1	REVISION #3—06 July 2020—submitted to American Mineralogist
2	
3	An evolutionary system of mineralogy, Part III:
4	Primary chondrule mineralogy (4566 to 4561 Ma)
5	
6	ROBERT M. HAZEN^{1,*}, SHAUNNA M. MORRISON¹, AND ANIRUDH PRABHU²
7	¹ Earth and Planets Laboratory, Carnegie Institution for Science,
8	5251 Broad Branch Road NW, Washington DC 20015, U.S.A.
9	² Tetherless World Constellation, Department of Earth and Environmental Sciences,
10	Rensselaer Polytechnic Institute, Troy NY 12180, U.S.A.
11	
12	ABSTRACT
13	Information-rich attributes of minerals reveal their physical, chemical, and biological modes of
14	origin in the context of planetary evolution, and thus they provide the basis for an evolutionary
15	system of mineralogy. Part III of this system considers the formation of 43 different primary
16	crystalline and amorphous phases in chondrules, which are diverse igneous droplets that formed
17	in environments with high dust/gas ratios during an interval of planetesimal accretion and
18	differentiation between 4566 and 4561 Ma. Chondrule mineralogy is complex, with several
19	generations of initial droplet formation via a variety of proposed heating mechanisms, followed in
20	many instances by multiple episodes of reheating and partial melting. Primary chondrule
21	mineralogy thus reflects a dynamic stage of mineral evolution, when the diversity and distribution
22	of natural condensed solids expanded significantly.
23	*E-mail: <u>rhazen@carnegiescience.edu</u>
24	Keywords: classification; mineral evolution; natural kinds; chondrules; chondrite meteorites;
25	planetesimals

26

INTRODUCTION

27 The "evolutionary system" of mineralogy focuses on the inexorable emergence of mineral 28 diversity and distribution through billions of years of cosmic evolution. This data-driven approach 29 emphasizes the numerous information-rich aspects of minerals - attributes that point to a variety 30 of physical, chemical, and ultimately biological mineral-forming processes (Hazen et al. 2008; 31 Hazen and Ferry 2010; Hazen 2019). The first three parts of this evolutionary system focus on 32 relatively unaltered components of chondrite meteorites: presolar "stardust" grains (see Part I; 33 Hazen and Morrison 2020); refractory inclusions (i.e., CAIs, AOAs, and URIs, as described in 34 Part II; Morrison and Hazen 2020); and primary chondrule phases (Part III, this study), all of which 35 preserve episodes of mineral evolution prior to their incorporation into planetesimals (the subject 36 of Part IV of this series) and extensive alteration by planetesimal processing, as recorded, for 37 example, in both highly altered chondrite and achondrite meteorites (to be reviewed in Part V).

This system builds on classification protocols of the International Mineralogical Association (IMA), as codified by the Commission on New Minerals, Nomenclature and Classification (e.g., Burke 2006; Mills et al. 2009; Schertl et al. 2018). We attempt to amplify and modify the IMA approach, which distinguishes each mineral "species" based on unique combinations of endmember composition and idealized crystal structure, leading to >5500 approved mineral species (rruff.info/ima; accessed 7 April 2020).

The power and simplicity of the IMA classification system lies in its recognition of mineral species based on the minimum information (measured in bits; e.g., Krivovichev 2012, 2013) necessary to distinguish among species. By design, IMA protocols do not consider such revelatory aspects of minerals as trace and minor elements, fractionated isotopes, structural defects, varied electromagnetic properties, textures and morphologies, compositional zoning, or inclusions.

49 Neither does the IMA take into account mineral ages or petrologic contexts when classifying 50 mineral species. However, these and many other characteristics of minerals and their assemblages 51 collectively provide powerful testimony regarding each mineral's origins, as well as its subsequent 52 deep-time interactions with changing chemical and physical environments. The evolutionary 53 system, by distinguishing minerals formed in different paragenetic contexts from stars to nebulae 54 to dynamic planetary surfaces and interiors, thus provides a framework for classifying minerals in 55 their spatial and temporal context.

56 The evolutionary system employs IMA nomenclature for most natural condensed solids, but it 57 deviates from those protocols in three important ways. In some instances, we split IMA species 58 into two or more "natural kinds," based on diagnostic combinations of attributes that arise from 59 distinct paragenetic modes. Thus, isotopically anomalous hibonite condensed in the expanding, 60 cooling atmospheres of AGB stars (labelled "AGB hibonite") is measurably distinct from hibonite 61 condensed from the solar nebula to form a primary phase in a calcium-aluminum-rich inclusion 62 ("CAI hibonite"). Many of the most common rock-forming minerals display multiple paragenetic 63 contexts, each of which tells a different story about stages of planetary evolution; these species are 64 thus split into two or more "natural kinds" in our system (Hazen 2019). Note that we employ a 65 binomial nomenclature, with the first name designating the paragenetic mode and the second name 66 the mineral species, which in the great majority of cases is the same as the approved IMA species 67 name.

In a number of cases, we lump two or more approved IMA species into one natural kind when those multiple species satisfy two criteria: (1) the species are part of a continuous phase region that may be bounded by several different idealized end-members; and (2) all examples form by the same paragenetic mode. For example, CAIs hold a variety of micron-scale refractory metal

72 "nuggets" that occur as alloys of Mo, Ir, Os, Ru, Rh, Re, Pt, and W (Weber and Bischoff 1997; 73 Berg et al. 2009; MacPherson 2014). These alloys, which are among the earliest high-temperature condensates in the solar nebula, occur in a range of elemental proportions, with Os, Ru, Re, or Mo 74 75 as the dominant element in some individual sub-micrometer-scale grains. IMA protocols thus 76 would name coexisting nuggets as "osmium," "ruthenium," "rhenium," or "molybdenum" (though 77 the latter two native elements have not been approved as species by the IMA). By contrast, we 78 lump all of these metal alloys together into platinum group element alloys ("CAI PGE alloy"). 79 Similar lumping occurs in a number of oxide and silicate minerals in chondrules, including 80 members of the oxide spinel, olivine, and clinopyroxene groups.

A third deviation from IMA protocols relates to non-crystalline condensed phases, notably a variety of low-temperature interstellar condensates (e.g., amorphous H₂O), impact phases (e.g., maskelynite), and rapidly quenched silicate glasses that are especially important in the context of chondrules. These materials, though not generally incorporated in the current IMA scheme (e.g., Hazen et al. 2013, Table 3; Hazen 2019), are important in discussions of planetary evolution (e.g., Bradley 1994a, 1994b; Abreu and Brearley 2011) and they represent distinct condensed solid phases that should be included in any comprehensive catalog of planetary materials.

Each of these considerations – splitting, lumping, and amorphous phases – comes into play
when considering primary chondrule minerals, which provide the focus of Part III of this series.

90

91

CHONDRULES AND CHONDRITES

92 Chondrite meteorites, the oldest sedimentary rocks in the solar system, hold vivid clues to the 93 origins and evolution of stars and planets. Here we review the nature and origin of chondrules, the 94 classification of chondrite meteorites in which they are found, and a chronology of the earliest 95 stages of mineral evolution. Chondrule types, properties, origins, and implications have been the 96 subject of several comprehensive reviews (King 1983; Kerridge and Matthews 1988; Hewins et 97 al. 1996; Brearley and Jones 1998; Hutchison 2004; Connolly and Desch 2004; Krot et al. 2014; 98 Scott and Krot 2014; Rubin and Ma 2017, 2020; Russell et al. 2018). What follows, therefore, is a 99 brief summary in the context of chondrule mineralogy.

100

101 <u>Classification of Chondrules</u>

102 Chondrules are igneous particles that were once partially to completely melted. Most 103 chondrules range in size from tens of micrometers to ~10 millimeters in diameter, though extreme 104 examples vary from submicron (Rubin et al. 1982) to several centimeters (Prinz et al. 1988) in 105 diameter. Chondrules often occur as near-spherical solidified droplets (e.g., Weyrauch and 106 Bischoff 2012; Charles et al. 2018), though other chondrules and their fragments are preserved in 107 irregular shapes as a consequence of incomplete melting of precursor dust and grains, adhesion 108 and sintering of conjoined objects, or sculpting by dynamic nebular processes (e.g., Rubin 2006). 109 Most chondrules are dominated by silicates, commonly olivine, pyroxene, and feldspar, but many 110 other phases, including metal alloys, sulfides, nitrides, phosphides, and several varieties of glass, 111 occur in varying proportions that point to formation in diverse physical and chemical 112 environments. Indeed, chondrules span the range from nearly pure silica to nearly pure metal, with 113 textures from holocrystalline to glass. Given that chondrites account for as many as 80 percent of

observed meteorite falls, and that chondrules are the most abundant components of most chondrites, a significant fraction of the material that now comprises terrestrial planets and moons may have once been stored in the form of these small igneous droplets.

117 Chondrule classification is based on a combination of mineralogical, textural, and 118 compositional attributes. From a petrographic perspective, most common chondrules (more than 119 80 percent in ordinary chondrites) display porphyritic textures, including types designated PO 120 (porphyritic olivine), POP (porphyritic olivine + pyroxene), and PP (porphyritic pyroxene) – 121 conventions introduced by Gooding and Keil (1981). Other textural types include BO (barred 122 olivine) with skeletal olivine plate-like crystals that were evidently quenched from a peak 123 temperature close to the liquidus of the chondrule; GOP (granular olivine pyroxene) with small 124 uniform grains; RP (radial pyroxene) with needle-like pyroxene crystals radiating from a point on 125 the chondrule periphery; cryptocrystalline chondrules with crystallites less than 2 micrometers in 126 diameter; and rare glassy chondrules. An important component of most chondrules is fine-grained 127 or glassy mesostasis – solidified residual melt that surrounds phenocrysts (Connolly et al. 1998; 128 Hewins et al. 2005).

129 Chondrules are also classified by their chemical characteristics (e.g., McSween 1977a). Type I 130 chondrules, featuring Mg-rich olivine and pyroxene, are relatively reduced with most iron in the 131 form of Fe metal rather than silicates. They are further divided into types IA (Si poorer; olivine 132 dominant), IB (Si richer; pyroxene dominant), and IAB (intermediate, with both olivine and 133 pyroxene) chondrules. Type II chondrules are more oxidized, typically with greater than 10 134 molecular percent (mol %) of the Fe end-member in Mg silicates (Grossman and Brearley 2005). 135 The A, B, and AB designations for olivine- and pyroxene-bearing chondrules apply to type II 136 chondrules, as well.

137 In addition, a suite of aluminum-rich chondrules displays a range of compositions, between Ca-138 Al and Na-Al members, and Na-Al-Cr chondrules (Bischoff and Keil 1983, 1984), as well as 139 plagioclase-olivine inclusions or "POIs" (Sheng et al. 1991a). These objects have mineralogical 140 and compositional attributes intermediate between CAIs and chondrules. Unlike other chondrules, 141 POIs contain a suite of relatively refractory primary minerals (e.g., spinel, fassaite, and perovskite), 142 as well as several minerals not reported as primary phases from other types of chondrules (e.g., 143 armalcolite, rutile, sapphirine, and zirconolite). Additional chondrule-like objects range from 144 silica-rich, with greater than 90 weight percent (wt %) SiO₂, to sulfide-metal nodules, with < 10 145 wt % silicates and oxides (e.g., Brearley and Jones 1998; Zhang and Hsu 2009; Scott and Krot 146 2014; Wang et al. 2016).

At the smallest extreme, microchondrules no more than 40-micrometers in diameter have been recorded as decorating the rims of larger chondrules in the least altered ordinary chondrite meteorites (Mueller 1962; Rubin et al. 1982; Rubin 1989; Krot and Rubin 1996; Krot et al. 1997a). These tiny objects, which display a range of textures analogous to their larger counterparts, may form during rapid reheating events that melt the exterior portions of parent chondrules (Bigolski et al. 2016) or by splattering following random collisions (Dobriça and Brearley 2016).

153

154 <u>Classification of chondrite meteorites</u>

155 Chondrules occur in chondritic meteorites, which contain the most refractory rock-forming 156 elements in ratios close to those observed in the solar photosphere. They accreted initially as 157 accumulations of nebular particles with four principal components (Brearley and Jones 1998, 158 Table 3): (1) chondrules, typically the most abundant constituent, composing up to 80 volume 159 percent (vol %) in many meteorites, though sometimes completely lacking; (2) refractory

160 inclusions, including CAIs, URIs, and AOAs, representing from 0 to ~10 vol %; (3) opaque 161 assemblages of metallic Fe-Ni alloys and sulfides, which usually constitute less than 5 vol % but 162 exceed 90 vol % in some examples; and (4) fine-grained (10-nanometer to 5-micrometer in 163 diameter) matrix with some combination of oxide, silicate, sulfide, metal, and organic phases, often with a small fraction of presolar grains. While chondrules are often the dominant constituent 164 165 of chondrites, the ratios of these four components vary widely. Note that in this contribution we 166 consider primary chondrule mineralogy, whose formation (along with the refractory inclusions) is 167 assumed to predate the incorporation of chondrules into chondritic meteorites. These primary 168 phases are best identified and described from the most pristine chondrites, which have experienced 169 relatively little alteration by thermal, aqueous, and/or impact processes on their parent asteroidal 170 bodies. Note, however, that many chondrules experienced some degree of alteration prior to 171 chondrite formation through reactions with nebular gas, secondary heating events, and/or high-172 velocity collisions with other particles (e.g., Ruzicka 2012; Ebel et al. 2018). Therefore, the 173 distinction between primary and secondary processes is sometimes difficult to discern.

174 Chondrite meteorites have been classified under a variety of systems, based on the ratios of 175 constituents, bulk composition, primary mineralogy, mineralogical textures, and isotopic 176 characteristics. Additional chondrite subdivisions are based on degrees of aqueous, thermal, and/or 177 shock alteration within their parent body (Van Schmus and Wood 1967; Stöffler et al. 1991; 178 Weisberg et al. 2006; Krot et al. 2014), as well as through weathering at or near Earth's surface 179 (Wlotzka 1993).

180 Traditional classification of tens of thousands of chondrite meteorite finds and falls divides 181 more than 99.5 percent of specimens into 14 groups, each represented by multiple examples (e.g., 182 Scott and Krot 2014). Six of these groups, including those in the classes of ordinary, enstatite, and

183 R chondrites, collectively are termed non-carbonaceous chondrites (NC). The most abundant 184 meteorites, comprising as many as 80 percent of falls, and more than 90 percent of chondrites (i.e., 185 excluding achondrite, iron, and stony-iron meteorites), are ordinary chondrites (OC), which occur 186 in three broad groups – H, L, and LL. These three groups are generally similar in their high 187 percentage of chondrules (typically ~ 0.3 to 0.6 millimeters in diameter, comprising 60 to 80 vol 188 %; Friedrich et al. 2015), with 10 to 15 vol % matrix and few CAIs. However, they vary 189 significantly in metal composition, as well as in the mineralogy of Fe-bearing metal and silicate 190 phases. H stands for high total Fe, L for low total Fe, and LL for even lower total Fe and low metal. 191 Enstatite chondrites (EC), including EH and EL groups (for higher and lower total Fe-Ni metal 192 alloy, respectively; Sears et al. 1982), are relatively rare, comprising fewer than 2 percent of falls 193 (Weisberg and Kimura 2012). They are distinguished by an extremely reduced suite of minerals 194 (Brearley and Jones 1998; Jacquet et al. 2018; Weyrauch et al. 2018; Rubin and Ma 2020), with 195 almost all of their iron in the form of metal or sulfide, in association with near end-member 196 enstatite (MgSiO₃) and forsterite (Mg₂SiO₄). These oxygen- and water-poor rocks feature such 197 rare minerals as oldhamite (CaS), niningerite (MgS), alabandite (MnS), daubréelite (FeCr₂S₄), 198 caswellsilverite (NaCrS₂), and perryite [(Ni,Fe)₈(Si,P)₃]. EH and EL groups differ in the average 199 size of chondrules and in the composition of Fe metal alloys, but for the most part they have similar 200 mineralogy. 201 Eight chondrite groups, abbreviated CI, CM, CO, CV, CR, CH, CB, and CK, form the 202 carbonaceous chondrite class (CC), which accounts for ~ 4 percent of falls. They share several 203 compositional and isotopic characteristics, most notably: (1) suites of organic molecules; (2)

204 relatively high volatile content; (3) enrichment relative to solar average in refractory lithophile

elements such as Ca, Al, and Ti; and (4) relatively low ¹⁷O/¹⁶O compared to Earth – all 205 206 characteristics that may be consistent with formation farther from the Sun than other chondrite 207 groups. However, the several carbonaceous chondrite groups differ significantly from each other 208 in their relative percentages of chondrules, refractory inclusions, metal, and matrix, as well as 209 chondrule size, degree of oxidation, and extent of aqueous alteration and thermal metamorphism. 210 Note that all known CI, CK, and CM carbonaceous chondrites display significant thermal and/or 211 aqueous alteration (e.g., Brearley and Jones 1998; Scott and Krot 2014); consequently, their 212 mineralogy will be considered in Part V of this series.

213 Chondrite classification is further complicated by additional rare grouped meteorites, as well as 214 more than a dozen ungrouped chondrites that do not fit neatly into the above scheme. A few of 215 these unusual meteorites are carbonaceous chondrites (e.g., Ivanova et al. 2008; Wang and Hsu 216 2009; Kimura et al. 2014); others are distinguished by unusual combinations of chemical, isotopic, 217 and/or matrix characteristics (e.g., Pratesi et al. 2019). For example, K chondrites (named for the 218 Kakangari meteorite) combine aspects of both CC and NC groups, while R chondrites (for 219 Rumuruti) are related to ordinary chondrites, though they are highly oxidized, unusually rich in matrix, and have an anomalously high ${}^{17}O/{}^{16}O$ compared to other NC meteorites. It should be 220 221 noted that chondrite classification is likely incomplete, as thousands of finds have yet to be fully 222 characterized and hundreds of new specimens are recovered every year.

An important consideration when cataloguing "primary" chondrule minerals is the degree of alteration experienced in the chondrite meteorite's parent body. A non-intuitive numbering system, first introduced by Van Schmus and Wood (1967) and now in general use, defines the least altered and therefore unequilibrated chondrites as "3.0." Increasing numbers from 3 to 7 (with higher resolution between 3.0 and 3.9 for CO, L, LL, and H chondrites) designate increasing degrees of

thermal alteration, whereas decreasing numbers below 3.0 relate to increased degrees of aqueous
alteration. Additional refinements by Grossman and Brearley (2005) subdivide OC and CO 3.0 to
3.2 chondrites into an even higher resolution scale from 3.00 to 3.15.

231 Many primary chondrule minerals have been modified by progressive degrees of thermal 232 metamorphism and metasomatism within their parent bodies. Common changes include gradual 233 equilibration of silicate compositions through diffusion, as well as silicate glass devitrification, 234 most commonly characterized by the nucleation of feldspar and possibly Ca-rich clinopyroxene 235 (Sears and Hasan 1987; Scott et al. 1994). By the time a chondrule reaches type 3.9, corresponding 236 to metamorphism close to 600 °C, olivine compositions have equilibrated among a meteorite's 237 diverse chondrules, whereas pyroxene remains unequilibrated. Feldspar may occur in a high-238 temperature Al-Si disordered state (Sears et al. 1995) and display alteration effects, including Ca-239 Na zoning and textural changes (Lewis and Jones 2016, 2019). In this treatment we focus on 240 minerals found in the least equilibrated chondrites (optimally those designated 3.0, though in some 241 instances we consider minerals in more-altered chondrites, as some meteorite groups always 242 display some degree of metamorphism).

