1	Revision 2
2	
3	Vasilseverginite, Cu ₉ O ₄ (AsO ₄) ₂ (SO ₄) ₂ , a new fumarolic mineral with a hybrid structure
4	containing novel anion-centered tetrahedral structural units
5	
6	Igor V. Pekov ^{1*} , Sergey N. Britvin ^{2,3} , Sergey V. Krivovichev ^{3,2} , Vasiliy O. Yapaskurt ¹ , Marina F.
7	Vigasina ¹ , Anna G. Turchkova ¹ and Evgeny G. Sidorov ⁴
8	
9	¹ Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
10	² Department of Crystallography, St Petersburg State University, Universitetskaya Nab. 7/9, 199034
11	St Petersburg, Russia
12	³ Kola Science Center of Russian Academy of Sciences, Fersman Str. 18, 184209 Apatity, Russia
13	⁴ Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences,
14	Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia
15	
16	*Corresponding author: igorpekov@mail.ru
17	
18	

19

ABSTRACT

20

21 The new mineral vasils every inite, ideally $Cu_9O_4(AsO_4)_2(SO_4)_2$, was found in the 22 Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great 23 Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with tenorite, 24 lammerite, stranskiite, lammerite- β , langbeinite, dolerophanite, sanidine, hematite, and gahnite. 25 Vasilseverginite occurs as prismatic crystals up to $0.02 \times 0.02 \times 0.06$ mm³ combined in groups or 26 interrupted crusts up to 1×2 cm² in area and up to 0.1 mm thick. It is transparent, bright green, with vitreous luster. D_{calc} is 4.41 g·cm⁻³. Vasilseverginite is optically biaxial (-), α 1.816(5), β 1.870(5), γ 27 28 1.897(5), estimated 2V is 30(15)°. Chemical composition (wt.%, electron-microprobe) is: CuO 64.03, 29 ZnO 0.79, Fe₂O₃ 0.25, P₂O₅ 0.05, As₂O₅ 20.83, SO₃ 14.92, total 100.87. The empirical formula 30 calculated on O = 20 *apfu* is $(Cu_{8.78}Zn_{0.11}Fe^{3+}_{0.03})_{\Sigma 8.92}As_{1.98}P_{0.01}S_{2.03}O_{20}$. Vasilseverginite is monoclinic, $P2_1/n$, a = 8.1131(4), b = 9.9182(4), c = 11.0225(5) Å, $\beta = 110.855(2)^\circ$, V = 828.84(6)31 32 Å³, and Z = 2. The strongest reflections in the powder XRD pattern [d,Å(I)(hkl)] are: 7.13(41)(10-33 34 2.784(38)(13-2, 03-2), 2.597(35)(20-4), and 2.556(50)(23-1, 212). The crystal structure, solved 35 using single-crystal X-ray diffraction data, $R_1 = 0.025$, is based upon complex $[O_4Cu_9]^{10+}$ layers 36 parallel to (-101) that are composed of edge- and corner-sharing (OCu₄) tetrahedra. The topology is 37 unprecedented in inorganic structural chemistry. The crystal structure can be considered a hybrid of 38 the structures of popovite $Cu_5O_2(AsO_4)_2$ and dolerophanite $Cu_2O(SO_4)$ according to the scheme 39 $Cu_9O_4(AsO_4)_2(SO_4)_2 = Cu_5O_2(AsO_4)_2 + 2Cu_2O(SO_4)$. The chemical hybridization does not result in 40 a significant increase in chemical complexity of vasilseverginite compared to the sum of those of 41 popovite and dolerophanite, whereas the structural hybridization leads to the doubling of structural 42 information per unit cell. The mineral is named in memory of the outstanding Russian mineralogist, 43 geologist and chemist Vasiliy Mikhailovich Severgin (1765–1826).

- 44 **Keywords**: vasilseverginite, new mineral, copper arsenate sulfate, popovite, dolerophanite,
- 45 crystal structure, oxo-centered tetrahedra, structural complexity, hybridization of mineral species,
- 46 fumarole sublimate, Tolbachik volcano

48	
49	INTRODUCTION
50	
51	From the viewpoint of geochemical and environmental importance, sulfates and arsenates
52	attract considerable attention as well, due to their existence in a wide range of geo- and
53	cosmochemical environments. The ordered combination of arsenate and sulfate anions in the same
54	mineral is rare; there are only twenty minerals known that contain both sulfate and arsenate as
55	species-defining components. Among the twenty, only two species are H-free.
56	Natural H-bearing (with OH ⁻ or/and H ₂ O) arsenate-sulfates usually have low-temperature,
57	supergene origin and occur mainly in the oxidation zones of ore deposits. Among the members of
58	the beudantite group, a subdivision of the alunite supergroup, only beudantite,
59	$PbFe^{3+}_{3}(AsO_{4})(SO_{4})_{2}(OH)_{6}$, is a relatively common mineral, whereas other four species a rare,
60	namely gallobeudantite, PbGa ₃ (AsO ₄)(SO ₄)(OH) ₆ , hidalgoite, PbAl ₃ (AsO ₄)(SO ₄) ₂ (OH) ₆ ,
61	kemmlitzite, SrAl ₃ (AsO ₄)(SO ₄) ₂ (OH) ₆ , and weilerite, BaAl ₃ (AsO ₄)(SO ₄) ₂ (OH) ₆ . In the crystal
62	structures of some of these minerals, sulfate and arsenate anions are disordered, whereas others
63	demonstrate ordered distribution of S ⁶⁺ and As ⁵⁺ over tetrahedral sites (Bayliss et al. 2010). The
64	known hydrous Fe arsenate-sulfates are bukovskýite, Fe ³⁺ ₂ (AsO ₄)(SO ₄)(OH)·9H ₂ O (Majzlan et al.
65	2012), sarmientite, Fe ³⁺ ₂ (AsO ₄)(SO ₄)(OH)·5H ₂ O (Colombo et al. 2014), hilarionite,
66	Fe ³⁺ ₂ (AsO ₄)(SO ₄)(OH)·6H ₂ O (Pekov et al. 2014), and zýkaite, Fe ³⁺ ₄ (AsO ₄) ₃ (SO ₄)(OH)·15H ₂ O
67	(Čech et al. 1978). Bukovskýite and sarmientite are As,S-ordered minerals, whereas the crystal
68	structures of hilarionite and zýkaite are unknown. For mallestigite, Pb ₃ Sb(SO ₄)(AsO ₄)(OH) ₆ ·3H ₂ O
69	(Sima, 1998), the disordered distribution of As and S is likely, by analogy with other fleischerite-
70	group members. In the crystal structure of juansilvaite,
71	Na ₅ Al ₃ [AsO ₃ (OH)] ₄ [AsO ₂ (OH) ₂] ₂ (SO ₄) ₂ ·4H ₂ O, sulfate groups and acid arsenate groups of two

