa, respectively, as a function of temperature. Impedance spectra of diaspore show 126 127 semi-circular shape in complex impedance plane. However, for δ -AlOOH and ϵ -FeOOH with high electrical conductivity, only a portion of semi-circular shape appears in the same 128 frequency range applied for all the experiments. The small tails of impedance spectra 129 130 indicate the interaction between samples and electrodes at lower frequencies. Fig. 4 shows the electrical conductivity of the diaspore, δ -AlOOH and ϵ -FeOOH 131 during cooling at various pressures as a function of the reciprocal temperature. In any phase, 132 133 electrical conductivity linearly increases with increasing temperature. Arrhenius formula was used to fit the relationship between electrical conductivity and reciprocal temperature: 134 $\sigma = \sigma_0 \exp\left[-\frac{\Delta E + P \Delta V}{kT}\right], \qquad \text{Eq. (1)}$ 135 where σ_0 , ΔE , P, ΔV , k, and T are pre-exponential factor, activation energy, pressure, 136 activation volume, Planck constant and absolute temperature, respectively. For each 137 experiment, the ΔE and ΔV were determined from the global fitting using all the data 138

Wang & Yoshino: Electrical conductivity of AlOOH and FeOOH

139 obtained at different *P* and *T*.

140	The diaspore shows negative pressure dependence on electrical conductivity ranging
141	from 8 to 12 GPa. However, the conductivity becomes constant in a pressure range
142	between 12 and 15 GPa. The electrical conductivity of δ -AlOOH shows one and two
143	orders of magnitude higher than diaspore and much smaller ΔE . Although the electrical
144	conductivity of ε -FeOOH is higher than δ -AlOOH, the ΔE for conductivity of ε -FeOOH
145	$(0.38 \pm 0.01 \text{ eV})$ is similar to that of δ -AlOOH ($0.33 \pm 0.05 \text{ eV}$). ϵ -FeOOH shows
146	positive pressure dependence on electrical conductivity in an investigated pressure range
147	(8 to 20 GPa). Fig. 5 shows the fitting results of diaspore conductivity using data ranging
148	from 8 to 12 GPa. The σ_0 , ΔE and ΔV are found to be 56.0 ± 1.2 S/m, 0.55 ± 0.02 eV and
149	1.68 ± 0.12 cm ³ /mol, respectively.
150	DISCUSSION
151	Conduction mechanisms of diaspore, δ -AlOOH and ϵ -FeOOH
152	In hydrous minerals, proton conduction has been considered to be the dominant
153	conduction mechanism (Freund et al., 1981; Guo and Yoshino, 2014; Chen et al., 2018).
154	While increasing temperature, proton could be produced through the thermally activation
155	process:

156
$$OH^- + OH^- = HOH + O^{2-},$$
 Eq. (2)

where HOH is the hydroxyl with an extra proton on the lattice site and O^{2-} represents a defect proton (chemically O^{2-}) (Martens and Freund, 1976; Guo and Yoshino, 2014).

Wang & Yoshino: Electrical conductivity of AlOOH and FeOOH

159 Therefore, protons would be able to migrate along the adjacent hydroxyls through two 160 paths:

161
$$HOH + OH^- = OH^- + HOH$$
, Eq. (3)

162 or

163
$$O^{2-} + OH^{-} = OH^{-} + O^{2-}$$
 Eq. (4)

In Eq. (2), the protons are thermally activated during heating which is called intrinsic mechanism. In Eq. (3 and 4), the defects related to proton mobility are also generated by the existence of chemical impurities, and protons can migrate due to compensation of charge balance.

168 This study demonstrates three significant features among diaspore, ε -FeOOH and δ -169 AlOOH: (1) ε -FeOOH and δ -AlOOH have one and two orders of magnitude higher 170 conductivity than diaspore; (2) ε -FeOOH has much higher conductivity than δ -AlOOH. (3) 171 Diaspore shows negative pressure dependence while ε -FeOOH shows positive pressure 172 dependence.

173 (1) ε -FeOOH and δ -AlOOH have isostructural CaCl₂-type hydroxide structure which is 174 different from diaspore. The space group of diaspore is Pbnm while both ε -FeOOH and δ -175 AlOOH are P2₁nm. Different crystal structure leads to variable compressible behaviors 176 during compression. If proton conduction is the dominant conduction mechanism in these 177 phases, the proton exchange in those minerals may occur by reaction Eq. (3). Therefore, 178 the length of O₁H and H····O₂ bonds becomes a significant factor on their conductive

Wang & Yoshino: Electrical conductivity of AlOOH and FeOOH

179	behaviors. During compression, the O1H bond will elongate and become weaker which
180	may produce the free proton and combine with another proton defect (O ²⁻). δ -AlOOH and
181	$\epsilon\text{-}FeOOH$ have shorter $H^{\dots}O_2$ bonds and longer O_1H bonds which can account for the
182	relatively higher conductivity than diaspore (Friedrich et al., 2007; Gleason et al., 2013;
183	Cedillo et al., 2016).

184 (2) Although ε -FeOOH and δ -AlOOH have the same crystal structure, there are some differences between them. One possible explanation for higher conductivity of ε -FeOOH 185 is that ε -FeOOH has shorter H···O₂ bond than δ -AlOOH at 20 GPa (Cedillo et al., 2016; 186 187 Thompson et al., 2017). Besides, the symmetry of O_1 -H···O₂ bond changes with increasing pressure. Hydrogen bond symmetrization of δ -AlOOH occurs at 15~18 GPa (Cortona, 188 2017; Sano-Furukawa et al., 2018), whereas hydrogen bond in ε -FeOOH is predicted to 189 190 symmetrize around 40 GPa (Gleason et al., 2013). In this study, the conductivity of δ -AlOOH was measured at 20 GPa, which is higher than the pressure at which 191 symmetrization of the O₁-H···O₂ bond occurs. After reaching this pressure, the O₁-H···O₂ 192 193 bond becomes covalent and it will be difficult for proton to migrate through lattice sites, suggesting that the pressure-induced effect become negligible. Since the experimental 194 pressures for ε -FeOOH are much lower than the hydrogen symmetrization pressure (40 195 196 GPa), the conductivity of ε -FeOOH can increase effectively by compression in the investigated pressure range. Alternatively, if the E-FeOOH contains significant amount of 197 Fe²⁺ through the substitution: $Fe^{3+} = Fe^{2+} + H^+$, small polaron conduction would yield 198

Wang & Yoshino: Electrical conductivity of AlOOH and FeOOH

199	enormous contributions to the conductivity. A study on electrical conductivity and
200	hydrogen diffusivity of brucite suggests that all hydrogen would not contribute to the
201	electrical conduction in hydrous minerals (Guo and Yoshino, 2014). Compared with δ -
202	AlOOH, ϵ -FeOOH would considerably enhance electric conductivity by activating a

greater numbers of protons by the reaction of $Fe^{3+} = Fe^{2+} + H^+$.

203

204 (3) For diaspore, the length of O_1H bond slightly increases with increasing pressure (Friedrich et al., 2007). Therefore, pressure-induced effects are not effective for diaspore 205 unlike δ -AlOOH. As the O₁-H···O₂ bond becomes more symmetric, protons become more 206 207 difficult to migrate due to the enhanced hydrogen bond strength which cause the negative pressure dependence on the conductivity. In contrast, δ -AlOOH and ϵ -FeOOH show 208 obviously larger change on the length of O₁H bond during compression (Gleason et al., 209 210 2013; Cedillo et al., 2016). The O₁H bond strength becomes weaker and then protons are more likely to migrate through lattice sites. As a result, the conductivity of ε-FeOOH can 211 be enhanced by pressure. As described before, hydrogen bond symmetrization occurs in δ-212 213 AlOOH and ε -FeOOH at 15~18 and 40 GPa, respectively, which will weaken the O₁H bond and strengthen the H···O₂ bond to yield higher conductivity. However, hydrogen bond in 214 diaspore never symmetrizes (Friedrich et al., 2007; Tsuchiya and Tsuchiya, 2011). This 215 may be caused by the difference of O_1 -H···O₂ bond angle in the crystal structure of these 216 phases. The angle of O_1 -H···O₂ bond in δ -AlOOH is almost 180° while that in diaspore is 217 bent (160°) (Cedillo et al., 2016; Friedrich et al., 2007). The O₁-H···O₂ bond angle of 218

219	diaspore should show minor variations during compression. The O_1 -H \cdots O_2 bond
220	symmetrization in ϵ -FeOOH will cause the increment of the length of OH bond and
221	shortening of hydrogen bond which will enhance the migration of the hydrogen (proton).
222	This could be the other cause of the opposite pressure dependence on conductivity of
223	diaspore and ϵ -FeOOH.

