1	Raman Spectroscopy Study of Manganese Oxides – Layer StructuresRevision 1
2	
3	Jeffrey E. Post ¹ , David McKeown ² , Peter J. Heaney ³
4	
5	¹ Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution,
6	Washington, DC, 20013-7012, USA; ² Vitreous State Laboratory, The Catholic University of
7	America, Washington, DC 20064, USA; ³ Department of Geosciences, Penn State University, 540
8	Deike Building, University Park, PA 16802, USA
9	
10	*Corresponding author: Jeffrey Post, postj@si.edu
11	
12	
13	

Page 2

14 Abstract

Raman spectra were collected for an extensive set of well-characterized layer-structure 15 Mn oxide mineral species (phyllomanganates) employing a range of data collection conditions. 16 We show that the application of a variety of laser wavelengths, such as 785, 633, and 532 nm, at 17 18 low power levels $(30 - 500 \text{ }\mu\text{W})$ in conjunction with the comprehensive database of standard spectra presented here, makes it possible to distinguish and identify the various phyllomanganate 19 minerals. The Raman mode relative intensities can vary significantly as a function of crystal 20 21 orientation relative to the incident laser light polarization direction as well as incident laser light wavelength. Consequently, phase identification success is enhanced when using a standards 22 database that includes multiple spectra collected for different crystal orientations and with 23 different laser light wavelengths. The position of the highest frequency Raman mode near 630-24 665 cm^{-1} shows a strong linear correlation with the fraction of Mn³⁺ in the octahedral Mn sites. 25 With the comprehensive Raman database of well-characterized Mn oxide standards provided 26 here (and available online as supplemental materials), and use of appropriate data collection 27 conditions, micro-Raman is a powerful tool for identification and characterization of biotic and 28 29 abiotic Mn oxide phases from diverse natural settings, including on other planets, as well as for laboratory and industrial materials. 30

31

32 Keywords: Manganese Oxide, Raman Spectroscopy, Phyllomanganates, Birnessite

33

34

35

Page 3

2	^
_ ≺	n
9	v

INTRODUCTION

37 Layer-structure Mn oxide minerals, also called phyllomanganates, are found in a wide variety of geological settings and are important constituents in many soils and sediments (Post, 38 1999). These phases can precipitate from solution as the result of macro or microscale changes 39 in redox conditions, pH, or composition; additionally, natural and laboratory Mn oxides that 40 form by biologically mediated processes are predominantly phyllomanganates (McKeown and 41 Post 2001; Tebo et al. 2004; Santelli et al. 2011). Phyllomanganates having a birnessite-like 42 structure readily participate in redox and cation-exchange reactions and exhibit high adsorption 43 capacities for a variety of organic pollutants and toxic metallic ions (Le Goff et al. 1996; 44 45 Manning et al. 2002; Feng et al. 2007; Lopano et al. 2009; Kwon et al. 2013; Fleeger et al. 2013; Shumlas et al., 2016; Kong et al. 2019). They also have been identified as promising 46 heterogeneous compounds for water-oxidation catalysis (Sauer and Yachandra, 2002; Jiao and 47 Frei, 2010; Wiechen et al., 2012; Frey et al.; 2014; Feng et al., 2017). Phyllomanganates are 48 critical battery materials and are being investigated for their applications as catalysts and cation-49 exchange agents, as well as for their potential to mitigate hazardous materials in the environment 50 (Ghodbane et al. 2009; Li et al. 2012; Nam et al. 2015). 51

Phyllomanganates are constructed of sheets of MnO₆ octahedra. The Mn is predominantly Mn⁴⁺ but can be substituted by Mn³⁺ and vacancies, with the resulting layer charges being compensated by various interlayer cations in the different phases (Fig. 1). Most phyllomanganates also have interlayer water molecules. Natural samples commonly are finegrained and poorly crystalline, and the particular phyllomanganate mineral phases are difficult to distinguish visually in the field or in hand specimens. They also can occur as fine-scale intergrowths of two or more phases that readily alter from one to another. In many cases, X-ray

Page 4

59	diffraction (XRD) of these phases also fails to identify them, since the XRD patterns often
60	exhibit broad peaks from multiple disordered phases, making basic phase identification difficult
61	or impossible (Ling et al. 2020). Consequently, many researchers employ other methods in
62	addition to XRD to characterize natural phyllomanganates, such as X-ray absorption
63	spectroscopy (XAS), Fourier transform infrared spectroscopy (FTIR), transmission electron
64	microscopy (TEM), and combined energy-dispersive X-ray spectroscopy and scanning electron
65	microscopy (EDS-SEM). These techniques also have experimental limitations and requirements,
66	such as special sample preparation methods, large sample sizes, or synchrotron X-ray sources.
67	Due to the difficulties of working with complex and typically poorly crystalline natural
67 68	Due to the difficulties of working with complex and typically poorly crystalline natural phyllomanganate samples, many researchers use synthetic phases that are presumed to be
68	phyllomanganate samples, many researchers use synthetic phases that are presumed to be
68 69	phyllomanganate samples, many researchers use synthetic phases that are presumed to be suitable analogs of the minerals. Offsetting the advantages of working with pure, relatively well-
68 69 70	phyllomanganate samples, many researchers use synthetic phases that are presumed to be suitable analogs of the minerals. Offsetting the advantages of working with pure, relatively well- crystalline laboratory-produced samples is the difficulty of assessing their relevancy to natural
68 69 70 71	phyllomanganate samples, many researchers use synthetic phases that are presumed to be suitable analogs of the minerals. Offsetting the advantages of working with pure, relatively well- crystalline laboratory-produced samples is the difficulty of assessing their relevancy to natural phases or systems. Additionally, complexities and confusion introduced using multiple synthesis

In a recent paper, we demonstrated the advantages of using micro-Raman spectroscopy to 74 routinely identify and characterize tunnel-structure Mn oxide phases for a variety of natural and 75 synthetic samples (Post et al. 2020). Here we extend that work to the phyllomanganates. During 76 the past few decades, numerous reports have described applications of Raman spectroscopy to 77 Mn oxides, primarily as an identification tool, but also for investigating changes in response to 78 certain redox, cation-exchange, and other reactions (Bernard et al. 1993). There are several 79 80 studies that have used Raman spectroscopy to study phyllomanganates (e.g. Bernard et al. 1993; Kim and Stair 2004; Julien et al. 2003; Julien et al. 2004; Hsu et al. 2011; Burlet and Vanbrabant 81

Page 5

2015; Yang et al. 2019; Boumaiza et al. 2019; and Bernardini et al. 2019) with various degrees 82 of success. Such work has been invigorated in part by advancements in micro-Raman techniques 83 that have resulted in greater availability of in-house Raman systems. Modern systems typically 84 offer multiple laser options with high-sensitivity detectors that provide a range of data collection 85 conditions that can be optimized for particular samples. Additionally, Raman spectrometers 86 87 fitted with high quality microscopes permit rapid *in situ* interrogation of samples with spatial resolution approaching one micron or less. Micro-Raman systems have the potential to provide 88 phase identification and structural information quickly and easily from discrete areas on natural 89 90 or synthetic Mn oxide samples. In particular, the combination of Raman microscopy and analytical SEM provides unparalleled insights into the micro-mineralogy and -chemistry of 91 92 complex samples.

Our study of the tunnel structure Mn oxides (Post et al. 2020) confirmed the importance of using low laser powers (e.g. < 0.35 mW) and multiple laser wavelengths (e.g. 532, 633, and 785 nm) in order to obtain the most useful Raman spectra for phase identification and for elucidating structure information. These considerations are critical for the large tunnel-structure Mn oxides, such as todorokite and romanechite, but are equally so for the phyllomanganates, and in particular, for the birnessite-like phases that are important in many natural systems.

In the work presented here, we provide results from the most comprehensive-to-date Raman spectroscopy study of layer-structure Mn oxide phases. Raman spectra were collected from a large number and variety of natural and synthetic samples, drawing from the Smithsonian Institution mineral collection, and additional samples from various sources, which had been characterized in detail as part of our long-term research program on Mn oxides. Raman spectra were collected using multiple Raman systems with a range of laser wavelengths in order to

105	provide comparisons and to determine optimal data collection conditions. Additionally, we
106	present representative spectra from different specimens, localities, and crystal orientations. A
107	major goal of this study is to provide a spectral database for identifying the various layer-
108	structure Mn oxide mineral phases, with an emphasis on natural samples. Finally, we explore
109	spectral trends and details for some specific phases that provide insights about composition,
110	symmetry, and in some circumstances, Mn oxidation states.

- 111
- 112

EXPERIMENTAL METHODS

113 Specimens

The layer-structure Mn oxide mineral samples for which spectra are presented here are 114 115 listed in Table 1, including information about individual compositions. Structure symmetry and factor group analyses (Fateley et al. 1972) for the various phases are presented in Table 2. A 116 variety of samples were included to represent variations in composition, structural disorder, and 117 locality. All samples were checked by powder X-ray diffraction (XRD) to confirm phase 118 identification and purity. Energy-dispersive X-ray spectroscopy (EDS) analyses and 119 backscattered electron imaging were used to determine composition and assess chemical 120 homogeneity. Where possible, single crystals, or crystal fragments, were selected for Raman 121 measurements; fine-grained samples were lightly crushed, or in some cases, prepared as polished 122 123 sections that were also used for chemical analyses. For some Raman measurements, loose sample grains were placed on glass slides without adhesive, which can introduce strong 124 luminescence. The synthetic triclinic Na-birnessites included the same material studied by Post 125 126 and Veblen (1990) as well as samples more recently synthesized and described in Ling et al. (2018). Synthetic birnessites with different compositions were prepared by cation-exchange, 127

Page 7

following the procedure of Golden et al. (1986). The hexagonal birnessite samples wereprepared by reacting Na-birnessite with a pH 2 HCl solution.

130 X-ray diffraction (XRD)

Samples were characterized by powder XRD using a Rigaku II D/MAX-RAPID micro-131 diffractometer (Department of Mineral Sciences, Smithsonian Institution) equipped with a 132 graphite monochromator and a curved image plate area detector. A Mo tube (50 kV, 40 mA) was 133 134 used as the X-ray source with a 0.3 mm collimator. Small (~ 1 mm) balls of powdered samples (with added super-glue as needed), or fragments of fine-grained polycrystalline materials, were 135 mounted on tips of glass fibers. During exposure to X-rays, the sample was rotated at 1°/min on 136 137 phi to minimize the effects of sample heterogeneity and preferred orientation. The full set of Debye-Scherrer diffraction rings from the imaging plate data were integrated using Rigaku-138 provided software, and interpretation of XRD patterns was performed using the JADE 9 software 139 package. Phase identifications were confirmed using the ICDD PDF-4 Minerals database and an 140 in-house collection of well-characterized Mn oxide mineral standards. Representative XRD 141 patterns are deposited as supplementary data with American Mineralogist. 142

143

144 Scanning electron microscopy

Uncoated samples (which then could also be used for Raman analysis) were mounted on
carbon tape adhered to an aluminum stub and analyzed with scanning electron microscopy
(SEM) using a field emission source (FEI Apreo) equipped with an EDAX Octane Silicon Drift
EDS detector (Department of Mineral Sciences, Smithsonian Institution). Backscattered electron
(BSE) images were collected, and EDS analysis was used to determine the chemical composition
and homogeneity of the Mn oxide samples (with beam current of 1.6 nA). The images were

collected and analyses performed in low vacuum (0.31 torr) at an accelerating voltage of 15 kV.
The data were processed using the Noran System Six 3 (NSS 3) software.

153

154 Raman spectroscopy

The reproducibility of the Raman spectra and the optimal data collection conditions were 155 evaluated by using four different micro-Raman systems at 25 °C in back-scattering geometry 156 using a single-grating spectrograph with notch filters. Two HORIBA LabRam HR Evolution 157 systems were employed (Department of Mineral Sciences, Smithsonian Institution; and Materials 158 159 Characterization Laboratory, Penn State University), both equipped with Synapse backilluminated deep depleted, Peltier cooled 1024 x 128 element CCD cameras. The spectra 160 presented in this paper were collected using 532, 633 (Penn State), and 785 nm solid state lasers 161 with 300 and 600 gr/mm spectrograph gratings, respectively, for spectral resolutions near 4 cm^{-1} . 162 An Olympus 100x or 50x objective was used to focus the incident laser light onto the sample. 163 The characteristic 520 cm⁻¹ line from a Si wafer standard was used for Raman frequency 164 calibration. The laser power at the sample was measured using a Thorlabs power meter 165 (PM100USB) for the various combinations of microscope objectives and lasers. Typically, 166 spectra were collected using laser powers of 540 µW or less for the 532 nm laser and 350 µW or 167 less for the 633 and 785 nm lasers. Some phases, e.g. chalcophanite and lithiophorite, did not 168 exhibit obvious spectral changes at laser powers up to 2 mW, but birnessite-like phases showed 169 170 evidence of sample degradation or phase transformation at laser powers above $\sim 500 \ \mu W$ at the sample. For the 532 nm laser, spectra for birnessite-like phases exhibited changes at powers as 171 low as 30 μ W. The laser power measurements are intensities of the focused incident laser beam 172

Page 9

173	at the sample, not power densities, which vary depending upon the laser spot size, determined by
174	the objective used, laser focus, and certain other instrumental and sample surface characteristics.
175	The second system (Vitreous State Laboratory, Catholic University) consists of a WITec
176	alpha-300 RA+ micro-Raman system, where 633 nm solid state diode and 532 nm DPSS lasers
177	were used with a 600 gr/mm grating to disperse the Raman scattered light on to a 1024 x 128
178	element Peltier cooled CCD camera (Andor Technology Model DV401A-BVF-352). 50x and
179	100x Zeiss objectives were used producing a \sim 1 μ m laser spot size on the sample. The spectra
180	were frequency calibrated to the Si 520 cm ⁻¹ mode. The spectral resolution of the data produced
181	from these system configurations is near 6 cm ⁻¹ . Spectra for birnessite-like phases showed phase
182	alteration at powers as low as 150 μ W using 633 nm laser light.
183	A third system (Vitreous State Laboratory, Catholic University) consists of a Melles-Griot
184	Model 45 Ar^+ laser that provided 457.9 and 514.5 nm wavelength light that was guided through a
185	long working distance Mitutoyo 10x microscope objective and focused to a 10 μ m diameter spot
186	on the sample. The scattered light proceeded through holographic notch and super-notch filters
187	(Kaiser Optical Systems), which reduced the Rayleigh (or elastically) scattered light intensity by
188	ten optical densities. The Horiba HR460 spectrograph used a 1200 gr/mm grating (Richardson
189	Grating Laboratory) to disperse the Stokes scattered light from the sample on to a 2048 x 512
190	element Peltier cooled CCD detector (Andor Technology Model DU440BV). Due to the
191	relatively broad spectral features for most samples measured, the spectrograph incident slits were
192	set to 6 cm ⁻¹ spectral resolution. The spectrograph was frequency calibrated using CCl ₄ ,
193	such that recorded Raman mode frequencies for all spectra are accurate to within $\pm 1 \text{ cm}^{-1}$ of the
194	actual values. The laser power for this system was minimized to <0.1 mW at the sample to avoid
195	sample heating and alteration.

Page 10

For each sample, initial data collection was performed using minimal laser power, e.g. 30 196 μ W; the power level was gradually increased until noticeable changes occurred to the spectra, 197 such as variations in peak intensities, the appearance of new peaks, or broad band luminescence 198 with evidence of sample darkening or hole formation at the incident laser light position. Where 199 possible, relatively flat and smooth sample surfaces, as ascertained at 100x or 50x magnification, 200 were selected for data collection, using 5- to 60-second integration times per acquisition, with 201 two to 10 acquisitions per spot to improve signal-to-noise levels in the spectra. Crystal 202 orientation effects were apparent for most layer-structure Mn oxide phases. Phyllomanganate 203 204 crystals typically have a platy morphology and tended to orient preferentially with the Mn octahedral sheets normal to the direction of the laser beam. When possible, spectra were 205 collected with crystals oriented such that the octahedral sheets were both parallel and 206 perpendicular to the direction of the incident laser light. Polarized spectra were gathered using 207 an analyzer polarizer inserted in the scattered light path. Polarized spectra were labeled VV 208 (vertical-vertical) or VH (vertical-horizontal) to describe collection conditions where the laser 209 light polarization was oriented parallel or perpendicular, respectively, to the polarization 210 direction of the analyzer. For comparison, unpolarized spectra also were collected without an 211 212 analyzer in the scattered light path between the sample and spectrograph.

213

214 Lattice Dynamics Calculations

In order to provide guidance for some general vibrational assignments to the observed Raman features, preliminary normal coordinate valence-force lattice dynamics (LD) calculations at zero wavevector (Dowty 1987 and 2007) were performed for several of the phyllomanganate structures. The models included Mn-O stretch as well as O-Mn-O bend force constants to

Page 11

219	simulate the various bonding environments within the linked MnO ₆ octahedra. Interlayer cation-
220	oxygen stretch force constants were also included. The force constants were allowed to vary so
221	that the calculated mode frequencies best matched the set of observed mode frequencies from the
222	Raman spectra for each phase.
223	Overall, LD calculations indicated that Raman-active modes for these Mn-oxides can be
224	divided into two frequency ranges. Consistent with previous interpretations by Julien et al.
225	(2003, 2004), modes above 500 cm ⁻¹ , are dominated by MnO_6 octahedral deformations,
226	including O-Mn-O bend, Mn-O stretch, as well as expansion and compression of the octahedra in
227	the layer stacking direction, and shear motions of layers of O atoms that are parallel to the MnO_6
228	layers. In structures with higher symmetry Mn-sites, e.g. Mn on a symmetry center, the internal
229	Mn octahedral modes involve O motions, while the Mn atoms are stationary. Modes at
230	frequencies less than 500 cm ⁻¹ include contributions from displacements of interlayer cations,
231	such as Zn^{2+} in chalcophanite and Na^{+} in birnessite, and cation-water and water-water
232	interactions.
233	
234 235	RESULTS
235	Chalcophanite Group
230	Chalcophanite (ZnMn ₃ O ₇ • 3H ₂ O; Space Group <i>R</i> -3) is constructed of sheets of Mn ⁴⁺ -O
238	octahedra with one out of seven octahedra vacant. Single-crystal X-ray diffraction studies (Post
239	and Appleman 1988) indicate that the vacancies are fully ordered within the octahedral sheets.
240	Zn^{2+} cations sit above and below the vacancies and are in octahedral coordination with three O
241	atoms from the octahedral sheet and three O atoms from the interlayer water molecules (Fig. 1).
242	Jianshuiite and ernienickelite are isostructural with chalcophanite, but have Mg ²⁺ and Ni ²⁺ ,

Page 12

respectively, as the dominant interlayer cations. Chalcophanite group minerals commonly occuras euhedral platy crystals.