73	defining Cu ²⁺ . Arsentsumebite, Pb ₂ Cu(AsO ₄)(SO ₄)(OH), a member of the brackebuschite group, has
74	partially ordered distribution of As and S (Zubkova et al. 2002), as well as sulfate-bearing variety of
75	thometzekite, a tsumcorite-group mineral with the idealized formula PbCu ₂ (AsO ₄) ₂ ·2H ₂ O (Krause et
76	al. 1998). As-S ordering was reported for chalcophyllite, Cu ₁₈ Al ₂ (AsO ₄) ₄ (SO ₄) ₃ (OH) ₂₄ ·36H ₂ O
77	(Sabelli 1980), tangdanite, Ca ₂ Cu ₉ (AsO ₄) ₄ (SO ₄) _{0.5} (OH) ₉ ·9H ₂ O (Ma et al. 2014), claraite,
78	(Cu,Zn) ₁₅ (CO ₃) ₄ (AsO ₄) ₂ (SO ₄)(OH) ₁₄ ·7H ₂ O (Biagioni et al. 2017), and leogangite,
79	Cu ₁₀ (AsO ₄) ₄ (SO ₄)(OH) ₆ ·8H ₂ O (Lengauer et al. 2004), and suggested for parnauite
80	Cu ₉ (AsO ₄) ₂ (SO ₄)(OH) ₁₀ ·7H ₂ O (Mills et al. 2013). The crystal structure of barrotite,
81	Cu ₉ Al(HSiO ₄) ₂ [(SO ₄)(HAsO ₄) _{0.5}](OH) ₁₂ ·8H ₂ O (Sarp et al. 2014), is still unknown.
82	The H-free arsenates-sulfates are much rarer and are represented by nishanbaevite, ideally
83	KAl ₂ O(AsO ₄)(SO ₄) (Pekov et al. 2019), and vasilseverginite, Cu ₉ O ₄ (AsO ₄) ₂ (SO ₄) ₂ , the mineral
84	described herein. Both minerals demonstrate an ordered distribution of AsO4 and SO4 tetrahedral
85	groups and contain additional oxygen atoms O_{ad} , not bonded to As^{5+} or S^{6+} . Both minerals are
86	unique to the active, oxidizing-type Arsenatnaya fumarole at the Tolbachik volcano (Kamchatka,
87	Russia), in which they were formed as volcanic sublimates under temperatures higher than 350-
88	400°C, like other arsenates described from this locality (Pekov et al. 2018a,b).
89	The new mineral vasilseverginite (Cyrillic: василсевергинит) is named in memory of the
90	outstanding Russian mineralogist, geologist and chemist Vasiliy Mikhailovich Severgin (1765-
91	1826), Academician of the Russian Academy of Sciences. He wrote the first books on geology and
92	mineralogy in Russia (Severgin 1791, 1798, 1807), created the first chemical nomenclature in
93	Russian and compiled the first Russian chemical dictionary. Acad. Severgin was one of the founders
94	of the Russian Mineralogical Society in 1817.
95	Both the new mineral and its name have been approved by the Commission on New
96	Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA No.

97 2015–083). The type specimen is deposited in the systematic collection of the Fersman Mineralogical 98 Museum of the Russian Academy of Sciences, Moscow under the catalogue number 95280. 99 100 **ANALYTICAL METHODS** 101 102 The chemical data for vasilseverginite were obtained using a Jeol JSM-6480LV scanning 103 electron microscope equipped with an INCA-Wave 500 wavelength-dispersive spectrometer, with 104 an acceleration voltage of 20 kV, a beam current of 20 nA, and a 3 µm beam diameter. The 105 reference materials used are given in Table 1. Contents of other elements with atomic numbers 106 higher than that of carbon are below detection limits. 107 The Raman spectrum of vasilseverginite was recorded using an EnSpectr R532 spectrometer 108 with a green laser (532 nm) at room temperature. The laser beam output power was about 7 mW. 109 The spectrum was processed using the EnSpectr expert mode program in the range from 100 to 4000 110 cm⁻¹ with the use of a holographic diffraction grating with 1800 lines cm⁻¹ and a resolution equal to 111 6 cm⁻¹. The diameter of the focal spot on the sample was about 10 μm. The Raman spectrum was 112 acquired on a polycrystalline sample. 113 Powder X-ray diffraction (XRD) study of the new mineral was carried out using a Rigaku 114 RAXIS Rapid II single-crystal diffractometer equipped with a curved image plate detector (Debye-115 Scherrer geometry, r = 127.4 mm) and CoKa radiation source (rotating anode, 40 kV, 15 mA), with Rigaku VariMax microfocus mirror optics. Imaging plate-to-profile data conversion was performed 116 117 using osc2xrd software (Britvin et al. 2017). 118 A single-crystal X-ray dataset was collected by means of a Bruker Kappa APEX DUO 119 diffractometer equipped with a microfocus MoK α radiation source. A full Ewald sphere of 120 reciprocal space was collected at a frame sweep of 1° to $2\Theta = 56^{\circ}$. Data collection and refinement of 121 unit-cell parameters were carried out using Bruker APEX2 software (Bruker 2003). Data processing