224 Comparison with other hydrous minerals

Many studies were conducted on the measurements of electrical conductivities of 225 hydrous minerals in a wide range of pressure. Guo and Yoshino (2014) reported that the 226 227 electrical conductivity of brucite has positive pressure dependence. Proton conduction was suggested to be the dominant conduction mechanism and Eq. (4) was the most favorable 228 reaction for the proton exchange. The explanation for the positive pressure dependence on 229 230 conductivity is that $O_1 \cdots O_2$ distance deceases with increasing pressure which will lead to the reduction of the potential barrier between proton sites in adjacent OH⁻ groups. This 231 shows an agreement with the ε -FeOOH result. With increasing pressure, the O₁H bond 232 233 becomes weaker and protons are easier to escape from the attractive force of O₁ which will help to increase the conductivity. Meanwhile, the conductivities of samples under different 234 pressures do not converge at high temperatures, suggesting that the activation enthalpy 235 does not change dramatically with increasing pressure which is consistent with the result 236 of ε-FeOOH. 237

238

Pommier et al. (2019) showed that the electrical conductivity of natural lawsonite has

Wang & Yoshino: Electrical conductivity of AlOOH and FeOOH

239	positive pressure dependence between 5 and 9 GPa. All the lattice parameters $(a, b, c \text{ axis})$
240	decrease with increasing pressure (Comodi and Zanazzi, 1996) which may enhance the
241	conductivity of lawsonite. Molecular H2O is also contained in the crystal structure of
242	lawsonite which may play an important role on the conductivity during compression
243	because the dominant conduction mechanism is presented as proton conduction. Chen et
244	al. (2018) reported a negative pressure dependence on conductivity of phengite. The
245	negative pressure dependence was explained by the non-existence of face to face hydrogen
246	layer and interactions between neighboring hydroxyls in phengite. Pressure cannot enhance
247	the conductivity by markedly elongating the O1H bond as well as diaspore. Besides, the
248	conductivities of phengite at different pressures converge together at high temperature as
249	well as the behavior of diaspore.

250

IMPLICATIONS

According to the crystal structure of hydrous minerals, we can predict trends of the 251 conductivity-depth relation for various lithologies including hydrous minerals in 252 253 subduction zone as shown in Fig. 6. Lawsonite and phengite are representative hydrous phases of the subducted altered oceanic crust. Lawsonite has larger conductivity than 254 phengite at some P-T condition, suggesting that lawsonite will contribute to the 255 256 conductivity of the subducted MORB. If lawsonite is interconnected phase, it may indicate positive pressure dependence with depths until dehydration occurs at around 10 GPa for 257 the cold slab (e.g., Schmidt and Poli, 1998; Okamoto and Maruyama, 1999). Although 258

Wang & Yoshino: Electrical conductivity of AlOOH and FeOOH

259	phengite can survive a bit higher pressure, this phase will not contribute to the conductivity
260	of the hydrous MORB because of its negative pressure dependence. For the hydrous
261	peridotite, one can notice that DHMS phases transform from phase A to superhydrous phase
262	B (or phase E) and phase D with increasing pressure (Ohtani et al., 2001). The resulting
263	conductivity variation with depth should have positive dependence. For the subducted
264	sediments with average composition of continental crust, phengite is considered to be a
265	dominant hydrous phase below 8 GPa. For more Al-rich sediments, diaspore could be
266	dominant hydrous phases. Thus, electrical conductivity of the sedimentary rocks would
267	generally decrease with depth. Goethite is only dominant in the highly iron-rich lithology
268	such as banded iron formation. The stability field of goethite is limited at pressures below
269	5 GPa (Yoshino et al., 2019). In this region, the conductivity of the subducted sedimentary
270	rocks would decrease with increasing pressure. E-FeOOH could be stabilized if the
271	rehydration of subducted Fe-rich sediments occurs at pressures higher than 5 GPa. On
272	account of the extremely higher conductivity of ϵ -FeOOH, highly conductive zone with
273	positive pressure dependence should appear in the descending slab.

Fig. 7 shows the comparison of conductivity-depth profiles calculated from diaspore, δ -AlOOH and ϵ -FeOOH along cold (the North Philippine Sea) and hot slab surface geotherms (the North Cascadia) and magnetotelluric observations from the above subduction zones. The conductivity-depth profiles of diaspore were calculated through the Arrhenius formula: $\sigma = \sigma_0 \exp\left[\frac{-(\Delta E + P\Delta V)}{kT}\right]$ by inputting the σ_0 (56.0 ± 1.2 S/m), ΔE

Wang & Yoshino: Electrical conductivity of AlOOH and FeOOH

279	$(0.55 \pm 0.02 \text{ eV})$, and $\Delta V (1.68 \pm 0.12 \text{ cm}^3/\text{mol})$. Considering the stability fields of diaspore,
280	δ -AlOOH and ϵ -FeOOH (Yoshino et al., 2019), we plot the conductivity-depth profile of
281	these phases. Diaspore can exist below 2.3 and 1.8 GPa for the North Philippine Sea and
282	the North Cascadia slab surface geotherms (Syracuse et al., 2010), and shows lower
283	conductivity compared with conductivity-depth profiles of both slabs (Meqbel et al., 2014).
284	For ϵ -FeOOH, we used σ_0 (512.9 \pm 1.8 S/m), ΔE (0.46 \pm 0.03 eV), and ΔV (-1.52 \pm 0.13
285	cm ³ /mol) for the calculation of conductivity-depth profile. If the rehydration of ϵ -FeOOH
286	occurred, E-FeOOH would appear above 15 GPa along the extrapolation of the North
287	Philippine Sea slab surface geotherm, and represents distinctly higher conductivity values.
288	The comparison between this study and the geophysical observations indicate that diaspore
289	and ϵ -FeOOH cannot account for the electrical anomalies in the upper mantle because of
290	the decompositions of these two phases and the lower conductivities compared to the
291	conductivity profiles of both hot and cold slabs. Thus, the volume fraction of these phases
292	is negligibly small in the present subduction zones. In contrast, the absolute conductivity
293	values of δ -AlOOH are comparable to the extrapolation of conductivity-depth profiles
294	obtained from subduction zones.

295

ACKNOWLEDGEMENTS

We appreciate it for the constructive suggestions or comments from B. Zhang, C. Wang,
M. Kanzaki, D. Yamazaki, N. Tsujino, E. Ito, A. Yoneda, H. Kagi and J. Tsuchiya. This
work was supported by the Ministry of Education, Culture, Sports, Science, and

299	Technology of the Japanese Government, Grant Numbers, 15H05827 and 17H01155 to T.Y.
300	REFERENCES
301	Cedillo, A., Torrent, M. and Cortona, P. (2016) Stability of the different AlOOH phases under pressure.
302	Journal of Physics: Condensed Matter, 28, 185401.
303	Chen, S., Guo, X., Yoshino, T., Jin, Z., and Li, P. (2018) Dehydration of phengite inferred by electrical
304	conductivity measurements: Implication for the high conductivity anomalies relevant to the
305	subduction zones. Geology, 46, 11–14.
306	Comodi, P., Zanazzi, P. (1996) Effects of temperature and pressure on the structure of lawsonite.
307	American Mineralogist, 81, 833-841.
308	Cortona, P. (2017) Hydrogen bond symmetrization and elastic constants under pressure of δ -AlOOH.
309	Journal of Physics: Condensed Matter, 29, 325505.
310	Duan, Y., Sun, N., Wang, S., Li, X., Guo, X., Ni, H., Prakapenka, V.B., Mao, Z. (2018) Phase stability
311	and thermal equation of state of δ -AlOOH: Implication for water transportation to the Deep Lower
312	Mantle. Earth and Planetary Science Letters. 494, 92–98.
313	Freund, F., Wengeler, H., Martens, R. (1982) A deuterium-hydrogen fractionation mechanism in
314	magnesium oxide. Geochimica et Cosmochimica Acta, 46, 1821-1829.
315	Friedrich, A., Haussühl, E., Boehler, R., Morgenroth, W., Juarez-Arellano, E.A., and Winkler, B. (2007)
316	Single-crystal structure refinement of diaspore at 50 GPa. American Mineralogist, 92, 1640–1644.
317	Frost, D., Fei, Y. (1998) The stability of phase D at high pressure and temperature, Journal of
318	Geophysical Research. 103, 7463–7474.