Chalcophanite typically gives strong Raman features, especially for 532 and 633 nm laser 245 light that are consistent for laser powers less than ~0.5 mW. Chalcophanite spectra are highly 246 sensitive to laser light polarization, especially the Mn-O vibrational modes near 670 cm⁻¹ that are 247 intense in parallel polarized light but almost absent in the crossed polarized spectrum (Fig. 2). 248 Similar polarization behavior for these modes is also observed for other phyllomanganates. By 249 contrast, there are only small intensity differences for analogous peaks in crossed versus parallel 250 251 polarized spectra for the large tunnel structure phases such as todorokite and romanechite (Post et al. 2020). Raman spectra for chalcophanite using 532, 633 and 785 nm lasers are similar (Fig. 252 3). The 670 cm⁻¹ mode for chalcophanite has the greatest frequency of any of the layer Mn 253 254 oxides, presumably because all the Mn is in the 4+ valence state, which imposes the shortest possible average Mn-O distance, and correspondingly the highest frequency vibrational motions. 255 As discussed below, substitution of Mn^{4+} by the larger Mn^{3+} , with its attendant Jahn-Teller 256 distortions, shifts the corresponding peaks to lower frequencies and increases the number of 257 internal MnO₆ modes. 258

The Raman spectra for chalcophanite, jianshuiite, and ernienickelite are similar, but some variations, e.g. extra peaks near 533 and 590 cm⁻¹, suggest some fundamental differences in the Ni-bearing ernienickelite (Fig. 4). A detailed structure refinement has not been reported for ernienickelite. Spectra collected from chalcophanite with the laser light polarization direction parallel versus perpendicular to the octahedral sheets (Fig. 5a) show modest variations in intensities of several modes. Spectra collected with the laser polarization perpendicular to the layers for chalcophanite and ernienickelite show modes at ~3320 and 3390 cm⁻¹ (Fig. 5b) that

Page 13

266	correspond to OH stretch vibrations from the interlayer water molecules; these modes were
267	absent in spectra collected with the laser polarization parallel to the octahedral sheets, indicating
268	that the predominant OH stretch motion is perpendicular to the sheets.
269	Lattice dynamic calculations for the chalcophanite structure (Figs. 6a and b) indicate that
270	modes above ~500 cm ⁻¹ are due primarily to internal MnO_6 deformation, as well as expansion
271	and compression of the MnO_6 layers. There are also Zn-O stretch contributions with Zn
272	translating perpendicular to the octahedral layers, but as there are more MnO_6 octahedra than
273	ZnO ₆ octahedra, these modes are dominated by internal MnO ₆ displacements. Modes below 500
274	cm^{-1} arise from mixtures of MnO ₆ deformations and motions involving the interlayer Zn^{2+}
275	cations and water molecules in ZnO_6 octahedra, where three of the coordinating oxygens are
276	from water molecules. The $Zn-H_2O$ stretch and the water motions become more dominant in the
277	lower frequency modes. The lower frequency parallel polarized A_g modes arise from Zn
278	translations perpendicular to the octahedral layers, while lower frequency crossed polarized B_g
279	modes result primarily from Zn translations parallel to the octahedral layers. Not surprisingly,
280	the most obvious differences among the spectra for chalcophanite compared with those for
281	jianshuiite and ernienickelite are in this lower frequency region, presumably related to the
282	different sizes and bonding properties of the Zn^{2+} versus Mg^{2+} and Ni^{2+} interlayer cations,
283	respectively.
284	
285	Ranciéite Group
286	Ranciéite, a Ca-rich phyllomanganate, has been found as an abiotic product in low-

Ranciéite, a Ca-rich phyllomanganate, has been found as an abiotic product in lowtemperature alpine vein deposits and in oxidized zones of Fe and Mn deposits (Ertle et al. 2005).
Recent studies, however, of naturally occurring phyllomanganates from fresh-water

Page 14

289	environments revealed Ca to be the predominant interlayer cation, sometimes associated with
290	Mg, Ba, and/or K (Bargar et al. 2009; Tan et al. 2010; Ling et al. 2020). Furthermore, ranciéite-
291	like structures play critical roles in water-oxidation catalysis and as the oxygen-evolving
292	complex within the enzyme photosystem II (PSII) (Umena et al. 2011; Zhang et al. 2015;
293	Yamaguchi et al. 2017).
294	Ranciéite has a hexagonal structure (P-3), and like chalcophanite consists of sheets of
295	${\rm Mn}^{4+}{\rm O}_6$ octahedra, but with one out of ten (or eleven) octahedra vacant, and Ca ²⁺ and water
296	molecules in the interlayer regions (Kim 1991, Post et al. 2008). X-ray diffraction and selected
297	area electron diffraction patterns show no superstructure reflections, indicating that vacancies are
298	not ordered in the octahedral sheets, presumably because of the relatively fewer vacancies, and
299	therefore less energetic drive to order, compared with chalcophanite. The interlayer cations
300	occupy sites above and below the octahedral vacancies and are predominately Ca ²⁺ in ranciéite
301	and Mn^{2+} in takanelite; other similar sized divalent cations, such as Ba^{2+} , Sr^{2+} , and Mg^{2+} are
302	commonly found in ranciéite and takanelite specimens (Table 1 and Kim 1991). The interlayer
303	cations are coordinated to three octahedral O atoms and three interlayer water O atoms. The
304	interlayer-cation to Mn octahedral site ratio is ~0.2 (compared to 0.33 in chalcophanite), and the
305	total interlayer cation charge is approximately +0.75. The larger sizes of the interlayer cations in
306	ranciéite relative to those in chalcophanite group minerals might limit the numbers of cations that
307	can fit into the interlayer region. The chemical analyses for the ranciéite samples used in this
308	study, as well as Mn and interlayer cation occupancy factors determined by Rietveld refinements
309	(Post et al. 2008), indicate that Mn^{2+} is absent or present in only minor amounts as an interlayer
310	cation. The powder X-ray diffraction patterns and Raman spectra suggest that the ranciéite

Page 15

311	structure is like those of the synthetic Ca-birnessites generated when Na-birnessite is exchanged
312	at low pH and low Ca concentrations (Elmi et al. 2020).

As with chalcophanite, the parallel and crossed polarized spectra of ranciéite (Fig. 7) 313 reveal a strong polarization response, especially for the Ag internal MnO₆ modes near 667 and 314 578 cm⁻¹, which arise from mostly symmetric stretch vibrations that can only effectively scatter 315 light polarized in the same direction as the incident laser beam; hence, these prominent high 316 frequency features nearly disappear in the cross polarized spectrum. Unpolarized ranciéite 317 spectra collected using 532, 633 and 785 nm laser wavelengths are plotted in Figure 8, and for 318 319 several different ranciéite specimens in Figure 9. Not surprisingly, there is a resemblance between the chalcophanite and ranciéite spectra, but the ranciéite peaks generally are broader, 320 presumably because of the lower crystal structure symmetry for ranciéite (P-3 vs. R-3), and the 321 disordered vacancies in the octahedral sheets. Also, modes below 300 cm⁻¹ are weaker or absent 322 for ranciéite, relative to chalcophanite, likely resulting from interlayer cation disorder related to 323 the random Mn site vacancies, and the variety of interlayer cations commonly found in natural 324 samples. Powder XRD patterns for ranciéite samples typically exhibit broad diffraction peaks 325 that also suggest structural disorder. The highest frequency Raman modes observed for various 326 ranciéite specimens (near 667 cm⁻¹) are comparable to those seen in the chalcophanite spectra, 327 suggesting that the Mn is tetravalent; this is consistent with Rietveld refinements (Post et al. 328 2008) showing ranciéite Mn-O bond distances comparable to those reported for chalcophanite 329 330 (Post and Appleman 1988).

Ranciéite structure LD calculations (Fig. 10) include A_g modes at ~665 and 564 cm⁻¹ dominated by expansion - compression motions of the MnO₆ octahedral sheets parallel to the *c*axis, the layer stacking direction, with some Ca²⁺ translation parallel to the *c*-axis. Calculated E_g

modes at 621 and 396 cm⁻¹ arise from MnO₆ octahedral shear within the layer. The lower frequency modes are dominated by interlayer water translations parallel (443 and 508 cm⁻¹) or perpendicular (363, 384, and 420 cm⁻¹) to the layer stacking direction. The calculations do not explain the observed A_g mode near 605 cm⁻¹, nor most observed modes below 400 cm⁻¹ (Fig. 8) that may be due to motions of the interlayer cations (Ca²⁺) near MnO₆ octahedra layer defects or water molecules.

340

341 Birnessite-like Phases

Birnessite was first described by Jones and Milne (1956) as a natural phase discovered in 342 Aberdeenshire, Scotland with a chemical formula of Na_{0.7}Ca_{0.3}Mn₇O₁₄ · 2.8 · H₂O. Subsequently, 343 numerous natural phases with "birnessite-like" structures have been described, including 344 ranciéite (Post et al. 2008), takanelite (Nambu and Tanida 1971; Kim 1991), and lagalyite 345 (Witzke et al. 2017). They commonly occur as fine-grained, poorly crystalline aggregates and 346 coatings, making the studies of their structures and behaviors challenging. Additionally, various 347 synthetic birnessite-like structures containing almost every possible alkali and alkaline earth 348 element, as well as many of the transition metals, have been synthesized (e.g., McKenzie, 1971; 349 Golden et al., 1986) in attempts to elucidate the structural and chemical features of birnessite-like 350 phyllomanganates (e.g., Post and Veblen, 1990; Drits et al., 1997; Silvester et al., 1997; Lanson 351 et al., 2000; Post et al., 2002; Feng et al., 2004; Händel et al., 2013) and their reactivities (e.g., 352 353 (Manceau et al., 2002; Feng et al., 2007; Lopano et al., 2007, 2011; Landrot et al., 2012; Wang et al., 2010; Kwon et al., 2013; Lefkowitz et al., 2013; Yin et al., 2013; Fischel et al., 2015; Hinkle 354 et al., 2016; Zhao et al., 2016; Fischer et al. 2018). Laboratory studies have also demonstrated 355 356 that formation of birnessite-like phases can be initiated, or enhanced, by certain microbes and

fungi (Tebo et al. 2004; Webb et al. 2005; Grangeon et al. 2010; Santelli et al. 2011), and it is
therefore likely that biologically mediated birnessite-like phyllomanganates are important in
natural systems.

The birnessite structure is constructed of stacked layers of nominally Mn⁴⁺O₆ octahedra; 360 substitution of Mn³⁺ or other lower valence cations and vacancies for Mn results in a net negative 361 charge on the octahedral sheets (Fig. 1). The charge is offset by addition of large mono- or 362 divalent cations (e.g. Na^+ , Ba^{2+} , K^+ , Ca^{2+}) into the interlayer region, along with water molecules. 363 Birnessite-like phases with predominantly Mn⁴⁺ exhibit overall hexagonal (trigonal) or near-364 hexagonal symmetry. As the proportion of Mn³⁺ increases, the associated Jahn-Teller distortions 365 lower the symmetry to triclinic (Silvester et al. 1997; Ling et al. 2018). Birnessite-like structures 366 exhibit a characteristic ~7 Å repeat in the layer stacking direction. In buserite phases, a double 367 layer of water molecules between the octahedral sheets expands the layer spacing to ~ 10 Å. 368 Raman spectra collected using a 785 nm laser are shown for triclinic synthetic Na-369 birnessite and hexagonal-birnessite in Figure 11. The octahedral layers in Na-birnessite 370 $[(Na^{+}_{0.29}, Mn^{2+}_{0.02} H^{+}_{0.05}) (Mn^{3+}_{0.38}, Mn^{4+}_{0.62}) O_2 \cdot 0.75H_2O]$ (Post et al. 2002) have ~38% Mn^{3+}_{0.02} 371 (Ilton et al 2016) and no vacancies. H-birnessite has $\sim 20\%$ Mn³⁺ (Ilton et al 2016), mostly in the 372 interlayer region, and ~10% of the Mn octahedra are vacant (Ling et al 2018). The Raman 373 spectra collected for Na-birnessite using 457.9, 633 and 785 nm lasers are plotted in Figure 12a. 374 375 All spectra for birnessite-like phases collected using 532 nm laser light, even with power levels at 0.03 mW, show significant evidence of alteration due to laser heating, presumably related to 376 the higher energy of the shorter wavelength light. Other observations suggest that 785 nm laser 377 light consistently yields reproduceable spectra with no evidence of sample degradation for laser 378 powers below about 0.3 mW. Spectra collected with 457.9 and 633 nm laser light at power 379

levels near 0.1 mW are similar to those for 785 nm (Fig. 12a), with indications of sample
alteration at powers as low as 0.15 mW (Fig. 12b).

LD calculations for Na-birnessite used a simplified higher symmetry C2/m monoclinic 382 structure (the triclinic structure is close to having monoclinic symmetry), due to uncertainties 383 arising from disorder among the H, Na, and O(w) positions. Similar to other phyllomanganates, 384 LD calculations (Fig. 13) indicate that the highest frequency Raman peaks, e.g. the A_g mode at 385 640 cm⁻¹ for Na-birnessite, arise primarily from MnO₆ octahedral expansion and compression 386 motions parallel to the layer stacking direction. The next highest frequency modes, A_g and B_g at 387 ~586 and 566 cm⁻¹, respectively, arise from shear motions of O atoms parallel to the MnO_6 388 layers. At frequencies below 500 cm⁻¹, calculated modes are dominated by translations of the 389 interlayer Na and H₂O. 390

Raman spectra collected from synthetic birnessite-like phases having different interlayer 391 cations are plotted in Figure 14. The spectra are similar at frequencies above 300 cm⁻¹, indicating 392 that the MnO₆ octahedral sheets were not generally affected by the exchanges of the interlayer 393 cations. A notable exception, however, involves the positions of the highest frequency peaks, 394 ranging from 651 cm⁻¹ for Ca-birnessite to 636 cm⁻¹ for K-birnessite. As described below, these 395 disparities likely reflect variations in Mn³⁺ concentration, which in turn depends on the valence 396 397 charges and sizes of the interlayer cations. The most noticeable differences among the various birnessite spectra are in the lower frequency modes, which are governed by interlayer cation 398 motions, as shown by our LD calculations. These modes are most intense for triclinic structures 399 whose interlayer cations occupy positions at or near the midpoint between the MnO₆ layers, e.g. 400 for Na⁺-, K⁺-, Li⁺-, and Ba²⁺-birnessites (Post and Veblen 1990; Lopano et al. 2007). In some 401

Page 19

402	cases, the Raman spectra might reveal the identity of the predominant interlayer cation and its
403	site symmetry; for example, a strong peak near 97 cm ⁻¹ is present only for K-birnessite (Fig. 14).
404	Also, compared with other compositions, K-exchanged birnessite typically showed sharper
405	Raman peaks, suggesting that K^+ is particularly well accommodated by the birnessite structure.
406	
407	Vernadite
408	Vernadite is a poorly crystalline natural Mn oxide phase characterized by a powder XRD
409	pattern with broad peaks at 2.46, 1.42, and rarely at 2.2 Å. It was first described and named by
410	Betekhtin (1940). Vernadite is commonly described as a birnessite that is turbostratically
411	disordered in the layer stacking direction, or a birnessite with crystallites with so few MnO_6
412	layers that powder XRD patterns show no basal reflections (Buser et al. 1954; Bricker 1965;
413	Giovanoli, 1980; Drits et al. 1997; Grangeon, 2012). Chukrov et al. (1987) concluded, however,
414	that birnessite and vernadite are distinct. Chemical analyses of vernadite typically show minor
415	amounts of K, Mg, Ca, Ba, and Fe with 15-25 wt.% water as compared with approximately 12
416	wt.% water in Na-birnessite (Chukrov et al. 1978). Vernadite is found in the oxidized zone of
417	Mn-rich deposits and might be a major phase in ocean Mn nodules and crusts (Chukrov et al.
418	1987). Vernadite often is assumed to be analogous to the synthetic phase δ -MnO ₂ (Villalobos et
419	al. 2003; Grangeon, 2010; Lee et al. 2019), although the term δ -MnO ₂ has been applied very
420	broadly in recent years. Some have suggested that its formation is primarily mediated by biota
421	(Chukrov et al. 1987; Grangeon et al. 2012). Unpolarized and polarized Raman spectra for
422	vernadite from a Pacific Ocean crust (Table 1) contain a few broad peaks consistent with its
423	disordered nature (Fig. 15).

424

Page 20

425 Lithiophorite and Asbolane

426	Lithiophorite is constructed of stacked sheets of MnO ₆ octahedra alternating with sheets
427	of Al(OH) ₆ octahedra in which one-third of the octahedra are vacant (Fig. 1). In the idealized
428	structure, Li^{+} cations fill the vacancies in the Al layer, and charge balance is maintained by Mn^{3+}
429	replacing one-third of the Mn ⁴⁺ cations (Post and Appleman 1994). The layers are cross-linked
430	by H-bonds between the hydroxyl $\mathrm{H}^{\!+}$ ions on the Al/Li layer and O atoms in the MnO_6 octahedra
431	sheet. Chemical analyses show that transition elements such as Ni, Co, and Cu commonly
432	substitute into the structure. Reported Li concentrations range from 0.2 to 3.3 weight % oxide
433	(Ostwald 1984). Lithiophorite typically occurs in oxidized zones of Mn deposits and in some
434	soils.
435	Polarized Raman spectra collected for lithiophorite (Fig. 16) show strong polarization
436	effects for the higher frequency peaks, similar to that observed for most other phyllomanganates.
437	The Raman spectra for lithiophorite from South Africa showed a curious for wavelengths of
438	514.5, 532, 633, and 785 nm laser light (Figs. 16 and 17), where Raman mode frequencies
	-1

increase by 10 to 30 cm⁻¹ as laser wavelengths became shorter. One possible explanation for the 439 shift is that the shorter wavelength laser light oxidizes some of the Mn^{3+} to Mn^{4+} . We did not see 440 this effect for other lithiophorite, or phyllomanganate samples. The large broad band centered 441 near 340 cm⁻¹ in the relatively weak 785 nm spectrum may be due to luminescence effects and 442 appears to overwhelm the Raman mode near 380 cm⁻¹ seen in the shorter laser wavelength 443 spectra. This feature was especially prominent for the South African lithiophorite and less 444 obvious in 785 nm spectra for other lithiophorite samples. It is possible that the cause of the 445 luminescence is trace impurities unique to this sample. It also could be an orientation effect, as 446

Page 21

this is the only samplethat consisted of large plate-like crystals, which were oriented with their
flat surface perpendicular to the laser beam. Other lithiophorite samples typically were finegrained with random crystal orientations.

450

Because lithiophorite has alternating layers of $(Mn^{4+}, Mn^{3+}) O_6$ and $(Al, Li)O_6$ octahedral 451 sheets, the structure contains a variety of octahedral environments: 1) Mn⁴⁺ in two-thirds of the 452 Mn octahedra, with average Mn-O distances of ~1.89 Å (Post and Appleman 1994); 2) Jahn-453 Teller distorted Mn³⁺ octahedra in one-third of the Mn sites, with average Mn-O distances of 454 ~2.04 Å (Shannon 1976); and 3) two-thirds Al(OH)₆ and one-third Li(OH)₆ in the Al,Li 455 octahedral sheet, with Al-OH = 1.88 Å and Li-OH = 2.10 Å (Shannon 1976). This range of 456 octahedral environments likely contributes to the typically broader peaks in the spectra for 457 lithiophorite compared with those for chalcophanite. The lithiophorite spectra show no clear 458 features below 350 cm⁻¹, presumably because there are no interlayer cations or water molecules, 459 as there are in birnessite and chalcophanite phases. 460 LD calculations for lithiophorite (Fig. 18) indicate that A_{Ig} modes above 500 cm⁻¹ are 461 due to MnO₆ and Al(OH)₆ octahedral sheet compression-expansion motions parallel to the c-462 axis, whereas the higher frequency E_g modes are due to MnO₆ and Al(OH)₆ octahedral sheet 463

shear motions perpendicular to the *c*-axis. Calculated modes below 500 cm^{-1} have major

465 contributions from O-H stretches parallel to the *c*-axis (A_{1g}) and H translations within the *a-b*

466 plane (E_g) .