243

244 *Formation mechanisms of chondrules*

The diversity of chondrule types points to a variety of precursor materials and formation events at different heliocentric distances and with a range of paragenetic conditions (Krot et al. 2005; Rubin 2000, 2010; Desch et al. 2012; Scott and Krot 2014; Ebel et al. 2018; Hubbard and Ebel 2018). Most chondrules are thought to have formed from presolar and protoplanetary disk dust aggregates, as well as from a combination of earlier generations of chondrules, chondrule fragments, refractory amoeboid olivine aggregates (AOAs) that formed as nebular condensates,

and possibly debris from differentiated planetesimals (Weinbruch et al. 2000; Libourel et al. 2006;
Sanders and Scott 2012; Weyrauch and Bischoff 2012; Ebert and Bischoff 2016; Krot et al. 2018;
Marrocchi et al. 2019).

254 The dominant chondrule formation hypothesis for the past several decades has been rapid heating (perhaps at rates $>10^6$ °C/hour; Tachibana and Huss 2005) and melting of dust aggregates. 255 256 Note that even to partially melt these droplets required energy comparable to the gravitational 257 potential energy of the nebular disk, itself (King and Pringle 2010). Melting is thought to have 258 occurred by any one of a number of processes (Boss 1996; Desch et al. 2012; Connolly and Jones 259 2016): FU Orionis-type flares (Bertout 1989; Bell et al. 2000; Hubbard and Ebel 2014); direct 260 illumination in proximity to the protosun (Shu et al. 1996; Morlok et al. 2012); solar shock waves 261 induced by the in-fall of gas (Iida et al. 2001; Morris and Boley 2018); planetary embryo-produced 262 bow shocks (Desch and Connolly 2002; Hood and Weidenschilling 2012; Morris and Boley 2018), 263 as well as associated magnetic effects (Mann et al. 2016; Mai et al. 2018); shocks produced by 264 density waves (Wood 1996a; Boss and Durisen 2005); current sheet heating in partly ionized disk 265 regions (McNally et al. 2014; Hubbard and Ebel 2015; Zhdankin et al. 2017); and nebular lightning 266 (Sorrell 1995; Desch and Cuzzi 2000). Given the range and frequency of these rapid heating events 267 in the solar nebula, many chondrules may have experienced multiple secondary melting events 268 (Baecker et al. 2017).

Isotope systematics from chondrules and matrix also support the dust origins hypothesis by pointing to chondrule formation through localized melting events of dust aggregates in the protoplanetary disk. Kleine et al. (2018) find that ages of CV and CR chondrites are tightly constrained at 4565.1 +/- 0.8 and 4563.7 +/- 0.6 Ma, respectively. These dates suggest that the

formation interval for each chondrite type is significantly less than 1 million years, and thatchondrule formation and chondrite accretion were temporally linked.

275 Other researchers favor additional chondrule formation scenarios related to planetesimal 276 impacts (e.g., Krot et al. 1993; Asphaug et al. 2011; Sanders and Scott 2012). Johnson et al. (2012, 277 2014, 2018) argue for the role of impact jetting, by which high-velocity impacts on growing 278 planetesimals generate jets of partially molten materials. Chondrules form from cooling droplets, 279 which are rapidly accreted to planetesimal surfaces. Sanders and Scott (2012, 2018) posit a similar 280 scenario for chondrule origins through impact splashing (as opposed to the higher velocity jetting), 281 with chondrules contaminated by mineral dust and larger grains, thus generating a variety of relict 282 grains and a range of chemical and isotopic compositions (however, see Baecker et al. 2017).

Finally, a small population of CB and CH group chondrules appears to have formed by direct condensation from a superheated silicate gas within an impact plume (Krot et al. 2001b; Campbell et al. 2002, 2005a, 2005b; Rubin et al. 2003; Campbell and Humayun 2004; Gounelle et al. 2007; Fedkin et al. 2015). Evidence for a different origin of these chondrules includes a complete lack of relict grains, fine-grained textures, and condensation calculations suggesting formation in a high-density impact plume environment.

289

290 <u>Temperature, pressure, and cooling histories of chondrules</u>

Numerous attributes of chondrules, including mineralogy, crystal growth textures, disequilibrium partition coefficients among phases, diffusion-controlled zoning, exsolution, the presence of glassy or cryptocrystalline phases, and olivine defect density, point to their complex and varied thermal histories (e.g., Jones et al. 2018). All chondrules experienced one or more episodes of rapid heating close to or above their liquidus (~1500 to 2100 K), followed by initial cooling to solidus temperatures (~1300 to 1500 K) at rates from 100s to 1000s °C/h, with slower
rates (10s to 100s °C/h) below the solidus (e.g., Miyamoto et al. 2009; Chaumard et al. 2018;
Cuvillier et al. 2018; Ebel et al. 2018). Variations in mineralogy, texture, and other chondrule
attributes point to significant variability in formation conditions, in some cases suggesting different
modes of chondrule origin.

301 Adding to their complex thermal histories, many chondrules display evidence for rapid heating 302 events after their initial crystallization (Krot et al. 1997a; 2004a, 2018; Rubin 2010; Ruzicka 2012; 303 Baecker et al. 2017). At least four lines of evidence point to multiple subsequent heating events 304 for many, if not most, chondrules: (1) many chondrule phenocrysts nucleate on earlier generations 305 of olivine or pyroxene relict grains with different chemical properties (Marrocchi et al. 2019); (2) 306 some chondrules appear to envelop others (Wasson et al. 1995; Hobart et al. 2015); (3) many 307 chondrules display thin igneous rims of re-melted material (Rubin 1984); and (4) normal-sized chondrules are sometimes surrounded by "microchondrules" (Krot and Rubin 1996; Krot et al. 308 309 1997a).

310 A significant unresolved question regards the pressures at which chondrules formed (Wood 311 1996b; Hewins and Zanda 2012; Connolly and Jones 2016; Ebel et al. 2018). The presumed average pressure of the protoplanetary disk was $< 10^{-3}$ atm. At such a low pressure and the 312 313 maximum temperatures of chondrule formation (1700 to 2000 K), even with cooling rates as great 314 as 1000 °C/h one would expect characteristic Rayleigh fractionation of volatile elements and their 315 isotopes (Hashimoto 1983; Davis et al. 1990; Richter et al. 2011; see Ebel et al. 2018, and 316 references therein). However, such fractionation is not generally observed in volatile elements 317 such as S, Zn, Cd, or Cu (Luck et al. 2005; Tachibana and Huss 2005; Wombacher et al. 2008; 318 Moynier et al. 2009). In addition, careful analyses of olivine phenocrysts indicate that Na was not

completely lost, suggesting an ambient vapor pressure significantly greater than 10^{-3} atm (Alexander et al. 2008; Fedkin and Grossman 2013). One possible explanation was offered by Galy et al. (2000), who proposed that the partial pressure of hydrogen (H₂) gas in chondruleforming regions was ~1 bar – conditions that would inhibit volatile element loss and promote the stability of silicate melts (Ebel 2006). However, astrophysical models of the protoplanetary nebula do not support such a high hydrogen gas concentration. Indeed, a maximum pressure of ~ 10^{-3} atm is suggested by models of disk processes (D'Alessio et al. 2005).

326 An alternative explanation for the lack of volatile element fractionation relates to "high solid 327 densities" during chondrule formation, where solid density refers to the ratio of nebular dust to gas 328 relative to the solar average. A number of investigators (Wood and Hashimoto 1993; Ebel and 329 Grossman 2000; Alexander et al. 2008; Alexander and Ebel 2012; Bischoff et al. 2017; Ebel et al. 330 2018) propose that chondrule-forming regions had a chondrule-to-gas ratio sufficiently high perhaps 10^3 to 10^4 times that of the Sun – so that stable chondrule melts achieved equilibrium with 331 332 the surrounding hot gas. High volatile partial pressures from evaporated dust thus reduced the 333 evaporative loss of volatiles from large melt droplets in spite of the relatively low ambient gas 334 pressure (Alexander et al. 2008), while leading to the observed significant fraction of compound 335 chondrules (Wasson et al. 2003; Cuzzi and Alexander 2006). Note that clear evidence exists for 336 significant chondrule-gas exchange, for example through the reaction of forsterite plus SiO gas to 337 form enstatite rims (Krot et al. 2004b; Libourel et al. 2006; Friend et al. 2016; Hezel et al. 2018; 338 though see Rubin 2018).

339

340 <u>A chronology of nebular mineralization</u>

341 The evolutionary system of mineralogy considers the diversity and distribution of minerals 342 through deep time, as novel physical, chemical, and ultimately biological processes led to new mineral-forming environments. Developing a chronology of the earliest mineral-forming events in 343 344 the evolving protoplanetary disk is thus important for setting the stage as planets and moons 345 emerge from nebular dust and gas. Efforts to determine the ages of the most ancient minerals 346 preserved in chondrites, both through direct radiometric or other measurements and by contextual 347 inferences, have led to an emerging (though as yet incomplete and at times contentious) 348 chronology of the first few million years of nebular history (Table 1). At least three complementary 349 aspects of chondrite meteorites -(1) radiometric geochronology; (2) textural relationships; and (3) 350 the distribution of their components among two major groups of meteorites - reveal aspects of the 351 earliest evolution of the protoplanetary disk.

352

353 **Presolar grains:** The oldest solid objects from our solar system are refractory inclusions with 354 radiometric ages close to 4567 Ma (Connelly et al. 2012; Krot 2019). Presolar grains, by definition, 355 predate those first nebular condensates and are the most ancient known solid objects. Heck et al. 356 (2020) employed cosmic ray exposure ages of presolar moissanite (SiC) grains to identify 357 individual mineral grains as old as 7 billion years, though the majority of stardust preserved in 358 chondrite meteorites is less than 5 billion years old and the youngest observed stellar SiC grain 359 formed only 3.9 +/- 1.6 million years before CAIs (i.e., ~4571 million years ago). Estimates of 360 when the first condensed solid phase formed in the universe must remain somewhat speculative. 361 However, astrophysical calculations of stellar nucleosynthesis processes (e.g., Burbidge et al. 362 1957; Cameron et al. 1957; Schatz 2010; Bertulani 2013), coupled with increasingly high-363 resolution imaging of the first generations of stars in galaxies at distances > 13 billion light years

(Abel et al. 2002; Bond et al. 2013; Howes et al. 2015; Robertson et al. 2015; Bowman et al. 2018),
suggest that large carbon-forming stars occurred early in cosmic history. We conclude that carbonrich phases, including diamond, graphite, and moissanite, formed within the first billion years of
the Big Bang, perhaps > 13 Ga.

368

369 <u>Refractory inclusions</u>: The formation of calcium-aluminum-rich inclusions at 4567.3 +/- 0.16 370 Ma (Connelly et al. 2012; see also, Amelin et al. 2002, 2010; Connelly et al. 2008; Bouvier and 371 Wadhwa 2010; Krot 2019), provides the benchmark date for nebular mineralogy. Radiometric dating of CAI components, including ²⁰⁷Pb-²⁰⁶Pb (Amelin et al. 2010; Connelly et al. 2012;), 372 ¹⁸²Hf-¹⁸²W (Holst et al. 2013; Budde et al. 2015), and ²⁶Al-²⁶Mg (Kita et al. 2013; Nagashima et 373 374 al. 2018) systematics, establish that CAIs were the first solids to condense in the solar nebula (Krot 375 2019). CAIs evidently were produced during an interval of less than 300,000 years (Kita et al. 376 2013; Krot et al. 2018), with the great majority of CAIs forming within the first 200,000 years 377 after ~4567.3 Ma (MacPherson et al. 2010, 2012; Kita et al. 2013).

That early interval of nebular evolution must have been a dynamic time. Recent studies of significant diversity in the size, mineralogy, textures, contexts, and chemical and isotopic fractionation of CAIs, URIs, and AOAs point to multiple generations of these refractory objects, perhaps arising from distinct nebular reservoirs and a range of processes, including episodic melting, evaporation, condensation, and aggregation (Krot et al. 2008; Kööp et al. 2016a, 2016b, 2018; see Krot 2019, and references therein).

Ultra-refractory inclusions, usually lumped with CAIs, display extreme enrichments by factors up to 1000 in Sc, Zr, Y, Ti, and other high field strength elements (El Goresy et al. 2002; Rubin and Ma 2017). These unusual compositions result in distinctive URI mineralogy, including a

387	variety of rare, micron-scale	e oxide and sil	icate phases s	such as tistar	ite (Ti ₂ O ₃),	kaitianite
388	(Ti ³⁺ ₂ Ti ⁴⁺ O ₅), anosovite	[(Ti ⁴ ,Ti ³⁺ ,Mg	,Sc,Al)3O5],	lakargiite	(CaZrO ₃),	kangite
389	[(Sc,Ti,Al,Zr,Mg,Ca) _{1.8} O ₃], t	azheranite [(Zr,S	Sc,Ca,Y,Ti)O _{1.}	75], allendeite	(Sc ₄ Zr ₃ O ₁₂),	eringaite
390	[Ca ₃ (Sc,Y,Ti) ₂ Si ₃ O ₁₂],	davisite	[Ca(Sc,Ti ³⁺ ,	Γi ⁴⁺ ,Mg,Zr)A	lSiO ₆],	warkite

391 [Ca₂(Sc,Ti,Al,Mg,Zr)₆Al₆O₂₀], and thortveitite (Sc₂Si₂O₇) (Rubin and Ma 2017, 2020; Morrison

392 and Hazen 2020). Such extreme elemental fractionation points to an early period of condensation 393 of the most refractory elements in the protoplanetary disk.

394 Amoeboid olivine aggregates display isotopic and trace element compositions that indicate 395 formation in a low-pressure, high-temperature environment with high gas-to-dust ratio -396 conditions that prevailed within the first 300,000 years of the protoplanetary nebula (Krot et al. 397 2004a). However, the forsterite-dominated mineralogy of AOAs indicates a slightly lower 398 condensation temperatures compared to CAIs (Ebel 2006; Ebel et al. 2012). Wasserburg et al. 399 (2012) suggested that AOAs are younger than the first CAIs by up to 25,000 years, a model 400 supported by the observation that many AOAs incorporate small spinel-pyroxene-anorthite CAIs 401 (Krot et al. 2004a). Note, however, that at least one group of CAIs (forsterite-bearing type B CAIs) 402 evidently formed by melting AOAs, and thus are younger (Krot et al. 2001a; Bullock et al. 2012). 403 In any event, AOAs, like CAIs, formed during the earliest period of the protoplanetary disk, prior 404 to 4567.0 Ma.

405

406 Formation of planetesimals and proto-Jupiter: Recent models of the origin and early evolution 407 of the solar system underscore the important links between nebular dynamics and mineral 408 condensation (Warren 2011; Budde et al. 2016; Kruijer et al. 2017; Desch et al. 2018; Burkhardt

409 et al. 2019). Nebular gas and dust within 2 AU of the protosun was exposed at an early stage 410 (within 100,000 years of the protosun's formation) to temperatures high enough to vaporize almost 411 all constituents (Pollack et al. 1996; Warren 2011; Davis and Richter 2014; Kruijer et al. 2017), 412 though a significant fraction of presolar grains, gas, and organic matter more remote from the Sun was not heated above a few hundred degrees Kelvin (Mendybaev et al. 2002; Cody et al. 2011). 413 414 Important constraints on the nature and timing of refractory inclusion formation are provided 415 by a striking dichotomy in the isotopic characteristics of carbonaceous chondrites (CC) versus 416 non-carbonaceous chondrites (NC) meteorites, notably isotopes of O, Cr, Ti, Ni, and Mo, which 417 reveal two distinct genetic lineages (Trinquier et al. 2007, 2009; Burkhardt et al. 2011; Warren 418 2011; Kruijer et al. 2017). The bimodal compositional characteristics of CC versus NC meteorites 419 is underscored by the distribution of CAIs, which occur much more frequently in CC meteorites. 420 This concentration of CAIs beyond Jupiter's orbit contrasts to their rarity in NC meteorites,

421 including ordinary chondrites and enstatite chondrites.

422 One model posits that CC parent bodies accreted beyond Jupiter's orbit - far from where CAIs 423 are thought to have originated. NC parent bodies, by contrast, consolidated inside Jupiter's orbit 424 (Warren 2011; Budde et al. 2016). According to this model, these two groups of planet-forming 425 materials remained physically separated, most plausibly by the formation of embryonic Jupiter 426 within the first 500,000 years of the protoplanetary disk (Lambrechts et al. 2014; Morbidelli et al. 427 2016; Desch et al. 2018; Kruijer et al. 2017). Jupiter's gravitational field created a barrier for 428 exchange between NC meteorites of the inner solar system and CC meteorites beyond the ~3 AU 429 orbit of Jupiter.

An early formation of embryonic Jupiter is consistent with other evidence for rapid planetesimal
formation. Isotopic studies of iron meteorites suggest that their parent bodies must have reached

diameters of 10s to 100s of kilometers and differentiated within the first 300,000 years (Kruijer et
al. 2014), with Mars-sized objects forming significantly earlier than 1 million years, and perhaps
as early as 100,000 years after the oldest CAIs (Chambers 2004; Chiang and Youdin 2010;
Johansen et al. 2014). Note that the occurrence of protoplanets at this early stage of solar system
evolution has important implications for the possible origins of some chondrule groups through
impact-generated jetting or splashing (Johnson et al. 2018; Sanders and Scott 2018; however, for
an opposing view see Baecker et al. 2017).

439 In spite of the isotopic differences between two chondrite populations, both NC (with a greater 440 percentage of chondrules) and CC meteorites (with the majority of CAIs and AOAs) hold 441 populations of highly refractory minerals that are thought to have formed within 2 AU of the 442 protosun. One model posits that CAIs represent the earliest condensates (by ~4567.2 Ma), most of 443 which were transported within the solar nebula's first 100,000 years by strong disk winds to 444 beyond what would become Jupiter's orbit (Shu et al. 1996; though see Desch et al. 2010). This 445 postulated dispersal and sequestration of CAIs resulted in the distinctive chemical and isotopic 446 fractionation of solar system material, with carbonaceous meteorites predominating beyond the 447 orbit of Jupiter (e.g., Kruijer et al. 2017). Many chondrules, which represent a second generation 448 of condensates perhaps 1 to 5 million years after CAIs, formed primarily near the protosun, and 449 the majority of these objects did not migrate from the inner solar system (Warren 2011; Kruijer et 450 al. 2017; Desch et al. 2018), though other chondrules, notably those in carbonaceous chondrites, 451 may have formed beyond the orbit of Jupiter (Rubin 2010, 2011).