319	Gleason, A., Quiroga, C., Suzuki, A., Pentcheva, R., Mao, W. (2013) Symmetrization driven spin
320	transition in ε-FeOOH at high pressure. Earth and Planetary Science Letters, 379, 49–55.
321	Guo, X., Yoshino, T., Katayama, I. (2011) Electrical conductivity anisotropy of deformed talc rocks and
322	serpentinites at 3 GPa. Physics of the Earth and Planetary Interiors, 188, 69–81.
323	Guo, X., Yoshino, T. (2013) Electrical conductivity of dense hydrous magnesium silicates with
324	implication for conductivity in the stagnant slab. Earth and Planetary Science Letters, 369-370,
325	239–247.
326	Guo, X., Yoshino, T. (2014) Pressure-induced enhancement of proton conduction in brucite.
327	Geophysical Research Letters, 41, 813–819.
328	Hu, Q., Kim, D.Y., Yang, W., Yang, L., Meng, Y., Zhang, L., and Mao, H.K. (2016) FeO2 and FeOOH
329	under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles. Nature, 534(7606):241-
330	244.
331	Hu, Q., Kim, D.Y., Liu, J., Meng, Y., Yang, L., Zhang, D., Mao, W.L., and Mao, H.K. (2017)
332	Dehydrogenation of goethite in Earth's deep lower mantle. Proceedings of the National Academy
333	of Sciences. 114, 1498-1501.
334	Huang, X., Xu, Y., Karato, S. (2005) Water content in the transition zone from electrical conductivity of
335	wadsleyite and ringwoodite. Nature, 434, 746–49.
336	Kagi, H., Ushijima, D., Sano-Furukawa, A., Komatsu, K., Iizuka, R., Nagai, T. and Nakano, S. (2010)
337	Infrared absorption spectra of δ -AlOOH and its deuteride at high pressure and implication to
338	pressure response of the hydrogen bonds. Journal of Physics: Conference Series, 215, 012052.
	17

- Karato, S. (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature, 347,
- 340 272–273.
- 341 Kong, M., Bhattacharya, R. N., James, C. and Basu, A. (2005) A statistical approach to estimate the 3D
- 342 size distribution of spheres from 2D size distributions. Geological Society of America Bulletin,
- 343 117, 244-249.
- 344 Kudoh, Y., Kuribayashi, T., Suzuki, A., Ohtani, E., Kamada, T. (2004) Space group and hydrogen sites
- 345 of d-AlOOH and implications for a hypothetical high-pressure form of Mg(OH)₂. Physics and
- Chemistry of Minerals, 31, 360–364.
- 347 Manthilake, G., Mookherjee, M., Casanova, N., Andrault, D. (2015) Electrical conductivity of lawsonite
- and dehydrating fluids at high pressures and temperatures. Geophysical Research Letters, 42,
- 349 7398-7405.Martens, R., Freund, F. (1976) The potential energy curve of the proton and

dissociation energy of the OH ion in Mg(OH)₂. Physica Status Solidi A, 37, 97–104.

- 351 Meqbel, N.M., Egbert, G.D., Wannamaker, P.E., Kelbert, A., and Schultz, A. (2014) Deep electrical
- 352 resistivity structure of the northwestern US derived from 3-D inversion of USArray

353 magnetotelluric data. Earth and Planetary Science Letters, 402, 290–304.

- 354 Nishi, M., Irifune, T., Tsuchiya, J., Tange, Y., Nishihara, Y., Fujino, K. and Higo, Y. (2014) Stability of
- hydrous silicate at high pressures and water transport to the deep lower mantle. Nature Geoscience,
 7, 224–227.
- Nishi, M., Kuwayama, Y., Tsuchiya, J.& Tsuchiya, T. (2017) The pyrite-type high-pressure form of
 FeOOH. Nature, 547, 205-208.
 - 18

359	Ohtani, E., Mizobata, H., Yurimoto, H. (2000) Stability of dense hydrous magnesium silicate phases in
360	the systems Mg ₂ SiO ₄ -H ₂ O and MgSiO ₃ -H ₂ O at pressures up to 27 GPa. Physics and Chemistry of
361	Minerals, 27, 533–544.
362	Ohtani, E., Litasov, K., Suzuki, A., and Kondo, T. (2001) Stability field of new hydrous phase, δ-AlOOH,
363	with implications for water transport into the deep mantle. Geophysical Research Letters, 28, 3991-
364	3993.
365	Ohtani, E., Yuan, L., Ohira, I., Shatskiy, A., Litasov, K. (2018) Fate of water transported into the deep
366	mantle by slab subduction. Journal of Asian Earth Sciences, 167, 2-10.
367	Okamoto, K., Maruyama, S. (1999) The high-pressure synthesis of lawsonite in the MORB+H ₂ O system.
368	American Mineralogist, 84, 362–373.
369	Ono, S. (1998) Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions:
370	implications for water transport in subduction zones. Journal of Geophysical Research. 103,
371	18253–18267.
372	Otte, K., Pentcheva, R., Schmahl, W., and Rustad, J. (2009) Pressure-induced structural and electronic
373	transitions in FeOOH from first principles. Physical Review B, 80, 205116.
374	Pamato, M., Myhill, R., Ballaran, T., Frost, D., Heidelbach, F., Miyajima, N. (2015) Lower-mantle water
375	reservoir implied by the extreme stability of a hydrous aluminosilicate. Nature Geoscience, 8, 75-
376	79.
377	Pawley, A. (1994) The pressure and temperature stability limits of lawsonite: implications for HzO

recycling in subduction zones. Contributions to Mineralogy and Petrology, 118, 99–108.

- 379 Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M.T., Matveev, S., Mather,
- 380 K., Silversmit, G., Schmitz, S., Vekemans, B., Vincze, L. (2014) Hydrous mantle transition zone
- indicated by ringwoodite included within diamond. Nature, 507, 221–224.
- 382 Pommier, A., Williams, Q., Evans, R., Pal, I., and Zhang, Z. (2019) Electrical Investigation of Natural
- 383 Lawsonite and Application to Subduction Contexts. Journal of Geophysical Research: Solid Earth,
- 384 124, 1430–1442.
- Romano, C., Poe, B., Tyburczy, J., Nestola, F. (2009) Electrical conductivity of hydrous wadsleyite.
- European Journal of Mineralogy, 21, 615–622.
- 387 RRUFF. XRD pattern of diaspore. https://rruff.info/Diaspore/R060287.
- 388 Sano, A., Ohtani, E., Kondo, T., Hirao, N., Sakai, T., Sata, N., Ohishi, y., and Kikegawa, T. (2008)
- 389 Aluminous hydrous mineral δ -AlOOH as a carrier of hydrogen into the core-mantle boundary.
- 390 Geophysical Research Letters, 35, L03303.
- 391 Sano-Furukawa, A., Hattori, T., Komatsu, K., Kagi, H., Nagai, T., Molaison, J., Santos, A. & Tulk, C.
- 392 (2018) Direct observation of symmetrization of hydrogen bond in δ -AlOOH under mantle
- 393 conditions using neutron diffraction. Scientific Reports, 8, 15520.
- 394 Schmidt, M.W., Poli, S. (1998) Experimentally based water budgets for dehydrating slabs and
- consequences for arc magma generation. Earth and Planetary Science Letters. 163, 361–379.
- 396 Suzuki, A., Ohtani, E., and Kamada, T. (2000) A new hydrous phase δ-AlOOH synthesized at 21 GPa
- and 1000 °C. Physics and Chemistry of Minerals, 27, 689–693.
- 398 Suzuki, A. (2016) Pressure-volume-temperature equation of state of ε-FeOOH to 11 GPa and 700 K.