Asbolane is a lithiophorite-like phase with transition-metal cations such as Co, Cu and
Ni replacing some of the Al, and possibly Mn (Chukhrov et al. 1982; Manceau et al. 1987). The

Page 22

469	asbolane structure has not been determined, but Chukhrov et al. (1982) propose that it likely has
470	hexagonal symmetry, and the lithiophorite Al(OH) ₆ layer is largely replaced by poorly structured
471	"islands" of (Co, Ni, Cu)O ₆ octahedra. Figure 19 shows that spectra for several asbolane
472	samples (Table 1) are similar to that of lithiophorite; a major difference is that the peak near 540-
473	560 cm ⁻¹ is relatively stronger for the asbolane spectra, increasing in intensity with greater Co
474	concentrations. Burlet and Vanbrabant (2015), based on results from a peak-fitting procedure,
475	suggested a correlation between certain peak positions and intensities and the compositions of
476	asbolane-lithiophorite samples; they also observed an intensity increase for a peak at \sim 540 cm ⁻¹
477	for asbolane relative to lithiophorite.
478	
479	Feitknechtite
480	The crystal structure for feitknechtite is not known. The formula is assumed to be
481	MnOOH, and some have speculated that the structure consists of layered MnO ₆ octahedra (Luo
482	et al. 1996, Grangeon et al. 2017). Our XPS data (unpublished results) confirm that all Mn is
483	trivalent. Natural feitknechtite samples typically include hausmannite, which presumably is an
484	alteration product of the feitknechtite. Feitknechtite occurs as an intermediate phase in syntheses
485	of birnessite by oxidation of Mn(OH) ₂ (Min and Kim 2019), and also has been reported in
486	biogenically precipitated Mn oxides (Mandernack et al. 1995). Polarized Raman spectra for
487	synthetic feitknechtite shown in Figure 20, and unpolarized spectra collecting using different
488	laser lines are compared in Figure 21.
489	
490	

491

Page 23

492

DISCUSSION

493 **Phase Identification**

494	In a recent study, we concluded that when users employ appropriate data collection
495	conditions, Raman spectroscopy is an effective tool for the identification and characterization of
496	tunnel-structure Mn oxide phases (Post et al. 2020). The current work extends those conclusions
497	to layer-structure Mn oxides. Raman spectra for the various layer structure Mn oxide phases are
498	compared in Figure 22. As all phyllomanganates are constructed of similar MnO ₆ octahedra, it is
499	not surprising that there are general similarities among the spectra, especially in the region from
500	\sim 300 to 665 cm ⁻¹ that is dominated by internal MnO ₆ octahedra modes. The spectra have
501	sufficiently unique characteristics, especially at frequencies below 500 cm ⁻¹ , to make it possible,
502	in most cases, to identify specific phases. Additionally, the phyllomanganate spectra are
503	distinctly different from large tunnel Mn oxide spectra (Fig. 23) as discussed below.
504	
505	Recent studies have shown that Mn oxide minerals from a variety of nonmarine sources
506	and in particular those assumed to form biogenically typically have layer or large-tunnel
507	structures, or are mixtures of both (McKeown and Post 2001, Bargar et al 2009, Ling et al.
508	2020). Furthermore, laboratory experiments indicate that various environmental conditions
509	transform phyllomanganates into tunnel structures, thereby significantly altering the reaction
510	potentials for the Mn oxides in soils and sediments (Atkins et al. 2014, Grangeon et al. 2014,
511	Yang et al. 2019). Routine Raman identification of specific tunnel or layer Mn oxides, even for
512	fine-grained samples and mixtures, and surface coatings, can be critical to understanding and
513	modeling their behaviors in a variety of natural settings.

514

Page 24

515	The spectra plotted in Figure 23 suggest that a reliable method for distinguishing large
516	tunnel and layer structures is the presence or absence of a moderate-to-strong Raman mode near
517	725-740 cm ⁻¹ ; this peak is present for all tunnel structures with predominantly Mn^{4+} , especially
518	for those with large tunnels, e.g. romanechite and todorokite, but is absent in all
519	phyllomanganate spectra – even layer structures containing only Mn ⁴⁺ , such as chalcophanite.
520	This tunnel-structure marker peak is particularly strong when spectra are collected using 633 or
521	785 nm laser light. Post et al. (2020) suggested that this high frequency Mn-O stretch mode
522	arises from Mn ⁴⁺ -O bonds in rigid octahedral tunnel structure frameworks. Phyllomanganate
523	octahedral sheets, on the other hand, are more elastic, softening the Mn-O stretches. This
524	behavior becomes even more pronounced with the replacement of some Mn^{4+} by the larger Mn^{3+}
525	or by vacancies.
526	As mentioned above, spectra collected from many phyllomanganates show strongly
527	polarized features, with strong intensities in the VV (laser light polarization parallel to analyzer
528	polarization direction) spectra, and weak intensities in the VH (laser light polarization
529	perpendicular to analyzer polarization direction) spectra. This behavior is particularly evident at
530	the highest frequencies that are dominated by internal MnO ₆ octahedral motions. Spectra
531	collected under similar conditions for large-tunnel structures, however, showed little or no
532	polarization dependence (Post et al. 2020).
533	
534	Mn Oxidation State

Post et al. (2020) concluded that Raman frequencies of certain internal MnO_6 octahedral modes vary as a function of $Mn^{3+}/(Mn^{4+}+Mn^{3+})$ ratio. Increasing concentrations of the larger, Jahn-Teller distorted $Mn^{3+}O_6$ octahedra cause a lengthening of the average Mn-O bond and a

Page 25

538	more distorted octahedral environment, thereby decreasing the associated vibrational
539	frequencies. This is true in general for tunnel-structure Mn oxides, but is particularly true for the
540	hollandite group minerals, where a linear relationship was found between $Mn^{3+}/(Mn^{4+}+Mn^{3+})$
541	ratio and frequency of the internal MnO_6 octahedral mode near 630 cm ⁻¹ .
542	
543	In the present study of phyllomanganates, we similarly noted a strong linear correlation
544	$(R^2 = 0.984)$ between the Mn ³⁺ /(Mn ⁴⁺ +Mn ³⁺) ratios and the frequencies for certain internal
545	MnO ₆ octahedral modes (Fig. 24). The highest frequency mode for chalcophanite and ranciéite
546	occur near 669 cm ⁻¹ . This mode is dominated by internal MnO_6 octahedral vibrations, and might
547	be expected to appear at high frequencies for phases where all Mn is tetravalent. In contrast,
548	one-third of the Mn in triclinic Na- and K-birnessite is trivalent, and the comparable modes for
549	these phases were observed near 638 cm ⁻¹ . Cation exchange of triclinic Na-birnessite can
550	significantly alter the Mn redox state. For example, substitution of interlayer Na^+ with Ca^{2+}
551	(Elmi et al 2020) and H^+ (Sylvester et al. 1997) will significantly reduce the $Mn^{3+}/(Mn^{4+}+Mn^{3+})$
552	ratio (Ilton et al. 2016). In our Raman spectra of Ca- and H-birnessite, the internal MnO_6
553	octahedral mode peaks were shifted to higher frequencies relative to those for K-, Na-, and Li-
554	birnessites. The high-frequency modes plot approximately along the same trend line, with some
555	uncertainty arising from the broadness of the associated Raman peaks. Additionally, for certain
556	phases, some or all the Mn ³⁺ will be in the interlayer region above or below octahedral
557	vacancies, and this different bonding environment will likely modify (broaden) some Raman
558	features.
559	

559

The observed correlation of $Mn^{3+}/(Mn^{4+}+Mn^{3+})$ with the highest frequency Raman modes suggests that Raman spectroscopy might be used to assess the approximate Mn^{3+} concentration for birnessite-like phases, or for comparing Mn oxidation state before and after, or monitoring during, certain types of reactions. It also offers the potential of using Raman spectroscopy to map differences in Mn oxidation state in environmental or other complex samples.

565

566 Birnessite Symmetry

There has been considerable interest in recent years in establishing methods to distinguish 567 568 triclinic and hexagonal birnessite-like samples, as the structural symmetry correlates with the Mn³⁺ and Mn site vacancy concentrations, which determine certain types of chemical 569 reactivities, and can be an indicator of the formation mechanism, e.g. biotic or abiotic (Tebo et 570 571 al. 2004, Webb et al. 2005). Commonly, powder X-ray diffraction patterns of natural birnessites show only a few broad peaks resulting from small crystallite sizes or possibly long-range 572 structural disorder that cannot provide definitive long- or short-range symmetry characterization. 573 In recent years, some researchers used specific, although sometimes subtle, differences in X-ray 574 absorption spectroscopy features to distinguish triclinic from hexagonal birnessite-like phases 575 (e.g. Webb, 2005). Others use pair distribution function modeling to assess the symmetry and 576 other structural details (Yang et al. 2019; Lee et al. 2019). A drawback of both approaches is 577 that data must be collected using synchrotron sources. Additionally, the results are not always 578 579 conclusive, and in most cases in situ measurements are not routine.

580 Our results suggest that Raman spectroscopy offers several advantages for determining 581 the structural symmetry for birnessite-like phases. In addition to not requiring a synchrotron 582 source, Raman spectroscopy routinely enables the investigation of samples *in situ* with $\sim 1 \mu m$

Page 27

583	spatial resolution. Moreover, several features robustly differentiate between the spectra for
584	triclinic (Na-birnessite) and hexagonal birnessite (H- birnessite) phases (Fig. 11). The internal
585	MnO_6 octahedral modes between 500 and 650 cm ⁻¹ correspond to at least three partially
586	resolved peaks in the Na-birnessite spectrum, and typically less resolved for H-birnessite. The
587	prominent, low-frequency peaks below 500 cm ⁻¹ in the Na-birnessite spectrum are absent or
588	significantly weaker, or shifted, for H-birnessite (Fig. 11). The position of the highest frequency
589	mode for Na-birnessite is shifted to lower frequency by approximately 10 cm ⁻¹ relative to that
590	for H-birnessite, reflecting the greater concentrations of Mn ³⁺ in Na-birnessites. Additionally,
591	Figure 11 shows that the relative intensities for the two highest frequency modes (at about 580-
592	590 and 640-650 cm ⁻¹) are reversed in the hexagonal and triclinic birnessites, as previously
593	observed by Julien et al. (2003), Hsu (2011), Yang et al. (2015), Boumaiza (2019), and
594	Bernardini (2019). These distinctly different spectra indicate that Raman spectroscopy, using the
595	appropriate data collection conditions, is perhaps the most conclusive method for readily
596	distinguishing triclinic from hexagonal birnessite. Furthermore, information derived from
597	Raman peak frequencies, relative intensities, and widths provide opportunities to explore
598	detailed structural variations among different birnessite-like phases beyond a simple triclinic or
599	hexagonal designation. Our results complement the study by Ling et al. (2017) that demonstrated
600	Fourier transform infra-red spectra effectively distinguish hexagonal and triclinic birnessite-like
601	structures, but Raman offers the advantages of better resolved spectral features and in situ
602	microanalyses.

603

604 Vernadite

Page 28

Vernadite is reported as a major phase in ocean Mn nodules and crusts, and as indicated 605 above, is widely assumed to be a birnessite-like phase for which the basal reflection is largely 606 absent in powder X-ray diffraction patterns. The missing basal reflection is thought to arise 607 either from turbostratically disordered layer stacking, from crystallites with so few layers that 608 interference effects are minimized, or a combination of both of these factors. The phase is 609 characterized by a diffraction pattern showing broad peaks at ~2.44 and 1.45 Å. Synthetic 610 samples that exhibit similar XRD patterns are commonly referred to as δ -MnO₂ and are assumed 611 to be analogues of vernadite. The unpolarized Raman spectrum from an ocean Mn crust that 612 613 gave an XRD pattern consistent with vernadite is shown in Figure 25 along with spectra for hexagonal birnessite, synthetic δ -MnO₂, and asbolane. The natural vernadite spectrum most 614 closely resembles that for asbolane, or perhaps a mixture of asbolane and hexagonal birnessite, 615 and is distinctly different from that of δ -MnO₂ (Villalobos et al. 2003), which is more similar to 616 that of hexagonal birnessite. This observation brings into question the assumption that δ -MnO₂ 617 is always an appropriate analogue for vernadite. The issue is complicated by the fact that there 618 are reported variations in composition, and presumably structures, for vernadites. In addition, 619 different synthesis methods and treatments have been employed to produce " δ -MnO₂" phases, 620 which are not always identical. Lee et al. (2019) concluded from their TEM and PDF studies of 621 ocean crust vernadite that this phase is best modeled by interstratified structures with 7 and 10 Å 622 interlayer spacings. Our preliminary results suggest that Raman spectroscopy is a useful tool for 623 624 characterizing and comparing similarities and differences among natural vernadites and synthetic δ -MnO₂ phases. More in-depth Raman studies of a range of natural and synthetic vernadite-like 625 626 phases is ongoing.

627

Page 29

IMPLICATIONS

We present here a comprehensive Raman spectroscopy study of layer structure Mn oxide 629 phases from a large assortment of well-characterized natural and synthetic samples, using a 630 variety of data collection conditions (Fig. 22). We demonstrate here and in our previous study of 631 tunnel structure Mn oxides that when using multiple lasers, especially at 785 and 633 nm 632 wavelengths, with low laser powers at the sample $(30 - 500 \mu W)$, depending upon the laser 633 wavelength and the sample), we were able to consistently identify the Mn oxide phases for most 634 samples. In particular, it is routinely possible to distinguish phases with large tunnels from those 635 636 with layers (Fig. 23). Additionally, for birnessite-like phases, we observed that the position of the highest frequency Raman mode correlates with $Mn^{3+}/(Mn^{4+} + Mn^{3+})$, suggesting that Raman 637 spectroscopy might be an effective tool for assessing approximate absolute and relative 638 Mn³⁺concentrations in this important group of phyllomanganates. With the comprehensive 639 Raman database of well-characterized Mn oxide standards from Post et al (2020), and provided 640 here and as supplementary data¹ with the *American Mineralogist*, micro-Raman is a powerful 641 tool for identification and characterization of biotic and abiotic Mn oxide phases from diverse 642 natural settings, and thereby can provide new insights into the roles of these phases in our 643 environment and on other planets. Current plans for the next NASA Mars lander include a 644 Raman system, where one of the primary targets will be black rock coatings that resemble rock 645 varnishes on Earth (Marnocha 2017). As Mn oxides in terrestrial varnishes are thought to be 646 647 biologically precipitated (McKeown and Post 2001; Northup et al. 2010; Marnocha and Dixon 2014), Raman identification of similar appearing Mn oxide minerals on Mars might be 648 interpreted as indicators of past or possibly current biotic processes on Mars (Marnocha 2017). 649 650 A comprehensive database of high-quality Raman spectra from well-characterized Mn oxide

651	minerals will be useful for such Martian studies. Additionally, the method is equally applicable
652	for identification and characterization of laboratory produced Mn oxides and those used
653	industrially.
654	
655	
656	
657	ACKNOWLEDGEMENTS
658	We are grateful for the invaluable assistance provided by Rob Wardell with the operation
659	of the Raman laboratory in the Smithsonian Department of Mineral Sciences and Maxwell
660	Wetherington in the Raman laboratory of the Materials Characterization Laboratory, Penn State
661	University. Florence T. Ling kindly allowed us to analyze a suite of birnessite samples that she
662	synthesized. Funding for this work was provided by NSF Grant EAR-1925903
663	
664	
665	
666	
667	REFERENCES CITED
668	
660	Atkins, A.L., Shaw, S., and Peacock, C.L. (2014) Nucleation and growth of todorokite
669	
670	from birnessite: Implications for trace-metal cycling in marine sediments. Geochimica et
671	Cosmochimica Acta, 144, 109-125.

672	Bargar, J.R., Fuller, C.C., Marcus, M.A., Brearley, A.J., De la Rosa, M.P., Webb, S.M.
673	and Caldwell, W.A. (2009). Structural characterization of terrestrial microbial Mn oxides
674	from Pinal Creek, AZ. Geochimica et Cosmochimica Acta, 73, 889-910.
675	Bernard, M., Hugot-Le Goff, A., and Thi, B.V. (1993) Electrochromic reactions in
676	manganese oxides. Journal of the Electrochemical Society, 140, 3065-3070.
677	Bernardini, S., Bellatreccia, F., Municchia, A.C., Ventura, G.D., and Sodo, A. (2019)
678	Raman spectra of natural manganese oxides. Journal of Raman Spectroscopy, 1-16.
679	Betekhtin, A.,G. (1940) Southern Ural manganese deposits as a resource base for the
680	Magnitogorsk Metallurgical Trust, Trudi Institute of Geological Sciences. Academy of
681	Sciences. USSR. no. 4.
682	Boumaiza, H., Renard, A., Robinson, M.R., Kervern, G., Vidal, L., Ruby, C.,
682 683	Boumaiza, H., Renard, A., Robinson, M.R., Kervern, G., Vidal, L., Ruby, C., Bergaoui, L., and Coustel, R. (2019) A multi-technique approach for studying Na triclinic
683	Bergaoui, L., and Coustel, R. (2019) A multi-technique approach for studying Na triclinic
683 684	Bergaoui, L., and Coustel, R. (2019) A multi-technique approach for studying Na triclinic and hexagonal birnessites. Journal of Solid State Chemistry, 272, 234-243.
683 684 685	Bergaoui, L., and Coustel, R. (2019) A multi-technique approach for studying Na triclinic and hexagonal birnessites. Journal of Solid State Chemistry, 272, 234-243. Bricker, 0. (1965) Some stability relations in the system Mn0 ₂ at 25° and one
683 684 685 686	 Bergaoui, L., and Coustel, R. (2019) A multi-technique approach for studying Na triclinic and hexagonal birnessites. Journal of Solid State Chemistry, 272, 234-243. Bricker, 0. (1965) Some stability relations in the system Mn0₂ at 25° and one atmosphere total pressure. American Mineralogist, 50, 1296-1354.

Page 32

690	Buser, W., Graf, P, and Feitkecht, W. (1954) Beitrag zur Kenntnis der Mangan(II)-
691	manganite und des δ -MnO ₂ . Helvetica chimica acta, 37, 2322-2333.
692	Chukhrov, F. V., Gorshkov, A. I., Rudnitskaya, Yeo S., et al. (1978) Vemadite.
693	Izvestiya AN SSSR, seriya geologicheskay a, 6, 5-19.
694	Chukhrov, F.V., Gorshkov, A.L., Vitovskaya, Lv. Drits, V.A. and Sntsov, A.V. (1982)
695	On the Nature of Co-Ni Asbolane; a Component of Some Supergene Ores. In Ore Genesis,
696	G. C. Amstutz et al. (eds.), Springer-Verlag Berlin Heidelberg, pp. 230-239.
697	Chukhrov, F.V., Drits, V.A., Gorshkov, A.1., Sakharov, B.A., and Dikov, Yu.P.
698	(1987) Structural models of vernadite. International Geology Review, 29, 1337-1347.
699	Dowty, E. (1987) "Vibrational interactions of tetrahedra in silicate glasses and
700	crystals", Physics and Chemistry of Minerals 14, 122-138.
701	Dowty, E. (2007) Vibratz2.0 software details available at: "www.shapesoftware.com".
702	Drits, V.A., Silvester, E., Gorshkov, A.I., and Manceau, A. (1997) Structure of
703	synthetic monoclinic Na-rich birnessite and hexagonal birnessite: I. Results from X-ray
704	diffraction and selected-area electron diffraction. American Mineralogist, 82, 946–961.
705	Elmi, C., Post, J.E., Heaney, P.J., and Ilton, E.S. (2020) Effects of pH and Ca
706	exchange on the structure and redox state of synthetic Na-birnessite. American
707	Mineralogist. In Press.