452

453 <u>Chondrules:</u> Most researchers conclude that chondrules formed significantly after CAIs,
 454 AOAs, and URIs, probably commencing ~4566 million years ago. Important evidence comes from

455 composite chondrule-CAI objects and bulk chondrule compositions, which suggest that refractory 456 inclusions were already present when chondrules formed (Rubin and Wasson 1988; Kita and 457 Ushikubo 2012; MacPherson et al. 2012; Kawasaki et al. 2015; Krot et al. 2017). 458 Pb-Pb, Hf-W, and Al-Mg radiometric dating indicate that chondrules formed over an interval 459 of ~4 to 5 million years (Bizzarro et al. 2017; Johnson et al. 2018; Kleine et al. 2018; Connelly 460 and Bizzarro 2018). This extended chronology of chondrule formation is complicated by multiple paragenetic modes – i.e., different mechanisms for rapid heating – spanning several million years. 461 462 According to the canonical view (however, see Krot 2019), the oldest chondrules appear to have 463 formed approximately 1.5 million years after CAIs (e.g., Nagashima et al. 2018), as revealed by 26 Al- 26 Mg isotope systematics. The rapid decay of short-lived 26 Al to 26 Mg (half-life ~0.71 464 million years) results in measurable excess ²⁶Mg in the most ancient Al-rich, Mg-poor minerals 465 formed in the protoplanetary disk, with a systematic decrease in initial ²⁶Al/²⁷Al through the first 466 467 few million years of solar system history. 468 Different groups of unequilibrated chondrules appear to have formed over relatively narrow 469 time windows (Table 1). For example, CO and CV chondrules have both been dated as originating 470 at 4565.1 +/- 0.8 Ma (Kurahashi et al. 2008; Budde et al. 2015; Kleine et al. 2018), whereas CR 471 chondrules formed more than a million years later at 4563.7 +/- 0.6 Ma (Schrader et al. 2017; 472 Kleine et al. 2018). 473 The formation of CB chondrules, the youngest group identified thus far and likely representing 474 late-stage droplets of impact melts, is even more tightly constrained at 4562.5 +/- 0.2 Ma (Krot et 475 al. 2005; Gilmour et al. 2009; Bollard et al. 2015), suggesting a single origin event near the end of

476 the era of chondrule formation.

477 The ages of chondrules in enstatite chondrites are poorly constrained, but they may have formed 478 closer to the end of the interval of chondrule formation. Whitby et al. (2002) employed iodine-479 xenon dating to estimate ages of EH chondrules to between 4564 and 4561 Ma, whereas Trieloff 480 et al. (2013) dated individual presumably primary sphalerite grains to 4562.7 +/- 0.5 Ma. Thus, 481 chondrules in enstatite chondrites may be among the younger known groups.

482 In spite of the widespread agreement regarding a significant temporal gap of more than a million 483 years between the end of CAI formation and the beginning of chondrule formation, an alternative 484 hypothesis has recently emerged. Contrary to Al-Mg and Hf-W results, recent Pb-Pb ages suggest 485 that the earliest chondrules formed contemporaneously with CAIs at ~4567.3 Ma (Connelly et al. 486 2012; Bollard et al. 2017; Connelly and Bizzarro 2018; Krot 2019). If heterogeneities existed in the protoplanetary disk's initial ²⁶Al/²⁷Al, then comparative ²⁶Al/²⁶Mg dating of CAIs and 487 488 chondrules might be invalid (Larsen et al. 2011; Krot et al. 2012; Luu et al. 2016). Indeed, a few chondrules from unequilibrated ordinary chondrites display ²⁰⁶Pb-²⁰⁷Pb ages that are equal to, if 489 490 not slightly older than, 4567.3 Ma (Connelly and Bizzarro 2018; see Krot 2019 for a review). If 491 this reinterpretation is correct, then some chondrules formed contemporaneously with CAIs (Kita 492 et al. 2015; Schrader et al. 2017; Nagashima et al. 2018), with the majority of chondrules forming 493 during the first 1 million years of the protoplanetary disk (Connelly and Bizzarro 2018). Resolution 494 of these discrepancies remains an important challenge in chondrite chronology. However, 495 whatever their ages relative to refractory inclusions, all primary chondrule minerals appear to have 496 formed within the first 6 million years of solar system history and they are thus among the oldest 497 known solid phases. In the following sections we consider the primary mineralogy of chondrules.

498

499

PRIMARY MINERALOGY OF CHONDRULES

500 The evolutionary system of mineralogy focuses on mineral "natural kinds," which we define as 501 types of minerals that possess distinctive suites of chemical and physical attributes that arise from 502 a well-defined formation process during a well-characterized interval of planetary evolution 503 (Hazen 2019). The defining attributes of a mineral natural kind, in addition to its major element 504 composition and atomic structure as employed by the IMA, can include any diagnostic 505 combination of physical, chemical, and/or (in the case of terrestrial minerals younger than ~3.8 506 billion years) biological features of the mineral grain or its petrologic and environmental context. 507 Because minerals display numerous relevant attributes, including trace and minor elements, stable 508 and radioactive isotopes, crystal size and morphology, exsolution, twinning, zoning, solid and fluid 509 inclusions, age, petrologic context, and more, this approach to classification relies on large and 510 robust databases of mineral properties. Thus, we embrace the development of findable, accessible, 511 interoperable, and reusable (i.e., "FAIR") mineral data resources, which provide the essential 512 foundation for data-driven discovery in mineralogy (Ghiorso and Sack 1995; Holland and Powell 513 1998; Lehnert et al. 2000, 2007; Ghiorso et al. 2002; Downs and Hall-Wallace 2003; Downs 2006; 514 Hazen et al. 2011, 2019a, 2019b; Golden et al. 2013; Hazen 2014; Morrison et al. 2020; see also 515 http://mindat.org and https://rruff.info/ima, accessed 7 April 2020).

Primary chondrule minerals fit the definition of distinct natural kinds, because: (1) all of these minerals formed in a protoplanetary disk context of high local dust-to-gas relative to solar average; (2) all of these minerals emerged within individual objects < 5 centimeters diameter as a consequence of discrete rapid heating, partial to complete melting, and rapid cooling events; and (3) all chondrules appear to have formed within a narrow time interval between ~4567 and ~4561 million years ago. These minerals differ, therefore, from earlier stellar and nebular condensates (i.e., presolar grains and refractory inclusions) that apparently formed in regions of relatively low dust-to-gas ratio under sustained high temperatures. They also differ from contemporaneous and
 subsequent minerals that formed in the contexts of accreting and differentiating protoplanetary
 bodies.

In this context, we recognize 43 primary chondrule minerals, including clinoenstatite, plagioclase, kamacite, and many other phases (Table 2), as distinct natural kinds (e.g., primary chondrule clinoenstatite, or "*PC clinoenstatite*"). Note that we have decided not to further subdivided according to types of chondrules, types of their host chondrite meteorites, distinct mineral morphotypes, or other criteria.

531 It is true that the majority of chondrules in any one chondrite group typically have similar 532 properties - average size, textural type, and oxygen isotope ratios, for example - which suggest a 533 local, common origin for most of the chondrules in any given meteorite group (Jones 2012; Kita 534 and Ushikubo 2012). Nevertheless, there are also diverse chondritic components, including CAIs, 535 AOAs, URIs, and atypical chondrules, which reveal a diversity of spatial and temporal sources. 536 Furthermore, the uniformity in chondrule size distribution in any one chondrite group, coupled 537 with the characteristic differences in average chondrule size from one chondrite group to the next, 538 do not necessarily reflect a common origin for chondrules in a given group. Rather, these size 539 characteristics may be at least in part the result of aerodynamic sorting, for example within nebular 540 winds, during turbulent accretion at the surfaces of chondrule parent bodies, or in an asteroid's 541 loosely consolidated regolith during outgassing (Akridge and Sears 1999; Kuebler et al. 1999; 542 Cuzzi et al. 2001; Teitler et al. 2010). In that case, size sorting of some chondrules could have 543 occurred long after chondrule formation and subsequent mixing. However, aerodynamic sorting 544 cannot account for all differences among chondrules in a given meteorite (Rubin 2010). Even if 545 most chondrules formed in proximity to each other, and if they accreted with a matrix that was

546 formed more or less contemporaneously (e.g., see Hezel et al. 2018, and references therein), the 547 emergence of chondrite bulk characteristics always postdates the origin of the primary chondrule 548 minerals. Therefore, in this review we lump all primary chondrule mineral occurrences for each 549 mineral species.

550 We suggest that any attempt to subdivide primary chondrule minerals by combinations of 551 attributes at this time would be speculative and premature. An important advantage of the 552 evolutionary system of mineralogy, but one that also adds an admitted degree of arbitrariness to 553 its protocols, is that individual mineral experts can subdivide IMA species into natural kinds 554 according to their specific needs. Experts in chondrule textures, stable isotopes, or 555 cathodoluminescence may thus wish to add mineral subtypes based on unambiguous differences 556 in mineral attributes. However, lacking sufficiently robust chondrule mineral data resources, we 557 choose not to subdivide primary chondrule minerals at this time beyond IMA recognized species 558 or well-defined types of amorphous phases.

559

560

SYSTEMATIC EVOLUTIONARY MINERALOGY - PART III:

561

PRIMARY CHONDRULE MINERALOGY

562 In the following section we enumerate 43 primary chondrule minerals, which are defined as 563 solid condensed phases that formed during rapid heating and cooling of chondrule precursors to temperatures close to the liquidus (at $< 10^{-2}$ atm ambient pressure; i.e., not shock-induced phases), 564 565 as well as phases formed during subsequent chondrule cooling. Primary chondrule minerals must 566 have formed prior to sedimentation onto larger bodies and incorporation into chondrites. Most 567 primary chondrule minerals formed by melt crystallization in partially to fully molten droplets, but 568 we also include: (1) minerals formed by reactions between condensed phases and hot nebular gas 569 (Krot et al. 2004b; Libourel et al. 2006), and (2) varied solid-state reactions during initial cooling, 570 including silicate glass devitrification, polymorphic transformations, exsolution, and cation 571 ordering (e.g., Rubin and Ma 2020).

572 In Table 2 we tabulate 43 primary chondrule minerals, encompassing 40 IMA-approved species, the unapproved species ferropseudobrookite, and 2 amorphous phases. These primary 573 574 chondrule minerals incorporate 15 structurally essential chemical elements, as well as 3 significant minor elements (Figure 1). 575

PRIMARY MINERAL-FORMING ELEMENTS IN CHONDRULES

			IVI	ajor m	ineral	-101111	ng ele	ments									
1 H]		м	inor m	ineral	-formi	ng ele	ments									2 He
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	#Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og

Major mineral-forming elements

576

577 **Figure 1.** Primary chondrule minerals form principally from 15 structurally essential elements, with important additional contributions from 3 additional minor elements.

579 580

581

582

583

Each mineral natural kind is given a binomial designation: the first name, in this case "PC" for all examples, indicates primary chondrule minerals, whereas the second name for the most part conforms to the name of an approved IMA mineral species. However, in several instances we

584 deviate from IMA nomenclature:

• Schreibersite [(Fe,Ni)₃P] and Nickelphosphide [(Ni,Fe)₃P]: We lump these two IMA-

approved phosphide species into *PC schreibersite* because they represent a continuous solid solution series, almost always with Fe > Ni, and they form by the same primary mechanisms.

Armalcolite and Ferropseudobrookite: Fujimaki et al (1981a, 1981b) used
 "ferropseudobrookite" (Fe²⁺Ti₂O₅) as the name for the Mg-absent end-member related to
 armalcolite [(Mg,Fe²⁺)Ti₂O₅]. Though not an approved IMA mineral species, we refer to
 this occurrence as *PC ferropseudobrookite*.

Chromite: Chromite (Fe²⁺Cr₂O₄) and other Cr-bearing oxide spinel group minerals are common primary phases in chondrules. Many occurrences conform to the IMA definition of chromite, but a few Cr-rich grains are closer to hercynite (Fe²⁺Al₂O₄) or magnesiochromite (MgCr₂O₄) end members, at times with significant spinel (MgAl₂O₄) and ülvospinel (Fe²⁺Ti₂O₄) content. We lump all of these Cr-bearing oxide spinel minerals together into *PC chromite*.

599	• Roedderite and Merrihueite: Roedderite and merrihueite, [(Na,K) ₂ Mg ₅ Si ₁₂ O ₃₀] and
600	[(K,Na)2(Fe,Mg)5Si12O30], respectively, form a continuous solid-solution of phases formed
601	by the same primary process, and thus represent a single natural kind in our evolutionary
602	system. Because most examples fall within the roedderite field, we lump occurrences
603	together and assign the name PC roedderite.
604	• <i>Orthoenstatite</i> : Unlike in most terrestrial igneous rocks, the monoclinic (space group $P2_1/c$)
605	form of MgSiO ₃ , clinoenstatite, is the most common polymorph. Therefore, for clarity we
606	employ the common name "orthoenstatite" for orthorhombic MgSiO ₃ (space group <i>Pbca</i>)
607	instead of the IMA-approved name, "enstatite."
608	• Silica Glass and Silicate Glass: Glassy phases are important components of rapidly-
609	quenched chondrules, with some chondrules approaching 100 vol $\%$ solid amorphous
610	silicate. These condensed phases are not approved by the IMA, but we recognize PC silicate
611	glass (i.e., close to end-member SiO ₂) and PC silicate glass.
612	
613	NATIVE ELEMENTS AND ALLOYS
614	Several allows of iron and nickel, as well as the earbon elletrone graphite, ecour as primery

Several alloys of iron and nickel, as well as the carbon allotrope graphite, occur as primary chondrule minerals. Iron-nickel alloys are among the most common of these phases, comprising several vol % of most chondrules and more than 90 vol % of some metal-rich examples (Brearley and Jones 1998; Scott and Krot 2014; Rubin and Ma 2020). Fe-Ni alloys, which typically incorporate Co, Cr, Cu, and other siderophile elements, condensed from the solar nebula at temperatures estimated between 1350 and 1450 K (Ebel and Grossman 2000; Campbell et al.

620 2005b). They occur as the IMA-approved minerals iron (though usually cited as "kamacite" in the 621 meteoritics literature), taenite, tetrataenite, and awaruite, as well as the distinctive exsolved 622 mixture of kamacite and taenite known as "plessite." Fe-Ni alloys commonly hold significant 623 amounts of other elements; high C, P, or Si contents, for example, may lead to exsolution of new 624 minerals, such as graphite, carbides, schreibersite, perryite, or silica glass (see below). Note that 625 alloys dominant in copper and in cobalt have been reported from chondrites, but they appear to be 626 secondary phases and will be considered in Parts IV and V (Rubin 1990, 1994a; Brearley and Jones 627 1998; Rubin and Ma 2020).

628

629 **Iron** (α -Fe): Body-centered cubic (Im3m) iron, commonly referred to as kamacite in the 630 meteoritics literature, is the most stable low-Ni iron alloy and is among the most common primary 631 chondrule minerals. We designate this phase "PC iron" (see Table 2). PC iron is found with up to 632 ~8 wt % Ni, though typical Ni contents are 3 to 7 wt %. Kamacite occurs in a range of textures 633 (e.g., Brearley and Jones 1998; Rubin and Ma 2020), for example, as blebs to 50-micrometers 634 diameter in mesostasis of type I chondrules, often in association with sulfides; in ordinary 635 chondrites as polycrystalline intergrowths with taenite and troilite; as spheroidal grains, often 636 concentrated near the chondrule edge; as globules up to 1-millimeter diameter in enstatite 637 chondrites; in irregular masses, often in association with sulfides and/or carbides; and as irregular 638 grains that are likely fragments from previous generations of chondrules. PC iron grains are 639 sometimes zoned, with cores typically more Ni-rich than rims (Nagahara 1982).

While most PC iron crystallized as an igneous phase from the metal-rich fraction of immiscible metal-silicate chondrule melts, kamacite in CB group chondrules may have formed by condensation directly from a vapor plume generated by an impact on a differentiated body (Rubin

et al. 2003; Oulton et al. 2016; Rubin and Ma 2020). Kamacite in these CB metal-rich chondrules
occurs in a distinctive morphology, as globules up to a centimeter in diameter.

645

Taenite [γ-(Fe,Ni)]: The primitive cubic (*Pm3m*) alloy of iron and nickel, referred to as "austenite" in the metallurgical literature, typically has ~25 to 35 wt % Ni. *PC taenite* commonly occurs with PC iron, sulfides, and other opaque phases in rounded grains; as crystals that are isolated or associated with kamacite; or as polycrystalline aggregates (Afiattalab and Wasson 1980; Bevan and Axon 1980; Scott and Rajan 1981; Nagahara 1982; Brearley and Jones 1998). Taenite crystals, which are most abundant in Ni-rich LL ordinary chondrites, are commonly zoned from cores with 25 to 35 wt % Ni to rims that may exceed 50 wt % Ni (Wood 1967).

Taenite can incorporate significant amounts of P or C, which may exsolve as phosphides or carbides on cooling (e.g., Brearley and Jones 1998). In addition, under conditions of relatively slow cooling, taenite may exsolve thin (< 2-micrometers thick) lamellae of kamacite to produce the distinctive mixed phase known as "plessite" (Massalski et al. 1966; Buchwald 1975; Brearley and Jones 1998; Goldstein and Michael 2006).

658

Tetrataenite (FeNi): Tetrataenite, a low-temperature ordered Fe-Ni alloy (tetragonal, *P4/mmm*; Clarke and Scott 1980), is a widely distributed, though volumetrically minor, phase in type 3 (unequilibrated) ordinary chondrites (Bevan and Axon 1980; Scott and Rajan 1981; Nagahara 1982; Rubin 1994b; Rubin and Ma 2020). *PC tetrataenite* occurs as 10- to 60micrometer-diameter grains or as rims up to 5-micrometers thick on taenite (Taylor and Heymann 1971; Scott and Clarke 1979), forming through cooling and/or annealing of taenite below 350 °C (Clarke and Scott 1980). As such, tetrataenite is one of several chondrule minerals that spans a

666	continuous paragenetic range from primary to secondary. Though ideally a 50:50 mixture of Fe
667	and Ni, the observed range of Ni in chondritic tetrataenite grains is 48 to 57 wt %, with minor Co
668	and Cu. Metal grains in carbonaceous chondrites may significantly exceed 50 wt % Ni, resulting
669	in fine-grained mixtures of tetrataenite and awaruite (Kimura and Ikeda 1992).
670	
671	Awaruite (Ni2Fe to Ni3Fe): The Ni-dominant alloy awaruite, with face-centered cubic
672	structure ($Fm3m$), is rare as a primary phase in chondrules (Taylor et al. 1981; Smith et al. 1993).
673	and it is possible that all such occurrences are of secondary origin through aqueous alteration
674	(Rubin, personal communication, 4 June 2020). PC awaruite typically occurs with 65 to 75 wt %
675	Ni and forms as small anhedral grains in association with sulfides and carbides. Rubin (1991)
676	described euhedral zoned crystals of presumably PC awaruite from a low-Fe olivine chondrule in
677	the Allende CV chondrite. PC awaruite is thought to form in oxidizing nebular environments, in
678	which oxidation of kamacite results in a Ni-enriched metal, crystallization of Ni-rich taenite, and
679	subsequent transformation of taenite into tetrataenite and awaruite at temperatures below ~ 500 °C.
680	Awaruite also forms via secondary processes in chondrules and chondrite matrices (Pederson
681	1999; Rubin and Ma 2020).

682

683 **Graphite** (C): *PC graphite* is a common, if minor, primary chondrule mineral in enstatite 684 chondrites, where it occurs as irregular to euhedral crystal inclusions up to 50-micrometers 685 diameter in kamacite (Leitch and Smith 1980). Graphite probably formed by exsolution from a C-686 rich Fe-Ni alloy on cooling (Keil 1968). Keil (1968) noted that the amount of exsolved graphite 687 increases with metamorphism; therefore, graphite is likely one of several chondrule minerals (e.g., 688 troilite, olivine, and plagioclase) that occurs in a continuum as both a primary and secondary phase.

689	Furthermore, other occurrences of less well-ordered graphite in chondrules have been ascribed to
690	impact processes and are considered in Part IV of this series (Rubin 1997a; Rubin and Scott 1997).
691	

692 **CARBIDES**

The iron carbides, cohenite and haxonite, are common primary chondrule phases (Brearley and Jones 1998; Rubin and Ma 2020). The rare iron carbide edscottite (Fe₅C₂) has been reported as a matrix phase in the Semarkona LL3.0 ordinary chondrite, but it has not yet been observed as a

696 primary chondrule phase (Ma and Rubin 2019).