- Journal of Mineralogical and Petrological Sciences, 111, 420–424.
- 400 Syracuse, E.M., van Keken, P.E., and Abers, G.A. (2010) The global range of sub- duction zone thermal
- 401 models. Physics of the Earth and Planetary Interiors, 183, 73–90.
- 402 Tada, N., Baba, K., and Utada, H. (2014) Three-dimensional inversion of seafloor magnetotelluric data
- 403 collected in the Philippine Sea and the western margin of the northwest Pacific Ocean.
- 404 Geochemistry, Geophysics, Geosystems, 15, 2895–2917.
- 405 Thompson, E., Campbell, A., Tsuchiya, J. (2017) Elasticity of ε-FeOOH: Seismic implications for
- 406 Earth's lower mantle. Journal of Geophysical Research: Solid Earth, 122, 5038–5047.
- 407 Tsuchiya, J. & Tsuchiya, T. (2009) Elastic properties of δ-AlOOH under pressure: First principles
- 408 investigation. Physics of the Earth and Planetary Interiors, 174, 122–127.
- 409 Tsuchiya, J. & Tsuchiya, T. (2011) First-principles prediction of a high-pressure hydrous phase of
- 410 AlOOH. Physical Review B, 83, 054115.
- 411 Wang, D., Mookherjee, M., Xu, Y., Karato, S. (2006) The effect of water on electrical conductivity of
- 412 olivine. Nature, 443, 977–79.
- 413 Winkler, B., Hytha, M., Pickard, C., Milman, V., Warren, M. and Segall, M. (2001) Theoretical
- investigation of bonding in diaspore. European Journal of Mineralogy. 13, 343–349.
- 415 Wirth, R., Vollmer, C., Brenker, F., Matsyuk, S., Kaminsky, F. (2007) Inclusions of nanocrystalline
- 416 hydrous aluminium silicate "Phase Egg" in superdeep diamonds from Juina (Mato Grosso State,
- 417 Brazil). Earth and Planetary Science Letters, 259, 384–399.
- 418 Xu, C., Nishi, M., Inoue, T. (2019) Solubility behavior of δ -AlOOH and ϵ -FeOOH at high pressures.

- 419 American Mineralogist, 104, 1416–1420.
- 420 Yoshino, T., Matsuzaki, T., Yamashita, S., Katsura, T. (2006) Hydrous olivine unable to account for
- 421 conductivity anomaly at the top of the asthenosphere. Nature, 443, 973–976.
- 422 Yoshino, T., Manthilake, G., Matsuzaki, T., Katsura T. (2008) Dry mantle transition zone inferred from
- 423 the conductivity of wadsleyite and ringwoodite. Nature, 451, 326–329.
- 424 Yoshino, T., (2010) Laboratory electrical conductivity measurement of mantle minerals. Surveys in
- 425 Geophysics, 31, 163-206.
- 426 Yoshino, T., Katsura, T. (2013) Electrical Conductivity of Mantle Minerals: Role of Water in

427 Conductivity Anomalies. Annual Review of Earth and Planetary Sciences, 41, 605–28.

- 428 Yoshino, T., Zhang, B., Rhymer, B., Zhao, C., and Fei, H. (2017) Pressure dependence of electrical
- 429 conductivity in forsterite. Journal of Geophysical Research: Solid Earth, 122, 158–171.
- 430 Yoshino, T., Baker, E., Duffey, K. (2019) Fate of water in subducted hydrous sediments deduced from
- 431 stability fields of FeOOH and AlOOH up to 20 GPa. Physics of the Earth and Planetary Interiors,
- 432 294, 106295.

433	Fig. 1. XRD pattern of samples before and after measurements. (a) XRD pattern of
434	diaspore before and after conductivity measurements compared with that of RRUFF
435	database. (b) XRD patter of δ -AlOOH before and after conductivity measurements
436	compared with Suzuki et al. (2000). (c) XRD patter of ϵ -FeOOH before and after
437	conductivity measurements compared with Pernet (1975).
438	
439	Fig. 2. Backscattered electron images of recovered products after electrical conductivity
440	measurements under composition mode. (a) Diaspore under 8, 10, 12 and 15 GPa; (b) ϵ -
441	FeOOH under 8 and 10 GPa; (c) δ -AlOOH under 20 GPa; (d) ϵ -FeOOH under 20 GPa.
442	Note that no presence of phase associated with dehydration.
443	
443 444	Fig. 3. Impedance spectra of electrical conductivity measurement. (a) Impedance
	Fig. 3. Impedance spectra of electrical conductivity measurement. (a) Impedance spectrum of diaspore at 8 GPa. (b) Impedance spectrum of δ-AlOOH at 20 GPa. (c)
444	
444 445	spectrum of diaspore at 8 GPa. (b) Impedance spectrum of δ -AlOOH at 20 GPa. (c)
444 445 446	spectrum of diaspore at 8 GPa. (b) Impedance spectrum of δ -AlOOH at 20 GPa. (c) Impedance spectrum of ϵ -FeOOH at 8 GPa. Z' and Z'' are real and imaginary parts of the
444 445 446 447	spectrum of diaspore at 8 GPa. (b) Impedance spectrum of δ -AlOOH at 20 GPa. (c) Impedance spectrum of ϵ -FeOOH at 8 GPa. Z' and Z'' are real and imaginary parts of the impedance, respectively. Equivalent circuit for fitting the spectrum of these phases is
444 445 446 447 448	spectrum of diaspore at 8 GPa. (b) Impedance spectrum of δ -AlOOH at 20 GPa. (c) Impedance spectrum of ε -FeOOH at 8 GPa. Z' and Z'' are real and imaginary parts of the impedance, respectively. Equivalent circuit for fitting the spectrum of these phases is shown in (c). CPE denotes constant phase element which has a similar function as
444 445 446 447 448 449	spectrum of diaspore at 8 GPa. (b) Impedance spectrum of δ -AlOOH at 20 GPa. (c) Impedance spectrum of ε -FeOOH at 8 GPa. Z' and Z'' are real and imaginary parts of the impedance, respectively. Equivalent circuit for fitting the spectrum of these phases is shown in (c). CPE denotes constant phase element which has a similar function as

453 diaspore, δ -AlOOH, and ϵ -FeOOH, respectively.

454

- 455 Fig. 5. Global fitting result of electrical conductivity of diaspore. Solid symbols represent
- 456 raw conductivity data. Dashed line indicates curves fitted by Eq. (1).

457

- 458 **Fig. 6.** Trends of the conductivity-depth relation for various lithologies including hydrous
- 459 minerals in subduction zone at 800K. Dark Blue squares: lawsonite (Pommier et al.,
- 460 2019); Purple circles: Phengite (Chen et al., 2017); Red triangles: DHMS (Guo &
- 461 Yoshino, 2013); Orange diamonds: Diaspore (this study); Green circles: ε-FeOOH (this
- 462 study); Light blue diamonds: δ -AlOOH (this study).
- 463

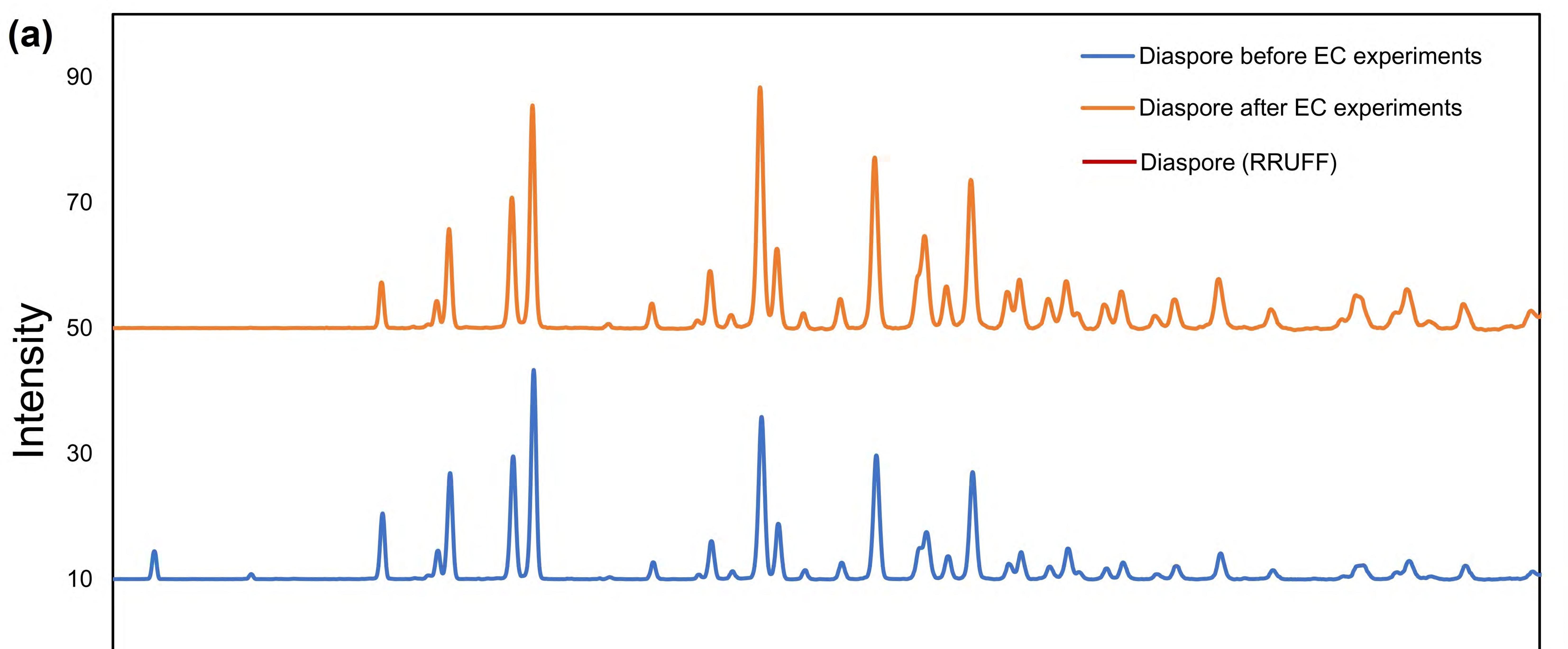
464 Fig. 7. Comparison between magnetotelluric observations of cold and hot slabs and conductivity-depth profiles of diaspore, δ -AlOOH and ϵ -FeOOH along the slab surface 465 geotherms. The blue and red solid lines represent the conductivity-depth profiles of the 466 467 North Philippine Sea (Tada et al., 2014) and the North Cascadia (Megbel et al., 2014). The blue and red dashed line illustrate the conductivity-depth profiles of diaspore along 468 the slab surface geotherms of the North Philippine Sea and the North Cascadia (Syracuse 469 et al., 2010) within the stability field (Yoshino et al., 2019). The blue dashed-dotted line 470 presents the conductivity-depth profile of ε -FeOOH along the extrapolation of geotherm 471 for the North Philippine Sea. The blue circle represents the results of δ -AlOOH at 20 GPa 472