122	and integration routines were performed by means of a Rigaku Oxford Diffraction CrysAlisPro
123	software. The crystal structure was solved by the intrinsic phasing method implemented in a
124	SHELXT-2018 program (Sheldrick 2015) and refined to $R_1 = 0.025$ on the basis of 1428 unique
125	observed [$I > 2\sigma(I)$] reflections, using <i>SHELXT</i> -2015 software incorporated into Olex2 graphical
126	user interface (Dolomanov et al. 2009). A complete set of crystallographic data can be retrieved
127	from the CIF file attached as the Supplementary Material.
128	The chemical and structural complexity parameters have been calculated using the procedure
129	outlined by Krivovichev et al. (2018a,b). The chemical complexity was evaluated by the amounts of
130	chemical Shannon information per atom ($^{chem}I_G$) and per formula unit, f.u. ($^{chem}I_{G,total}$), whereas the
131	structural complexity was measured as the amounts of structural Shannon information per atom
132	$(^{str}I_G)$ and per unit cell $(^{str}I_{G,total})$.
133	
134	RESULTS AND DISCUSSION
135	Occurrence and mineral association
136	The Arsenatnaya fumarole is situated at the apical part of the Second scoria cone of the
137	Northern Breakthrough of the Great Tolbachik Fissure Eruption of 1975–1976. This scoria cone, a
138	monogenetic volcano about 300 m high and approximately 0.1 km ³ in volume formed in 1975
139	(Fedotov and Markhinin 1983), is located 18 km South of the Ploskiy Tolbachik volcano in the
140	central part of Kamchatka Peninsula, Far-Eastern Region, Russia (55°41'N 160°14'E, 1200 m asl).
141	The fumarolic activity at this scoria cone remains strong: in 2012–2018, we observed here numerous
142	gas vents with temperatures up to 490°C.
143	The specimens containing vasilseverginite were collected in July 2013 from the intermediate
144	zone of the Arsenatnaya fumarole (Pekov et al. 2018a) located at a depth of 1–1.5 m from the day
145	surface. The temperatures, measured during sampling by means of a chromel-alumel thermocouple
146	in the pockets from which these specimens originate, were 360-380°C. We believe that

147 vsailseverginite was deposited directly from the gaseous phase as a volcanic sublimate at

148 temperatures higher than 380°C.

- 149 On the holotype specimen, vasilseverginite occurs in intimate association with tenorite,
- 150 lammerite, lammerite-β, stranskiite, langbeinite, dolerophanite, hematite, As-bearing sanidine, and
- 151 Cu-bearing gahnite. On other specimens, the new mineral is associated also with johillerite,
- 152 urusovite, ericlaxmanite, kozyrevskite, popovite, tilasite, svabite, bradaczekite, aphthitalite,
- 153 metathénardite, belomarinaite, krasheninnikovite, anhydrite, euchlorine, wulffite,
- 154 alumoklyuchevskite, cryptochalcite, fluoborite, sylvite, and halite. The associated minerals are listed
- 155 in order of the decrease of abundance.
- 156

157 General appearance, physical properties and optical data

Vasilseverginite occurs as well-formed prismatic crystals up to $0.02 \times 0.02 \times 0.06$ mm³, with complex oblique terminations (Fig. 1). The crystal forms were not determined. Vasilseverginite crystals are combined in groups or interrupted, typically open-work incrustations (Figs. 1 and 2) up to 1×2 cm² in area and up to 0.1 mm thick, usually overgrowing basalt scoria (Fig. 2a) or crystalline crusts of tenorite (Fig. 2b).

Vasilseverginite is transparent, bright green, in some cases with a distinct golden hue. The streak is light green. The lustre is vitreous. The mineral is brittle, cleavage or parting was not observed, the fracture is uneven. The density and Mohs hardness were not measured because crystals of vasilseverginite are too small and aggregates are open-work. The density calculated using the empirical formula is 4.409 g cm⁻³.

168 Under the microscope, in plane polarized transmitted light vasilseverginite is weakly

- 169 pleochroic: X = yellowish-green, Y and Z = emerald green. It is optically biaxial (-), $\alpha = 1.816(5)$, β
- 170 = 1.870(5), $\gamma = 1.897(5)$ (589 nm), the estimated 2*V* value is 30(15)° and 2*V*_{calc.} = 69°. Such
- 171 difference between measured and calculated 2V values is probably caused by the low quality of

- 172 crystals, which is also reflected in the relatively high estimated errors ± 0.005 for all three refractive 173 indices. Dispersion of optical axes is weak, r > v. 174 175 **Chemical composition** 176 The chemical composition of the holotype specimen of vasilseverginite (in wt%, mean 177 results for five spot analyses) are given in Table 1. The empirical formula calculated on the basis of 20 O atoms per formula unit is $(Cu_{8.78}Zn_{0.11}Fe^{3+}_{0.03})_{\Sigma 8.92}As_{1.98}P_{0.01}S_{2.03}O_{20}$. The idealized formula is 178 179 Cu₉O₄(AsO₄)₂(SO₄)₂ which requires CuO 64.74, As₂O₅ 20.78, SO₃ 14.48, total 100 wt%. 180 181 **Raman spectroscopy** 182 The Raman spectrum of vasilseverginite is shown in Fig. 3. The Raman mode assignments, 183 in accordance with Nakamoto (1986), are as follows. Bands with maxima at 1204, 1103 and 1075 184 cm⁻¹ correspond to antisymmetric S⁶⁺–O stretching vibrations, whereas those at 1007 and 982 cm⁻¹ 185 correspond to symmetric stretching vibrations of $(SO_4)^{2-}$ groups. The strongest single band at 846 186 cm^{-1} corresponds to As⁵⁺–O stretching vibrations of (AsO₄)³⁻ groups. The bands in the region 650– 570 cm⁻¹ correspond to S⁶⁺–O bending vibrations. The strong band at 558 cm⁻¹ could be assigned to 187 188 Cu²⁺–O stretching mode corresponding to short Cu–O distances, about 1.9–2.0 Å (Table 2). Bands with frequencies lower than 400 cm⁻¹ probably correspond to As⁵⁺–O bending vibrations, Cu²⁺–O 189 190 stretching vibrations corresponding to long Cu-O distances, about 2.3-2.4 Å (Table 2), and lattice 191 modes. The absence of bands with Raman shifts higher than 1250 cm⁻¹ indicates the absence of H-, 192 C- and N-bearing groups in vasilseverginite. 193 194 **Powder X-ray diffraction** 195 Powder XRD data of vasilseverginite are reported in Table 3. The powder XRD pattern of
- 196 the new mineral is unique and can be used as a good diagnostic tool. Parameters of the monoclinic

197 unit cell calculated from powder data are: a = 8.113(4), b = 9.918(2), c = 10.992(6) Å, $\beta = 110.90(4)^{\circ}$ and V = 826.2(8) Å³.