697

698 Cohenite [(Fe,Ni)3C]: PC cohenite occurs in association with other opaque phases in some 699 type 3 ordinary chondrites (Taylor et al. 1981; Scott et al. 1982; Scott and Jones 1990; Krot et al. 700 1997b), as well as in enstatite chondrites (Mason 1966; Herndon and Rudee 1978; Rubin 1983; 701 Shibata 1996). In unequilibrated ordinary chondrites it is found as polycrystalline masses with 702 magnetite and sulfides in carbide-magnetite assemblages, which may have formed by reactions of 703 kamacite and troilite with nebular gas (Taylor et al. 1981), though Krot et al. (1997b) and Rubin 704 (personal communication; 27 March 2020) suggest a later origin by reaction with C-H-O fluids. 705 In the CO3 chondrite Allan Hills 77307, cohenite occurs as grains < 30 micrometers in kamacite 706 (Shibata 1996). PC cohenite contains up to ~4 wt % Ni (Scott and Jones 1990).

707

Haxonite [(Fe,Ni)23C6]: *PC haxonite* containing up to ~5 wt % Ni occurs with PC cohenite in
the carbide-magnetite assemblages of unequilibrated (type 3) ordinary chondrites, as well as in
CO3 and EH3 chondrites (Scott and Jones 1990; Rubin 1983; Shibata 1996; Rubin and Ma 2020).

- An alternative view posits that carbide-magnetite assemblages are of secondary origin through parent-body aqueous alteration (Rubin, personal communication, 4 June 2020). If so, then all haxonite occurrences in chondrules may be secondary, as well.
- 714

715 NITRIDES AND OXYNITRIDES

- Osbornite (TiN) and nierite (Si₃N₄) have been reported from chondrites, but their presence has been ascribed to parent body metamorphism, shock alteration, or (in the case of some isotopically anomalous nierite grains) presolar origins (Buseck and Holdsworth 1972; Grossman et al. 1988; Scott 1988; Weisberg et al. 1988; Alexander et al. 1994; Russell et al. 1995; Rubin 1997b; Hazen and Morrison 2020; Rubin and Ma 2020). Sinoite (Si₂N₂O) is known as both a primary chondrule mineral and as an impact product in enstatite chondrites (El Goresy et al. 2011; Lin et al. 2011; see also Part IV).
- 723

Sinoite (Si₂N₂O): Micrometer-scale *PC sinoite* needles, possibly condensed from nebular gas,
occur in metal nodules from an EL3 clast from the Alhamata Sitta breccia (El Goresy et al. 2011;
Lin et al. 2011). Associated minerals include graphite, oldhamite, enstatite, and Ca-rich
clinopyroxene.

728

729 **Phosphides**

With the exception of primary chondrule schreibersite, phosphide minerals are not known from
the most unequilibrated chondrites. Occurrences of andreyivanovite (FeCrP) and florenskyite

(FeTiP) are also reported from chondrite meteorites, but their origins have been ascribed to impact
processes (Ivanov et al. 2000; Zolensky et al. 2008).

734

735 Schreibersite [(Fe.Ni)₃P]: PC schreibersite exsolves on cooling from P-rich Fe-Ni alloys in 736 type 3 ordinary chondrites and enstatite chondrites, where it is closely associated with kamacite 737 (Brearley and Jones 1998; Rubin and Ma 2020). It typically occurs as rims on, or inclusions in, 738 kamacite, with individual grains as large as 300-micrometers in diameter. Schreibersite can contain 739 up to ~50 wt % Ni, and often incorporates more than 1 wt % Co and Cr, as well (Wasson and Wai 740 1970; Rambaldi and Wasson 1984; Zanda et al. 1994; see Brearley and Jones 1998, Table A3.32). 741 Lehner et al. (2010) investigated trace and minor elements in schreibersite associated with 742 kamacite and perryite and concluded that some schreibersite first formed by condensation from a 743 reduced gas.

Ni-dominant grains of schreibersite have been recognized by the IMA as the mineral "Nickelphosphide" – ideally Ni₃P, but originally described as (Ni,Fe)₃P (Britvin et al. 1999). However, because this phase is evidently part of a continuous solid solution series, and a single paragenetic mode by exsolution from an Fe-Ni alloy on cooling is invoked, we lump nickelphosphide with the much more common schreibersite.

749

750 SILICIDES

Meteorites hold at least 8 different Fe-, Ni-, and Mn-bearing silicides (Rubin and Ma 2020), but
 perryite is the only example thought to be a primary chondrule mineral.

753

754	Perryite [(Ni,Fe) 8(Si,P)3]: <i>PC perryite</i> is found as a widespread, if volumetrically minor, phase
755	in type 3 unequilibrated enstatite chondrites (Keil 1968; Reed 1968; Lehner et al. 2010). It occurs
756	in association with kamacite, schreibersite, sulfides, and other rare phases in the reduced enstatite
757	chondrule mineral suite (Rubin and Ma 2020). The composition of PC perryite generally has > 60
758	mol % Si in the Si-P site and > 90 mol % Ni in the Ni-Fe site (Wasson and Wei 1970; El Goresy
759	et al. 1988; see Brearley and Jones 1998, Table A3.33). Lehner et al. (2010) suggest that perryite
760	formed initially by condensation from a reduced gas and was then incorporated as inclusions in
761	kamacite, while additional perryite precipitated from Si- and P-saturated Fe-Ni alloy on cooling.

762

763 **SULFIDES**

764 More than 50 sulfide minerals have been identified in meteorites (Rubin and Ma 2020), at least 765 nine of which are thought to occur as primary chondrule minerals. However, the enumeration of 766 primary versus secondary sulfide phases in chondrules (as well as in the matrix, refractory 767 inclusions, and metal-rich portions of chondrites) is challenging (e.g., Weisberg and Kimura 2012; 768 Singerling and Brearley 2018). Sulfide minerals arise from a continuum of processes, involving 769 direct condensation from a hot gas phase, reactions between S-rich gas and condensed phases, 770 crystallization from a melt, exsolution from metal, and a variety of alteration processes associated 771 with impacts, metamorphism, and aqueous/hydrothermal interactions.

772 Troilite is by far the most common primary chondrule sulfide; it is the only sulfide to occur 773 widely in CC, OC, and EC chondrules. The sulfides of chondrules in enstatite chondrites are of 774 special interest, as these low-silica rocks contain unusual sulfides of elements such as Na, K, Mg, 775 Ca, Mn, Cr, and Ti that more typically form oxides and silicates (Brearley and Jones 1998; Avril 776 et al. 2013; Weyrauch et al. 2018; Rubin and Ma 2020). Thus, alabandite, caswellsilverite,

daubréelite, niningerite, oldhamite, and wassonite are confirmed primary phases. However, other
sulfides from enstatite chondrites, including bornite, chalcopyrite, covellite, djerfisherite, idaite,
pyrite, and pyrrhotite, are almost certainly secondary minerals that formed by impact and/or parent
body processing (e.g., El Goresy et al. 1988; Weisberg and Kimura 2012; Ebel and Sack 2013).
For representative analyses of chondrule sulfides see Brearley and Jones (1998), Tables A3.24 to
A3.31.

783

784 **Troilite (FeS):** *PC troilite* is one of the most abundant primary phases in chondrules (Brearley 785 and Jones 1998, and references therein, Table A3.24). In unequilibrated ordinary chondrites it 786 occurs as rounded grains with Fe-Ni alloys (Jones and Scott 1989; Jones 1990, 1996; Rubin et al. 787 1999), as a constituent of carbide-magnetite assemblages (Krot et al. 1997b), as an accessory phase 788 in silica-rich chondrules (Brigham et al. 1986), and in metal-troilite rims surrounding chondrules 789 (Lauretta et al. 1996). In carbonaceous chondrites, PC troilite occurs, for example, in the 790 chondrules of CO and CK chondrites as spherical or irregular metal-sulfide assemblages (Rubin 791 et al. 1985; 1988; Shibata 1996; Singerling and Brearley 2018). And troilite comprises up to 10 792 vol % of chondrules in some enstatite chondrites (El Goresy et al. 1988; Ikeda 1989a). Ikeda 793 (1989a) recognized several different types of troilite-bearing EC nodules, including kamacite-794 troilite, niningerite-troilite, and djerfisherite-troilite nodules, as well as clasts in association with 795 daubréelite (El Goresy et al. 1988).

796

Pentlandite [(Fe,Ni)<u>9S8</u>): *PC pentlandite* likely occurs as a primary chondrule mineral in
unequilibrated ordinary chondrites (Jones and Scott 1989; Jones 1990, 1996), often intergrown
with troilite in metal-sulfide or carbide-magnetite aggregates (Krot et al. 1997b). Barth et al. (2018)
800 report pentlandite in association with magnetite and troilite in a high-temperature association from 801 the Acfer 094 unequilibrated carbonaceous chondrite – an occurrence that suggests formation by 802 reaction of Fe-Ni metal with hot S-rich nebular gas prior to parent body accretion. Chondrules in 803 carbonaceous chondrites also contain accessory pentlandite in association with Fe-Ni metal, 804 troilite, and/or magnetite (Scott and Jones 1990). Note, however, that Rubin (personal 805 communications, 27 March 2020) suggests that pentlandite occurrences in chondrules, as well as 806 the carbide-magnetite assemblages in which they are found, are almost always secondary.

807

808 Alabandite (MnS): PC alabandite is one of several unusual sulfides found in the highly 809 reduced assemblages within chondrules of enstatite chondrites (Mason 1966; Buseck and 810 Holdsworth 1972; Fogel 1997; Avril et al. 2013; Weyrauch et al. 2018). PC alabandite [(Mn,Fe)S] 811 is found exclusively in EL chondrites, in which it typically incorporates 10 to 30 mol % FeS, and 812 is sometimes given the name "ferroan alabandite" (e.g., Brearley and Jones 1998; Weisberg and 813 Kimura 2012). Alabandite also forms a solid solution with niningerite (MgS), with compositions 814 up to ~10 mol % MgS (Rubin 1984; Weyrauch et al. 2018; see Brearley and Jones 1998, Table 815 A3.25 and A3.26).

816

817 **Caswellsilverite** (NaCrS₂): PC caswellsilverite is a rare accessory phase in chondrules of 818 enstatite chondrites, found in association with alabandite, daubréelite, oldhamite, and other 819 unusual sulfides (Mason 1966; El Goresy 1988; Ikeda 1989a; Rubin and Ma 2020).

820

821 Daubréelite (FeCr₂S₄): PC daubréelite occurs as one of several unusual sulfides in reduced 822 chondrule assemblages in enstatite chondrites (Mason 1966; Buseck and Holdsworth 1972; Ikeda

1989a; Izawa et al. 2010; Avril et al. 2013). It often occurs in association with troilite, from which
it may have exsolved on cooling (El Goresy et al. 1988).

825

826 Niningerite (MgS): Keil and Snetsinger (1967) described the rare magnesium sulfide 827 niningerite from reduced mineral assemblages in EH enstatite chondrites, in which it may 828 constitute the most abundant chondrule sulfide mineral. PC niningerite has been described from 829 several EH3 enstatite chondrites in association with other rare sulfides, notably oldhamite, and in 830 nodules with Fe-Ni metal, troilite, and silicate (El Goresy et al. 1988; Ikeda 1989a; Izawa et al. 831 2010; Avril et al. 2013; Weyrauch et al. 2018). Niningerite invariably incorporates iron (up to \sim 30 832 mol % FeS in EH3, with greater FeS contents in equilibrated chondrules) and manganese (<20 mol 833 % MnS); it typically displays Mg-Fe-Mn zoning (Ehlers and El Goresy 1988; see Brearley and 834 Jones 1998, Table A3.25). The Fe-dominant phase, named keilite, is only known from enstatite 835 chondrites that have been shock melted (Shimizu et al. 2002).

836

837 **Oldhamite** (CaS): *PC oldhamite* is a common accessory primary chondrule phase in enstatite 838 chondrites, where it occurs as small grains in metal-sulfide nodules with other reduced phases, 839 including alabandite, caswellsilverite, daubréelite, and niningerite (Mason 1966; Crozaz and 840 Lundberg 1995; Fogel 1997; Nakamura-Messenger et al. 2012; Weyrauch et al. 2018). Calcium 841 sulfide has also been reported as crystals up to 200-micrometers diameter within a metal matrix in 842 the ungrouped, highly reduced meteorite Acfer 370 (Pratesi et al. 2019). Oldhamite in EH3 843 chondrites is close to end-member composition, with minor Mg, Cr, and Fe (El Goresy et al. 1988; 844 Ikeda 1989a).

Sphalerite (ZnS): *PC sphalerite* occurs as large unzoned primary crystals in EH3 enstatite
chondrite Y-691, though it is more commonly encountered in chondrites as a secondary phase that
occurs as "porous grains" associated with the breakdown of djerfisherite (El Goresy and Ehlers
1989).

850

851 <u>Wassonite (TiS):</u> Nakamura-Messenger et al. (2012) described *PC wassonite* as a primary 852 chondrule phase from the Yamato 691 EH3 enstatite chondrite, where it was found as twelve sub-853 micron grains in a barred olivine chondrule crystallized from a melt.

854

855 **OXIDES**

Nine oxide phases, incorporating Mg, Ca, Fe²⁺, Al, Cr, Fe³⁺, Ti, and Zr as essential elements, 856 857 have been described as primary chondrule minerals (Brearley and Jones 1998; Rubin and Ma 2017, 858 2020). Of these phases, only three (spinel, chromite, and magnetite) are widespread as primary 859 minerals in chondrules, while four (armalcolite, perovskite, rutile, and zirconolite) are known only 860 as minor phases in plagioclase-olivine inclusions from carbonaceous chondrites (Sheng et al. 861 1991a). A single occurrence of micrometer-scale corundum grains with high dislocation density 862 from a chondrule in the Allende CV chondrite appears to be a shock phase (Müller et al. 1995) and 863 is considered in Part IV.

864

865 Spinel Group Oxides [(Mg, Fe²⁺)(Al,Cr,Fe³⁺)₂O₄]

866 Three members of the spinel group of oxides – spinel (ideally MgAl₂O₄), chromite 867 (Fe²⁺Cr₂O₄), and magnetite (Fe²⁺Fe³⁺₂O₄) – are the most common primary oxide phases in

868 chondrules. Significant solid solution among other end-members, including hercynite (Fe²⁺Al₂O₄), magnesiochromite (MgCr₂O₄), and ülvospinel (Fe²⁺Ti₂O₄), is observed (e.g., 869 870 Brearley and Jones 1998, see Table A3.6). However, almost all primary chondrule spinel group 871 minerals appear to fall well within the compositional fields of three end-members – PC spinel, PC 872 chromite, and PC magnetite. Note that spinel crystals in the chromite-hercynite-magnesiochromite 873 compositional field have been described from chondrules in CV carbonaceous chondrites 874 (Weinbruch et al. 1990; Müller et al. 1995), but we lump these examples together as PC chromite 875 because they form a continuous solid solution with other Cr-rich oxide spinels and they arise by the same paragenetic processes. Note that we employ the names "PC spinel," "PC chromite," and 876 "PC magnetite" to designate three distinct complex phase regions - not the end-member 877 878 compositions.

879

880 Spinel (MgAl₂O₄): Spinel, ranging in composition from near end-member MgAl₂O₄ to examples with significant Fe^{2+} , Cr^{3+} , and/or Ti^{4+} , is one of the most common primary oxide phases 881 882 in chondrules. We use the name PC spinel to designate this complex phase space, which is found 883 in unequilibrated ordinary chondrites (Ikeda 1980), notably in their Ca-Al-rich chondrules in 884 association with fassaite and plagioclase (Bischoff and Keil 1983, 1984; McCoy et al. 1991a; 885 Wang et al. 2016). PC spinel is an occasional minor phase in CO3 carbonaceous chondrites, typically in association with olivine in type I and II chondrules (McSween 1977b; Ikeda 1982). In 886 887 CM chondrites, PC spinel occurs in association with fassaite (Simon et al. 1994), and as inclusions in forsterite (Fuchs et al. 1973) with variable Fe²⁺ and Cr contents to several wt %. Near end-888 889 member spinel grains are associated with fassaite, forsterite, and plagioclase in plagioclase-olivine

inclusions in CV chondrites (Sheng et al. 1991a). Finally, PC spinel has been identified from barred
olivine-pyroxene chondrules in the Yamato-691 enstatite chondrite, where it occurs in association
with fassaite and/or plagioclase (Ikeda 1988a, 1989b).

893

Chromite ($Fe^{2+}Cr_2O_4$): Oxide spinel phases with significant Cr content are common primary 894 895 and secondary accessory phases in a variety of chondrules and their associated opaque 896 assemblages. Most of these occurrences conform to the IMA definition of chromite, as they are closer in composition to Fe²⁺Cr₂O₄ than to other spinel end-members. Other examples, either on 897 average or in zoned regions, may lie closer to the spinel (MgAl₂O₄), hercynite (Fe²⁺Al₂O₄), or 898 magnesiochromite (MgCr₂O₄) end members, at times with significant ülvospinel (Fe²⁺Ti₂O₄) 899 900 content, as well (for representative analyses see Brearley and Jones 1998, Table A3.6). For the 901 purposes of primary chondrule mineralogy, we lump these compositionally varied Cr-bearing 902 phases together as PC chromite.

903 PC chromite is known from relatively unequilibrated ordinary chondrites as euhedral crystals 904 in mesostasis (Jones 1990; Johnson and Prinz 1991), as inclusions in olivine (Ruzicka 1990), and 905 in Na-Al- and Na-Cr-rich chondrules associated with Na-rich glass and olivine (McCoy et al. 906 1991a). Chromite crystals commonly incorporate inclusions of primary silicates, notably forsterite, 907 Ca-poor pyroxene, and calcic pyroxene (Alwmark et al. 2011). Rare chromium-rich chondrules < 908 300-micrometers in diameter feature chromite grains in mesostasis with plagioclase (Ramdohr 909 1967; Krot et al. 1993). OC chromite is variable in composition, at times extending into the spinel 910 compositional field, and grains are often zoned (Bunch et al. 1967; Ikeda 1980; Krot et al. 1993).

In type 3 carbonaceous chondrites, chromite occurs as a primary chondrule phase in type IIA chondrules (relatively oxidized and olivine-dominant) in the Allende CV3, Renazzo CR, in CO chondrites within olivine phenocrysts, and Adelaide (ungrouped) meteorites (Davy et al. 1978; Johnson and Prinz 1991; Weinbruch et al. 1994; Murakami and Ikeda 1994; Ikeda and Kimura 1995; Wasson and Rubin 2003), though it is more commonly observed in assemblages that have been thermally altered (Tomeoka and Buseck 1990; Weinbruch et al. 1990; Müller et al. 1995).

917

Magnetite ($Fe^{2+}Fe^{3+}_{2}O_{4}$): *PC magnetite* is found in a variety of contexts in chondrules, some 918 919 of which may be primary in origin (though Rubin, personal communication, 4 June 2020, suggests that all chondrule magnetite occurrences are secondary). Barth et al. (2018) reported magnetite in 920 921 association with pentlandite and troilite in a high-temperature association from the Acfer 094 922 unequilibrated carbonaceous chondrite; they suggested that magnetite formed by reaction of Fe-923 Ni metal with hot O-rich nebular gas. In CO, CV, and other relatively unequilibrated carbonaceous 924 chondrites, magnetite is often found in aggregates in association with kamacite and troilite 925 (Haggerty and McMahon 1979; Nagahara and Kushiro 1982; Ikeda 1983; Scott and Jones 1990). 926 Note that magnetite is also often found as a secondary phase in ordinary and carbonaceous 927 chondrites (Brearley and Jones 1998), for example by the oxidation of troilite (Herndon et al. 928 1975).