708	Ertle et al. (2005) Ertl, A., Pertlik, F., Prem, M., Post, J.E., Kim, S.J., Brandstatter, F.,
709	and Schuster, R. (2005) Ranciéite crystals from Friesach, Carinthia, Austria. European
710	Journal of Mineralogy, 17, 163–172.
711	Fateley, W.G., Dollish, F.R., McDevitt, N.T., and Bentley, F.F., Infrared and Raman
712	Selection Rules for Molecular and Lattice Vibrations: the Correlation Method, (Wiley,
713	New York, 1972).
714	Feng, X.H., Liu, F., Tan, W.F., and Liu, X.W. (2004) Synthesis of Birnessite from the
715	Oxidation of Mn^{2+} by O_2 in Alkali Medium: Effects of Synthesis Conditions. Clays and
716	Clay Minerals, 52(2), 240-250.
717	Feng, X.H., Zhai, L.M., Tan, W.F., Liu, F., and He, J.Z. (2007) Adsorption and redox
718	reactions of heavy metals on synthesized Mn oxide minerals. Environmental Pollution
719	147(2), 366-373.
720	Feng, M., Du, Q., Su, L., Zhang, G., Wang, G., Ma, Z., Gao, W., Qin, X., and Shao, G.
721	(2017) Manganese oxide electrode with excellent electrochemical performance for sodium
722	ion batteries by pre-intercalation of K and Na ions. Sci Rep, 7, 2219-2226.
723	Fischel, M.H., Fischel, J.S., Lafferty, B.J., and Sparks, D.L. (2015) The influence of
724	environmental conditions on kinetics of arsenite oxidation by manganese-oxides.
725	Geochemical Transactions, 16, 15-24.

726	Fischer, T.B., Heaney, P.J. and Post, J.E. (2018). Changes in the structure of birnessite
727	during siderophore-promoted dissolution: A time-resolved synchrotron X-ray diffraction
728	study. Chemical Geology, 476, 46-58.
729	Fleeger, C.R., Heaney, P.J., and Post, J.E. (2013) A time-resolved X-ray diffraction
730	study of Cs exchange into hexagonal H-birnessite. American Mineralogist, 98, 671-679.
731	Frey, C.E., Wiechen, M., and Kurz, P. (2014) Water-oxidation catalysis by synthetic
732	manganese oxidessystematic variations of the calcium birnessite theme. Dalton
733	Transactions, 43, 4370-4379.
734	Ghodbane, O., Pascal, J.L., and Favier, F. (2009) Microstructural effects on charge-
735	storage properties in MnO2-based electrochemical supercapacitors. Applied Materials &
736	Interfaces, 2009. 1(5), 1130-1139.
737	Giovanoli, R. (1980) Vernadite is random-stacked birnessite. Mineralium Deposita,
738	14, 249-261.
739	Golden, D.C., Dixon, J.B., and Chen, C.C. (1986) Ion exchange, thermal
740	trasformations, and oxidizing properties of birnessite. Clays and Clay Minerals, 34(5), 511-
741	520.
742	Grangeon, S., Lanson, B., Miyata, N., Tani, Y. and Manceau, A. (2010). Structure of
743	nanocrystalline phyllomanganates produced by freshwater fungi. American Mineralogist,
744	95, 1608-1616.

745	Grangeon, S., Manceau, A., Guilhermet, J., Gaillot, A., Lanson, M. (2012) Zn sorption
746	modifies dynamically the layer and interlayer structure of vernadite. Geochimica et Cosmochimica
747	Acta, 85, 302-313.
748	Grangeon S., Lanson B., and Lanson M. (2014) Solid-state transformation of
749	nanocrystalline phyllomanganate into tectomanganate: influence of initial layer and
750	interlayer structure. Acta Crystallographica B, 70, 828-838.
751	Grangeon, S., Warmont, F., Tournassat, C., Lanson, B., Lanson, M., Elkaïm, E., and
752	Claret, F. (2017). Nucleation and growth of feitknechtite from nanocrystalline vernadite
753	precursor. European Journal of Mineralogy, 29, 767-776.
754	Händel, M., Rennert, T., and Totsche, K.U. (2013) A simple method to synthesize
755	birnessite at ambient pressure and temperature. Geoderma, 193-194, 117-121.
756	Hinkle, M.A.G., Flynn, E.D., and Catalano, J.G. (2016) Structural response of
757	phyllomanganates to wet aging and aqueous Mn(II). Geochimica Et Cosmochimica Acta,
758	192, 220-234.
759	Hsu, Y. K., Chen, Y. C., Lin, Y. G., Chen, L. C., & Chen, K. H. (2011). Reversible
760	phase transformation of MnO 2 nanosheets in an electrochemical capacitor investigated by
761	in situ Raman spectroscopy. Chemical Communications, 47, 1252-1254.
762	Ilton, E.S., Post, J.E., Heaney, P.J., Ling, F.T. and Kerisit, S.N. (2016) XPS
763	determination of Mn oxidation states in Mn (hydr) oxides. Applied Surface Science, 366,
764	475-485.

765	Jiao, F., and Frei, H. (2010) Nanostructured manganese oxide clusters supported on
766	mesoporous silica as efficient oxygen-evolving catalysts. Chem Commun (Camb), 46(17),
767	2920-2.
768	Jones, L.H.P., and Milne, A.A. (1956) Birnessite, a new manganese oxide mineral
769	from Aberdeenshire, Scotland. Mineralogical Magazine, 31, 283-288.
770	Julien, C., Massot, M., Baddour-Hadjean, R., Franger, S., Bach, S., and
771	Pereira-Ramos, J.P. (2003) Raman spectra of birnessite manganese dioxides. Solid State
772	Ionics, 159(3-4), 345-356.
773	Julien, C.M., Massot, M., and Poinsignon, C. (2004) Lattice vibrations of manganese
774	oxides. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(3),
775	689-700.
776	Kim, H. and Stair, P.C. (2004) Bacterially produced manganese oxide and todorokite:
777	UV Raman spectroscopic comparison, Journal of Physical Chemistry B, 108, 17019-
778	17026.
779	Kim, S.J. (1991) New characterization of takanelite. American Mineralogist, 76, 1426-
780	1430.
781	Kong, K.P., Fischer, T.B., Heaney, P.J., Post, J.E., Stubbs, J.E., and Eng, P.J. (2019).
782	Mineralogical and geochemical constraints on chromium oxidation induced by birnessite.
783	Applied Geochemistry, 108, 104365.

784	Kwon, K.D., Refson, K., and Sposito, G. (2013) Understanding the trends in transition
785	metal sorption by vacancy sites in birnessite. Geochimica Et Cosmochimica Acta, 101,
786	222-232.
787	Landrot, G., Ginder-Vogel, M., Livi, K., Fitts, J.P., and Sparks, D.L. (2012)
788	Chromium(III) oxidation by three poorly crystalline manganese(IV) oxides. 2. Solid phase
789	analyses. Environ Sci Technol, 46(21), 11601-9.
700	Lener D. Drite V.A. Silverten F. and Manager A. (2000). Structure of H.
790	Lanson, B., Drits, V.A., Silvester, E., and Manceau, A. (2000) Structure of H-
791	exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic
792	buserite at low pH. American Mineralogist, 85, 826–838.
793	Lee, S., Xu, H., Xu, W., and Sun, X. (2019) The structure and crystal chemistry of
794	vernadite in ferromanganese crusts. Acta Crystallographica, B75, 591-598.
795	Le Goff, P., Baffier, N., Bach, S., and Pereira-Ramos, J.P. (1996) Synthesis, ion
796	exchange and electrochemical properties of lamellar phyllomanganates of the birnessite
797	group. Materials Research Bulletin, 31(1), 63-75.
798	Lefkowitz, J.P., Rouff, A.A., and Elzinga, E.J. (2013) Influence of pH on the reductive
799	transformation of birnessite by aqueous Mn(II). Environmental Science & Technology,
800	47(18), 10364-71.
801	Li, Z., Wang, J., Wang, Z., Ran, H., Li, Y., Han, X., and Yang, S. (2012) Synthesis of a
802	porous birnessite manganese dioxide hierarchical structure using thermally reduced

Dago 20

	Page 38
803	graphene oxide paper as a sacrificing template for supercapacitor application. New Journal
804	of Chemistry, 36(7), 1490-1495.
805	Ling, F.T., Post, J.E., Heaney, P.J., and Ilton, E.S. (2018) The relationship between
806	Mn oxidation state and structure in triclinic and hexagonal birnessites. Chemical Geology,
807	479, 216-227.
808	Ling, F.T., Post, J.E., Heaney, P.J., Kubicki, J.D., and Santelli, C.M. (2017) Fourier-
809	transform infrared spectroscopy (FTIR) analysis of triclinic and hexagonal birnessites.
810	Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 178, 32-46.
811	Ling, F.T., Post, J.E., Heaney, P.J., Santelli, C.M., Ilton, E.S., Burgos, W.D., and
812	Rose, A.W. (2020) A multi-method characterization of natural terrestrial birnessites.
813	American Mineralogist, 105, 833-847.
814	Lopano, C.L., Heaney, P.J., Post, J.E., Hanson, J., and Komarneni, S. (2007) Time-
815	resolved structural analysis of K- and Ba-exchange reactions with synthetic Na-birnessite
816	using synchrotron X-ray diffraction. American Mineralogist, 92(2-3), 380-387.
817	Lopano, C.L., Heaney, P.J. and Post, J.E. (2009) Cs-exchange in birnessite: Reaction
818	mechanisms inferred from time-resolved X-ray diffraction and transmission electron
819	microscopy. American Mineralogist, 94, 816-826.
820	Lopano, C.L., Heaney, P.J., Bandstra, J.Z., Post, J.E., and Brantley, S.L. (2011)
821	Kinetic analysis of cation exchange in birnessite using time-resolved synchrotron X-ray

diffraction. Geochimica et Cosmochimica Acta, 75, 3973-3981.

823	Luo, J., Segal, S.R., Wang, J.Y., Tian, Z.R., and Suib, S.L. (1996). Synthesis,
824	characterization, and reactivity of feitknechtite. MRS Online Proceedings Library Archive,
825	431.
826	Manceau, A., Iorca, S.L., and Calas, G. (1987) Crystal chemistry of cobalt and nickel
827	in lithiophorite and asbolane from New Caledonia. Geochimica et Cosmochimica Acta,
828	51, 105-113.
829	Manceau, A., Lanson, B., and Drits, V.A. (2002) Structure of heavy metal sorbed
830	birnessite. Part III: Results from powder and polarized extended X-ray absorption fine
831	structure spectroscopy. Geochimica Et Cosmochimica Acta, 66(15), 2639-2663.
832	Mandernack, K.W., Post, J.E., and Tebo, B.M. (1995) Manganese mineral formation
833	by bacterial spores of the marine Bacillus, strain SG-1: evidence for the direct oxidation of
834	Mn (II) to Mn (IV). Geochimica et Cosmchimica Acta, 59, 4393-4408.
835	Manning, B.A., Fendorf, S.E., Bostick, B., and Suarez, D.L. (2002) Arsenic(III)
836	oxidation and arsenic(V) adsorption reactions on synthetic birnessite. Environmental
837	Science & Technology, 36(5), 976-81.
838	Marnocha, C.L. (2017) Rock coatings and the potential for life on Mars. Elements,
839	13, 187-191
840	Marnocha C.L. and Dixon J.C. (2014) Endolithic bacterial communities in rock
841	coatings from Kärkevagge, Swedish Lapland. FEMS Microbiology Ecology 90: 533-542

842	McKeown, D.A., and Post, J.E. (2001) Characterization of manganese oxide
843	mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy. American
844	Mineralogist, 86, 701-713.
845	McKenzie, R.M. (1971) The Synthesis of birnessite, cryptomelane, and some other
846	oxides and hydroxides of manganese. Mineralogical Magazine, 38(296), 493-502.
847	Min, S. and Kim, Y. (2019). Phase transition and surface morphological characteristics
848	of Intermediate product feitknechtite according to aging time during the synthesis of
849	birnessite. Journal of the Mineralogical Society of Korea, 32, 213-222.
850	Nam, K.W., Kim, S., Yang, E., Jung, Y., Levi, E., Aurbach, D., and Choi, J.W. (2015)
851	Critical Role of Crystal Water for a Layered Cathode Material in Sodium Ion Batteries.
852	Chemistry of Materials, 27, 3721-3725.
853	Nambu, M. and Tanida, K. (1971) New mineral takanelite. The Journal of the
854	Japanese Association of Mineralogists, Petrologists and Economic Geologists, 65, 1-5.
855	Northup D.E. and 7 coauthors (2010) Diversity of rock varnish bacterial communities
856	from Black Canyon, New Mexico. Journal of Geophysical Research: Biogeosciences 115:
857	1-19
858	Ostwald, J. (1984) Two varieties of lithiophorite in some Australian deposits.
859	Mineralogical Magazine, 48. 383-388.

860	Post J.E. and Appleman D.E. (1988) Chalcophanite, ZnMn ₃ O ₇ ·3H ₂ O; new crystal-
861	structure determinations. American Mineralogist. 73, 1401–1404.
862	Post J.E. and Appleman D.E. (1994) Crystal structure refinement of lithiophorite.
863	American Mineralogist, 79, 370–374.
864	Post, J.E., Heaney, P.J., and Ertl, A. (2008) Rietveld refinement of the ranciéite
865	structure using synchrotron powder diffraction data. Powder Diffraction, 23(01), 10-14.
866	Post, J.E., Heaney, P.J., and Hanson, J. (2002) Rietveld refinement of a triclinic
867	structure for synthetic Na-birnessite using synchrotron powder diffraction data. Powder
868	Diffraction, 17(3), 218-221.
869	Post, J.E., McKeown, D.A., and Heaney, P.J. (2020) Raman Spectroscopy study of
870	Manganese Oxides – Tunnel Structures. American Mineralogist, In Press.
871	Post, J.E., and Veblen, D.R. (1990) Crystal structure determinations of synthetic
872	sodium, magnesium, and potassium birnessite using TEM and the Rietveld method.
873	American Mineralogist, 75, 477-489.
874	Post, J.E. (1999) Manganese oxide minerals: crystal structures and economic and
875	environmental significance. Proceedings of the National Academy of Sciences of the
876	United States of America, 96(7), 3447-54.

Santelli, C.M., Webb, S.M., Dohnalkova, A.C. and Hansel, C.M. (2011). Diversity of
Mn oxides produced by Mn (II)-oxidizing fungi. Geochimica et Cosmochimica Acta, 75,
2762-2776.
Sauer, K., and Yachandra, V.K. (2002) A possible evolutionary origin for the Mn4
cluster of the photosynthetic water oxidation complex from natural MnO2 precipitates in
the early ocean. Proceedings of the National Academy of Sciences of the United States of
America, 99, 8631-8636.
Shannon, R.D. (1976) Revised Effective Ionic Radii and Systematic Studies of
Interatomie Distances in Halides and Chaleogenides. Acta crystallographica. Section A,
Foundations of crystallography 32, 751-767.
Shumlas, S.L., Singireddy, S., Thenuwara, A.C., Attanayake, N.H., Reeder, R.J., and
Strongin, D.R. (2016) Oxidation of arsenite to arsenate on birnessite in the presence of
light. Geochemical Transactions, 17, 5.
Silvester, E., Manceau, A. and Drits, V.A. (1997) Structure of synthetic monoclinic
Na-rich birnessite and hexagonal birnessite: II. Results from chemical studies and EXAFS
spectroscopy. American Mineralogist, 82, 962 978.
Tan, H., Zhang, G.X., Heaney, P.J., Webb, S.M., and Burgos, W.D. (2010)
Characterization of manganese oxide precipitates from Appalachian coal mine drainage
treatment systems. Applied Geochemistry, 25(3), 389-399.

896	Tebo, B.M., Bargar, J.R., Clement, B.G., Dick, G.J., Murray, K.J., Parker, D., Verity,
897	R., and Webb, S. M. (2004). Biogenic manganese oxides: properties and mechanisms of
898	formation. Annual Reviews in Earth and Planetary Science, 32, 287-328.
899	Umena, Y., Kawakami, K., Shen, J. R. and Kamiya, N. (2011). Crystal structure of
900	oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature, 473, 55-60.
901	Villalobos, Mario, Toner, B., Bargar, J., & Sposito, G. (2003). Characterization of the
902	manganese oxide produced by Pseudomonas putida strain MnB1. Geochimica et
903	Cosmochimica Acta, 67, 2649–2662.
904	Wang, M.X., Wang, Y.P., Tan, W.F., Liu, F., Feng, X.H., and Koopal, L.K. (2010)
905	Effect of 1-1 electrolyte concentration on the adsorption/desorption of copper ion on
906	synthetic birnessite. Journal of Soils and Sediments, 10(5), 879-885.
907	Webb, S.M., Tebo, B.M. and Bargar, J.R. (2005). Structural characterization of
908	biogenic Mn oxides produced in seawater by the marine Bacillus sp. strain SG-1. American
909	Mineralogist, 90, 1342-1357.
910	Wiechen, M., Zaharieva, I., Dau, H., and Kurz, P. (2012) Layered manganese oxides
911	for water-oxidation: alkaline earth cations influence catalytic activity in a photosystem II-
912	like fashion. Chemical Science, 3(7), 2330-2339.
913	Witzke, T., Pöllmann, H., Gardolinski, J.E.F.C. and Sommariva, M. (2017) Lagalyite,
914	IMA 2016, 106.

915	Yamaguchi, K., Shoji, M., Isobe, H., Yamanaka, S., Umena, Y., Kawakami, K. and
916	Kamiya, N. (2017) On the guiding principles for understanding of geometrical structures of
917	the CaMn4O5 cluster in oxygen-evolving complex of photosystem II. Proposal of
918	estimation formula of structural deformations via the Jahn-Teller effects. Molecular
919	Physics, 115, 636-666.
920	Yang, L.F., Cheng, S., Ji, X., Jiang, Y., Zhou, J., and Liu, M.L. (2015) Investigations
921	into the origin of pseudocapacitive behavior of Mn ₃ O ₄ electrodes using in operando Raman
922	spectroscopy. Journal of Materials Chemistry A, 3(14), 7338-7344.
923	Yang, P., Post, J.E., Wang, Q., Xu, W., Geiss, R., McCurdy, P.R., and Zhu, M. (2019)
924	Metal adsorption controls stability of layered manganese oxides. Environmental Science &
925	Technology 53 (13), 7453-7462.
926	Yin, H., Liu, F., Feng, X., Hu, T., Zheng, L., Qiu, G., Koopal, L.K., and Tan, W.
927	(2013) Effects of Fe doping on the structures and properties of hexagonal birnessites -
928	Comparison with Co and Ni doping. Geochimica et Cosmochimica Acta, 117, 1-15.
929	Zhang, C., Chen, C., Dong, H., Shen, J. R., Dau, H. and Zhao, J. (2015) A synthetic
930	Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis. Science, 348,
931	690-693.
932	Zhao, H., Zhu, M., Li, W., Elzinga, E.J., Villalobos, M., Liu, F., Zhang, J., Feng, X.,
933	and Sparks, D.L. (2016) Redox Reactions between Mn(II) and Hexagonal Birnessite
934	Change Its Layer Symmetry. Environmental Science & Technology, 50(4), 1750-8.