199

200 Crystal structure

201 The crystal structure of vasilseverginite demonstrates a new structure type that has no 202 analogues among minerals and synthetic inorganic materials. It contains five symmetrically 203 independent Cu sites coordinated either by five (Cu1, Cu2, Cu4) or six (Cu3, Cu5) O atoms. The 204 Cu^{2+} coordination polyhedra are strongly distorted due to the Jahn-Teller effect (Fig. 4). The 205 description of the crystal structure of vasilseverginite in terms of cation coordination polyhedra is 206 very difficult because of the very complex system of linkage involving the distorted Cu square 207 pvramids and octahedra (Fig. 5a). In contrast, the description in terms of anion-centered (OCu₄) 208 tetrahedra (Krivovichev et al. 2013) formed by additional O_{ad} atoms (not bonded to As or S) is very 209 straightforward (Figs. 5b and 6). The O9 and O10 atoms are not bonded to As or S and are 210 coordinated tetrahedrally by four Cu atoms each, thus forming (OCu_4) oxocentered tetrahedra. The structure is based upon complex $[O_4Cu_9]^{10+}$ layers composed of edge- and corner-sharing (OCu₄) 211 212 tetrahedra (Figs. 6c, d). The layers are parallel to (-101). The (SO₄) tetrahedra are located inside the 213 layers, whereas the (AsO₄) tetrahedra provide their linkage in the third dimension (Fig. 6a). It is worthy to note that the topology of the $[O_4Cu_9]^{10+}$ layers is novel and unprecedented among known 214 215 minerals and synthetic compounds.

216

217 Hybrid character of the structure and chemical and structural complexity

In terms of chemistry, vasilseverginite has the composition intermediate between popovite, Cu₅O₂(AsO₄)₂ (Pekov et al. 2015), and dolerophanite, Cu₂O(SO₄) (Scacchi 1873; Effenberger 1985):

221
$$Cu_9O_4(AsO_4)_2(SO_4)_2 = Cu_5O_2(AsO_4)_2 + 2Cu_2O(SO_4)$$
 (1)

222	Both dolerophanite and popovite have been found in the Tolbachik fumaroles and both
223	contain structural units composed from edge- and corner-sharing (OCu4) tetrahedra (Pekov et al.
224	2018b). However, the topologies and dimensionalities of the units are different. In dolerophanite, the
225	(OCu ₄) tetrahedra form sheets (Fig. 7a), whereas the crystal structure of popovite contains chains of
226	alternating corner- and edge-linkage of (OCu4) tetrahedra (Fig. 7b). In the dolerophanite sheet, all
227	Cu atoms are bridging between adjacent (OCu4) tetrahedra, either by sharing edges (the Cubr[e]
228	atoms) or corners (the $Cu_{br[c]}$ atoms). In contrast, the [O ₂ Cu ₅] chain in popovite, along with the
229	Cu _{br[e]} and Cu _{br[c]} atoms, contains also terminal Cu _t atoms that do not participate in the formation of
230	the oxocentered structural unit. The $Cu_{br[e]}:Cu_{br[c]}:Cu_t$ ratios in dolerophanite and popovite are equal
231	to 1:1:0 and 2:1:2, respectively. The same ratio for vasilseverginite is equal to 4:3:2, which can
232	easily be obtained as a sum of 2:2:0 (double dolerophanite ratio) and 2:1:2 (popovite ratio). Indeed,
233	the topologies of the oxo-centered structural units in dolerophanite, popovite and vasilseverginite
234	can be considered as based upon the same fundamental building block (FBB) consisting of four
235	(OCu ₄) tetrahedra sharing edges and corners (Figs. 6c, 7). These blocks are polymerized into infinite
236	chains in popovite and into sheets in dolerophanite. The polymerization of the FBBs in
237	vasilseverginite represents an intermediate case with the presence of terminal Cut atoms, but the
238	resulting topology is two-dimensional.
239	Therefore, the crystal structure of vasilseverginite can be considered as a hybrid of the
240	crystal structures of dolerophanite and popovite. The structural and chemical complexity parameters
241	for the three minerals estimated using information-based measures (Krivovichev 2012, 2013, 2014;
242	Krivovichev et al. 2018a,b) are given in Table 4. In both chemical and structural terms, the sequence
243	of minerals in the order of decreasing complexity is vasilseverginite > popovite > dolerophanite. It is

of interest that the chemical complexity of vasilseverginite (Vs) approximately corresponds to the

sum of those of popovite (Po) and dolerophanite (Do), i.e. is described by the equation (1) (Vs = Po

246 + 2Do):

247
$$^{\text{chem}}I_{G,\text{total}}(\text{Vs}) = 47.498 \approx {}^{\text{chem}}I_{G,\text{total}}(\text{Po}) + 2 \times {}^{\text{chem}}I_{G,\text{total}}(\text{Do}) = 42.867.498 \times {}^{\text{chem}}I_{G,\text{total}}(\text{Po}) + 2 \times {}^{\text{chem}}I_{G,\text{total}}(\text{Po}) = 42.867.498 \times {}^{\text{chem}}I_{G,\text{total}}(\text{Po})$$

248 where ${}^{chem}I_{G,total}$ is the total amount of chemical Shannon information measured in bit per 249 formula unit.

In contrast, the total structural complexity of Vs is approximately doubled compared to the sum of complexities of Po and Do:

252
$${}^{\text{str}}I_{G,\text{total}}(\text{Vs}) = 268.930 \approx 2 \times [{}^{\text{str}}I_{G,\text{total}}(\text{Po}) + 2 \times {}^{\text{str}}I_{G,\text{total}}(\text{Do})] = 282.974,$$

253 where ${}^{\text{str}}I_{G,\text{total}}$ is the total amount of structural Shannon information measured in bit per 254 reduced unit cell.

Thus, the chemical hybridization of popovite and dolerophanite does not result in a significant increase in chemical complexity (the sum of their chemical information amounts is approximately equal to that of vasilseverginite), whereas the structural hybridization leads to the doubling of structural information per unit cell (the structural information of vasilseverginite is doubled compared to the sum of structural information amounts of popovite and dolerophanite).