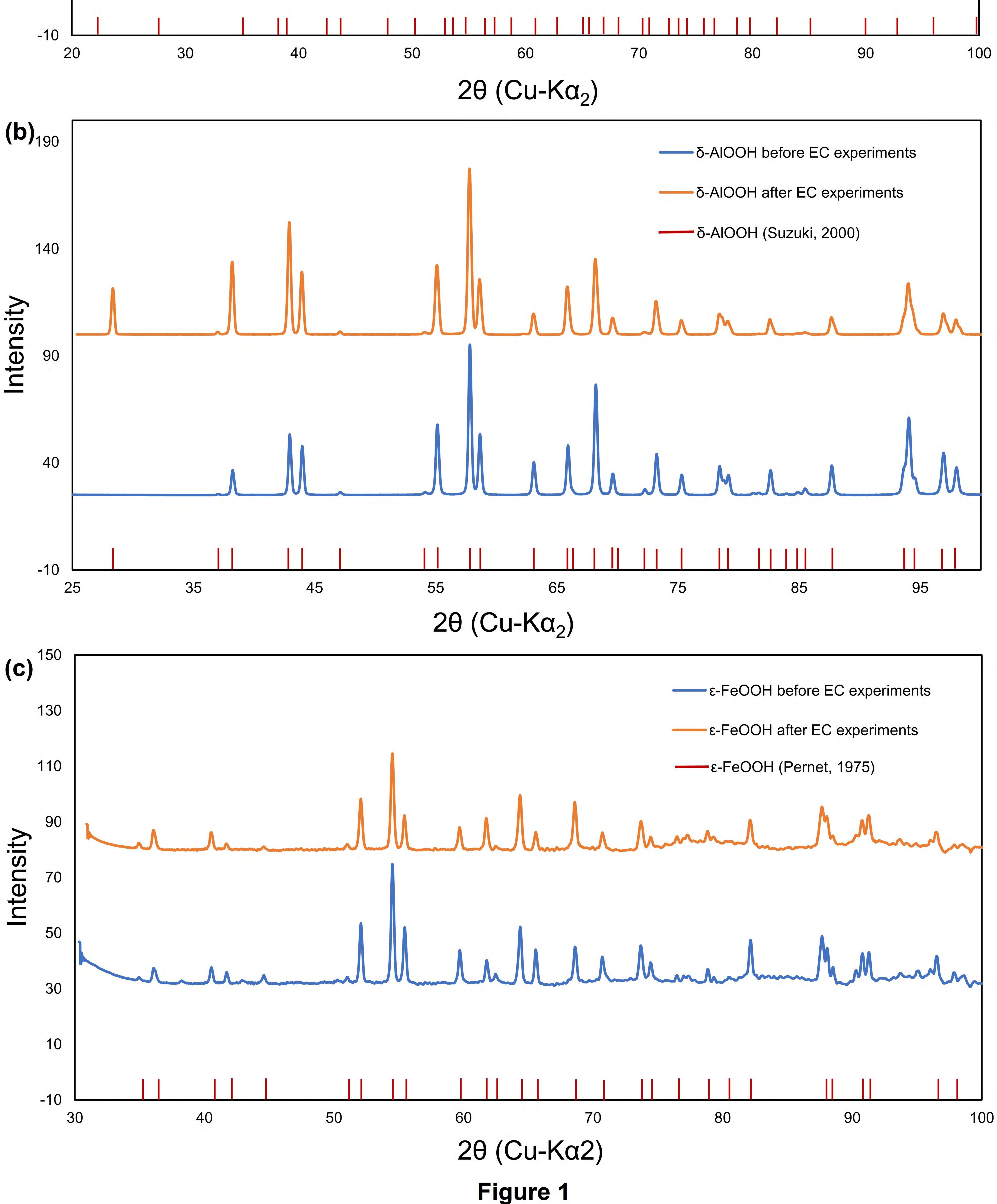
24

Wang & Yoshino: Electrical conductivity of AlOOH and FeOOH

473	and 1200K. The inset shows the stability field of diaspore, δ -AlOOH and ϵ -FeOOH. The
474	dashed-dotted lines represent the phase diagrams of AlOOH and FeOOH (Yoshino et al.,
475	2019). (1)~(6) represent α -FeOOH, Fe ₂ O ₃ +H ₂ O, ϵ -FeOOH, diaspore, Al ₂ O ₃ +H ₂ O and δ -
476	AlOOH. The blue and red solid lines represent the slab surface geotherms of the North
477	Philippine Sea and the North Cascadia (Syracuse et al., 2010). Blue dashed line shows
478	extrapolation of the geotherm of the North Philippine Sea, which is used for the

479 calculation of conductivity-depth profile of ε -FeOOH.


Run No.	P (GPa)	T (K)	Cell size	Starting material	Starting material Heater & capsule	
1k2959	8	1100	18/11	Diaspore powder	Graphite MgO	Diaspore
5k3294	19	1273	10/4	Diaspore powder	Diaspore powder LaCrO ₃ MgO	
1k2988	8	973	18/11	Diaspore powder	Graphite MgO	Diaspore
1k3181	9	700	18/11	Goethite powder	Graphite MgO	ε-FeOOH
1k3183	9	700	18/11	Goethite powder	Graphite MgO	ε-FeOOH


Table 1. Experimental conditions and products for sintering and synthesis experiments.