929

930 <u>Rutile (TiO₂):</u> Rutile is known as a primary chondrule phase only as a minor accessory mineral
931 from plagioclase-olivine inclusions (Sheng et al. 1991a). *PC rutile* occurs in grains up to 50932 micrometers in diameter associated with armalcolite, ilmenite, perovskite, and fassaite.

934	Ilmenite (FeTiO3): PC ilmenite is a minor primary accessory phase in Na-Al-rich chondrules
935	in type 3 ordinary chondrites (Bischoff and Keil 1984). PC ilmenite also occurs as a minor
936	accessory phase in plagioclase-olivine inclusions, where it is found as grains up to 50-micrometers
937	in diameter with armalcolite, perovskite, and rutile (Sheng et al. 1991a).
938	
939	Armalcolite [(Mg,Fe ²⁺)Ti ₂ O ₅]: Sheng et al. (1991a) report <i>PC armalcolite</i> as a rare accessory
940	primary phase in plagioclase-olivine inclusions from carbonaceous chondrites, in which
941	armalcolite is accompanied by several Ti-bearing oxides, including ilmenite, perovskite, rutile,
942	and zirconolite. PC armalcolite's Mg/Fe ratio ranges from 1.2 to 4.3.
943	
944	Ferropseudobrookite (Fe ²⁺ Ti ₂ O ₅): Fujimaki et al (1981a, 1981b) described two euhedral
945	crystals of "ferropseudobrookite" from an EL3 chondrite, Allan Hills 77015, in a unique Mg-poor
946	chondrule with albite, a silica mineral, and glass. Note that ferropseudobrookite (ideally
947	Fe ²⁺ Ti ₂ O ₅ , though here it contains significant Ca, Ti, and Cr in the Fe ²⁺ site) is not an approved
948	IMA species. Nevertheless, we recognize PC ferropseudobrookite, as this Fe ²⁺ -dominant, Mg-
949	absent mineral differs from both armalcolite and pseudobrookite (Fe ³⁺ ₂ TiO ₅).
950	
951	Perovskite (CaTiO3): PC perovskite is one of several minor accessory phases found as primary
952	chondrule minerals only in plagioclase-olivine inclusions (Sheng et al. 1991a). It occurs as 10- to
953	50-micrometer-diameter grains in association with armalcolite, ilmenite, and rutile.
954	

<u>Zirconolite (CaZrTi₂O₇):</u> *PC zirconolite* occurs as micron-scale irregular blebs surrounding
perovskite in plagioclase-olivine inclusions (POIs) from unequilibrated carbonaceous chondrites
(Sheng et al. 1991a). Zirconolite grains from POIs feature significant Fe²⁺ substitution for Ca,
while they hold as much as 10 wt % Y₂O₃ plus REE oxides.

959

960 **Phosphates**

Most chondritic phosphate minerals appear to be secondary phases, formed through aqueous and thermal alteration of prior P-bearing phases, notably as fine-grained constituents of matrices (e.g., Rubin and Grossman 1985; Jones et al. 2014; Lewis and Jones 2016; Rubin and Ma 2017). However, merrillite has been found in unusual glass-rich, Si-rich, or Cr-rich chondrules from unequilibrated ordinary chondrites – occurrences that probably represent primary chondrule mineralization.

967

968 Merrillite [Ca9NaMg(PO4)7]: Krot and Rubin (1994) report two occurrences of merrillite 969 from glass-rich chondrules in ordinary chondrites, which we provisionally classify as PC 970 merrillite. Two anhedral merrillite crystals (~150-micrometers maximum dimension) are 971 associated with olivine in a glass chondrule in the Hedjaz (L3.7) ordinary chondrite, while a spinel 972 grain in a glass chondrule from Allan Hills 77043 (L3.5) holds a 10-micrometer-diameter euhedral 973 merrillite inclusion. Brigham et al. (1986) describe merrillite from a silica-pyroxene chondrule in 974 the Bremervorde (H3) ordinary chondrite, while Krot et al. (1993) record merrillite as a relatively 975 common accessory mineral in unusual Cr-rich chondrules, for example in Raguli (H3.8). As with 976 merrillite occurrences in glass-rich chondrules, it is not certain whether these grains formed during

977	initial cooling of a P-rich precursor, most likely a P-rich Fe-Ni alloy (i.e., primary origin), or during
978	a subsequent alteration process (Jones et al. 2014; Lewis and Jones 2016).
979	
980	SILICATES
981	Silicate minerals, most notably Mg-Fe olivine, Ca-rich and Ca-poor pyroxenes, and plagioclase,
982	are the dominant phases in most chondrules. Relatively few other silicates have been reported as
983	primary phases in chondrules – a reflection of their igneous origins from nebular precursors.
984	
985	Silica Group Minerals (SiO ₂)
986	Silica-rich chondrules constitute an important, if volumetrically minor, compositional extreme
987	in unequilibrated chondrite meteorites (Brearley and Jones 1998; Krot et al. 2004b; Scott and Krot
988	2014; Rubin and Ma 2020). In addition, silica forms rims around Mg-rich chondrules from CR
989	chondrites (Krot et al. 2004b). Three phases - cristobalite, tridymite, and silica glass - have been
990	reported as primary chondrule minerals (Brearley and Jones 1998; Kimura et al. 2005; Hezel et al.
991	2006). Additionally, quartz occurs as a secondary phase in metamorphosed enstatite chondrites
992	that were re-equilibrated at T < 867 °C (Kimura et al. 2005), while coesite, seifertite, and stishovite
993	have been identified as silica polymorphs formed during shock events to $P > 0.6$ GPa (Rubin and
994	Ma 2020).

995

996 <u>Cristobalite (SiO₂):</u> *PC cristobalite* has been reported from silica-rich chondrules in many
997 type 3 and type 4 ordinary and enstatite chondrites, where it occurs in association with low-Ca
998 pyroxene and may approach 30 vol % of some chondrules (Rubin 1983; Bridges et al. 1995;
999 Brigham et al. 1986; Brearley and Jones 1998; Kimura et al. 2005; Hezel et al. 2005; Rubin and

Ma 2020). Textures and associations suggest that cristobalite is the liquidus phase in some SiO₂dominant chondrules, so it crystallized from the original chondrule melt (Kimura et al. 2005).

1003 <u>**Tridymite** (SiO₂):</u> *PC tridymite* occurs in many silica-rich chondrules in type 3 and type 4 1004 ordinary and enstatite chondrites (Ikeda 1989b; Schulze et al. 1994; Bridges et al. 1995; Newton 1005 et al. 1995; Brearley and Jones 1998; Kimura et al. 2005; Hezel et al. 2004; Rubin and Ma 2020). 1006 At low-Mg, high-Si compositions, tridymite is the liquidus phase rather than cristobalite; therefore, 1007 tridymite is assumed to be a primary chondrule mineral that crystallized from melt (Kimura et al. 1008 2005).

1009

1010 <u>Silica Glass (SiO₂)</u>: *PC silica glass* (SiO₂ > 90 mol %), in association with primary low-Ca 1011 pyroxene and secondary fayalitic olivine, is an important constituent of silica-rich chondrules, 1012 which represent less than 2 vol % of ordinary chondrites (Brigham et al. 1986; Wasson and Krot 1013 1994; Brearley and Jones 1998). Silica-glass-rich chondrules have also been described from 1014 carbonaceous chondrites (Olsen 1983; Kimura et al. 2005), and from an enstatite chondrite as 1015 isolated < 5-micrometer diameter inclusions in Fe-Ni alloys, presumably exsolved from the Si-1016 rich metal on cooling (Ivanov et al. 1996). Kimura et al. (2005) suggest that some occurrences of 1017 silica glass represent the final product from rapid cooling of a Si-rich chondrule melt.

1018

1019 <u>Olivine [(Mg,Fe)₂SiO₄]:</u> Ferromagnesian olivine group minerals are found in all chondrite 1020 groups and are among the most abundant chondrule primary phases. Hundreds of references in 1021 work spanning the past half century document occurrences of olivine, which occurs in numerous

different textures and contexts within chondrules (as well as in CAIs, AOAs, and other primary
meteoritic constituents). This diversity reflects a variety of primary mineralization processes,
including crystallization from a chondrule melt, condensation from nebular gas, and condensation
within an impact plume, as well as subsequent modification via reaction with hot nebular gases
(Brearley and Jones 1998; Scott and Krot 2014; Rubin and Ma 2020).

1027 An important question in the context of the evolutionary system of mineralogy is whether there 1028 are multiple natural kinds of primary chondrule olivine (as well as other major silicate phases, 1029 including primary chondrule pyroxene and plagioclase, for example). Numerous attributes of an 1030 olivine occurrence provide insight on its paragenesis and subsequent history, including major, 1031 minor, and trace element composition; stable isotope composition; grain morphology and zoning; 1032 chondrule texture; dislocation density; solid inclusions; and petrographic context. If sufficiently 1033 comprehensive data resources become available, then cluster analysis might reveal several 1034 different kinds of primary chondrule olivine with idiosyncratic combinations of attributes. 1035 However, until such time as those data resources are developed, we recognize PC olivine as the 1036 only primary chondrule olivine. Note that in a few instances the most FeO-rich zoned regions of 1037 some primary olivine grains may extend into the fayalite field, with Fe > Mg. Therefore, we lump 1038 all of these examples into PC olivine, which represents a wide range of [(Mg,Fe)₂SiO₄] 1039 compositions.

A few instances of the Fe-dominant olivine, fayalite, occur (1) in rare silica-bearing chondrules with cristobalite and Ca-free pyroxene (Brigham et al. 1986; Wasson and Krot 1994); (2) as rims around forsterite in type I chondrules (Hua et al. 1988; Murakami and Ikeda 1994; Krot et al. 1995); and (3) as Fa₈₈₋₉₉ grains to 100-micrometers diameter in association with magnetite, troilite, and pentlandite (Hua and Buseck 1995). These occurrences have all been ascribed to secondary

1045	processes in chondrites (Krot et al. 1997b; Brearley and Jones 1998; Brearley 2014), though a few
1046	earlier researchers suggested that fayalite rims could be primary as a consequence of condensation
1047	from an oxidized nebular gas (e.g., Hua et al. 1988; Weinbruch et al. 1990, 1994; Krot and Rubin
1048	1996; Krot et al. 1997b).
1049	In the most unequilibrated ordinary chondrites, olivine phenocrysts, often nucleated on prior
1050	generations of relict olivine (Rubin 2006; Rubin and Ma 2020), are invariably Mg-rich (Fo ₆₅₋₉₉)
1051	with minor Mg-Fe zoning- attributes that reflect crystallization from the melt (Rubin and Wasson
1052	1987; Jones 1990; Weinbruch et al. 1990, 1994; Brearley and Jones 1998, see Table A3.1). Olivine
1053	of similar composition occurs as inclusions in clinoenstatite (Jones 1994), while more Fe-rich
1054	(Fo ₆₀₋₇₀) micrometer-scale crystallites may occur in the mesostasis (Töpel-Schadt and Müller
1055	1985). Within a given unequilibrated meteorite, olivine compositions in adjacent chondrules may
1056	differ significantly; however, olivine chemistry re-equilibrates by inter-chondrule diffusion as a
1057	consequence of parent-body alteration. Therefore, for meteorites of grade 3.6 and higher, the
1058	olivine phenocrysts in adjacent chondrules typically attain uniform compositions in major and
1059	minor elements (McCoy et al. 1991b; Sears et al. 1992).
1060	Carbonaceous chondrites display a wider range of both averaged and zoned olivine
1061	compositions, with phenocrysts in CO3, CM2, and CV3 chondrites covering the range from near
1062	end-member forsterite in type I chondrules to Fo37-50 in the rims of zoned olivine in type II
1063	chondrules (McSween 1977a; Desnoyers 1980; Cohen et al. 1983; Scott and Taylor 1983; Sheng
1064	et al. 1991b; Murikami and Ikeda 1994; Simon et al. 1995; Brearley and Jones 1998, and references
1065	therein).

Primary olivine in the ferromagnesian chondrules of type 3 enstatite chondrites is uniformly forsteritic, with most samples Fo₉₂₋₉₉ (Grossman et al. 1985; Ikeda 1988b), though rare zoned examples display more fayalitic rims to Fo₇₅ (Lusby et al. 1987).

1069

1070 Low-Calcium Pyroxenes [(Mg,Fe,Ca)SiO₃]

Low-Ca pyroxene group minerals, ideally (Mg, Fe²⁺,Ca)₂Si₂O₆, but often with significant Al 1071 1072 and/or Ti and most commonly with less than 40 mol % of the Fe end-member, are extremely 1073 common primary constituents of chondrules (Ikeda 1982; Noguchi 1989; Brearley and Jones 1998, 1074 Table A3-2; Rubin and Ma 2020). Almost all primary chondrule pyroxenes are either low-Ca 1075 varieties (orthoenstatite, clinoenstatite, and pigeonite) or high-Ca varieties (diopside, augite, and 1076 "fassaite"). Note that iron-rich pyroxenes, including those with greater than 50 mol % hedenbergite 1077 [(Ca,Fe)SiO₃; Sheng et al. 1991] and ferrosilite (FeSiO₃; Rubin and Ma 2020) components, are 1078 invariably of secondary origin. Indeed, many primary chondrule pyroxenes lie relatively close to 1079 the MgSiO₃-CaMgSi₂O₆ join.

Orthopyroxene is the most common low-Ca pyroxene in terrestrial igneous rocks; however, orthoenstatite (officially named "enstatite" by the IMA) is relatively uncommon as a primary chondrule phase compared to clinoenstatite and pigeonite, which are both monoclinic ($P2_1/c$) pyroxenes with similar unit-cell dimensions. Clinoenstatite is defined by IMA protocols as endmember MgSiO₃, whereas pigeonite is ostensibly a more Ca- and Fe-rich variant, with up to 15 mol % CaSiO₃. A continuous solid solution exists among clinoenstatite, clinoferrosilite (FeSiO₃), and pigeonite. However, Ca-poor chondrule clinoenstatite is often found as phenocrysts surrounded by a significantly more Ca-rich pigeonite layer. We therefore recognize *PC clinoenstatite* and *PC pigeonite*, along with *PC orthoenstatite*, as distinct natural kinds in the Mg-Fe-(Ca) pyroxene solid solution, each spanning a significant range of Mg-Fe-Ca phase space. Note, however, that in the absence of coexisting phases with contrasting Ca contents, the distinction between "clinoenstatite" and "pigeonite" may be arbitrary.

1092

1093 Orthoenstatite [(Mg,Fe)SiO₃]: Orthorhombic enstatite (space group *Pbca*) is the stable low-

temperature form of (Mg,Fe)SiO₃, and is thus the low-Ca pyroxene phase most commonly found
in gradually cooled terrestrial igneous rocks (e.g., Deer et al. 1966). Nevertheless, it is significantly
less common than clinoenstatite as a primary phase in rapidly cooled chondrules and may, in some
instances, point to a secondary process from thermal metamorphism and consequent inversion of
clinoenstatite.

In ordinary and carbonaceous chondrites orthoenstatite occurs as rare phenocrysts in association with clinoenstatite and forsterite (Ikeda 1982; Watanabe et al. 1986; Noguchi 1989; Jones 1996). Orthoenstatite is also found as layers surrounding clinoenstatite in some chondrules in the Allende CV3 carbonaceous chondrite (Noguchi 1989), while in EH3 enstatite chondrites orthoenstatite has been reported as the dominant pyroxene in barred olivine-pyroxene chondrules (Zhang et al. 1996).

1104

1105 **Clinoenstatite** [(**Mg,Fe**)**SiO₃**]: *PC* clinoenstatite is the most common pyroxene in 1106 ferromagnesian chondrules, occurring prominently as phenocrysts in unequilibrated ordinary 1107 chondrites. The widespread occurrence of this high-temperature polymorph of MgSiO₃, rather

1108	than orthoenstatite, points to its formation from a melt at > 985 °C (Boyd and Schairer 1964), with
1109	subsequent rapid cooling of chondrules. Examples from numerous meteorites show FeSiO3
1110	contents ranging from <1 to ~35 mol % (Brearley and Jones 1998, see Figures 10, 14, 23, 24, 29,
1111	33, 38, 41, 47, 49, 53, 55, 56, 58, 59, 62, 65, and 66; Table A3.2). Clinoenstatite is often
1112	polysynthetically twinned (e.g., Müller et al. 1995) and is commonly encased in more calcic
1113	pyroxenes, either augite or by a layer of pigeonite surrounded by augite (Noguchi 1989).

1114

1115 Pigeonite [(Mg,Fe,Ca)SiO₃]: Pigeonite with 5- to 15-mol % CaSiO₃ component occurs in the 1116 chondrules of type 3 ordinary chondrites, both as individual crystals and as a thin layer between 1117 clinoenstatite cores and augitic mantles (Noguchi 1989). Pigeonite often displays exsolution 1118 lamellae of calcic clinopyroxene (space group C2/c) or anti-phase domains (a consequence of high-1119 temperature inversion) - both of which may point to multiple heating and cooling events 1120 (Ashworth and Barber 1977). In carbonaceous chondrites, low-Fe pigeonite ($Fs_{<02}$) also occurs in 1121 close association with augite, for example as intergrowths in the Cochabamba CM2 chondrite 1122 (Müller et al. 1979), or as an intermediate layer between a clinoenstatite core and augite 1123 overgrowth in the Allende CV3 chondrite (Noguchi 1989). In addition, the plagioclase-olivine 1124 inclusions of CV chondrites sometimes hold Fe-poor ($Fs_{<01}$), Al-rich (to several mol %) pigeonite 1125 (Sheng et al. 1991a). Finally, EH3 enstatite chondrites hold a variety of pyroxenes, including 1126 pigeonite (Kitamura et al. 1987; Ikeda 1989b), some of which hold greater than 10 mol % CaSiO₃ 1127 component (Ikeda 1988b; Kitamura et al. 1988). 1128

1129 High-Calcium Clinopyroxenes [(Ca,Mg,Fe)(Mg,Fe,Al,Ti³⁺)(Al,Ti⁴⁺,Si)SiO₆]

1130 Clinopyroxenes with Ca \sim (Mg + Fe) are common primary phases in chondrules. The 1131 nomenclature of these monoclinic pyroxenes (space group $C2_1/c$) is complicated by the frequent 1132 use of two approved IMA names, diopside (CaMgSi₂O₆) and augite [(Ca,Mg,Fe)₂Si₂O₆], in 1133 concert with unapproved or discredited terminology, including "fassaite," "Al-Ti-diopside," and 1134 "aluminous diopside" (Morimoto et al. 1988; Sack and Ghiorso 2017; Rubin and Ma 2017, 2020; 1135 see rruff.info/ima, accessed 7 April 2020). In extreme instances, clinopyroxene compositions may 1136 approach such end-members as kushiroite (CaAl₂SiO₆; Kimura et al. 2009), grossmanite (CaTi³⁺AlSiO₆; Ma and Rossman 2009), or the as vet unnamed end-member (CaMgTi⁴⁺SiO₆), all 1137 1138 of which extend the continuous clinopyroxene compositional range to [(Ca,Mg,Fe)(Mg,Fe,Al,Ti³⁺)(Al,Ti⁴⁺,Si)SiO₆]. Specific instances of compositional extremes, for 1139 1140 example Al- and Ti-rich clinopyroxenes, reflect the idiosyncratic average compositions of their 1141 host chondrules. However, inasmuch as these calcic clinopyroxenes all form in similar ways within 1142 a molten droplet, we recognize only one kind of primary chondrule calcic clinopyroxene, PC 1143 augite. 1144 Augite [(Ca,Mg,Fe)(Mg,Fe,±Al,±Ti³⁺)(±Al,±Ti⁴⁺,Si)SiO₆]: *PC augite* occurs commonly in 1145 1146 chondrules in type 3 ordinary chondrites, carbonaceous chondrites, and enstatite chondrites, both 1147 as phenocrysts and as overgrowths (< 20-micrometers thick) on clinoenstatite, at times with a thin 1148 intermediate pigeonite layer. Augite also is found as exsolution lamellae in low-Ca pyroxene.