- 260
- 261

IMPLICATIONS

262

263 It has recently been mentioned that one of the aspects that a new mineral discovery may 264 provide is an insight into crystal chemistry or the structures of natural and synthetic phases (Barton 265 2019). The discovery of vasilseverginite brings a new insight into the modularity of structures with 266 anion-centered tetrahedral units based upon (OCu₄) tetrahedra. Vasilseverginite is both a chemical 267 and a structural hybrid of popovite and dolerophanite, and the hybridization results in the formation 268 of a new structure type with a novel layer topology. The Cu compounds with oxo-centered clusters, 269 either polymerized or forming polyoxocuprate clusters (Kondinski and Monakhov 2017), attract 270 much attention in condensed matter physics and materials chemistry, due to their interesting

271	magnetic properties (Volkova and Marinin 2018; Botana et al. 2018; Badrtdinov et al. 2018;
272	Winiarski et al. 2019), and new mineralogical discoveries may provide important insights into
273	pathways of the preparation of novel synthetic compounds (Britvin et al. 2020; Siidra et al. 2020).
274	The concept of hybridization of mineral species developed in this work may bring new ideas for the
275	preparation of novel structural architectures on the border of stability fields of chemically and
276	structurally simpler compounds.
277	The discovery of vasilseverginite also provides further indirect evidence for the existence of
278	polynuclear oxo-centered copper clusters in the gaseous phase (Kovrugin et al. 2015), which may
279	serve as a means of transport for Cu by volcanic gases in fumaroles, thus enhancing the mobility of
280	metals in volcanic environments.
281	
282	ACKNOWLEDGMENTS
283	
284	We thank referees Anthony R. Kampf and Gerald Giester and Associate Editor Charles
285	Geiger for valuable comments. This work was supported by the Russian Science Foundation, grants
286	nos. 19-17-00050 (mineralogical characterization, chemical and spectroscopic studies) and 19-17-
287	00038 (crystal chemical study and complexity analysis). The SEM and EMPA studies were
288	n and an a line that the sector of Annalastical Tradesimeral of Utich Constict Develoption Develoption
	performed in the Laboratory of Analytical Techniques of High Spatial Resolution, Dept. of
289	Petrology, Moscow State University. The technical support by the St. Petersburg State University X-
289 290	Petrology, Moscow State University. The technical support by the St. Petersburg State University X- Ray Diffraction Resource Center is acknowledged.
289 290 291	Petrology, Moscow State University. The technical support by the St. Petersburg State University X- Ray Diffraction Resource Center is acknowledged.
289 290 291 292	Petrology, Moscow State University. The technical support by the St. Petersburg State University X- Ray Diffraction Resource Center is acknowledged. REFERENCES CITED

- 294 Badrtdinov, D.I., Kuznetsova, E.S., Verchenko, V.Yu., Berdonosov, P.S., Dolgikh, V.A.,
- 295 Mazurenko, V.V., and Tsirlin, A.A. (2018) Magnetism of coupled spin tetrahedra in ilinskite-
- type KCu₅O₂(SeO₃)₂Cl₃. Scientific Reports 8, 2379.
- 297 Barton, I.F. (2019) Trends in the discovery of new minerals over the last century. American
- 298 Mineralogist, 104, 641-651.
- 299 Bayliss, P., Kolitsch, U., Nickel, E.H., and Pring, A. (2010) Alunite supergroup: recommended
- 300 nomenclature. Mineralogical Magazine, 74, 919-927.
- 301 Biagioni, C. and Orlandi, P. (2017) Claraite, (Cu,Zn)₁₅(AsO₄)₂(CO₃)₄(SO₄)(OH)₁₄·7H₂O:
- 302 redefinition and crystal structure. European Journal of Mineralogy, 29, 1031-1044.
- 303 Botana, A.S., Zheng, H., Lapidus, S.H., Mitchell, J.F., and Norman, M.R. (2018) Averievite: A

304 copper oxide kagome antiferromagnet. Physical Review, B98, 054421.

- 305 Britvin, S.N., Dolivo-Dobrovolsky, D.V., and Krzhizhanovskaya, M.G. (2017) Software for
- 306 processing the X-ray powder diffraction data obtained from the curved image plate detector of
- 307 Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo
- 308 Obshchestva, 146(3), 104–107 (in Russian).
- 309 Britvin, S.N., Pekov, I.V., Yapaskurt, V.O., Koshlyakova, N.N., Göttlicher, J., Krivovichev, S.V.,
- 310 Turchkova, A.V., and Sidorov, E.G. (2020) Polyoxometalate chemistry at volcanoes:
- 311 discovery of a novel class of polyoxocuprate nanoclusters in fumarolic minerals. Scientific
- 312 Reports, 10, 6345.
- 313 Bruker (2003) SAINT (ver. 7.60A). Bruker AXS Inc., Madison, Wisconsin, USA.
- 314 Čech, F., Praha, J., and Novak, F. (1978) Zýkaite, $Fe^{3+}_4(AsO_4)_3(SO_4)(OH) \cdot 15H_2O$, a new mineral.
- 315 Neues Jahrbuch für Mineralogie, Monatshefte, 134-144.
- 316 Colombo, F., Rius, J., Vallcorba, O., and Miner, E.P. (2014) The crystal structure of sarmientite,
- 317 $Fe^{3+}_{2}(AsO_{4})(SO_{4})(OH) \cdot 5H_{2}O$, solved ab initio from laboratory powder diffraction data.
- 318 Mineralogical Magazine, 78, 347-360.

- 319 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a
- 320 complete structure solution, refinement and analysis program. Journal of Applied
- 321 Crystallography, 42, 339-341.
- 322 Effenberger, H. (1985) Cu₂O(SO₄), dolerophanite: refinement of the crystal structure with a
- 323 comparison of OCu(II)₄ tetrahedra in inorganic compounds. Monatschefte für Chemie, 116,
- *324 927-931*.
- Fedotov, S.A. and Markhinin, Y.K., eds. (1983) The Great Tolbachik Fissure Eruption. Cambridge
 University Press, NY.
- 327 Kampf, A.R., Nash, B.P., Dini, M., and Molina Donoso, A.A. (2017) Juansilvaite,
- 328 $Na_5Al_3[AsO_3(OH)]_4[AsO_2(OH)_2]_2(SO_4)_2 \cdot 4H_2O$, a new arsenate-sulfate from the Torrecillas
- 329 mine, Iquique Province, Chile. Mineralogical Magazine, 81, 619-628.
- 330 Kondinski, A. and Monakhov, K.Y. (2017) Breaking the Gordian knot in the structural chemistry of
- 331 polyoxometalates: copper(II)-oxo/hydroxo clusters. Chemistry a European Journal, 23, 7841332 7852.
- 333 Kovrugin, V.M., Siidra, O.I., Colmont, M., Mentre, O., and Krivovichev, S.V. (2015) Emulating
- 334 exhalative chemistry: synthesis and structural characterization of ilinskite,
- 335 Na[Cu₅O₂](SeO₃)₂Cl₃, and its K-analogue. Mineralogy and Petrology, 109, 421-430.
- 336 Krause, W., Belendorff, K., Bernhardt, H.-J., McCammon C., Effenberger, H., and Mikenda, W.