Page 45

935	Endnote: 1Deposit item AM-XXXX, Supplemental Material. Deposit items are free to
936	all readers and found on the MSA website, via the specific issue's Table of Contents (go to
937	http://www.minsocam.org/MSA/AmMin/TOC/20XX/XXXX_data/ XXXX_data.html).

938

939	
940	FIGURE CAPTIONS
941	
942	Figure 1. Polyhedral drawings of manganese oxide layer structures. The blue octahedra contain
943	Mn; in chalcophanite, the green octahedra contain Zn, and for lithiophorite the magenta
944	octahedra are 2/3 Al and 1/3 Li. The yellow spheres in the birnessite structure represent
945	disordered Na atoms and water molecules.
946	
947	Figure 2. Raman spectra (633 nm) for chalcophanite (NJ #C1814) with plate-like crystals (and
948	MnO ₆ octahedral sheets) perpendicular to incident laser light direction. Spectra are labeled
949	Unpolarized (black), VV (blue), and VH (red). VV and VH spectra were collected using parallel
950	and crossed polarization conditions, respectively.
951	
952	Figure 3. Raman spectra for chalcophanite (NJ #C1814) collected using 532 (0.03 mW), 633
953	(0.05 mW) and 785 (0.11 mW) nm laser light. Spectra are rescaled and offset for clarity.
954	
955	Figure 4. Raman spectra (532 nm) for chalcophanite (NJ #C1814), ernienickelite (#171561), and
956	jianshuiite (MD) with plate-like crystals (and MnO ₆ octahedral sheets) parallel to laser
957	polarization (laser light direction perpendicular to plate-like crystals).
958	
959	Figures 5a and b. Raman spectra (532 nm) for: a) chalcophanite (NJ #C1814) with crystals
960	oriented with MnO ₆ octahedral sheets parallel (top) and perpendicular (bottom) to the laser
961	polarization direction, and b) chalcophanite (NJ #C1814) and ernienickelite (#171561) showing

962	OH stretch modes with the polarization symbol indicating laser polarization perpendicular to the
963	MnO ₆ octahedral sheets (or laser light direction parallel to MnO ₆ octahedral sheets).
964	
965	Figure 6a and b. a) Raman modes determined from lattice dynamics (LD) calculations for
966	chalcophanite (#C1814) plotted as vertical lines below their respective Raman spectra (633 nm),
967	and b) an eigenmode drawing of the highest calculated frequency Ag mode for chalcophanite:
968	(110) projection with the c-axis vertical, showing MnO_6 octahedral deformation, O-Mn-O bend
969	and Mn-O stretch, and Zn-O stretch with Zn translating along the c-axis.
970	Figure 7. Raman spectra (633 nm) for rancieite (#128319) with plate-like crystals (and MnO_6
971	octahedral sheets) perpendicular to incident laser light direction. Spectra labeled VV and VH
972	were collected using parallel and crossed polarization conditions, respectively.
973	
974	Figure 8. Raman spectra for rancieite (#128319) collected using 532 (0.03 mW), 633 (< 0.1
975	mW) and 785 (0.11 mW) nm laser light. Spectra are rescaled and offset for clarity.
976	
977	Figure 9. Raman spectra (785 nm) for a variety of different rancieite specimens. Locations and
978	specimen numbers are indicated (see Table 1). Samples were flattened such that MnO ₆
979	octahedral sheets were perpendicular to incident laser light direction. Spectra are rescaled and
980	offset for clarity.
981	
982	Figure 10. Raman modes determined from LD calculations for rancieite (#128319) plotted as
983	vertical lines below their respective Raman spectra (633 nm laser light).
984	

Figure 11a. and b. Raman spectra for synthetic triclinic Na-birnessite and synthetic hexagonal
birnessite, with plate-like crystals (and MnO₆ octahedral sheets) perpendicular to incident laser
light direction, using a) 633 nm and b) 785 nm laser light. Spectraare rescaled and offset for
clarity.

989

990 Figure 12a. and b. a) Raman spectra for Na-birnessite collected using 532 (0.03 mW), 633 (<

0.1 mW) and 785 (0.11 mW) nm laser light, and b) Raman spectra (633 nm) for Na-birnessite

using different laser power levels at the sample (each measurement was from a different, but

nearby point on the sample). Sample alteration is evident at incident powers above 0.1 mW.

Sample alteration at 0.15 mW can result in different mixtures of phases as shown for two

different points on the sample. Spectra are rescaled and offset for clarity.

996

Figure 13. Na-birnessite Raman modes determined from LD calculations for the simplified
C2/m monoclinic structure plotted as vertical lines below their respective Raman features in the
785 nm spectrum.

1000

Figure 14. Raman spectra (785 nm) for a variety of synthetic birnessite specimens with different
 interlayer cations (see Table 1). Samples were flattened such that MnO₆ octahedral sheets were
 perpendicular to incident laser light direction. Spectra are rescaled and offset for clarity.

1004

1005

1006	Figure 15. Raman spectra (633 nm) for vernadite (Pacific ocean crust), with plate-like crystals
1007	(and MnO ₆ octahedral sheets) perpendicular to incident laser light direction. Spectra labeled VV
1008	and VH were collected using parallel and crossed polarization conditions, respectively.
1009	
1010	
1011	Figure 16. Polarized Raman spectra (514.5 nm) for lithiophorite (#162391), with plate-like
1012	crystals (and MnO ₆ octahedral sheets) perpendicular to incident laser light direction and parallel
1013	to the laser polarization. Spectra labeled VV and VH were collected using parallel and crossed
1014	polarization conditions, respectively.
1015	
1016	Figure 17. Raman spectra for lithiophorite (#162391) collected using 532 (0.03 mW), 633 (< 0.1
1017	mW) and 785 (0.11 mW) nm laser light. Spectra are rescaled and offset for clarity.
1018	
1019	Figure 18. Raman modes determined using lattice dynamics (LD) calculations for lithiophorite
1020	(#162391) structure; the calculated mode frequency for each mode is plotted as a vertical line
1021	below their respective Raman spectra (514.5 nm laser light).
1022	
1023	Figure 19. Raman spectra (785 nm laser light) for a variety of different asbolane specimens
1024	(Table 1). The Co/Mn (Table 1) in the samples increases from the top to bottom spectrum.
1025	Spectra are rescaled and offset for clarity.
1026	

1027	Figure 20. Raman spectra (633 nm) for synthetic feitknechtite. Spectra labeled VV and VH
1028	were collected using parallel and crossed polarization conditions, respectively.

1029

Figure 21. Raman spectra for feitknechtite collected using 532 (0.03 mW), 633 (< 0.1 mW) and
785 (0.11 mW) nm laser light. Spectra are rescaled and offset for clarity.

1032

1033	Figure 22.	Raman spectra	for a variet	y of phyllo	omanganates,	ordered from	top to	bottom
------	------------	---------------	--------------	-------------	--------------	--------------	--------	--------

according to decreasing Mn3+/(Mn4++Mn3+). Specimens measured are: chalcophanite

1035 (R12334), rancieite Austria, synthetic Ca-birnessite, synthetic Na-birnessite, synthetic hexagonal

birnessite, and lithiophorite (162391) (Table 1). Spectra are rescaled and offset for clarity.

1037

Figure 23. Raman spectra for a variety of layer- and tunnel-structure Mn oxide phases. Tunnel
structure Mn-oxide spectra originally presented in the tunnel Mn-oxide study, Post et al. (2020);
samples: cryptomelane (NMNH 89104), romanechite (NMNH R2232), todorokite (HU 126232).
Layer structure spectra from: chalcophanite (R12334), rancieite Austria, synthetic Na-birnessite,
synthetic hexagonal birnessite, and lithiophorite (162391). Spectra are rescaled and offset for
clarity.

1044

Figure 24. Mn³⁺/(Mn³⁺+Mn⁴⁺) ratio versus Raman shift frequency of the highest frequency
 vibrational mode for the different phyllomanganates included in this study.

Page 51

1047

1048	Figure 25. Raman spectra (785 nm) for vernadite (Pacific ocean crust), asbolane (#103709),
1049	synthetic hexagonal birnessite (pH 2), and synthetic δ -MnO ₂ . Spectra are rescaled and offset for
1050	clarity.
1051	
1052	
1053	
1054	
1055	
1056	
1057	
1058	
1059	Table 1 Specimens used for Raman Spectroscopy

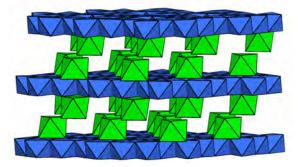
Mineral	Specimen #	Locality	Chemical Formula
Chalcophanite	C1814	Sterling Hill mine, NJ	ZnMn ₃ O ₇ · 3H ₂ O
	R12334	Bisbee, AZ	$ZnMn_3O_7 \cdot 3H_2O$
Ernienickelite	171561	Kalgoorlie-Boulder Shire, Australia	$NiMn_3O_7 \cdot 3H_2O$
Jianshuiite		Medford Quarry, MD	$MgMn_3O_7 \cdot 3H_2O$

Rancieite		Friesach, Austria	$Ca_{0.19}K_{0.01}(Mn^{4+}{}_{0.91}\square_{0.09})O_2 \cdot 0.63H_2O$
	128318	Rancie Mtn., France	$\frac{Ca_{0.14}Mg_{.04}Ba_{.01}K_{0.01}(Mn^{4+}{}_{0.87}Zn_{.06}\square_{0.07})O_2}{\cdot\ 0.63H_2O}$
	29.74	Alsace, France	$\begin{array}{c} Ca_{0.16}Mg_{.01}Ba_{.01}K_{0.01}(Mn^{4+}{}_{0.91}\square_{0.09})O_2 \cdot \\ 0.63H_2O \end{array}$
		Spain	$\frac{Ca_{0.13}Mg_{.04}Ba_{.02}K_{0.01}(Mn^{4+}{}_{0.91}\square_{0.09})O_2\cdot}{0.63H_2O}$
Na-birnessite		Synthetic ^a	$Na_{0.58}(Mn_{1.34}^{4+}Mn_{0.66}^{3+})O_4 \cdot 1.4H_2O$
K-birnessite		Synthetic ^a	$K_{0.58}(Mn^{4+}_{1.34}Mn^{3+}_{0.66}) O_4 \cdot 1.4H_2O$
Li-birnessite		Synthetic ^a	$Li_{0.58}(Mn^{4+}_{1.34}Mn^{3+}_{0.66}) O_4 \cdot 1.4H_2O$
Ba-birnessite		Synthetic ^a	$Ba_{0.29}(Mn^{4+}{}_{1.34}Mn^{3+}{}_{0.66})O_4 \cdot 1.6H_2O$
Ca-birnessite		Synthetic ^a	$Ca_{0.30}(Mn^{4+}_{1.34}Mn^{3+}_{0.50}\square_{0.16}) O_4 \cdot 1.6H_2O$
Hex-birnessite		Synthetic (pH 2) ^b	$Mn^{3+}_{0.2}(Mn^{4+}_{1.34}Mn^{3+}_{0.66}\square_{0.09})O_4 \cdot 1.6H_2O$
Vernadite		Pacific Ocean crust	$\frac{Na_{0.47}Ca_{.28}Mg_{.16}K_{0.03} (Fe_{1.18}Si_{.28}Al_{.07}Ti_{.09}\Box)}{(Mn^{4+},Mn^{3+})_2 O_4 \cdot nH_2O}$
δ-MnO ₂		Synthetic ^c	$\frac{(Na_{.09}Mn^{3+}{}_{.08}K_{.07})(Mn^{4+}{}_{.70}Mn^{3+}{}_{.26}\Box_{.04})O_2}{nH_2O} \cdot$
Feitknechtite ^d		Synthetic	Mn(OH) ₃ (assumed)
Lithiophorite	162391	Postmasburg, South Africa	$(Al_{0.67}Li_{0.33})(Mn^{4+}_{0.67}Mn^{3+}_{0.33})O_2(OH)_2$
		Georgia, USA	(Al _{0.80} Co _{0.08})(Mn)O ₂ (OH) _x
	46158	Rengersdorf, Germany	(Al. ₇₅ Si _{.09} Co _{.06} Ni _{.03})MnO ₂ (OH) _x
Asbolane	97579	Kasaigaigori, Japan	(Al. ₇₉ Co _{.34} Fe _{.04})MnO ₂ (OH) _x

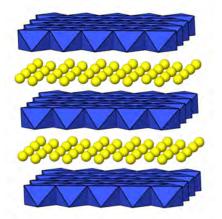
Page 53

103709	La Motte mi., Missouri	$(Co_{.69}Cu_{.24}Ni_{.10}Zn_{.04}Al_{.04})MnO_2(OH)_x$
R2247	Sachsen, Germany	(Al. ₇₈ Co _{.14} Fe _{.22})MnO ₂ (OH) _x
R9752	Schneeberg, Germany	$(Al_{.47}Co_{.04}Fe_{.05})MnO_2(OH)_x$

- a -Na-birnessite synthesized and sample exchanged with respective interlayer cation following
 method of Golden et al (1986)
- 1062 b Hexagonal birnessite formed by reacting Na-birnessite with pH 2 HCl solution.
- 1063 c sample provided by M. Zhu, synthesized using method of Villilobos et al. (2003)
- 1064 d sample provided by E. Elzinga
- 1065 Note: Li content for lithiophorite from South Africa determined by single crystal X-ray structure
- 1066 refinement by Post and Appleman (1994); Li concentrations were not determined for other
- 1067 lithiophorite and asbolane samples. Asbolane cation values were normalized to one Mn.


1068

1069

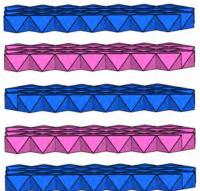
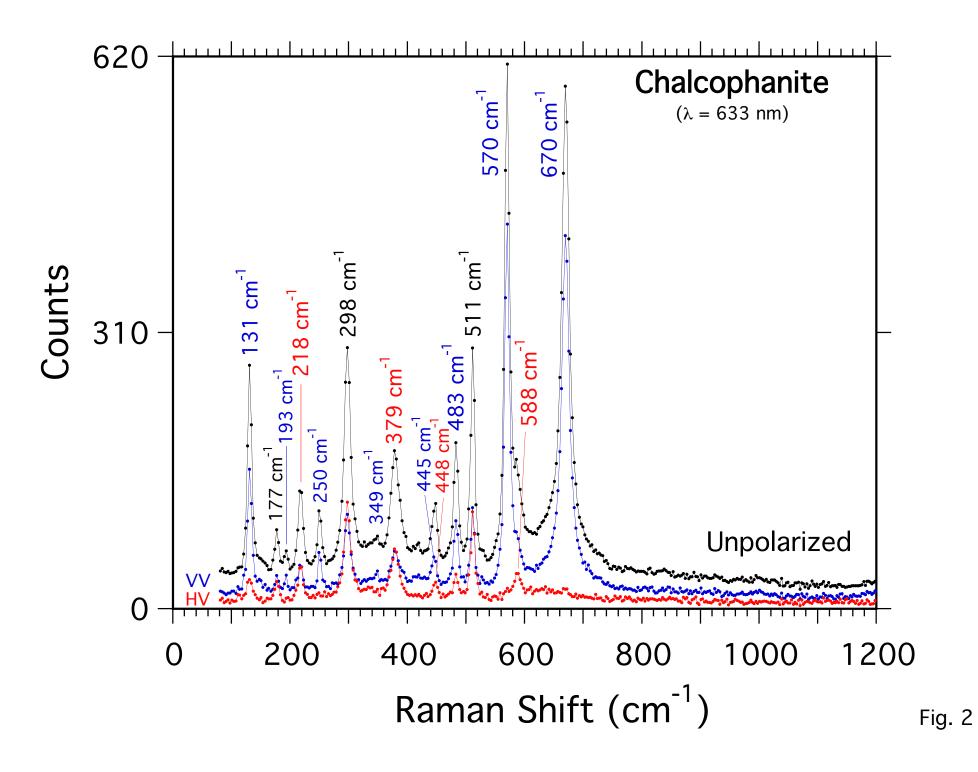
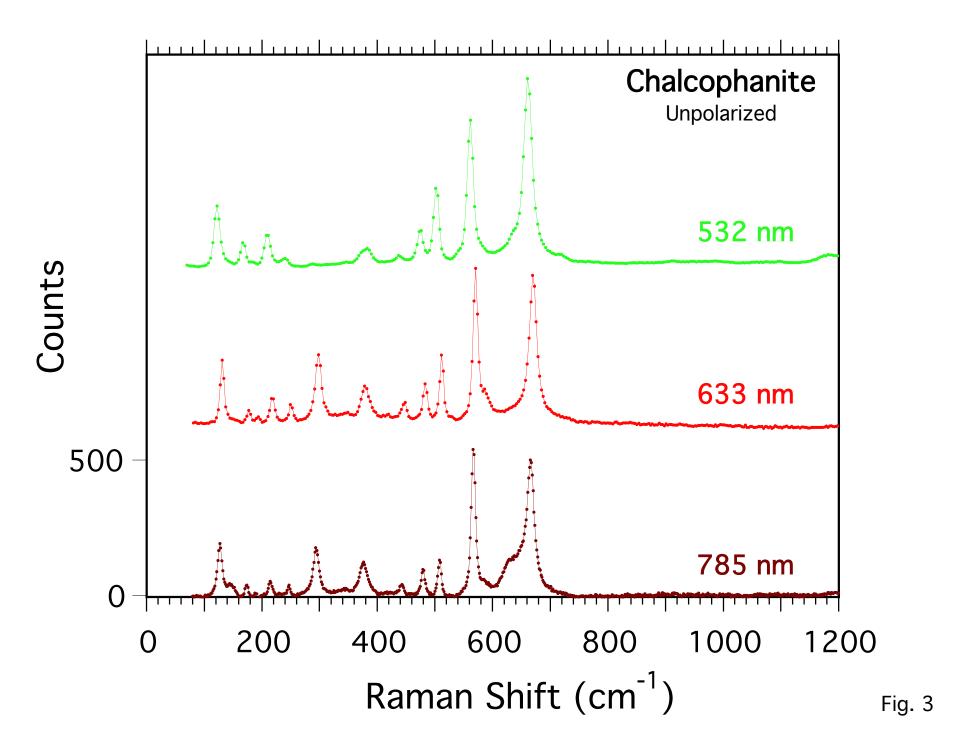
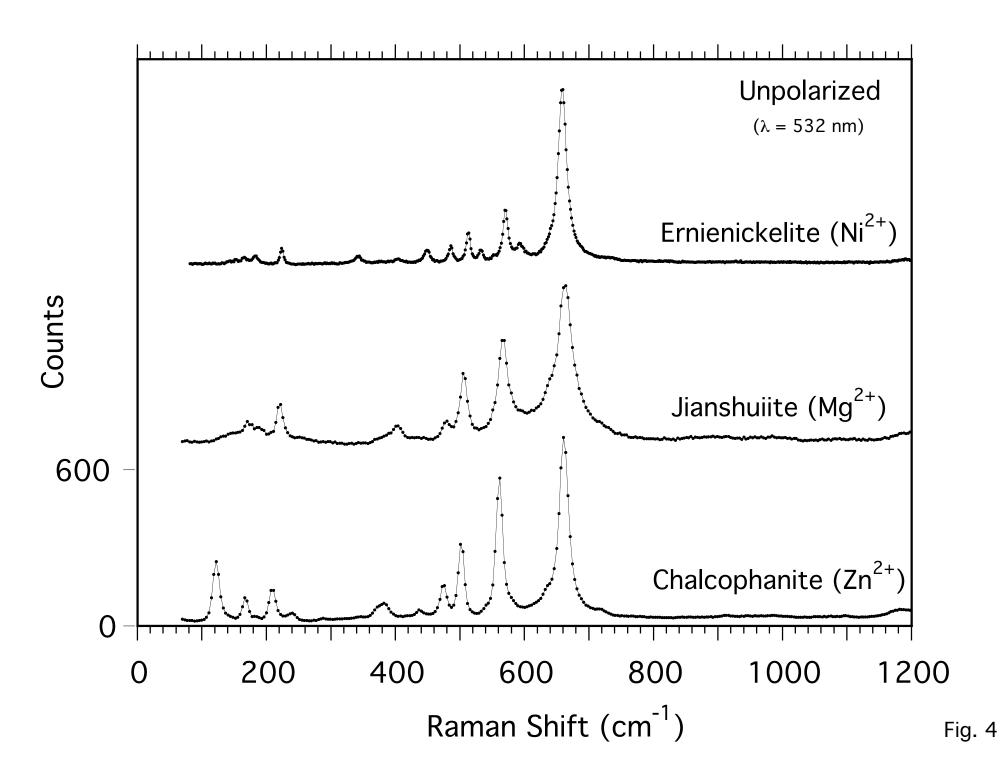
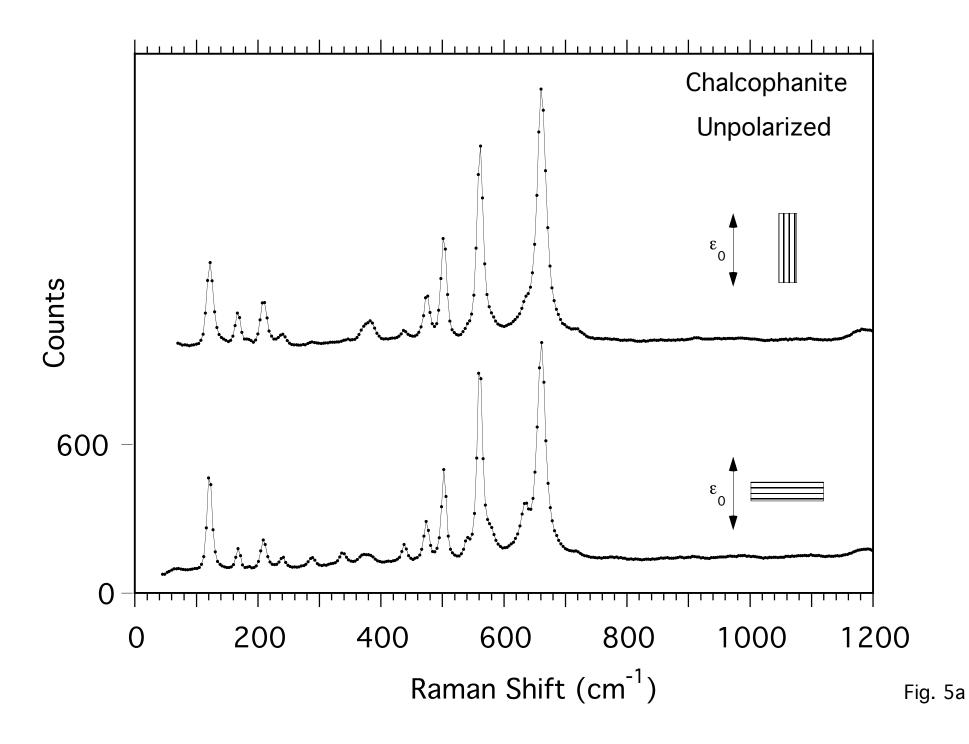