- 1149 While compositions vary significantly, most PC augite have CaSiO₃ from 30 to 45 mol % and
- 1150 FeSiO₃ from ~0 to 15 mol % (Brearley and Jones 1998; see figures 10, 17, 23, 25, 29, 34, 38, 42,

1151	47, 49, 60, 65, and 67; Table A3.3). Examples of PC augite that are close to diopside in
1152	composition (i.e., with MgSiO ₃ > 35 mol %, CaSiO ₃ > 45 mol %, and correspondingly low Fe,
1153	Al, and Ti) have been reported by Noguchi (1989) as crystals (Wo48-50) in glass in a single
1154	chondrule from the ALH-77003 CO chondrite. Additional reports of chondrule "fassaite" crystals
1155	in glassy mesostasis with a wide range of compositions rich in Al and Ti have been reported from
1156	Al-rich and Ca-Al-rich chondrules in type 3 ordinary chondrites (Bischoff and Keil 1984; Wang
1157	et al. 2016). Al-Ti-rich clinopyroxenes are also recorded from low-Fe chondrules and plagioclase-
1158	olivine inclusions in Allende and other CV3 meteorites (Noguchi 1989; Sheng et al. 1991a), as
1159	well as in CR chondrites (Noguchi 1995).

1160

1161 Plagioclase Feldspar Group (CaAl₂Si₂O₈ to NaAlSi₃O₈)

1162 Plagioclase feldspar is a common phase in typical ferro-magnesian chondrules of ordinary 1163 chondrites, especially in devitrified mesostasis, where it may represent both a primary phase 1164 formed on initial chondrule cooling and a secondary phase crystallized during subsequent 1165 metamorphism in the parent body (Brearley and Jones 1998; Lewis and Jones 2016, 2019). This 1166 continuum from primary to secondary feldspar is reflected as increases in the average size of 1167 plagioclase crystallites, the volume ratio of mesostasis crystals to glass, and the degree of 1168 plagioclase Al-Si disorder. The range of chondrule plagioclase compositions in ordinary 1169 chondrites, though usually well within the anorthite field (An₆₀₋₉₀; Ikeda 1982; Miúra and 1170 Tomisaka 1984), occasionally extends to An_{02} within the albite field in unequilibrated ordinary 1171 chondrites (Brearley and Jones 1998, see Table A3.5; Lewis and Jones 2019, and references

therein). In addition, a near end-member albite occurrence is associated with silica in a singlechondrule (Fujimaki et al. 1981a, 1981b).

Plagioclase-rich chondrules are found in some type 3 CO chondrites, in which primary calcic plagioclase laths (An₇₀₋₉₀) occur in association with augite and orthopyroxene (Greshake 1997; Jones 1997; Brearley and Jones 1998). Plagioclase also plays a significant role in varied, less common Al-(Ca)-rich chondrules in ordinary chondrites, in which calcic plagioclase occurs as a fine-grained mineral in both the groundmass and mesostasis (Wang et al. 2016). Note, however, that albitic plagioclase is not a primary phase in Na-Al-rich chondrules, in which Na-rich glass is the dominant sodium phase.

1181 Plagioclase occurs occasionally as a primary phase in the chondrules of carbonaceous 1182 chondrites. An>80 is found as a primary phase in a small fraction of Allende (CV3) ferromagnesian 1183 chondrules, at times in association with low-calcium pyroxenes (Simon and Haggerty 1980; 1184 Noguchi 1989; Brearley and Jones 1998, see Table A3.5). CV chondrites also hold plagioclase-1185 olivine inclusions, in which calcic plagioclase (commonly An.95) and forsteritic olivine 1186 phenocrysts are the dominant phases (Sheng et al. 1991a). Plagioclase (~An90) was also reported 1187 in association with augite in a single silica-bearing chondrule from the Murchison CM chondrite 1188 (Olsen 1983). In addition, plagioclase is not uncommon as a phase in the mesostasis of 1189 carbonaceous chondrites (Murakami and Ikeda 1994; Ikeda and Kimura 1995).Plagioclase (An48-1190 88) has also been reported as a primary phase in enstatite chondrites, occurring as laths in 1191 mesostasis (Ikeda 1988b, 1989b), as well as in Al-rich chondrules (Bischoff et al. 1985; Wang et 1192 al. 2016).

1193	Most reports of primary plagioclase feldspar, especially in type I chondrules, lie in the calcium-
1194	dominant field, if not close to anorthite (An>80). By contrast, most albitic plagioclase (and all K-
1195	bearing feldspars) are described as secondary in origin (e.g., Ikeda 1989b; Rubin and Kallemeyn
1196	1989, 1994; Schulze et al. 1994; Lewis and Jones 2016, 2019). We recognize two primary
1197	chondrite feldspar group minerals. Most occurrences of primary chondrule plagioclase lie well
1198	within the anorthite range, though a few outliers may display sodium content greater than calcium
1199	as part of a continuous solid solution. We name all such phases as PC anorthite. In addition, the
1200	common occurrences of Na-rich plagioclase (An ₀₂ to An ₃₂) in FeO-rich chondrules in the
1201	unequilibrated Semarkona (LL3.00) chondrite (Lewis and Jones 2019), as well as the rare
1202	occurrence of albite with silica reported by Fujimaki et al. (1981a), are designated PC albite.
1203	
1204	Anorthite [(Ca,Na)(Al,Si)2Si2O8): PC anorthite is a common phase as phenocrysts or as
1205	crystallites in mesostasis in both ordinary and carbonaceous chondrites.
1206	
1207	Albite (NaAlSi3O8): Fujimaki et al. (1981a, 1981b) report a rare occurrence of PC albite
1208	(Ab>98) associated with silica and ferropseudobrookite in a single chondrule from the L3 ordinary
1209	chondrite ALH77015.
1210	
1211	Nepheline [Na ₃ K(Al ₄ Si ₄ O ₁₆)]: Most chondrules are too silica-rich to form feldspathoids as
1212	stable primary phases. However, nepheline has been reported as both a primary and (more
1213	commonly) secondary phase (Ikeda 1988b; Sheng et al. 1991a). PC nepheline is found as

1214	epitaxially-oriented intergrowths with anorthite in unequilibrated ordinary chondrites (Ikeda
1215	1982), including in some plagioclase-rich chondrules (Jones 1997). It also occurs in association
1216	with Na-bearing plagioclase in Al-Ca-Na-rich chondrules in ordinary chondrites (Brearley and
1217	Jones 1998; Rubin and Ma 2020). Note, however, that some experts suggest that all nepheline
1218	occurrences in chondrules are of secondary origin (R. Jones, personal communication, June 4,
1219	2020).

1220

1221 Sapphirine [Mg₄(Mg₃Al₉)O₄(Si₃Al₉O₃₆)]: *PC sapphirine* is one of several minor accessory 1222 phases found as primary chondrule minerals only in plagioclase-olivine inclusions (POIs) from the 1223 Allende CV carbonaceous chondrite (Sheng et al. 1991a). Sapphirine occurs as widely distributed 1224 5- x 25-micrometer crystal prisms in a Na- and Cl-rich mesostasis. Sapphirine from POIs 1225 incorporates excess Mg + Si at the expense of Al, as well as significant Cr and Ti, in accord with 1226 experimental studies of sapphirine crystallization from a melt (Sheng et al. 1991b).

1227

1228 Merrihueite [(K,Na)₂(Fe,Mg)₅Si₁₂O₃₀] and Roedderite [(Na,K)₂Mg₅Si₁₂O₃₀]: Silica-rich 1229 chondrules in several unequilibrated ordinary and enstatite chondrites have been reported to hold 1230 minerals of the merrihueite-roedderite solid solution series (Dodd et al. 1965; Rambaldi et al. 1986; 1231 Krot and Wasson 1994). Wood and Holmberg (1994) proposed that these unusual silicates formed 1232 by the reaction of silica-rich phases with alkali-rich nebular gas. The compositions of these 1233 occurrences span the range from 0.1 < Na/(Na+K) < 0.8, and with 0 < Fe/(Fe+Mg) < 0.8 (Wood 1234 and Holmberg 1994). IMA protocols could thus assign as many as four different mineral names to 1235 the Na-Mg (roedderite), K-Fe (merrihueite), Na-Fe, and K-Mg compositional variants, all of which 1236 are observed in these meteorites. However, these minerals form a continuous solid-solution of 1237 phases formed by the same primary process, and thus represent a single natural kind in our 1238 evolutionary system. Because most examples fall within the roedderite field, we assign the name 1239 *PC roedderite* to these examples. Note, however, that some experts ascribe all such occurrences 1240 to secondary process (R. Jones, personal communications, June 4, 2020). 1241 1242 Silicate Glass (Ca,Mg,Al,Si,O): PC silicate glass is an important constituent of many chondrules. 1243 In extreme cases, chondrules can be >99 vol % silicate glass, with a significant population having 1244 55 to 85 vol % glass (Krot and Rubin 1994). Silicate glass as a primary phase in chondrules spans 1245 a wide range of compositions (Brealey and Jones 1998, and references therein). As with other

1246 common silicate phases in chondrules, cluster analysis of large databases of silicate glass might

1247 reveal distinctive natural kinds that could warrant a splitting of PC silicate glass.

1248

NETWORK GRAPH OF STELLAR AND PRIMARY NEBULAR MINERALS

1249 The evolutionary system of mineralogy can be illustrated using bipartite mineral network 1250 graphs, which display relationships among mineral phases and their attributes, in this instance their 1251 paragenetic modes and chemical groups (Morrison et al. 2017, 2020; Hazen et al. 2019b; Hazen and Morrison 2020; Morrison and Hazen 2020). Figure 2 displays a bipartite force-directed 1252 1253 network graph of primary stellar, interstellar, and nebular minerals formed prior to ~4561 Ma, in 1254 which 96 different phases, including 10 amorphous condensed phases, are represented by 1255 diamond-shaped nodes. Each of these mineral nodes is linked to one or more nodes representing a 1256 paragenetic mode of formation. Three different star-shaped nodes (AGB, SN-II, and CNova) 1257 represent stellar environments that impart distinctive isotopic signatures to minerals. A cloud-1258 shaped node indicates interstellar dense molecular clouds (DMC), whereas five flattened disk icons 1259 represent different primary mineral-forming nebular environments (Circumstellar, CAI, AOA, 1260 URI, and PC).

1261 Information about mineral compositions is indicated by the color of diamond-shaped mineral 1262 nodes: black (C-bearing), green (lacking C or O), blue (contains O, but not C or Si), and red 1263 (contains Si and O). The sizes of the star-, cloud-, and disk-shaped symbols indicate the numbers 1264 of different minerals to which they are associated.

Note that while most mineral nodes are members of a well-connected network, 8 lowtemperature interstellar and nebular condensed molecular phases, all formed at T < 100 K, form a separate network from 88 high-temperature stellar and nebular condensates (T >> 300 K). In future contributions to this series, which will consider phases formed at intermediate temperatures in planetary surface environments, new links will occur between these two mineral-forming environments.

1272 Figure 2. Bipartite force-directed network graph (Morrison et al. 2017) of primary stellar, interstellar, and 1273 nebular minerals linked to their modes of paragenesis. Diamond-shaped nodes represent condensed 1274 crystalline and amorphous phases [black (C-bearing), green (not C or O), blue (contains O, but not C or Si), 1275 and red (contains Si + O)]. Star-shaped nodes represent three types of host stars—asymptotic giant branch 1276 stars (AGB), Type II supernovae (SN-II), and classical novae (CNova); the cloud-shaped node represents 1277 dense molecular clouds (DMC); and five disk-shaped nodes indicate circumstellar environments, CAI, 1278 AOA, URI, and PC minerals. The sizes of paragenetic mode nodes correspond to the numbers of links to 1279 mineral nodes. Note that 8 low-temperature phases of the interstellar medium are not linked to 88 high-1280 temperature primary phases of stellar and nebular environments. 1281

1282 This bipartite network of mineral evolution is a visual representation of all confirmed stellar, 1283 interstellar, and primary nebular minerals described in Parts I, II, and III of the evolutionary system 1284 of mineralogy. Of the 96 species in Figure 2, spinel is the most ubiquitous, occurring in 7 of the 9 1285 different paragenetic modes considered thus far; consequently, spinel assumes a highly centralized 1286 position in this network graph. Iron, corundum, and forsterite, each linked to 5 modes of formation, 1287 were the next most widespread minerals prior to the formation of planetesimals. On the other hand, 1288 more than two-thirds of these minerals -68 of 96 species - are thus far only recorded from a single 1289 paragenetic mode.

Of the 43 primary chondrule mineral species considered in Part III, 27 occur here for the first time. This significant increase in mineral diversity associated with chondrule formation in part reflects chemical fractionation within the solar nebula and the consequent increasing importance of such key elements as Na, K, Cr, Mn, and S, all of which are moderately volatile and thus were incorporated into solid phases as the nebular disk cooled.

1295 The topology of this network graph reflects important aspects of mineral evolution. Nodes for 1296 a few of the commonest minerals (fewer than 20 species) are centrally located; those diamond-1297 shaped icons are surrounded by several nodes for paragenetic modes. But the majority of minerals 1298 are represented by starbursts of nodes that decorate the periphery of the graph, each diamond 1299 representing a species that at this stage of mineral evolution is only linked to a single paragenetic 1300 mode. In future contributions, as we add new paragenetic modes, many new mineral species 1301 formed by different processes at new combinations of temperature, pressure, and composition will 1302 enhance this pattern. New starbursts will appear, while a greater number of minerals will have 1303 multiple links to paragenetic modes and thus shift to the network's crowded interior. In this way,

- 1304 as new modes of mineral paragenesis are considered, this information-rich graphical approach will
- 1305 provide a dynamic, interactive view of the entire sweep of mineral evolution.

1307

IMPLICATIONS

Part III of the evolutionary system of mineralogy represents a vital transition between the genesis of dust and gas in stars and the solid condensed phases that would become planets and moons. Dynamic electromagnetic, shock front, and impact processes provided the principal hightemperature sources required to form igneous droplets – the chondrules that accreted to become the first macroscopic rocks of our solar system. However, soon thereafter gravity took control as planetesimals began to form and collide and new suites of minerals emerged.

1314 The catalog of 43 phases is misleading in at least two ways regarding the diversity and 1315 distribution of primary chondrule minerals. First, the primary origins of 8 of these phases 1316 (awaruite, graphite, haxonite, pentlandite, magnetite, merrillite, nepheline, and roedderite) have 1317 been questioned. For each of these minerals, some experts assert that all chondrule occurrences 1318 formed by secondary processes. Of the remaining 35 minerals, an additional 15 (sinoite, perryite, 1319 alabandite, caswellsilverite, daubréelite, niningerite, oldhamite, sphalerite, wassonite, rutile, 1320 armacolite, ferropseudobrookite, perovskite, zirconolite, and sapphirine) are extremely rare and of 1321 restricted occurrence, while 7 more (tetrataenite, cohenite, schreibersite, magnetite, ilmenite, 1322 cristobalite, and silica glass) are more widespread but volumetrically minor. Thus, only a dozen 1323 phases probably account for more than 99 vol. % of primary chondrule mineralogy. This 1324 distribution reflects the mineralogical parsimony of high-temperature assemblages of the nebula's 1325 major rock-forming elements – in essence, a nebular manifestation of J. Willard Gibbs' "phase 1326 rule" (Gibbs 1876-1878). We will discover a similar restricted mineral diversity among the 1327 primary phases that arise from planetesimal differentiation into mantle and core (the subject of 1328 Part IVA). However, a dramatic rise in mineral diversity occurred as a consequence of pervasive 1329 alteration of these equilibrium phases – reworking by impact processes (Part IVB), as well as

aqueous, hydrothermal, and metamorphic alteration that resulted in hundreds of new mineralsbefore the assembly of today's planets and moons (Part V).

1332 This study of primary meteorite phases reveals an intriguing sociological aspect to the science 1333 of meteorite mineralogy. The bold outlines of primary chondrule mineralogy, on which our 1334 contribution is grounded, were made in the 1960s and 1970s. Thousands of publications expanded 1335 and refined that knowledge base in the 1980s and 1990s. By 1998, Adrian Brearley and Rhian 1336 Jones could summarize chondrite mineralogy and petrology in a 398-page treatise with more than 1337 1000 references by almost as many coauthors. Our review of chondrule mineralogy would not 1338 have been possible without that immense body of research and the summary of Brearley and Jones 1339 (1998).

1340 Mineralogical fashion, and funding, has changed. While many dedicated workers continue to 1341 probe these most ancient rocks and make important discoveries, the study of meteorite mineralogy 1342 and petrology appears to be less of a priority than in decades past. New discoveries, particularly 1343 related to scarce isotopes and to submicron-scale phases discovered by microbeam techniques, are 1344 breathtaking. Nevertheless, one comes away from this vast literature feeling that much more 1345 remains to be discovered about chondrites and their ancient mineralogy. Thousands of meteorites 1346 have been collected, but remain to be investigated. Numerous trace elements and stable isotope 1347 systems are yet to be explored. Undiscovered nanoscale minerals and poorly-characterized non-1348 crystalline solid phases beckon. We suspect that another golden age of meteorite mineralogy, 1349 perhaps including the promise of data-driven discovery using large and growing planetary 1350 materials data resources, lies before us.

1352	ACKNOWLEDGMENTS
1353	We are deeply grateful to reviewers Rhian Jones and Alan Rubin, as well as Associate Editor
1354	Steven Simon, for their meticulous, thoughtful, and constructive reviews of this manuscript, which
1355	was substantially improved as a consequence, We are also grateful to Denton Ebel and Alan Rubin,
1356	who contributed invaluable detailed reviews of an earlier version of this contribution. Rubin and
1357	Chi Ma provided access to important work in press, including a draft of their forthcoming book,
1358	Meteorite Mineralogy. We are grateful to Conel O.M'D. Alexander, Asmaa Boujibar, Carol
1359	Cleland, Robert T. Downs, Olivier Gagné, Sergey Krivovichev, Glenn MacPherson, Larry Nittler,
1360	Michael Walter, and Shuang Zhang for thoughtful discussions and comments.
1361	This publication is a contribution to the Deep Carbon Observatory, the 4D Initiative, and the
1362	Deep-time Digital Earth (DDE) program. Studies of mineral evolution and mineral ecology have
1363	been supported by the Deep Carbon Observatory, the Alfred P. Sloan Foundation, the W. M. Keck
1364	Foundation, the John Templeton Foundation, the NASA Astrobiology Institute ENIGMA team, a
1365	private foundation, and the Carnegie Institution for Science. Any opinions, findings, or
1366	recommendations expressed herein are those of the authors and do not necessarily reflect the views
1367	of the National Aeronautics and Space Administration.