337 (1998) Crystal chemistry of the tsumcorite-group minerals. New data on ferrilotharmeyerite,

- tsumcorite, thometzekite, mounanaite, helmutwinklerite, and a redefinition of gartrellite.
- European Journal of Mineralogy, 10, 179-206.
- Krivovichev, S.V. (2012) Topological complexity of crystal structures: quantitative approach. Acta
 Crystallographica, A68, 393-398.
- 342 Krivovichev, S.V. (2013) Structural complexity of minerals: information storage and processing in
- 343 the mineral world. Mineralogical Magazine, 77, 275-326.

- 344 Krivovichev, S.V. (2014) Which inorganic structures are the most complex? Angewandte Chemie
- 345 International Edition, 53, 654-661.
- Krivovichev, S.V., Mentre, O., Siidra, O.I., Colmont, M., and Filatov, S.K. (2013) Anion-centered
 tetrahedra in inorganic compounds. Chemical Reviews, 113, 6459-6535.
- 348 Krivovichev, V.G., Charykova, M.V., and Krivovichev, S.V. (2018a) The concept of mineral
- 349 systems and its application to the study of mineral diversity and evolution. European Journal
- 350 of Mineralogy, 30, 219-230.
- 351 Krivovichev, S.V., Krivovichev, V.G., and Hazen, R.M. (2018b) Structural and chemical
- 352 complexity of minerals: correlations and time evolution. European Journal of Mineralogy, 30,
- 353 231-236.
- Lengauer, C.L., Giester, G., and Kirchner, E. (2004) Leogangite, Cu₁₀(AsO₄)₄(SO₄)(OH)₆·8H₂O, a
- new mineral from the Leogang mining district, Salzburg province, Austria. Mineralogy and
 Petrology, 81, 187-201.
- 357 Ma, Z., Li, G., Chukanov, N.V., Poirier, G., and Shi, N. (2014) Tangdanite, a new mineral species
- from the Yunnan Province, China and the discreditation of 'clinotyrolite'. Mineralogical
 Magazine, 78, 559-569.
- 360 Majzlan, J., Lazic, B., Armbruster, T., Johnson, M.B., White, M.A., Fisher, R.A., Plášil, J., Loun, J.,
- 361 Škoda, R., and Novák, M. (2012) Crystal structure, thermodynamic properties, and paragenesis
- 362 of bukovskýite, Fe₂(AsO₄)(SO₄)(OH)·9H₂O. Journal of Mineralogical and Petrological
- 363 Sciences, 107, 133-148.
- 364 Mills, S.J., Kampf, A.R., McDonald, A.M., Bindi, L., Christy, A.G., Kolitsch, U., and Favreau, G.
- 365 (2013) The crystal structure of parnauite: a copper arsenate–sulphate with translational
- disorder of structural rods. European Journal of Mineralogy, 25, 693-704.
- 367 Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. John
- 368 Wiley & Sons, NY.

- 369 Pekov, I.V., Chukanov, N.V., Yapaskurt, V.O., Rusakov, V.S., Belakovskiy, D.I., Turchkova, A.G.,
- 370 Voudouris, P., Magganas, A., and Katerinopoulos, A. (2014) Hilarionite,
- 371 $Fe^{3+}_2(SO_4)(AsO_4)(OH) \cdot 6H_2O$, a new supergene mineral from Lavrion, Greece. Geology of Ore
- 372 Deposits, 56(7) (Special Issue: Zapiski of the Russian Mineralogical Society), 567-575.
- 373 Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G., and
- Pushcharovsky, D.Y. (2015). New arsenate minerals from the Arsenatnaya fumarole,
- 375 Tolbachik volcano, Kamchatka, Russia. III. Popovite, Cu₅O₂(AsO₄)₂. Mineralogical
- 376 Magazine, 79, 133-143.
- 377 Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O.,
- 378 Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G., and Sidorov, E.G. (2018a) Fumarolic
- 379 arsenates a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305-
- 380 322.
- 381 Pekov, I.V., Zubkova, N.V., and Pushcharovsky, D.Yu. (2018b) Copper minerals from volcanic
- 382 exhalations a unique family of natural compounds: crystal chemical review. Acta
- 383 Crystallographica, B74, 502-518.
- 384 Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Britvin, S.N., Agakhanov, A.A.,
- 385 Turchkova, A.G., Sidorov, E.G., and Pushcharovsky D.Y. (2019) Nishanbaevite, IMA 2019-
- 386 012. CNMNC Newsletter No. 50, October 2019, page 616. Mineralogical Magazine, 31, 615 387 620.
- Sabelli, C. (1980) The crystal structure of chalcophyllite. Zeitschrift für Kristallographie, 151, 129140.
- 390 Sarp H., Černy R., Puscharovsky D.Yu., Schouwink P., Teyssier J., Williams P.A., Babalik H., Mari
- 391 G. (2014) La barrotite, Cu₉Al(HSiO₄)₂[(SO₄)(HAsO₄)_{0.5}](OH)₁₂·8H₂O, un nouveau minéral de
- 392 la mine de Roua (Alpes-Maritimes, France). Riviera Scientifique, 98, 3-22.

- 393 Scacchi, A. (1873) Nuove specie di solfati di rame (Dolerofano). Note Mineralogiche, Memoria
- 394 Prima, Napoli, Stamperia del Fibreno, pp. 22-29.
- 395 Severgin, V. (1791) Elementary Foundations of Natural History, 2 vols. Imperial Typography, St.
- 396Petersburg (in Russian).
- 397 Severgin, V. (1798) Elementary Foundations of Mineralogy, or Natural History of Minerals, 2 vols.
- 398 Imperial Typography, St. Petersburg (in Russian).
- 399 Severgin, V. (1807) Detailed Mineralogical Dictionary, 2 vols. Imperial Academy of Sciences
- 400 Publishing, St. Petersburg (in Russian).
- 401 Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3-
- 402

8.