- 1070 Table 2. Factor group analysis (FGA) results of the tunnel structure-type Mn-oxides phases. Γ_{optic}
- 1071 includes Raman- and IR-active modes; three $\Gamma_{acoustic}$ modes are indicated for each phase. The
- 1072 space group of each phase are listed in Hermann-Mauguin notations.

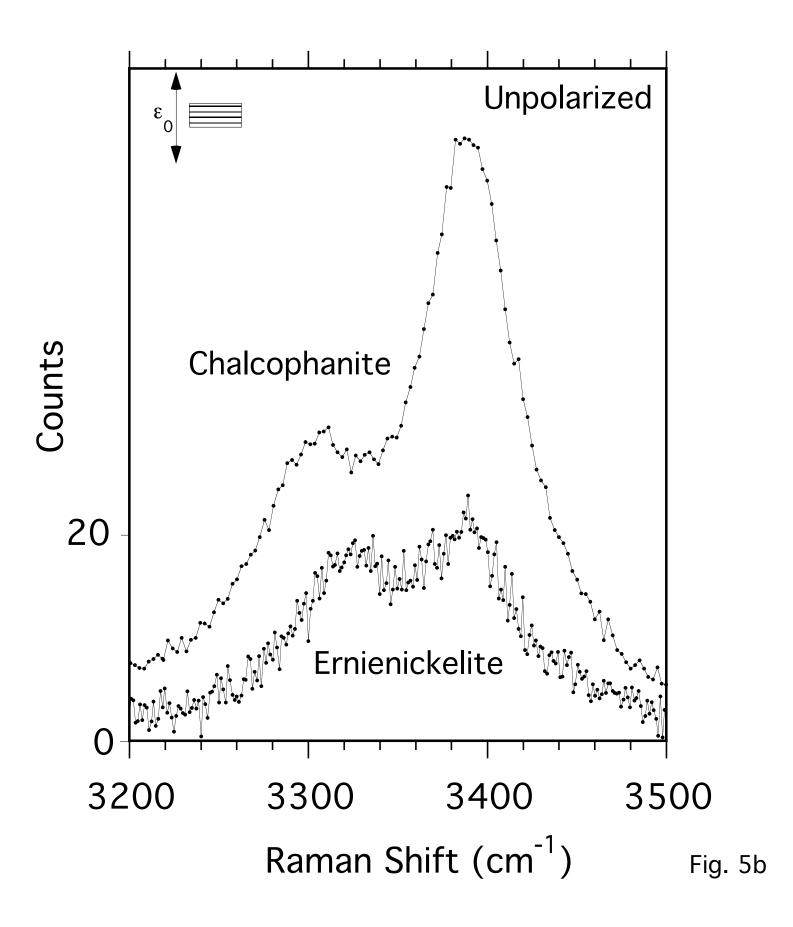
Phase	Space Group:	FGA	1073
<u>1 nasc</u>			1074
Lithiophorite	R-3m (#166)	Γ = 3A _{1g} + 3E _g + 5A _{2u} + 5E _u	1075
		$\Gamma_{Acoustic}$: $A_{2u}(z) + E_u(xy)$	1076
Chalcophanite	R-3 (#148)	$\Gamma = 14A_g + 14E_g + 14A_u + 14E_u$	1077
		$\Gamma_{Acoustic}$: A _u (z) + E _u (xy)	1078
			1079
Na-Birnessite	C-1 (#2)	Γ = 6Ag + 6A _u	1080
		Γ _{Acoustic} : 3A _g	1081
Rancieite	P -3	$\Gamma = 5A_g + 5E_g + 5A_u + 5E_u$	
		$\Gamma_{Acoustic}$: A _u + E _u	

Chalcophanite

Na-Birnessite

Lithiophorite


Figure 1

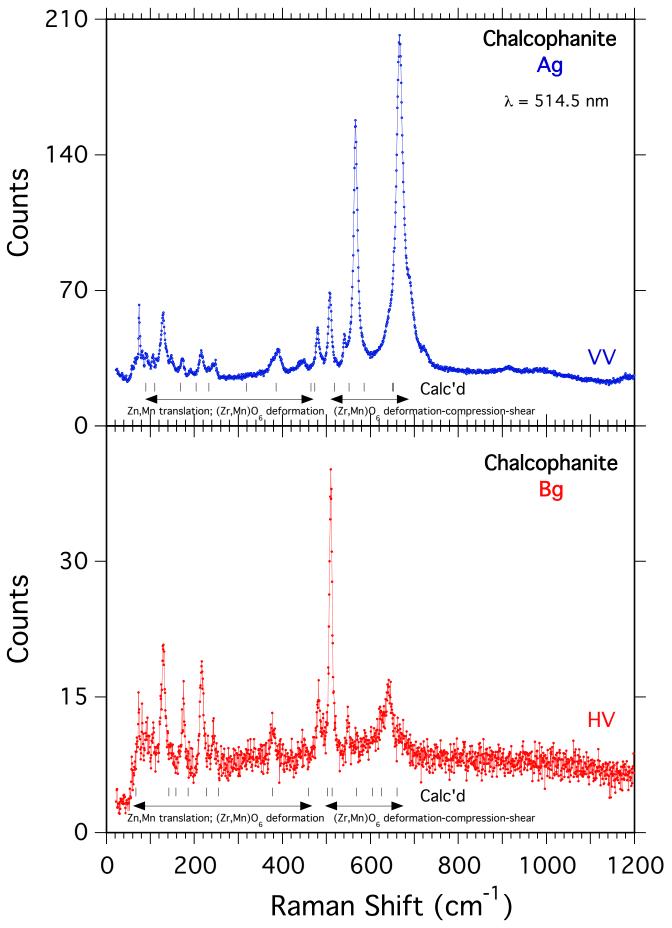
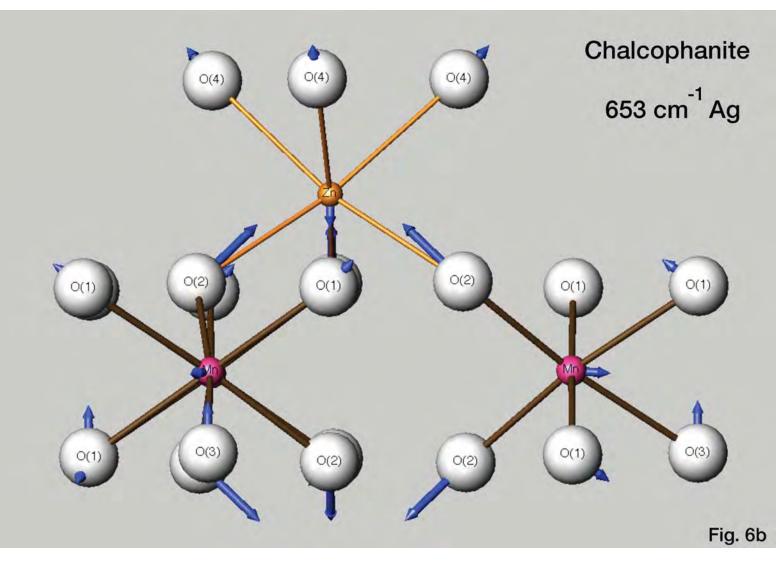
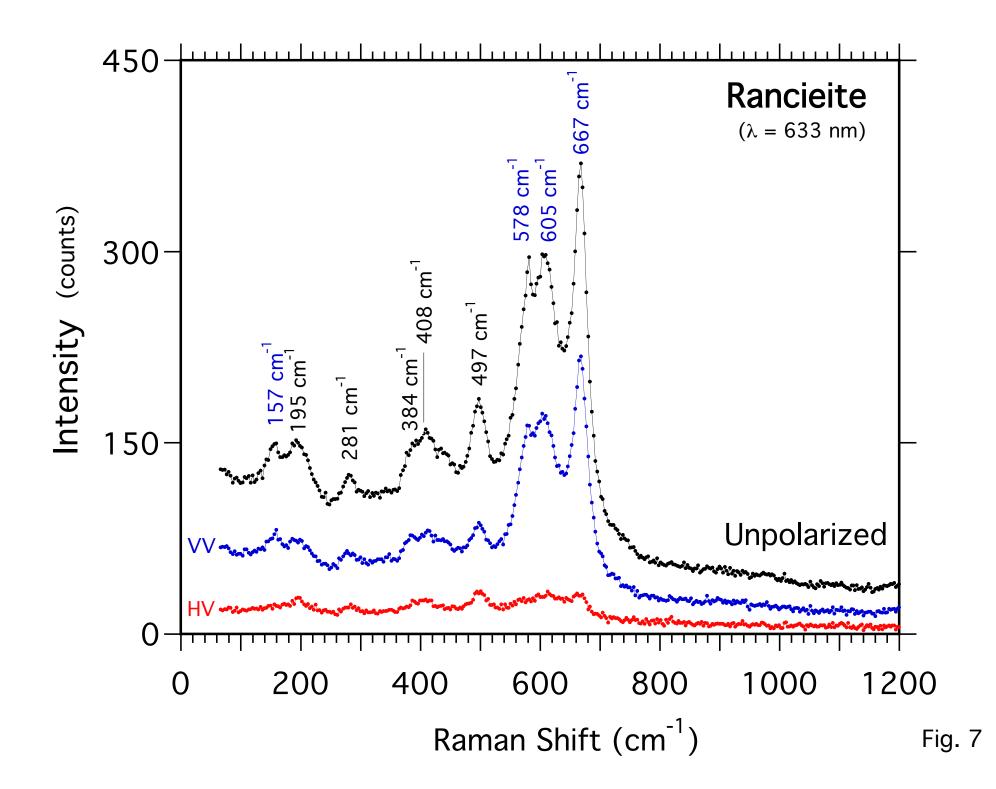
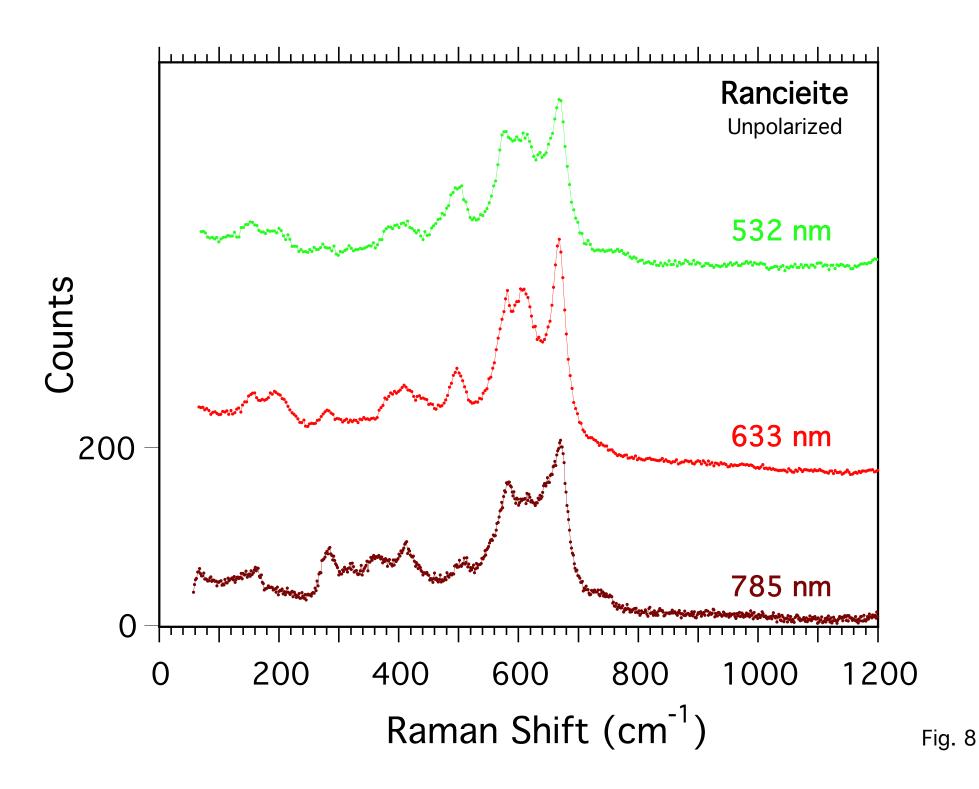
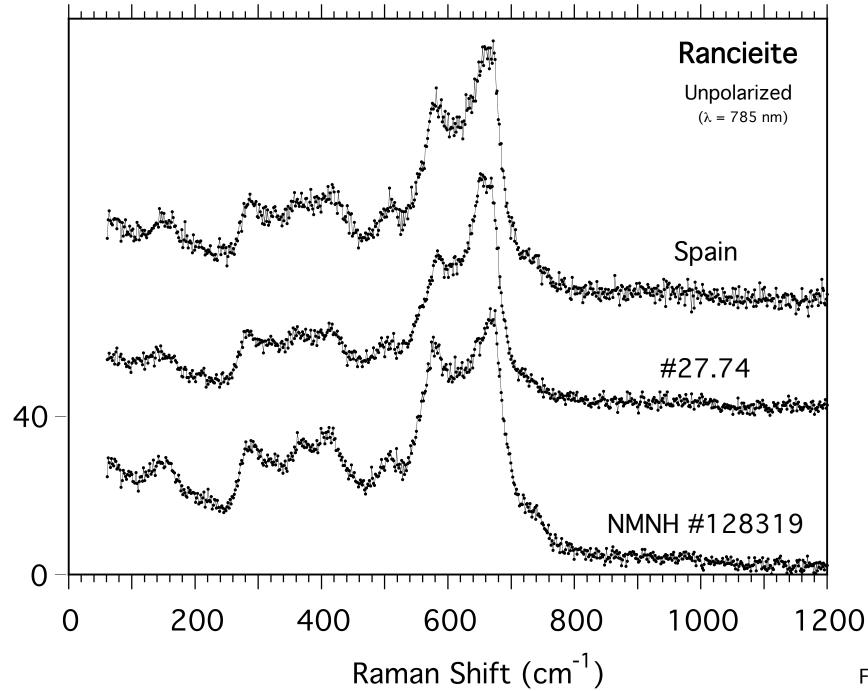
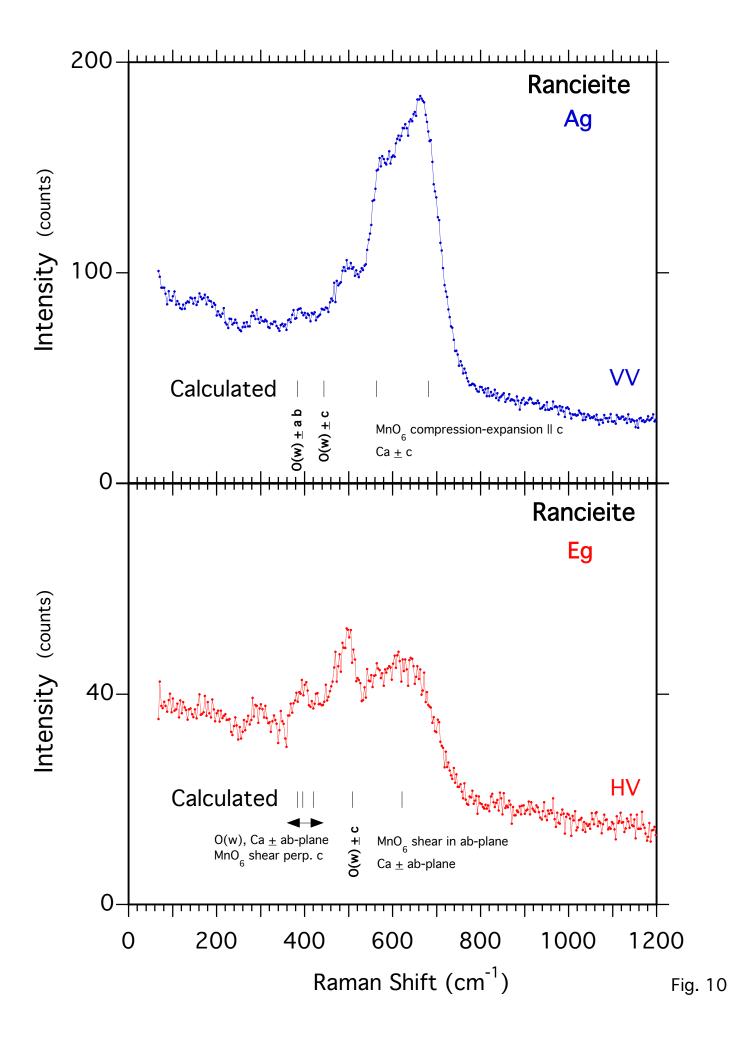
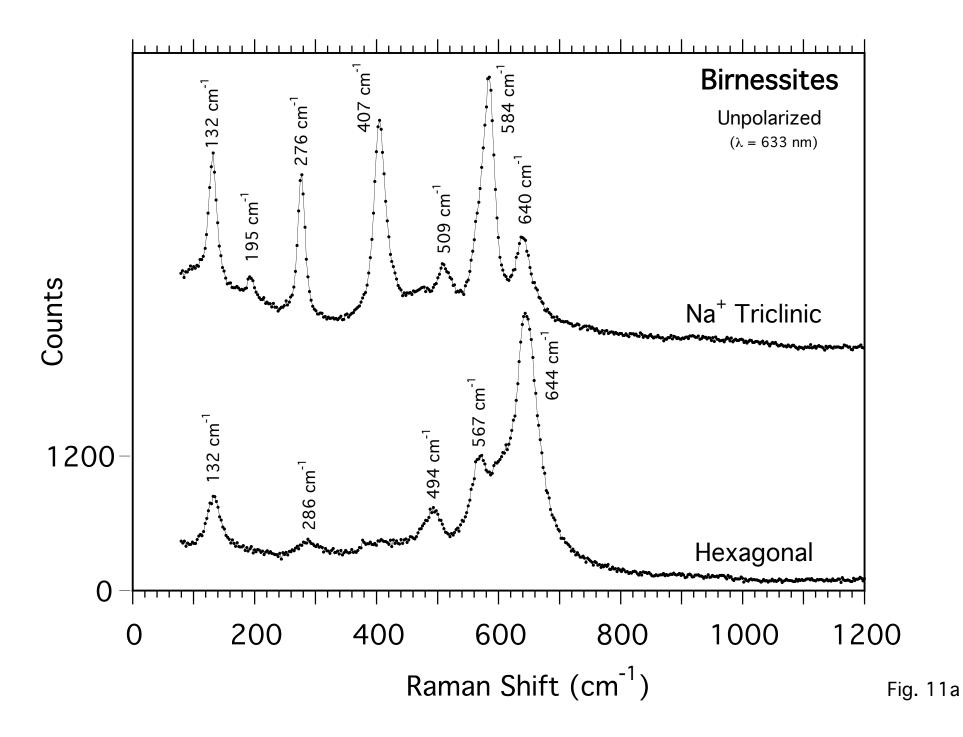
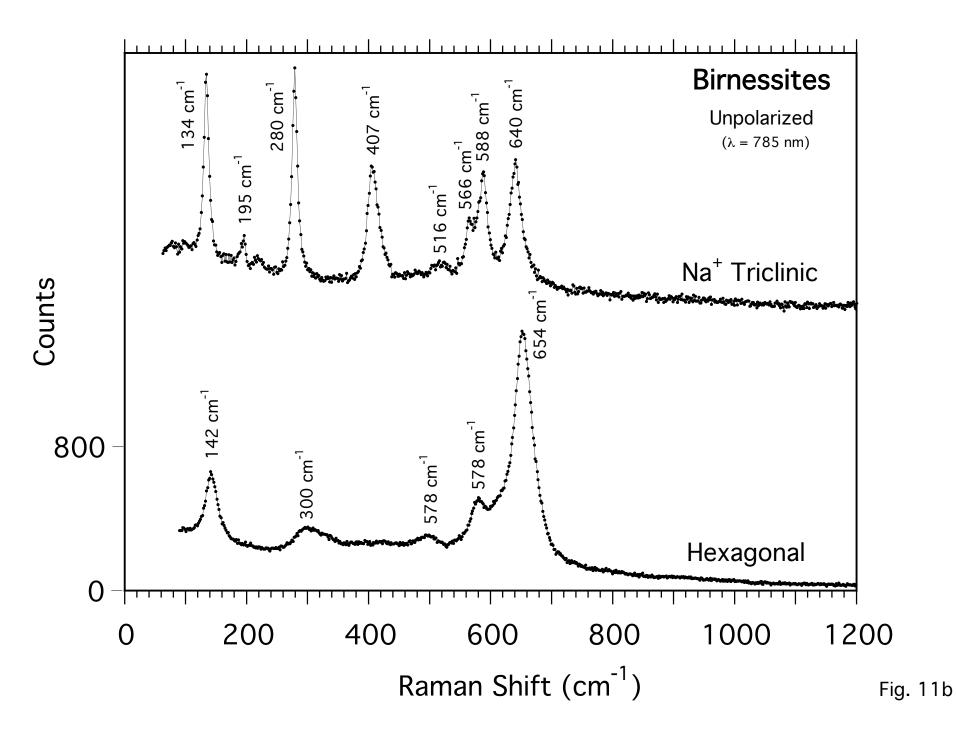
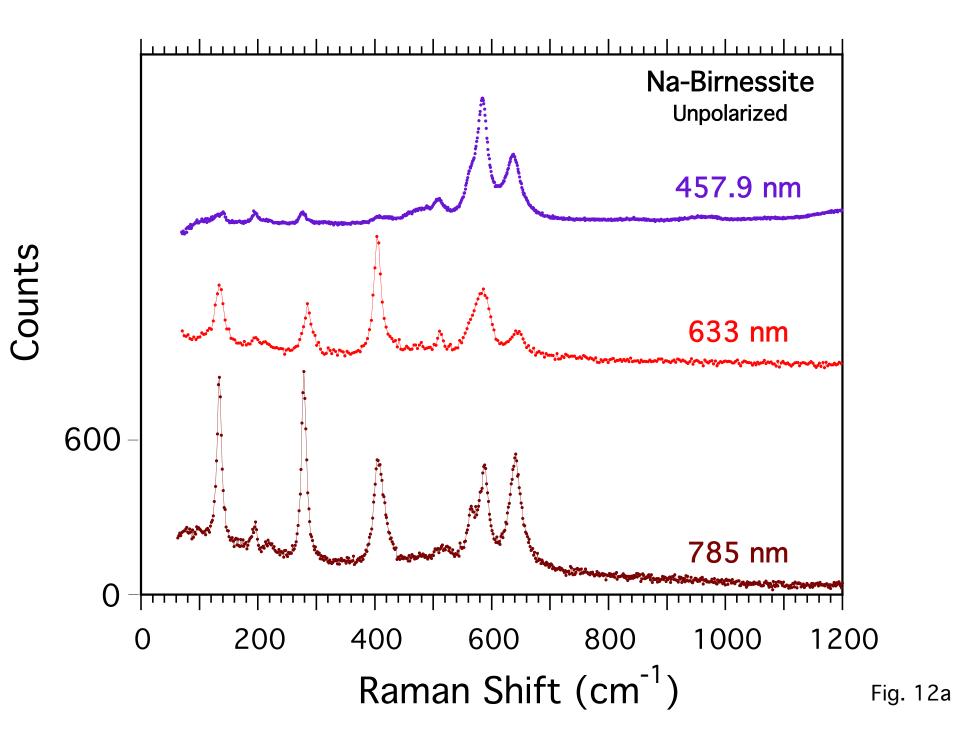