1369	References
1370	Abel, T., Bryan, G.L., and Norman, M.L. (2002) The formation of the first stars in the universe.
1371	Science, 295, 93-98.
1372	Abreu, N.M., and Brearley, A.J. (2011) Deciphering the nebular and asteroidal record of silicates
1373	and organic material in matrix of the reduced CV3 chondrite Vigarano. Meteoritics & Planetary
1374	Science, 46, 252-274.
1375	Afiattalab, F., and Wasson, J.T. (1980) Composition of the metal phases in ordinary chondrites:
1376	Implications regarding classification and metamorphism. Geochimica et Cosmochimica Acta,
1377	44, 431-446.
1378	Akridge, D.G., and Sears, D.W.G. (1999) The gravitational and aerodynamic sorting of meteoritic
1379	chondrules and metal: Experimental results with implications for chondritic meteorites. Journal
1380	of Geophysical Research, 104, 11853–11864.
1381	Alexander, C.O.M'D., and Ebel, D.S. (2012) Questions, questions: Can the contradictions between
1382	the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation
1383	be resolved? Meteoritics & planetary Science, 47, 1157-1175.
1384	Alexander, C.O.M'D., Swan, P., and Prombo, C.A. (1994) Occurrence and implications of silicon
1385	nitride in enstatite chondrites. Meteoritics, 29, 79-85.
1386	Alexander, C.M.O'D., Grossman, J.N., Ebel, D.S., and Ciesla, F.J. (2008) The formation
1387	conditions of chondrules and chondrites. Science, 320, 1617–1619.
1388	Alwmark, C., Schmitz, B., Holm, S., Marone, F., and Stampanoni, M. (2011) A 3-D study of
1389	mineral inclusions in chromite from ordinary chondrites using synchrotron radiation X-ray
1390	tomographic microscopy—Method and application. Meteoritics & Planetary Science, 46, 1071-
1391	1081.

- Amelin, Y., and Krot, A.N. (2007) Pb isotopic ages of the Allende chondrules. Meteoritics &
 Planetary Science, 42, 1321-1335.
- 1394 Amelin, Y., Krot, A.N., Hutcheon, I.D., and Ulyanov, A.A. (2002) Lead isotopic ages of
- 1395 chondrules and calcium–aluminum-rich inclusions. Science, 297, 1678–1683.
- 1396 Amelin, Y., Kaltenbach, A., Iizuka, T., Stirling, C.H., Ireland, T.R., Petaev, M., and Jacobsen, S.B.
- 1397 (2010) U–Pb chronology of the Solar System's oldest solids with variable 238 U/ 235 U. Earth and
- 1398 Planetary Science Letters, 300, 343–350.
- Ashworth, J.R., and Barber, D.J. (1977) Electron microscopy of some stony meteorites.
 Philosophical Transactions of the Royal Society of London, A286, 493-506.
- Asphaug, E., Jutzi, M., and Movshovitz, N. (2011) Chondrule formation during planetesimal
 accretion. Earth and Planetary Science Letters, 308, 369-379.
- 1403 Avril, C., Malavergne, V., Caracas, R., Zanda, B., Reynard, B., Charon, E., Bobocioiu, E., Brunet,
- 1404 F., Borensztajn, S., Pont, S., Tarrida, M., and Guyot, F. (2013) Raman spectroscopic properties
- 1405 and Raman identification of CaS-MgS-MnS-FeS-Cr₂FeS₄ sulfides in meteorites and reduced
- sulfur-rich systems. Meteoritics & Planetary Science, 48, 1415-1426.
- Baecker, B., Rubin, A.E., and Wasson, J.T. (2017) Secondary melting events in Semarkona
 chondrules revealed by compositional zoning in low-Ca pyroxene. Geochimica et
 Cosmochimica Acta, 211, 256-279.
- 1410 Barth, M.I.F., Harries, D., Langenhorst, F., and Hoppe, P. (2018) Sulfide-oxide assemblages in
- 1411 Acfer 094 Clues to nebular metal-gas interactions. Meteoritics & Planetary Science, 53, 187-
- 1412 203.

- 1413 Bell, K.R., Cassen, P.M., Wasson, J.T., and Woolum, D.S. (2000) The FU Orionis phenomenon
- 1414 and solar nebula material. In V. Mannings, A.P. Boss, and S.S. Russell, Eds., Protostars and

1415 Planets IV, pp. 897-926. University of Arizona Press.

- 1416 Berg, T., Maul, J., Schönhense, G., Marosits, E., Hoppe, P., Ott, U., and Palme, H. (2009) Direct
- evidence for condensation in the early solar system and implications for nebular cooling rates. 1417
- 1418 The Astrophysical Journal, 702, L172-L176.
- 1419 Bertout, C. (1989) T Tauri stars-wild as dust. Annual Reviews of Astronomy and 1420 Astrophysics, 27, 351-395.
- 1421 Bertulani, C.A. (2013) Nuclei in the Cosmos. World Scientific.
- 1422 Bevan, A.W.R., and Axon, H.J. (1980) Metallography and thermal history of the Tieschitz
- 1423 unequilibrated meteorite – metallic chondrules and the origin of polycrystalline taenite. Earth 1424 and Planetary Science Letters, 47, 353-360.
- 1425 Bigolski, J.N., Weisberg, M.K., Connolly, H.C. Jr., and Ebel, D.S. (2016) Microchondrules in
- 1426 three unequilibrated ordinary chondrites. Meteoritics & Planetary Science, 51, 235-260.
- 1427 Bischoff, A., and Keil, K. (1983) Ca-Al-rich chondrules in ordinary chondrites. Nature, 303, 588-1428 592.
- 1429 Bischoff, A., and Keil, K. (1984) Al-rich objects in ordinary chondrites: Related origin of 1430 carbonaceous and ordinary chondrites and their constituents. Geochimica et Cosmochimica 1431 Acta, 48, 693-709.
- 1432 Bischoff, A., Keil, K., and Stöffler, D. (1985) Perovskite-hibonite-spinel-bearing inclusions and
- 1433 Al-rich chondrules and fragments in enstatite chondrites. Chemie der Erde, 44, 97-106.
- 1434 Bischoff, A., Wurm, G., Chaussidon, M., Horstmann, M., Metzler, K., Weyrauch, M., and
- 1435 Weinauer, J. (2017) The Allende multicompound chiondrule (ACC) – Chondrule formation in

- a local super-dense region of the early solar system. Meteoritics & Planetary Science, 52, 906-924.
- 1438 Bizzarro, M., Connelly, J.N., and Krot, A.N. (2017) Chondrules-Ubiquitous chondritic solids
- 1439 tracking the evolution of the solar protoplanetary disk. In Formation, evolution, and dynamics
- 1440 of young solar systems. Astrophysics and Space Science Library. Cham, Switzerland: Springer
- 1441 International Publishing AG. pp. 161–195.
- 1442 Bollard, J., Connelly, J.N., and Bizzarro, M. (2015) Pb-Pb dating of individual chondrules from
- 1443 the CBa chondrite Gujba: Assessment of the impact plume formation model. Meteoritics &
- 1444 Planetary Science, 50, 1197-1216.
- 1445 Bollard, J., Connelly, J.N., Whitehouse, M.J., Pringle, E.A., Bonal, L., Jørgensen, J.K., Nordlund,
- A., Moynier, F., and Bizzarro, M. (2017) Early formation of planetary building blocks inferred
 from Pb isotopic ages of chondrules. Science Advances, 3:e1700407.
- 1448 Bond, H.E., Nelan, E.P., VandenBerg, D.A., Schaefer, G.H., and Harmer, D. (2013) HD 140283:
- A star in the solar neighborhood that formed shortly after the Big Bang. The AstrophysicalJournal, 765, L12 (5 pp).
- 1451 Boss, A.P. (1996) A concise guide to chondrule formation models. In R.H. Hewins, R.H. Jones
- 1452 and E.R.D. Scott, Eds., Chondrules and the Protoplanetary Disk, pp. 257-264. Cambridge
- 1453 University Press.
- Boss, A.P., and Durisen, R.H. (2005) Sources of shock waves in the protoplanetary disk.
 Astronomical Society of the Pacific Conference Series, 341, 821-838.
- 1456 Bouvier, A., and Wadhwa, M. (2010) The age of the Solar System redefined by the oldest Pb-Pb
- age of a meteoritic inclusion. Nature Geoscience, 3, 637-641.

- Bowman, J.D., Rogers, A.E.E., Monsalve, R.A., Mozdzen, T.J., and Mahesh, N. (2018) An 1458
- 1459 absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature, 555, 67-70.
- 1460 Boyd, F.R., and Schairer, J.F. (1964) The system MgSiO₃-CaMgSi₂O₆. Journal of Petrology, 5,
- 1461 275-309.
- 1462 Bradley, J.P. (1994a) Nanometer-scale mineralogy and petrography of fine-grained aggregates in
- 1463 anhydrous interplanetary dust particles. Geochimica et Cosmochimica Acta, 58, 2123-2134.
- 1464 Bradley, J.P. (1994b) Chemically anomalous, pre-accretionally irradiated grains in interplanetary
- 1465 dust from comets. Science, 265, 925-929.
- 1466 Brearley, A.J. (2014) Nebular versus parent body processing. Treatise on Geochemistry, Second 1467 Edition, 1, 247-268.
- 1468 Brearley, A.J., and Jones, R.H. (1998) Chondritic meteorites. Reviews in Mineralogy, 36, 3.01-1469 3.398.
- 1470 Bridges, J.C., Franchi, L.A., Hutchison, R., Morse, A.D., Long, J.V.P., and Pillinger, C.T. (1995)
- 1471 Cristobalite- and tridymite-bearing clasts in Parnallee (LL3) and Farmington (L5). Meteoritics, 1472 30, 715-727.
- 1473 Brigham, C.A., Yabuki, H., Ouyang, Z., Murrell, M.T., El Goresy, A., and Burnett, D.S. (1986)
- 1474 Silica-bearing chondrules and clasts in ordinary chondrites. Geochimica et Cosmochimica 1475 Acta, 50, 1655-1666.
- 1476 Britvin, S.N., Kolomensky, V.D., Boldyreva, M.M., Bogdanova, A.N., Kretser, Y.L., Boldyreva,
- 1477 O.N., and Rudashesky, N.S. (1999) Nickelphosphide (Ni,Fe)₃P, the nickel analog of
- 1478 schreibersite. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 128, 64-72.
- 1479 Buchwald, V.F. (1975) Handbook of Iron Meteorites. University of California Press.

- Budde, G., Kleine, T., Kruijer, T.S., Burkhardt, C., and Metzler, K. (2015) Tungsten isotopic
 constraints on the age and origin of chondrules. Proceedings of the National Academy of
 Sciences USA, 113, 2886-2891.
- 1483 Budde, G., Burkhardt, C., Brennecka, G.A., Fischer-Gödde, M., Kruijer, T.S., and Kleine, T.
- 1484 (2016) Molybdenum isotopic complementarity of chondrules and matrix and the dichotomy of
- 1485 carbonaceous and noncarbonaceous meteorites. Earth and Planetary Science Letters, 454, 293-1486 303.
- 1487 Bullock, E.M., MacPherson, G.J., Nagashima, K., Krot, A.N., Petaev, M.I., Jacobsen, S.B., and
- 1488 Ulyanov, A.A. (2012) Forsterite-bearing Type B refractory inclusions from CV3 chondrites:
- 1489 From aggregates to volatilized melt droplets. Meteoritics & Planetary Science, 47, 2128–2147.
- 1490 Bunch, T.E., Keil, K., and Snetsinger, K.G. (1967) Chromite compositions in relation to chemistry
- and texture of ordinary chondrites. Geochimica et Cosmochimica Acta, 31, 1568-1582.
- 1492 Burbidge, E.M., Burbidge, G.R., Fowler, W.A., and Hoyle, F. (1957) Synthesis of the elements in
- stars. Review of Modern Physics, 29, 547-650.
- 1494 Burke, E.A.J. (2006) The end of CNMMN and CCM—Long live the CNMNC! Elements, 2, 388.
- 1495 Burkhardt, C., Kleine, T., Oberli, F., Pack, A., Bourdon, B., and Wieler, R. (2011) Molybdenum
- 1496 isotopic anomalies in meteorites: Constraints on solar nebula evolution and the origin of the
- Earth. Earth and Planetary Science Letters, 312, 390-400.
- 1498 Burkhardt, C., Dauphas, N., Hans, U., Bourdon, B., and Kleine, T. (2019) Elemental and isotopic
- 1499 variability in solar system materials by mixing and processing of primordial disk reservoirs.
- 1500 Geochimica et Cosmochimica Acta, 261, 145-170.
- 1501 Buseck, P.R., and Holdsworth, E.F. (1972) Mineralogy and petrology of the Yilmia enstatite
- 1502 chondrite. Meteoritics, 7, 429-447.

- Cameron, A.G.W. (1957) Nuclear reactions in stars and nucleogenesis. Publications of the
 Astronomical Society of the Pacific, 69, 201-222.
- 1505 Campbell, A.J., and Humayun, M. (2004) Formation of metal in the CH chondrites ALH 85085
- and PCA 91467. Geochimica et Cosmochimica Acta, 68, 3409-3422.
- 1507 Campbell, A.J., Humayun, M., and Weisberg, M.K. (2002) Siderophile element constraints on the
- 1508 formation of metal in the metal-rich chondrites Bencubbin, Weatherford, and Gujba.1509 Geochimica et Cosmochimica Acta, 66, 647-660.
- 1510 Campbell, A.J., Humayun, M., and Weisberg, M.K. (2005a) Compositions of unzoned and zoned
- 1511 metal in the CBb chondrites HH 237 and QUE 94627. Meteoritics & Planetary Science, 40,
- 1512 1131-1148.
- 1513 Campbell, A.J., Zanda, B., Perron, C., Meibom, A., and Petaev, M.I. (2005b) Origin and thermal
- history of Fe-Ni metal in primitive chondrites. Astronomical Society of the Pacific ConferenceSeries, 341, 407-431.
- Chambers, J.E. (2004) Planetary accretion in the early solar system. Earth and Planetary Science
 Letters, 223, 241-252.
- 1518 Charles, C.R.J., Robin, P.-Y.F., Davis, D.W., and McCausland, P.J.A. (2018) Shapes of 1519 chondrules determined from the petrofabric of the CR2 chondrite NWA 801. Meteoritics &
- 1520 Planetary Science, 53, 935-951.
- 1521 Chaumard, N., Humayun, M., Zanda, B., and Hewins, R.H. (2018) Cooling rates of type I
- chondrules from Renazzo: Implications for chondrule formation. Meteoritics & PlanetaryScience, 53, 984-1005.
- 1524 Chiang, E., and Youdin, A.N. (2010) Forming planetesimals in solar and extrasolar nebulae.
- 1525 Annual Review of Earth and Planetary Sciences, 38, 493-522.

- 1526 Clarke, R.S. Jr., and Scott, E.R.D. (1980) Tetrataenite ordered FeNi, a new mineral in meteorites.
- 1527 American Mineralogist, 65, 624-630.
- 1528 Cody, G.D., Heying, E., Alexander, C.M.O'D., Nittler, R.R., Kilcoyne, A.L.D., Sandford, S.A.,
- and Stroud, R.M. (2011) Establishing a molecular relationship between chondritic and
- 1530 cometary organic solids. Proceedings of the National Academy of Science USA, 108, 19171-
- 1531 19176.
- 1532 Cohen, R.E., Kornacki, A.S., and Wood, J.A. (1983) Mineralogy and petrology of chondrules and
- 1533 inclusions in the Mokoia CV3 chondrites. Geochimica et Cosmochimica Acta, 47, 1739-1757.
- 1534 Connelly, J.N., and Bizzarro, M. (2009) Pb-Pb dating of chondrules from CV chondrules by
- 1535 progressive dissolution. Chemical Geology, 259, 143-151.
- 1536 Connelly, J.N, and Bizzarro, M. (2018) The absolute Pb-Pb isotope ages of chondrules: Insights
- 1537 into the dynamics of the solar protoplanetary disk. In S.A. Russell, H.C. Connolly Jr., and A.N.
- 1538 Krot, Eds., Chondrules: Records of Protoplanetary Disk Processes, pp.300-323. Cambridge1539 University Press.
- Connelly, J.N., Amelin, Y., Krot, A.N., and Bizzarro, M. (2008) Chronology of the solar system's
 oldest solids. The Astrophysical Journal, 67, L121–L124.
- 1542 Connelly, J.N., Bizzarro, M., Krot, A.N., Nordlund, Å., Wielandt, D., and Ivanova, M.A. (2012)
- 1543 The absolute chronology and thermal processing of solids in the solar protoplanetary disk.
- 1544 Science, 338, 651–655.
- 1545 Connolly, H.C. Jr., and Desch, S.J. (2004) On the origin of the "kleine Kügelchen" called 1546 chondrules. Chemie der Erde – Geochemistry, 64, 95-125.
- 1547 Connolly, H.C. Jr., and Jones, R.H. (2016) Chondrules: The canonical and noncanonical views.
- 1548 Journal of Geophysical Research: Planets, 121, 1885-1899.
- 1549 Connolly, H.C. Jr., Jones, B.D., and Hewins, R.H. (1998) The flash melting of chondrules: An
- 1550 experimental investigation into melting history and physical nature of chondrule precursors.
- 1551 Geochimica et Cosmochimica Acta, 62, 2725-2735.
- 1552 Crozaz, G., and Lundberg, L. (1995) The origin of oldhamite in unequilibrated enstatite chondrites.
- 1553 Geochimica et Cosmochimica Acta, 59, 3817-3831.
- 1554 Cullivier, P., Chaumard, N., Leroux, H., Zanda, B., Hewins, R.H., Jacob, D., and Devouard, B.
- 1555 (2018) A TEM study of exsolution in Ca-rich pyroxenes from the Paris and Renazzo chondrites:
- 1556 Determination of type I chondrule cooling rates. Meteoritics & Planetary Science, 53, 482-492.
- 1557 Cuzzi, J.N., and Alexander, C.M.O'D. (2006) Chondrule formation in particle-rich nebular regions
- 1558 at least hundreds of kilometers across. Nature, 441, 483–485.
- 1559 Cuzzi, J.N., Hogan, R.C., Paque, J.M., and Dobrovolskis, A.R. (2001) Size-selective concentration
- 1560 of chondrules and other small particles in protoplanetary nebula turbulence. The Astrophysical
- 1561 Journal, 546, 496-508.
- 1562 D'Alessio, P., Calvet, N., and Woolum, D.S. (2005) Thermal structure of protoplanetary disks. 1563 Astronomical Society of the Pacific Conference Series, 341, 353-372.
- 1564 Davis, A.M. (2011) Stardust in meteorites. Proceedings of the National Academy of Sciences 1565 USA, 108, 19142-19146.
- 1566 Davis, A.M., and Richter, F.M. (2014) Condensation and evaporation of solar system materials.
- 1567 In A.M. Davis, H.D. Holland, and K.K. Turekian, Eds., Treatise on Geochemistry, Vol. 1:
- 1568 Meteorites, Comets, and Planets, Second Edition, pp.335-360. Elsevier-Pergamon.
- 1569 Davis, A.M., Hashimoto, A., Clayton, R.N., and Mayeda, T.K. (1990) Isotope mass fractionation
- 1570 during evaporation of forsterite (Mg₂SiO₄). Nature, 347, 655-658.
- 1571 Davy, R., Whitehead, S.G., and Pitt, G. (1978) The Adelaide meteorite. Meteoritics, 13, 121-140.