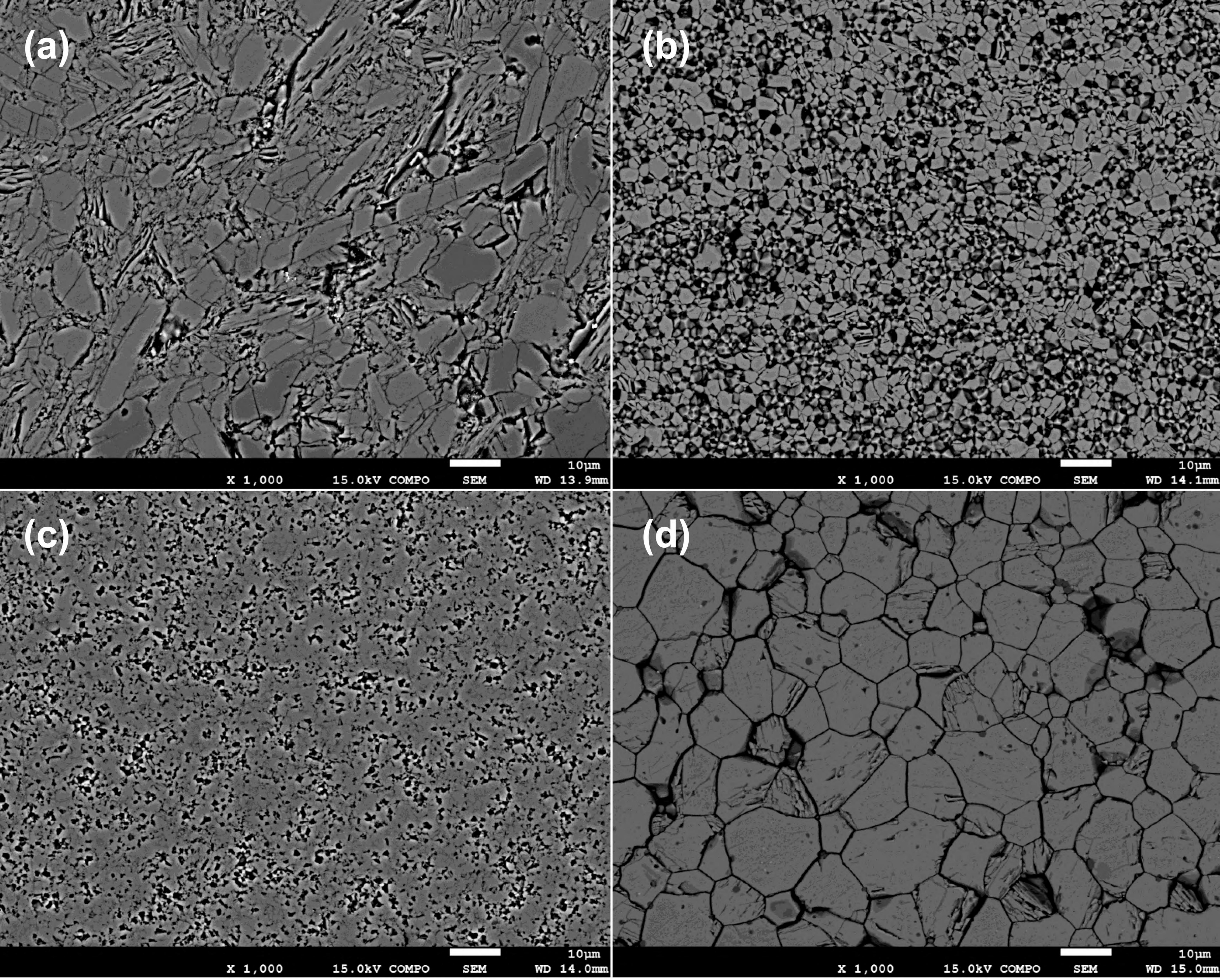
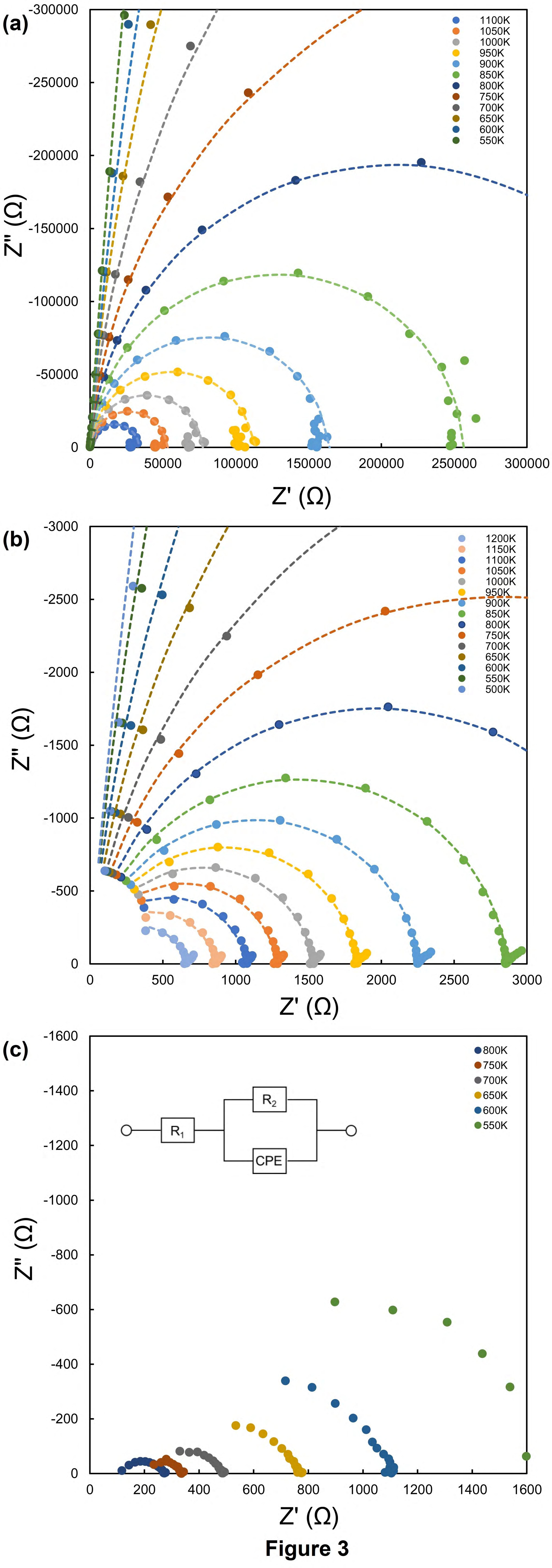
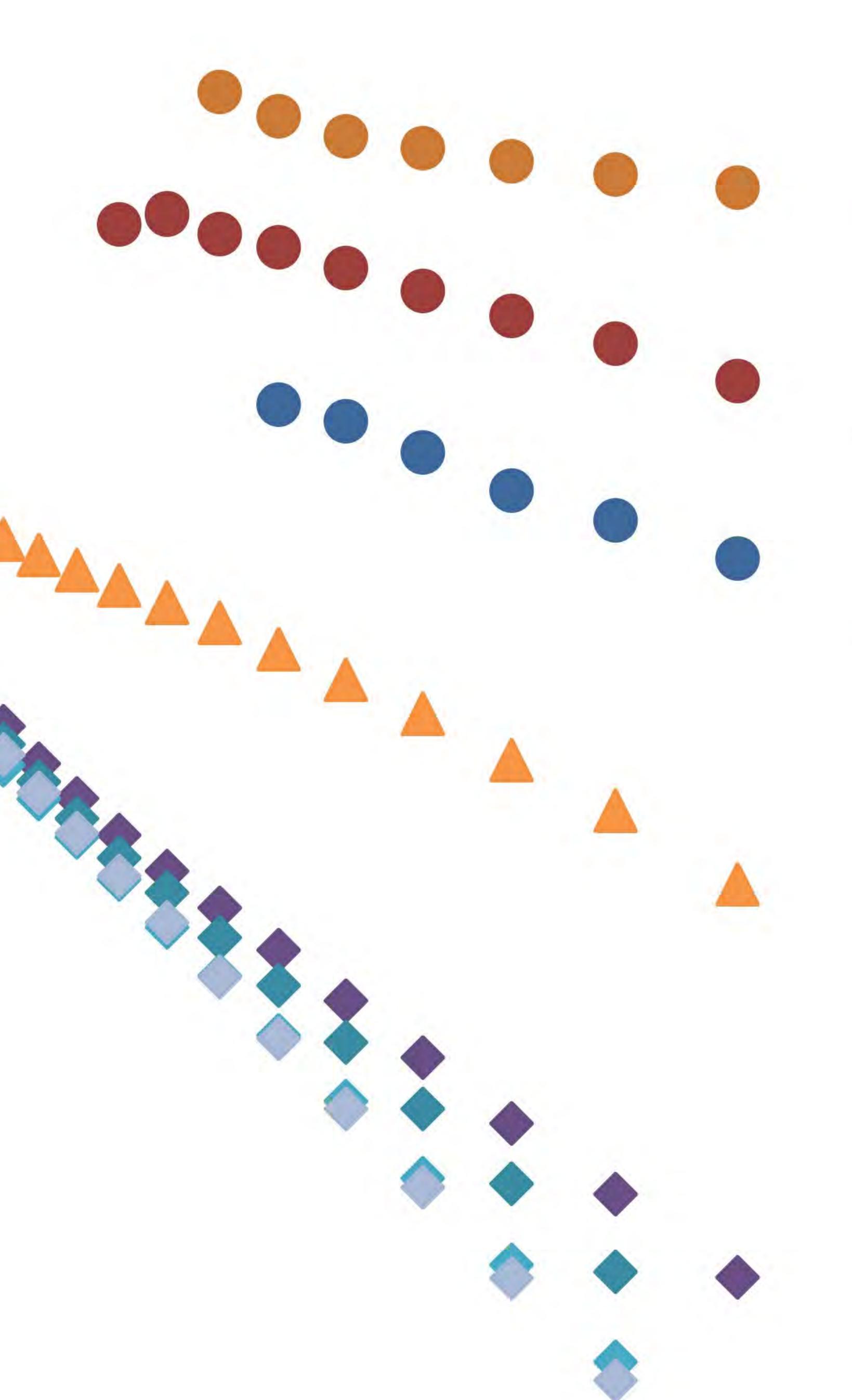