- 403 Siidra, O.I., Vladimirova, V.A., Tsirlin, A.A., Chukanov, N.V., and Ugolkov, V.L. (2020)
- 404 $Cu_9O_2(VO_4)_4Cl_2$, the first copper oxychloride vanadate: mineralogically inspired synthesis and 405 magnetic behavior. Inorganic Chemistry, 59, 2136–2143.
- 406 Sima, I. (1998) Mallestigit, Pb₃Sb(SO₄)(AsO₄)(OH)₆·3H₂O, ein neues Mineral von einer Halde des
- 407 ehemaligen Cu-Pb-Zn-Bergbaues NW des Mallestiger Mittagskogels in den Westkarawanken,
- 408 Kärnten, Österreich. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 143,
- 409 225-227.
- 410 Volkova, L.M. and Marinin, D.V. (2018) Antiferromagnetic spin-frustrated layers of corner-sharing
- 411 Cu₄ tetrahedra on the kagome lattice in volcanic minerals $Cu_5O_2(VO_4)_2(CuCl)$,
- 412 NaCu₅O₂(SeO₃)₂Cl₃, and K₂Cu₅Cl₈(OH)₄•2H₂O. Journal of Physics, Condensed Matter, 30,
- 413 425801.
- 414 Winiarski, M.J., Tran, T.T., Chamorro, J.R., and McQueen, T.M. (2019) (CsX)Cu₅O₂(PO₄)₂ (X = Cl,
- 415 Br, I): a family of $Cu^{2+} S = 1/2$ Compounds with capped-Kagomé networks composed of OCu₄
- 416 units. Inorganic Chemistry, 58, 4328–4336.

- 417 Zubkova, N.V., Pushcharovsky, D.Yu., Giester, G., Tillmanns, E., Pekov, I.V., and Kleimenov D.A.
- 418 (2002) The crystal structure of arsentsumebite, Pb₂Cu[(As,S)O₄]₂(OH). Mineralogy and
- 419 Petrology, 75, 79-88.

100	1.1.	
420	Figure	cantions
120	IIguit	captions

421

422 Figure 1. Typical crystal group (a) and crystal crust (b) of vasilseverginite. SEM (SE) images.

423

- 424 Figure 2. Bright green aggregares of vasilseverginite on basalt scoria with iron-black tenorite and
- 425 white sanidine (a) and on iron-black tenorite crystal crust with light blue stranskiite (b). Photo: I.V.
- 426 Pekov and A.V. Kasatkin.

427

428 Figure 3. The Raman spectrum of vasilseverginite (only region with Raman bands is shown).

429

- 430 Figure 4. Coordination polyhedra of Cu^{2+} cations in the crystal structure of vasilseverginite.
- 431 Legend: Cu atoms = green; O atoms = red. Displacement ellipsoids are drawn at 75% probability

432 level. Cu–O bonds longer than 2.078 Å are shown as thin grey lines.

- 433
- 434 **Figure 5.** Crystal structure of vasilseverginite shown with cation-centered coordination polyhedra

435 (a) and as a combination of $(SO_4)^{2-}$ and $(AsO_4)^{3-}$ tetrahedra and $[O_4Cu_9]^{10+}$ double layers consisting 436 of edge- and corner-sharing (OCu₄) tetrahedra (b).

437

Figure 6. The $[O_4Cu_9]^{10+}$ double layer in the crystal structure of vasilseverginite surrounded by (SO₄)²⁻ and (AsO₄)³⁻ tetrahedra (a) and the same layer shown as ball-and-stick (b) and polyhedral (c) representations. The dotted line in (c) outlines the contour of the tetramer of edge- and cornersharing tetrahedra.

- 443 Figure 7. The $[O_2Cu_4]^{4+}$ sheet in dolerophanite (a) and the arrangement of the $[O_2Cu_5]^{6+}$ chains in
- 444 popovite (b). The dotted lines outline the contours of the tetramers of edge- and corner-sharing
- tetrahedra.
- 446
- 447

Figure 1b

Figure 2a

Figure 2b

Figure 3

Figure 6

488 Tables

489

490 **Table 1.** Chemical composition (wt%) of vasilseverginite

491

Constituent	Mean	Range	Standard	Reference Material
Constituent	Ivican	Runge	Deviation	Reference Waterfai
CuO	64.03	63.53–64.52	0.44	CuFeS ₂
ZnO	0.79	0.09–1.30	0.61	ZnS
Fe ₂ O ₃ *	0.25	0.00-0.60	0.25	FeS
P_2O_5	0.05	0.00-0.14	0.05	GaP
As ₂ O ₅	20.83	20.13-21.48	0.56	FeAsS
SO ₃	14.92	13.14–15.83	1.03	SrSO ₄
Total	100.87			

492

493 * Fe is considered as trivalent, owing to the extremely oxidizing conditions in the Arsenatnaya

494 fumarole (Pekov et al. 2018a).

495

496

497 **Table 2.** Selected bond lengths (Å) for vasilseverginite

Bond	Distance	Bond	Distance
Cu1–O1	2.039(3)	S-O1	1.490(3)
Cu1–O4	2.295(3)	S-O2	1.501(3)
Cu1–O8	1.986(3)	S-O3	1.504(3)
Cu1–O9	1.982(3)	S-O4	1.453(3)
Cu1-O10	1.941(3)	<s-0></s-0>	1.487
<cu1-o></cu1-o>	2.049	As-O5	1.708(3)
Cu2–O3	2.071(3)	As-O6	1.702(3)
Cu2–O5	1.971(3)	As-O7	1.685(3)

Cu2-O6	1.975(3)	As-O8	1.668(3)
Cu2-O9	1.901(3)	<as-0></as-0>	1.691
Cu2–O4	2.440(3)		
<cu2-o></cu2-o>	2.072	O9–Cu1	1.982(3)
Cu3–O5	1.936(3)	O9–Cu2	1.901(3)
Cu3-O6	2.027(3)	O9–Cu3	2.034(3)
Cu3-O9	2.034(3)	O9–Cu4	1.994(3)
Cu3-O10	1.886(3)	<09-Cu>	1.978
Cu3–O4	2.530(3)		
Cu3–O8	2.641(3)		
<cu3-o></cu3-o>	2.083	O10-Cu1	1.941(3)
Cu4–O2	1.965(3)	O10-Cu3	1.886(3)
Cu4–O3	2.390(3)	O10-Cu4	1.900(3)
Cu4–O7	2.035(3)	O10-Cu5	1.914(3)
Cu4–O9	1.994(3)	<010-Cu>	1.910
Cu4-O10	1.900(3)		
<cu4-o></cu4-o>	2.096		
Cu5–O1 \times 2	2.390(3)		
Cu5–O7 \times 2	2.031(3)		
Cu5–O10 \times 2	1.914(3)		
<cu5-o></cu5-o>	2.112		