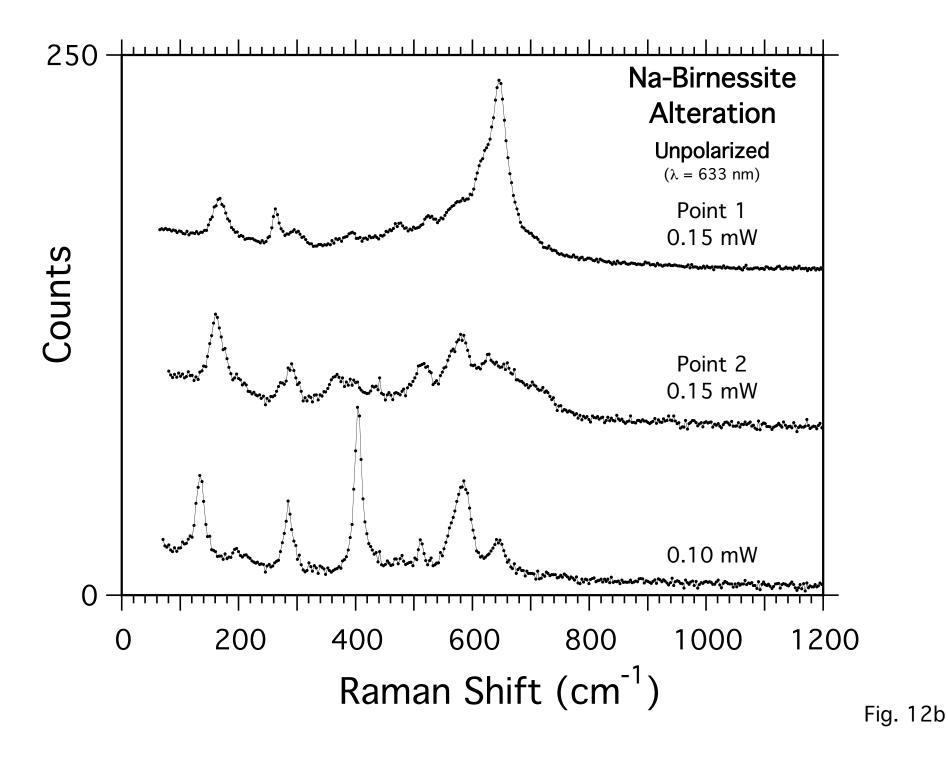
Fig. 6a

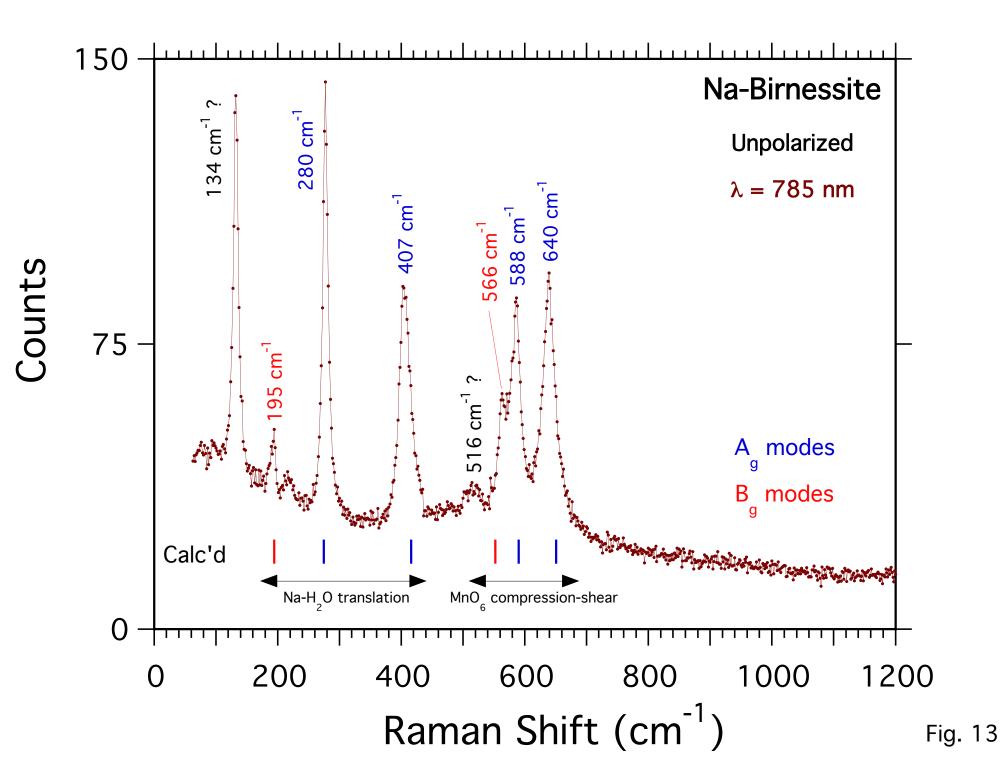


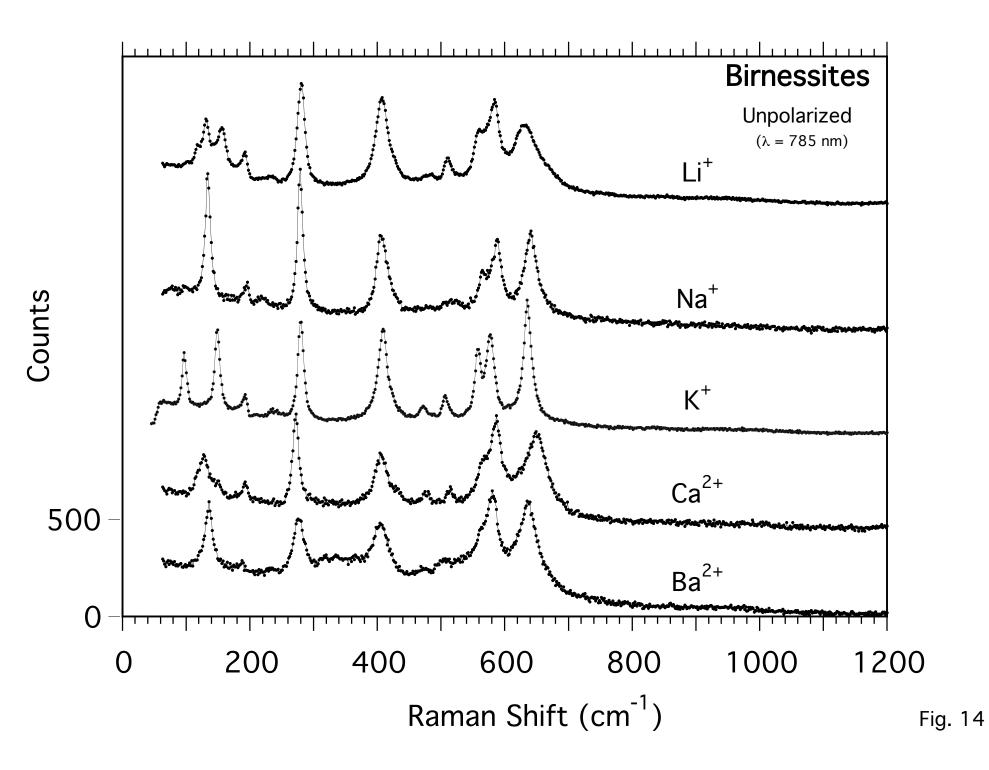


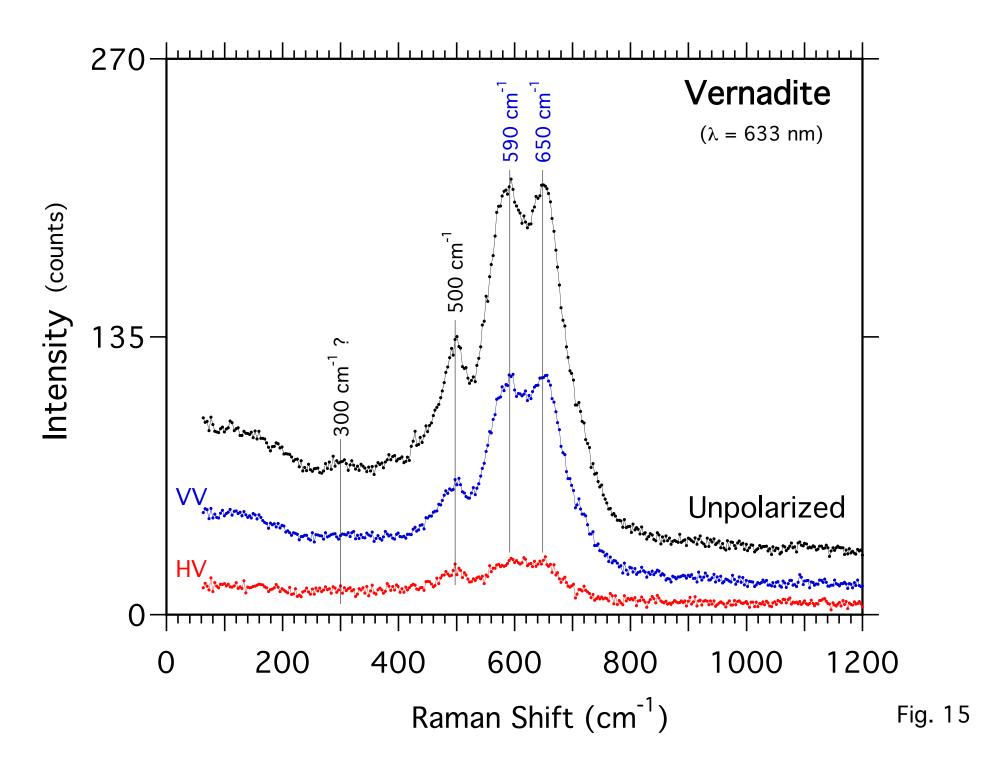


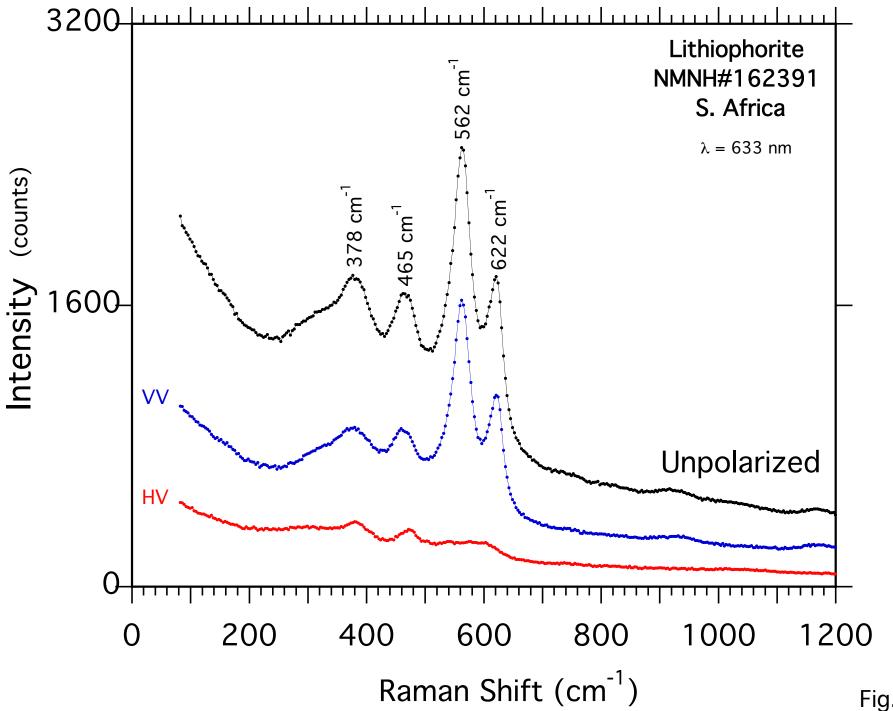


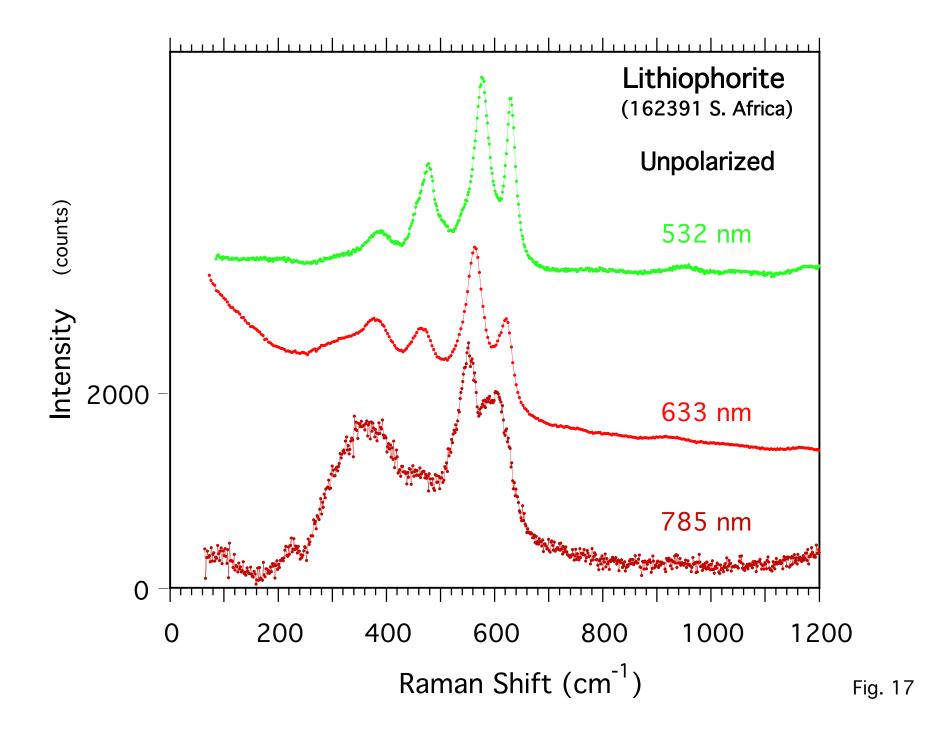

Intensity (counts)