Run No.	P (GPa)	T (K)	Cell size	Starting material	Heater & capsule	Phase	Grain size (µm)
1k2921	8	500~1000	14/6	Diaspore single crystal	LaCrO3 MgO	diaspore	ND
1k2934	8	500~1100	14/6	Diaspore powder	LaCrO3 MgO	diaspore	ND
1k2950	8, 10, 12, 15	500~1200	14/6	Diaspore powder	LaCrO3 MgO	diaspore	~4
1k2970	8, 10	500~1000	14/6	α-FeOOH powder	LaCrO3 MgO	ε-FeOOH	~2.5
5k3329	20	500~1200	10/3	Pre-synthesized δ -AlOOH	LaCrO3 MgO	δ-AlOOH	ND
5k3333	20	500~1200	10/3	Pre-synthesized δ -AlOOH	LaCrO3 MgO	δ-AlOOH	~2
5k3460	20	500~750	10/3	Pre-synthesized ɛ-FeOOH	LaCrO3 MgO	ε-FeOOH	ND
5k3461	20	500~800	10/3	Pre-synthesized ɛ-FeOOH	LaCrO3 MgO	ε-FeOOH	ND
5k3465	20	500~850	10/3	Pre-synthesized E-FeOOH	LaCrO3 MgO	ε-FeOOH	~11

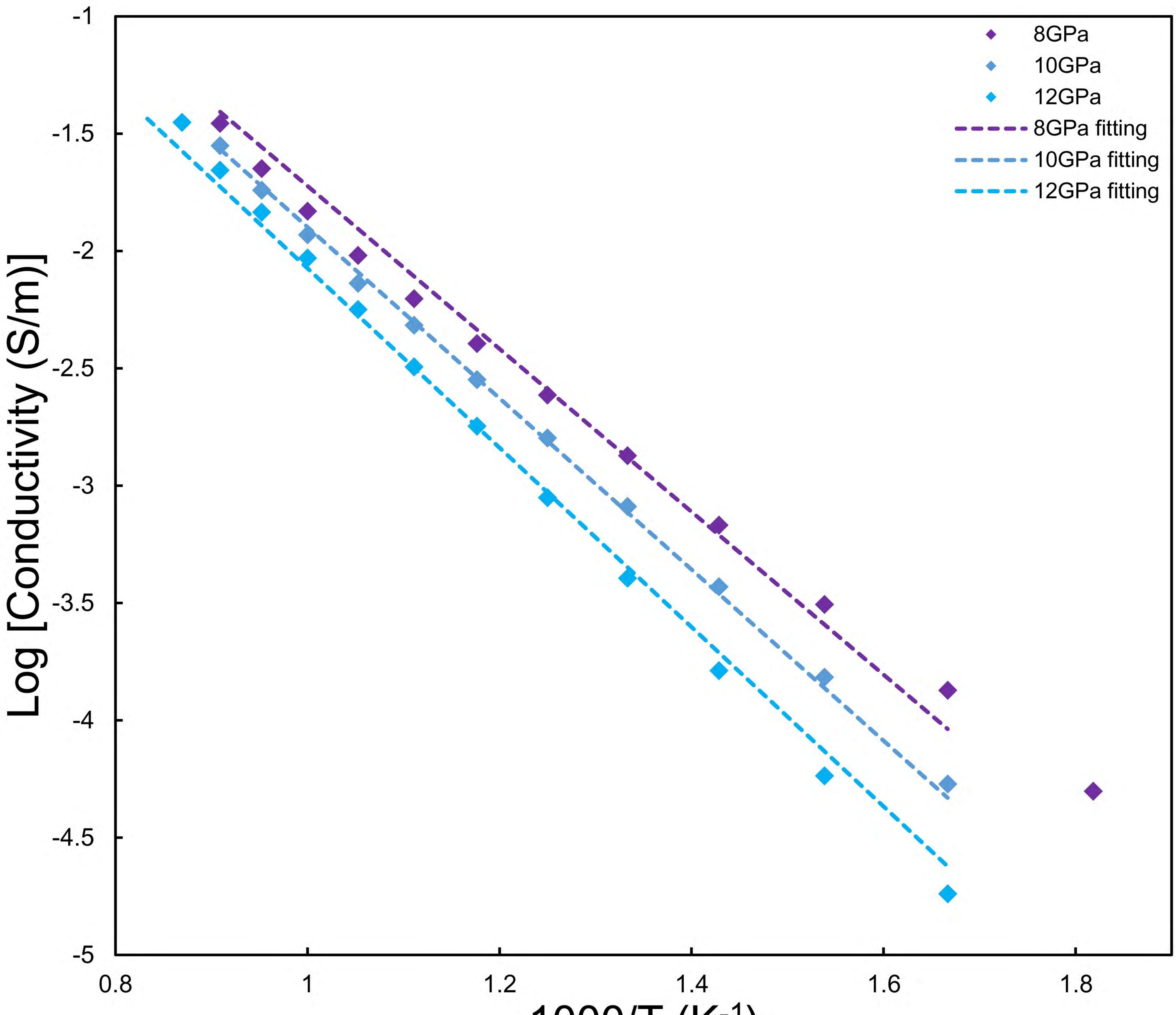
Table 2. Experimental conditions and products for conductivity measurement experiments.

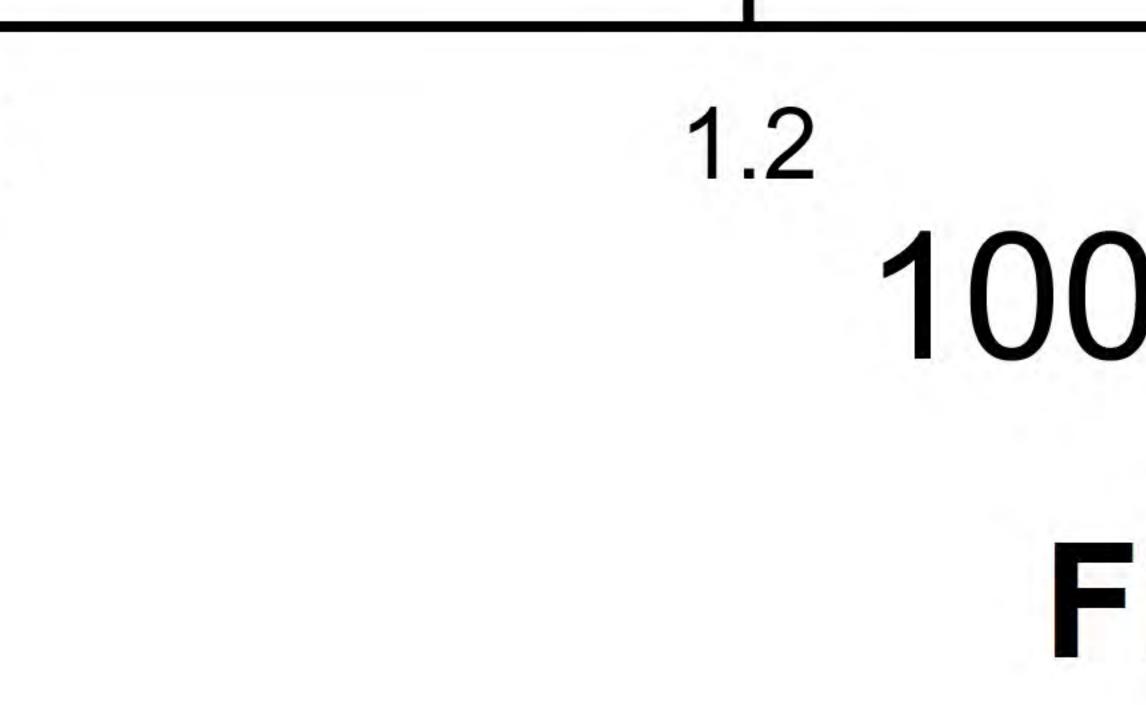

Note: ND, not determined.