$I_{\rm obs}$	$d_{\rm obs}$	$I_{calc}*$	d_{calc} **	h k l
19	7.50	13	7.515	10-1
41	7.13	40	7.144	01-1
70	5.99	31, 44	6.023, 5.990	110, 11-1
100	5.260	100	5.275	101
46	4.642	41	4.657	111
21	4.560	20	4.571	01-2
2	4.465	2	4.468	02-1
16	4.134	8,6	4.150, 4.139	120, 12-1
18	3.780	19	3.791	200
5	3.651	3	3.655	10-3
14	3.565	14, 1	3.572, 3.541	02-2, 210
7	3.502	7	3.514	21-2
28	3.451	25	3.461	112
12	3.238	12	3.244	01-3
31	3.140	29, 4	3.148, 3.140	03-1, 22-1
11	3.049	4	3.051	211
15	3.021	13, 3, 2, 1	3.030, 3.026, 3.017, 3.012	130, 13-1, 21-3, 220
18	2.959	20	2.962	122
35	2.821	23	2.823	02-3
38	2.784	36, 25	2.791, 2.782	13-2, 03-2
27	2.668	41, 2, 1	2.675, 2.669, 2.655	113, 22-3, 11-4
18	2.630	30	2.637	202
35	2.597	68, 3	2.604, 2.592	20-4, 31-1
17	2.588	14	2.584	31-2
50	2.556	92, 11	2.563, 2.549	23-1, 212
3	2.498	11, 1	2.505, 2.493	30-3, 01-4
3	2.475	2, 1	2.482, 2.479	23-2, 040
6	2.438	5,7	2.449, 2.429	310, 31-3
5	2.420	2	2.424	123

500 **Table 3.** Powder X-ray diffraction data (*d* in Å) for vasilseverginite

18	2.374	32, 14	2.381, 2.362	03-3, 32-1
15	2.353	12, 5	2.355, 3.355	32-2, 14-1
4	2.282	2	2.285	02-4
8	2.239	12, 1	2.244, 2.239	141, 14-2
4	2.207	6	2.217	311
9	2.188	10, 10	2.196, 2.192	10-5, 31-4
3	2.150	7, 5	2.157, 2.144	114, 11-5
5	2.132	8	2.135	213
2	2.108	1	2.112	21-5
9	2.067	8, 2	2.070, 2.067	24-2, 321
5	2.047	2, 1	2.052, 2.046	14-3, 23-4
7	2.022	7, 1, 1	2.028, 2.019, 2.017	40-2, 124, 01-5
6	2.003	6, 4, 2	2.010, 2.008, 2.001	04-3, 330, 223
3	1.973	5, 3	1.979, 1.964	30-5, 312
2	1.956	1, 1, 1	1.961, 1.956, 1.952	241, 41-1, 243
3	1.936	5	1.940	31-5
3	1.914	7	1.918	15-1
2	1.897	2	1.902	02-5
3	1.870	1, 4	1.874, 1.862	331, 410
12	1.853	19, 3, 1, 2, 1	1.858, 1.857, 1.851, 1.851, 1.850	322, 151, 05-2, 42-1, 143
3	1.832	1, 3	1.838, 1.830	32-5, 105
3	1.825	1, 2	1.824, 1.822	233, 34-1
5	1.804	4, 4	1.809, 1.806	23-5, 242
7	1.784	6	1.786	04-4
3	1.759	7, 2	1.762, 1.758	34-3, 250
5	1.713	1,6	1.717, 1.717	125, 006
3	1.696	2, 6	1.698, 1.692	33-5, 01-6
4	1.671	2	1.676	341
5	1.651	10	1.653	060
2	1.628	3, 2, 1	1.632, 1.629, 1.622	06-1, 24-5, 02-6
2	1.610	2	1.612	234
3	1.593	3	1.595	51-3

6	1.569	8, 1	1.571, 1.570	05-4, 44-2			
8	1.553	11, 4, 3, 1, 2	1.559, 1.555, 1.555, 1.554, 1.552	342, 35-3, 51-4, 21-7,			
				333			
5	1.545	7	1.546	34-5			
12	1.534	13, 14, 1, 6	1.537, 1.537, 1.536, 1.533	43-5, 33-6, 52-3, 11-7			
7	1.494	11	1.495	351			
4	1.486	5, 2	1.487, 1.487	126, 35-4			
3	1.464	5	1.465	26-3			
3	1.432	6, 1	1.434, 1.432	343, 235			
7	1.417	7, 2, 6	1.421, 1.417, 1.414	23-7, 16-4, 511			
5	1.410	3, 1	1.411, 1.408	02-7, 36-1			
6	1.397	1, 3, 2, 1, 8	1.401, 1.401, 1.399, 1.396, 1.396	35-5, 262, 51-6, 423, 26-			
				4			
3	1.376	3, 1, 2	1.378, 1.378, 1.375	530, 20-8, 305			
2	1.357	3, 3	1.359, 1.356	52-6, 54-2			
2	1.353	2	1.354	54-3			
3	1.341	4, 1, 1, 2, 1	1.345, 1.344, 1.344, 1.343, 1.339	155, 03-7, 25-6, 60-2, 11-			
				8			
2	1.323	4, 1, 2, 1	1.326, 1.324, 1.323, 1.321	61-4, 164, 172, 16-5			
2	1.315	3, 1	1.316, 1.313	50-7, 26-5			
1	1.297	2	1.298	05-6			
1	1.294	3	1.293	27-3			
2	1.287	3, 2	1.289, 1.285	06-5, 54-5			

501 *For the calculated pattern, only reflections with intensities ≥1 are given; **for the unit-cell
502 parameters calculated from single-crystal data. The strongest observed reflections are marked in

503 bold type.

- 505
- 506

507	
7 00	

508 509	Table 4.	Information-based chemical and structural complexity parameters for dolerophanite,
510		popovite and vasilseverginite [v in atoms per cell; I_G in bit per atom; $I_{G,total}$ in bit per
511		formula (chem) or per cell (str)]

512

Mineral	Formula	Sp.	Chemical complexity		Structural complexity			
		gr.	^{chem} V	$^{\rm chem}I_G$	$^{\rm chem}I_{G,total}$	${}^{\rm str} v$	${}^{\rm str}I_G$	${}^{\rm str}I_{G,total}$
Dolerophanite	Cu ₂ O(SO ₄)	<i>C</i> 2/ <i>m</i>	8	1.299	10.392	16	2.750	44.000
Popovite	$Cu_5O_2(AsO_4)_2$	<i>P</i> -1	17	1.299	22.083	17	3.146	53.487
Vasilseverginite	Cu ₉ O ₄ (AsO ₄) ₂ (SO ₄) ₂	$P2_{1}/n$	33	1.439	47.498	66	4.075	268.930

513