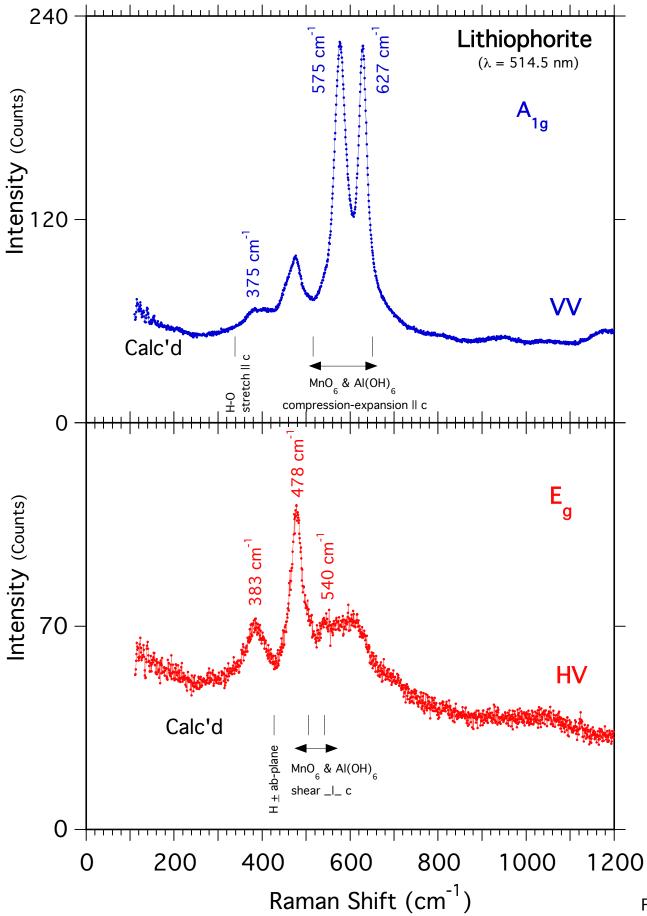


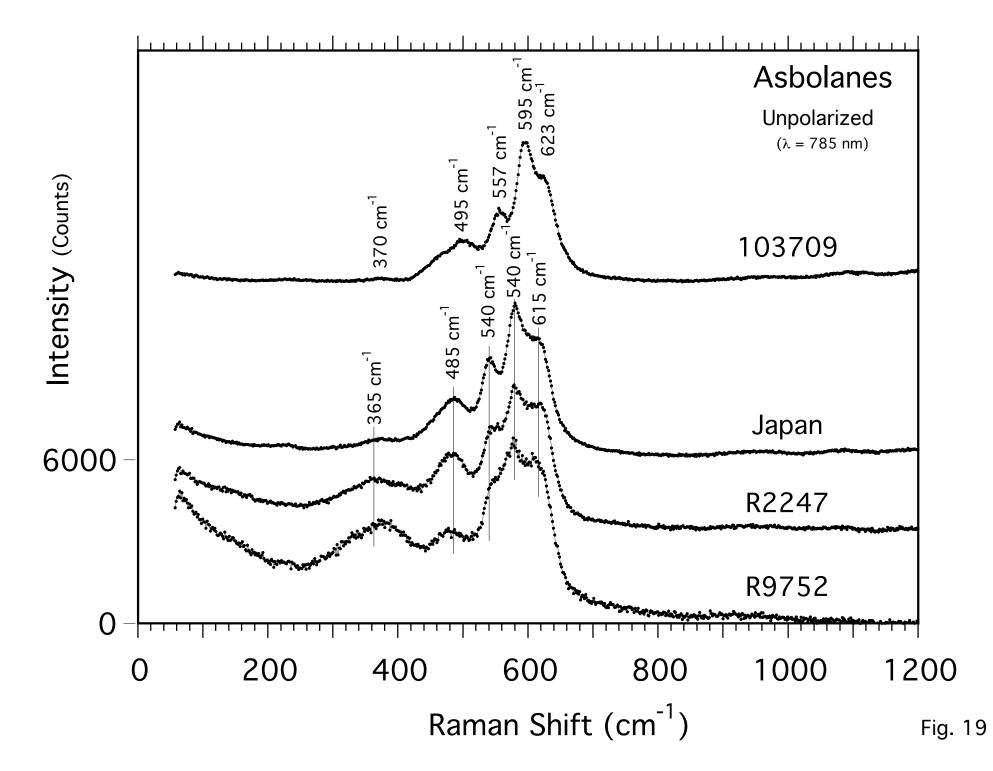


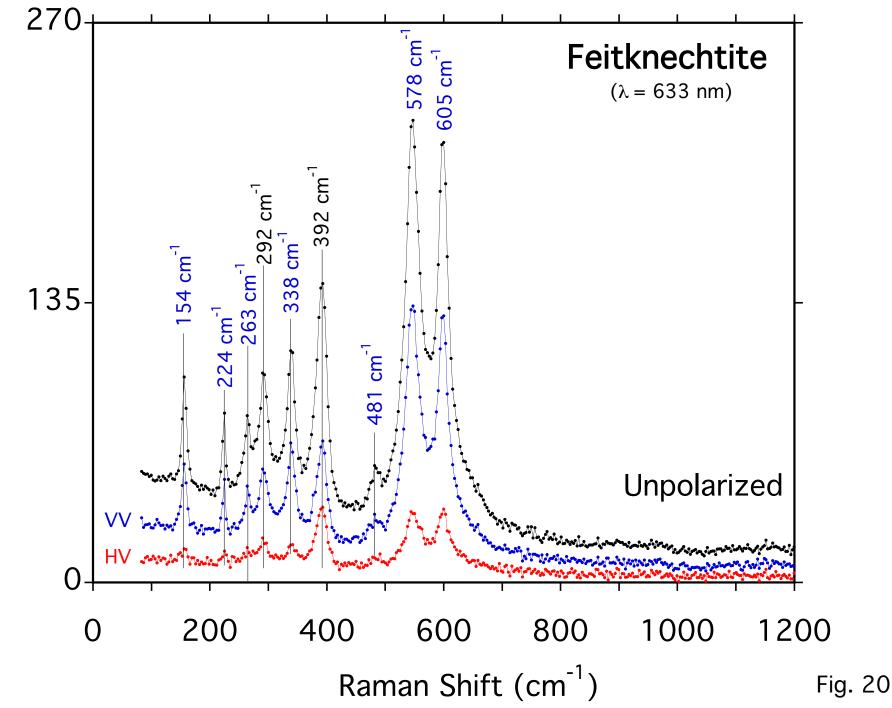


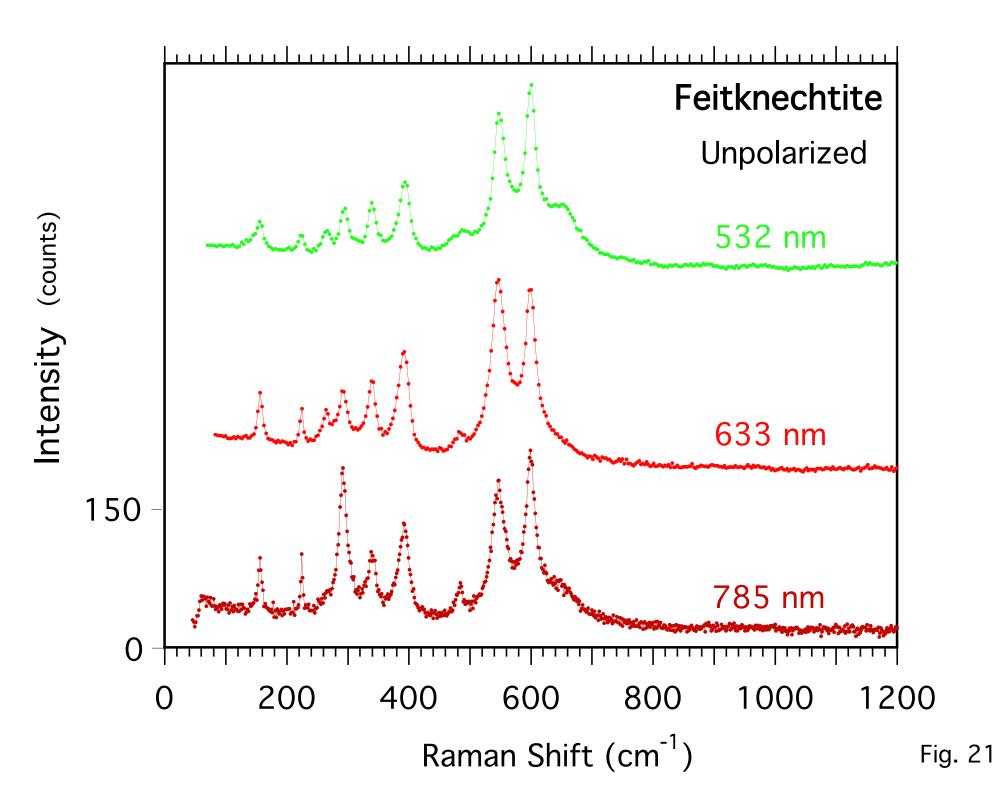


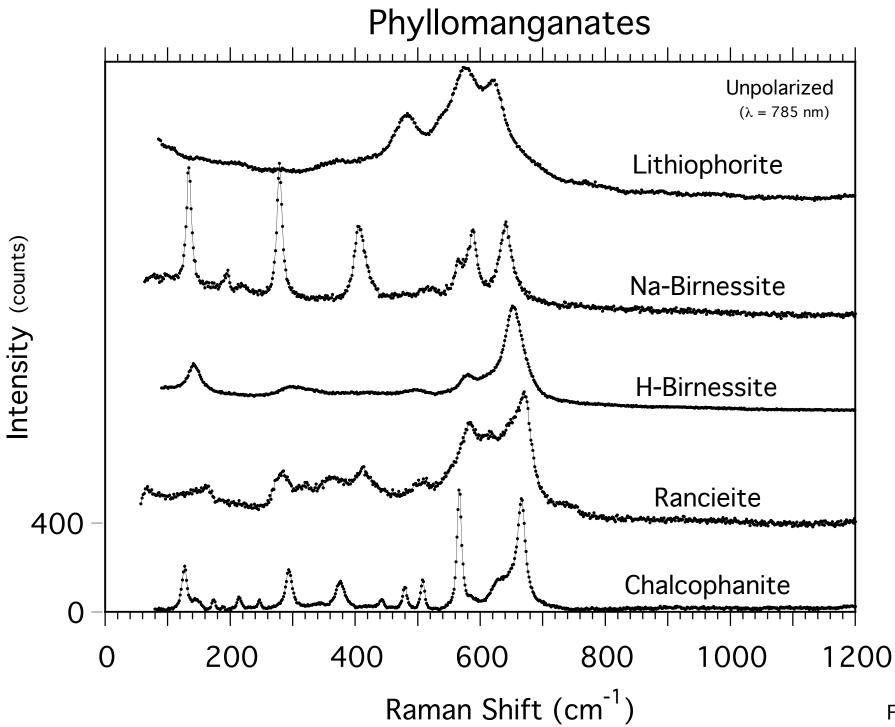


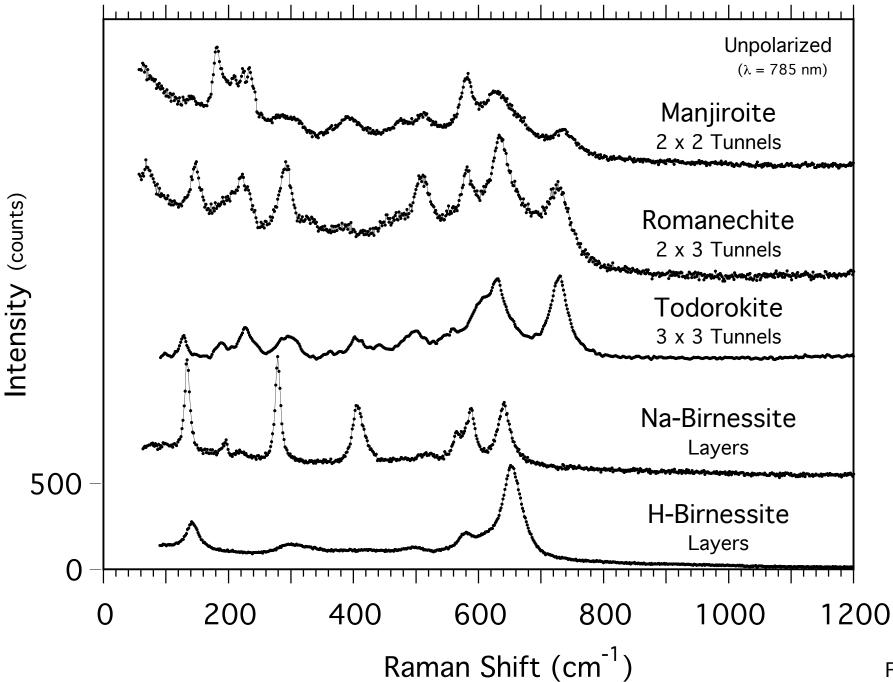


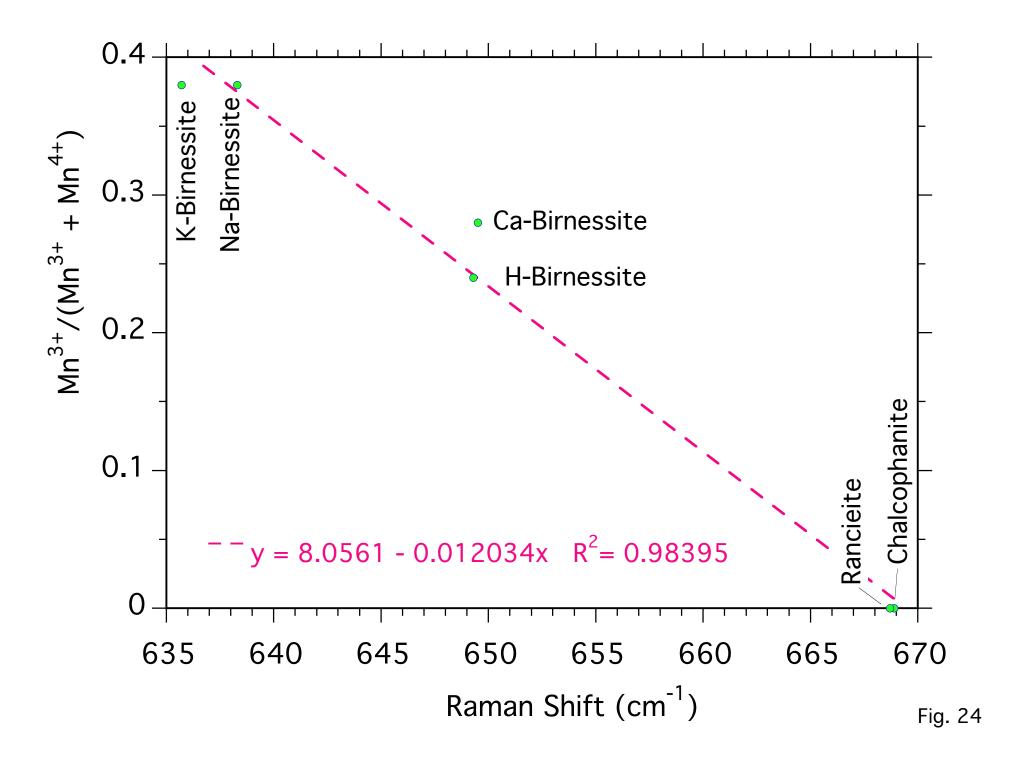


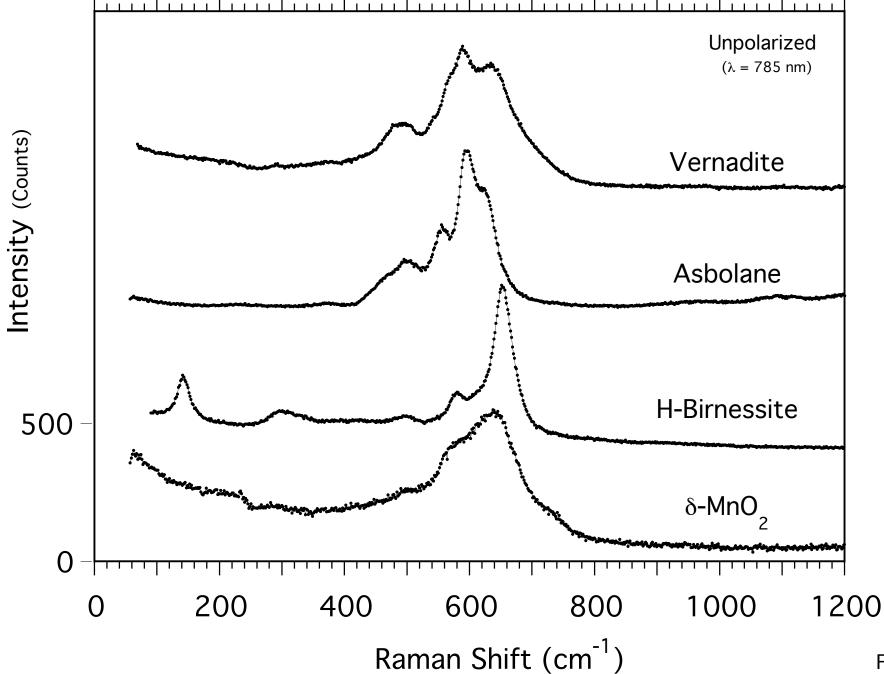











Intensity (counts)