3 2 1 Ę onductivity(S/ -2 \mathbf{O} -3 -4 -5 -6 0.5

1.5 $1000/T(K^{-1})$ Figure 4





•ε-FeOOH 20GPa •ε-FeOOH 10GPa •ε-FeOOH 8GPa **Δ**δ-AIOOH 20GPa Diaspore 8GPa Diaspore 10GPa Diaspore 12GPa Diaspore 15GPa

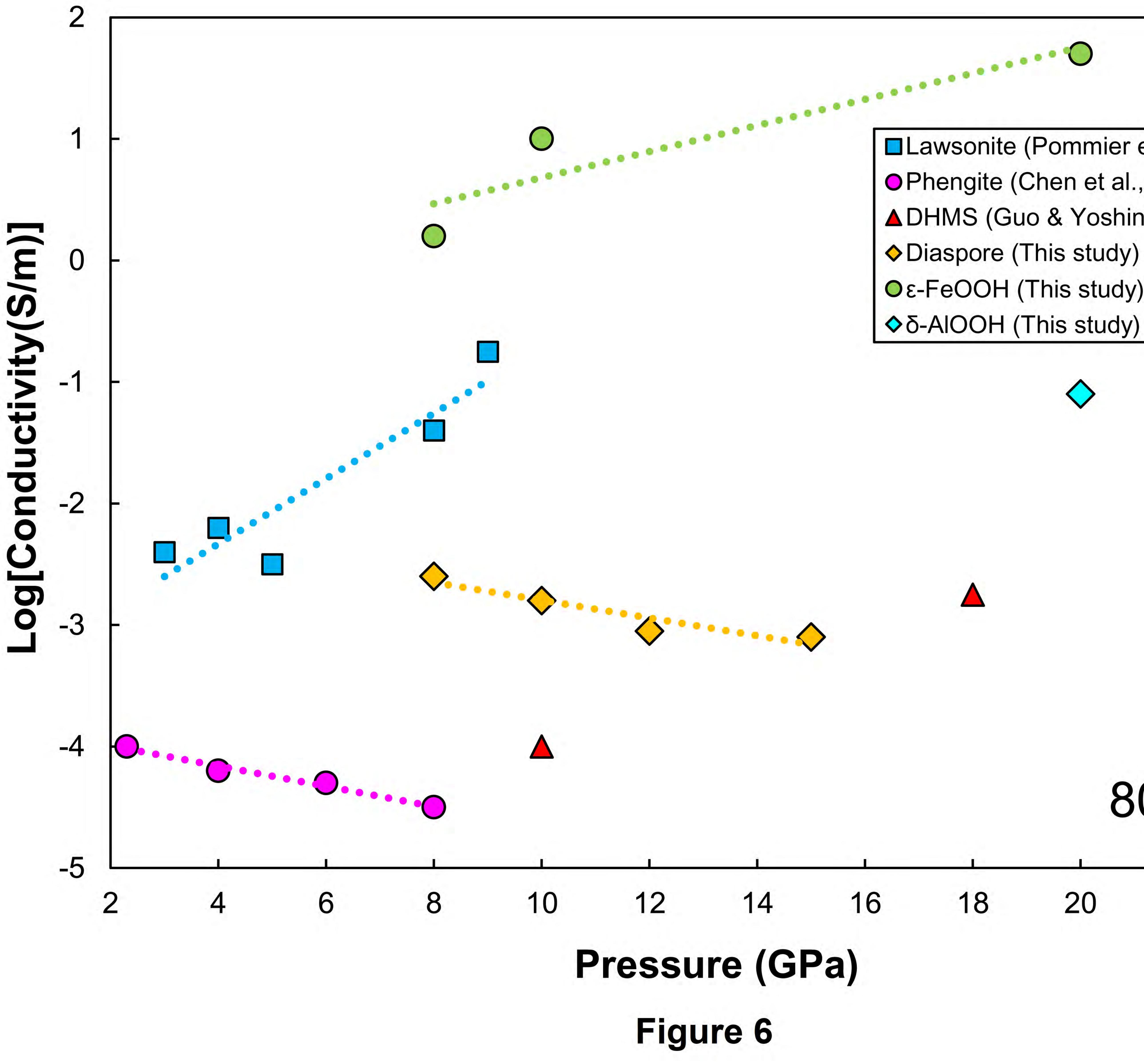
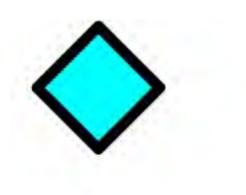


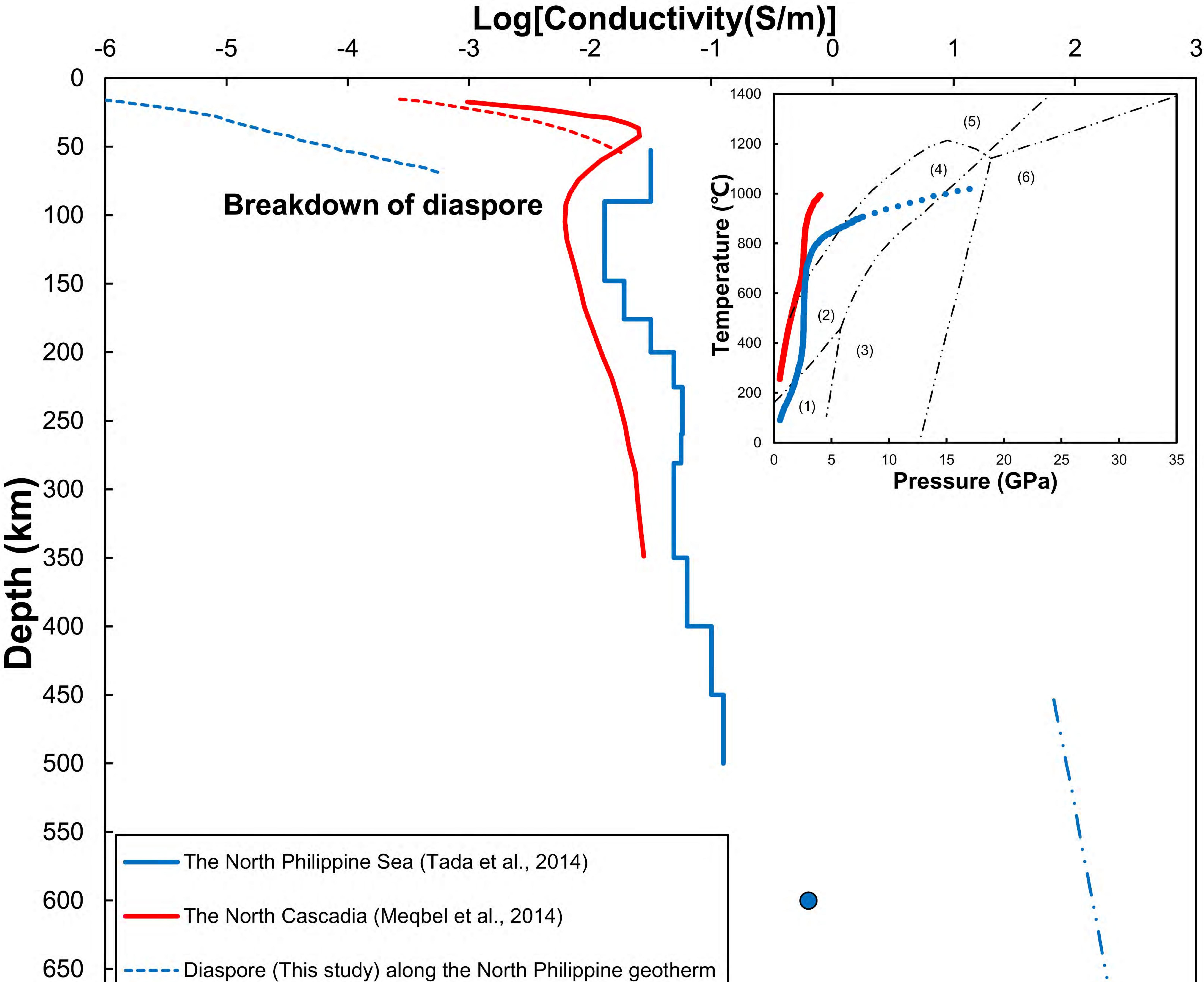
Figure 5

$1000/T(K^{-1})$



18 16 14 Pressure (GPa) Figure 6

Lawsonite (Pommier et al., 2019) OPhengite (Chen et al., 2017) ▲DHMS (Guo & Yoshino, 2013) Diaspore (This study) Oε-FeOOH (This study) δ-AIOOH (This study)



20

22

24

700

750

800

Diaspore (This study) along the North Cascadia geotherm

ε-FeOOH (This study) along the North Philippine geotherm