- 1572 Deer, W.A., Howie, R.A., and Zussman, J. (1966) An Introduction to the Rock-Forming Minerals.
 1573 John Wiley and Sons.
- 1574 Desch S.J., and Connolly H.C. Jr. (2002) A model for the thermal processing of particles in solar
- 1575 nebula shocks: Application to the cooling rates of chondrules. Meteoritics & Planetary Science,
- 1576 37, 183–207.
- 1577 Desch, S.J., and Cuzzi, J.N. (2000) The generation of lightning in the solar nebula. Icarus, 143,
 1578 87-105.
- 1579 Desch, S.J., Morris, M.A., and Connolly, H.C. Jr. (2010) A critical examination of the x-wind
- 1580 model chondrule and calcium-rich, aluminum-rich inclusion formation and radionuclide
- 1581 production. The Astrophysical Journal, 725, 692-711.
- Desch, S.J., Morris, M.A., Connolly, H.C. Jr., and Boss, A.P. (2012) The importance of
 experiments: Constraints on chondrule formation models. Meteoritics & Planetary Science, 47,
 1139-1156.
- Desch, S.J., Kalyaan, A., and Alexander, C.M.O'D. (2018) The effect of Jupiter's formation on the
 distribution of refractory elements and inclusions in meteorites. The Astrophysical Journal
- 1587 Supplement Series, 238, 11 (31 pp).
- Desnoyers, C. (1980) The Niger (I) carbonaceous chondrite and implications for the origin of
 aggregates and isolated olivine grains in C2 chondrite. Earth and Planetary Science Letters, 47,
 223-234.
- 1591 Dobriça, E., and Brearley, A.J. (2016) Microchondrules in two unequilibrated ordinary chondrites:
- 1592 Evidence for formation by splattering from chondrules during stochastic collisions in the solar
- 1593 system. Meteoritics & Planetary Science, 51, 884-905.
- 1594 Dodd, R.T., Schmus, W.R., and Marvin, U.B. (1965) Merrihueite, a new alkali-ferromagnesian

- silicate from the Mezö-Madaras chondrite. Science, 149, 972-974.
- 1596 Downs, R.T. (2006) The RRUFF Project: an integrated study of the chemistry, crystallography,
- 1597 Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General
- 1598 Meeting of the International Mineralogical Association in Kobe, Japan. 003-13.
- Downs, R.T., and Hall-Wallace, M. (2003) The American Mineralogist Crystal Structure
 Database. American Mineralogist, 88, 247-250.
- 1601 Ebel, D.S. (2006) Condensation of rocky materials in astrophysical environments. In D.S. Lauretta
- and H.Y. McSween Jr., Eds., Meteorites and the Early Solar System II, pp. 253-277. University
 of Arizona Press.
- 1604 Ebel, D.S., and Alexander, C.M.O'D. (2011) Equilibrium condensation from chondritic porous
- 1605 IDP enriched vapor: Implications for Mercury and enstatite chondrite origins. Planetary and1606 Space Science, 59, 1888-1894.
- 1607 Ebel, D.S., and Grossman, L. (2000) Condensation in dust-rich systems. Geochimica et1608 Cosmochimica Acta, 65, 469-477.
- Ebel, D.S., and Sack, R.O. (2013) Djerfisherite: Nebular source of refractory potassium.
 Contributions to Mineralogy and Petrology, 166, 923-934.
- 1611 Ebel, D.S., Weisberg, M.K., and Beckett, J.R. (2012) Thermochemical stability of low-iron,

1612 manganese-enriched olivine in astrophysical environments. Meteoritics & Planetary Science,

- 1613 47, 585-593.
- 1614 Ebel, D.S., Alexander, C.M.O'D., and Libourel, G. (2018) Vapor-melt exchange: Constraints on
- 1615 chondrite formation conditions and processes. In S.A. Russell, H.C. Connelly, and A.N. Krot,
- 1616 Eds., Chondrules: Records of Protoplanetary Disk Processes, pp.151-174. Cambridge
- 1617 University Press.

- 1618 Ebert, S., and Bischoff, A. (2016) genetic relationship between Na-rich chondrules and Ca, Al-
- 1619 rich inclusions? - Formation of Na-rich chondrules by melting of refractory and volatile 1620 precursors in the solar nebula. Geochimica et Cosmochimica Acta, 177, 182-204.
- 1621 Ehlers, K., and El Goresy, A. (1988) Normal and reverse zoning in niningerite: a novel key
- 1622 parameter to the thermal histories of EH-chondrites. Geochimica et Cosmochimica Acta, 52,
- 1623 877-887.
- 1624 El Goresy, A., and Ehlers, K. (1989) Sphalerite in EH chondrites: 1. Textural relations, 1625 compositions, diffusion profiles, and pressure temperature histories. Geochimica et 1626 Cosmochimica Acta, 53, 1657-1668.
- 1627 El Goresy, A., Yabuki, H., Ehlers, K., Woolum, D., an Pernicka, E. (1988) Qingzhen an Yamato-
- 1628 691: A tentative alphabet for EH chondrites. Proceedings of the NIPR Symposium on Antarctic 1629 Meteorites, 1, 65-101.
- 1630 El Goresy, A., Zinner, E., Matsunami, S., Palme, H., Spettel, B., Lin, Y., and Nazarov, M. (2002)
- 1631 Efremovka 101.1: A CAI with ultrarefractory REE patterns and enormous enrichments of Sc,
- 1632 Zr, and Y in fassaite and perovskite. Geochimica et Cosmochimica Acta, 66, 1459–1491.
- 1633 El Goresy, A., Boyer, M., and Miyahara, M. (2011) Almahata Sita MS-17 EL-3 chondrite
- 1634 fragment: contrasting oldhamite assemblages in chondrules and matrix and significant
- 1635 oldhamite REE-patterns. Meteoritics & Planetary Sciences, 46, Abstract #5079.
- 1636 Fedkin, A.V., and Grossman, L. (2013) Vapor saturation of sodium: Key to unlocking the origin 1637 of chondrules. Geochimica et Cosmochimica Acta, 112, 225-250.
- Fedkin, A.V., Grossman, L., Humayun, M., Simon, S.B., and Campbell, A.J. (2015) Condensates 1638
- 1639 from vapor made by impacts between metal-, silicate-rich bodies: Comparison with metal and
- 1640 chondrules in CB chondrites. Geochimica et Cosmochimica Acta, 164, 236-261.

- Fogel, R.A. (1997) On the significance of diopside and oldhamite in enstatite chondrites andaubrites. Meteoritics, 32, 577-591.
- 1643 Friedrich, J.M., Weisberg, M.K., Ebel, D.S., Biltz, A.E., Corbett, B.M., Iotzov, I.V., Khan, W.S.,
- and Wolman, M.D. (2015) Chondrule size and related physical properties: A compilation and
- 1645 evaluation of current data across all meteorite groups. Chemie der Erde, 75, 419-443. DOI:
- 1646 10.1016/j.chemer.2014.08.003
- Friend, P., Hezel, D.C., and Mucerschi, D. (2016) The conditions of chondrule formation, Part II:
 Open system. Geochimica et Cosmochimica Acta, 173, 198-209.
- 1649 Fu, R.R., Weiss, B.P., Schrader, D.L., and Johnson, B.C. (2018) Records of magnetic fields in the
- 1650 chondrule formation environment. In S.A. Russell, H.C. Connolly Jr., and A.N. Krot, Eds.,
- 1651 Chondrules: Records of Protoplanetary Disk Processes, pp. 324-339. Cambridge University1652 Press.
- 1653 Fuchs, L.H. (1966) Djerfisherite, alkali copper-iron sulfide: a new mineral. Science, 153, 166-167.
- 1654 Fuchs, L.H., Olsen, E., and Jensen, K.J. (1973) Mineralogy, mineral chemistry, and composition
- 1655 of the Murchison (C2) meteorite. Smithsonian Contributions to Earth Science, 10, 1-39.
- 1656 Fujimaki, H., Matsu-Ura, M., Sunagawa, I, and Aoki, K. (1981a) Chemical compositions of
- 1657 chondrules and matrices in the ALHA-77015 chondrite (L3). Memoirs of the NIPR Special
- 1658 Issue, 20, 161-174.
- 1659 Fujikami, H., Matsu-Ura, M., Aoki, K, and Sunagawa, I. (1981b) Ferropseudobrookite-silica
- 1660 mineral-albite-chondrule in the ALH-7701 5 chondrite (L3). Memoirs of the NIPR Special
- 1661 Issue, 20, 119-123.
- 1662 Galy, A., Young, E., Ash, R.D. and O'Nions, R.K. (2000) The formation of chondrules at high gas
- 1663 pressures in the solar nebula. Science, 290, 1751-1754.

- 1664 Ghiorso, M.S., and Sack, R.O. (1995) Chemical mass transfer in magmatic processes IV. A revised
- and internally consistent thermodynamic model for the interpolation and extrapolation of
- 1666 liquid-solid equilibria in magmatic systems at elevated temperatures and 1667 pressures. Contributions to Mineralogy and Petrology, 119, 197-212.
- 1668 Ghiorso, M.S., Hirschmann, M.M., Reiners, P.W., and Kress, V.C. III (2002) The pMELTS: A
- 1669 revision of MELTS for improved calculation of phase relations and major element partitioning
- 1670 related to partial melting of the mantle to 3 GPa. Geochemistry Geophysics Geosystems, 3,
- 1671 10.1029/2001GC000217.
- 1672 Gibbs, J.W. (1876-1878) On the equilibrium of heterogeneous substances. Transactions of the
- 1673 Connecticut Academy of Arts and Sciences, 3, 108-248, 343-524.
- 1674 Gilmour, J.D., Crowther, S.A., Busfield, A., Holland, G., and Whitby, J.A, (2009) An early I-Xe
- age for CB chondrite chondrule formation, and a re-evaluation of the closure age of Shallowater
- 1676 enstatite. Meteoritics & Planetary Science, 44, 573-579.
- 1677 Golden, J., McMillan, M., Downs, R.T., Hystad, G., Stein, H.J., Zimmerman, A., Sverjensky, D.A.
- 1678 Armstrong, J., and Hazen, R.M. (2013) Rhenium variations in molybdenite (MoS₂): Evidence
- 1679 for progressive subsurface oxidation. Earth and Planetary Science Letters, 366, 1-5.
- 1680 Goldstein, J.I., and Michael, J.R. (2006) The formation of plessite in meteoritic metal. Meteoritics
- 1681 & Planetary Science, 41, 553-570.
- 1682 Gooding, J.L., and Keil, K. (1981) Relative abundance of chondrule primary textural types in
- ordinary chondrites and their bearing on conditions of chondrule formation. Meteoritics, 16,17-43.
- 1685 Gounelle, M., Young, E.D., Shahar, A., Tonui, E., and Kearsley, A. (2007) Magnesium isotopic
- 1686 constraints on the origin of CB_b chondrites. Earth and Planetary Science Letters, 256, 521–533.

- 1687 Greshake, A. (1997) The primitive matrix components of the unique carbonaceous chondrite Acfer
- 1688 094: A TEM study. Geochimica et Cosmochimica Acta, 61, 437-452.
- 1689 Grossman, J.N., and Brearley, A.J. (2005) The onset of metamorphism in ordinary and 1690 carbonaceous chondrites. Meteoritics and Planetary Science, 40, 87–122.
- 1691 Grossman, J.N., Rubin, A.E., Rambaldi, E.R., Rajan, R.S., and Wasson, J.T. (1985) Chondrules in
- 1692 the Qingzhen type-3 enstatite chondrite: Possible precursor components and components and
- 1693 comparison to ordinary chondrite chondrules. Geochimica et Cosmochimica Acta, 49, 1781-1694 1795.
- 1695 Grossman, J.N., Rubin, A.E., and MacPherson, G.J. (1988) ALH 85085: A unique volatile-poor
- 1696 carbonaceous chondrite with implications for nebular fractionation processes. Earth and1697 Planetary Science Letters, 91, 33-54.
- Grossman, L., and Steele, I.M. (1976) Amoeboid olivine aggregates in the Allende meteorite.
 Geochimica et Cosmochimica Acta, 40, 149-155.
- 1700 Haggerty, S.E., and McMahon, B.M. (1979) Magnetite-sulfide-metal complexes in the Allende
- 1701 meteorite. Proceedings of the Lunar and Planetary Science Conference, 10, 851-870.
- 1702 Hashimoto, A. (1983) Evaporation metamorphism in the early solar nebula-evaporation
- 1703 experiments on the melt FeO-MgO-SiO₂-CaO-Al₂O₃ and chemical fractionations of primitive
- 1704 materials. Geochemical Journal, 17, 111-145.
- Hazen, R.M. (2014) Data-driven abductive discovery in mineralogy. American Mineralogist, 99,
 2165-2170.
- Hazen, R.M. (2019) An evolutionary system of mineralogy: Proposal for a classification based on
 natural kind clustering. American Mineralogist, 104, 810-816.

- 1709 Hazen, R.M., and Ferry, J.M. (2010) Mineral evolution: Mineralogy in the fourth dimension.
- 1710 Elements, 6, #1, 9-12.
- 1711 Hazen, R.M., and Morrison, S.M. (2020) An evolutionary system of mineralogy, part I: stellar
- 1712 mineralogy (>13 to 4.6 Ga). American Mineralogist, 105, in press.
- 1713 Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.L., Sverjensky,
- 1714 D.A., and Yang, H. (2008) Mineral evolution. American Mineralogist, 93, 1693-1720.
- 1715 Hazen, R.M., Bekker, A., Bish, D.L., Bleeker, W., Downs, R.T., Farquhar, J., Ferry, J.M., Grew,
- 1716 E.S., Knoll, A.H., Papineau, D., Ralph, J.P., Sverjensky, D.A., and Valley, J.W. (2011) Needs
- and opportunities in mineral evolution research. American Mineralogist, 96, 953-963.
- 1718 Hazen, R.M., Sverjensky, D.A., Azzolini, D., Bish, D.L., Elmore, S.C., Hinnov, L., and Milliken,
- 1719 R.E. (2013) Clay mineral evolution. American Mineralogist, 98, 2007-2029.
- 1720 Hazen, R.M., Bromberg, Y., Downs, R.T., Eleish, A., Falkowski, P.G., Fox, P., Giovannelli, D.,
- 1721 Hummer, D.R., Hystad, G., Golden, J.J., Knoll, A.H., Li, C., Liu, C., Moore, E.K., Morrison,
- 1722 S.M., Muscente, A.D., Prabhu, A., Ralph, J., Rucker, M.Y., Runyon, S.E., Warden, L.A.,
- 1723 Zhong, H. (2019a) Deep carbon through deep time: Data-driven insights. In B. Orcutt, I.
- Danielle, R. Dasgupta, Eds., Deep Carbon: Past to Present, pp.320-352. Cambridge University
 Press.
- 1726 Hazen, R.M., Downs, R.T., Elesish, A., Fox, P., Gagné, O., Golden, J.J., Grew, E.S., Hummer,
- 1727 D.R., Hystad, G., Krivovichev, S.V., Li, C., Liu, C., ma, X., Morrison, S.M., Pan, F., Pires,
- 1728 A.J., Prabhu, A., Ralph, J., Runyon, S.E., and Zhong, H. (2019b) Data-driven discovery in
- 1729 mineralogy: Recent advances in data resources, analysis, and visualization. China Engineering,
- 1730 5, 397-405.

- 1731 Heck, P.R., Greer, J., Kööp, L., Trappitsch, R., Gyngard, F., Busemann, H., Maden, C., Ávila,
- 1732 J.N., Davis, A.M., and Wieler, R. (2020) Lifetimes of interstellar dust from cosmic ray exposure
- ages of presolar grains. Proceedings of the National Academy of Sciences USA, Jan. 13, 2020,
- 1734 DOI: 10.1073/pnas.1904573117
- 1735 Herndon, J.M., and Rudee, M.L. (1978) Thermal history of the Abee enstatite chondrite. Earth and
- 1736 Planetary Science Letters, 41, 101-106.
- Herndon, J.M., Rowe, M.W., Larson, E.E., and Watson, D.E. (1975) Origin of magnetite and
 pyrrhotite in carbonaceous chondrites. Nature, 253, 516-518.
- 1739 Hewins, R.H., and Zanda, B. (2012) Chondrules: Precursors and interactions with the nebular gas.
- 1740 Meteoritics & Planetary Science, 47, 1120-1138.
- Hewins, R.H., Jones, R.H., and Scott, E.R.D. [Eds.] (1996) Chondrules and the Protoplanetary
 Disk. Cambridge, UK: Cambridge University Press.
- Hewins, R.H., Connolly, H.C. Jr., Lofgren, G.E., and Libourel, G. (2005) Experimental
 constraints on chondrule formation. Astronomical Society of the Pacific Conference Series,
 341. 286–316.
- 1746 Hezel, D.C., Palme, H., Nasdala, L., and Brenker, F.E. (2006) Origin of SiO₂-rich components in
- 1747 ordinary chondrites. Geochimica et Cosmochimica Acta, 70, 1548-1564.
- 1748 Hezel, D.C., Bland, P.A., Palme, H., Jacquet, E., and Bigolski, J. (2018) Composition of
- 1749 chondrules and matrix and their complementary relationship in chondrites. In S.A. Russell, H.C.
- 1750 Connolly Jr., and A.N. Krot, Eds., Chondrules: Records of Protoplanetary Disk Processes, pp.
- 1751 91-121. Cambridge University Press.

- 1752 Hobart, K.K., Crapster-Pregont, E.J., and Ebel, D.S. (2015) Decoding the history of a layered
- 1753 chondrule through olivine grain orientation measurements using EBSD. Proceedings of the
- 1754 Lunar and Planetary Science Conference, 46, Abstract #1978.
- 1755 Holland, T.J.B., and Powell, R. (1998) An internally consistent thermodynamic data set for phases
- 1756 of petrological interest. Journal of Metamorphic Petrology, 16, 309–343.
- 1757 Holst, J.C., Olsen, M.B., Paton, C., Nagashima, K., Schiller, M., Wielandt, D., Larsen, K.K.,
- 1758 Connelly, J.N., Jørgensen, J.K., Krot, A.N., Nordlund, Å., and Bizzarro, M. (2013) ¹⁸²Hf-¹⁸²W
- age dating of a ²⁶Al-poor inclusion and implications for the origin of short-lived radioisotopes
- in the early solar system. Proceedings of the National Academy of Sciences USA, 110, 8819-8823.
- 1762 Hood, L.L., and Weidenschilling, S.J. (2012) The planetesimal bow shock model of chondrule
- 1763 formation: A more quantitative assessment of the standard (fixed Jupiter) case. Meteoritics &1764 Planetary Science, 47. 1715-1727.
- 1765 Howes, L.M., Casey, A.R., Asplund, M., Keller, S.C., Yong, D., Nataf, D.M., Poleski, R., Lind,
- 1766 K., Kobayashi, C.; Owen, C.I., Ness, M., Bessell, M.S., Da Costa, G.S., Schmidt, B.P.,
- 1767 Tisserand, P., Udalski, A., Szymański, M.K., Soszyński, I., Pietrzyński, G., Ulaczyk, K.,
- 1768 Wyrzykowski, L., Pietrukowicz, P., Skowron, J., Kozłowski, S., and Mróz, P. (2015) Extremely
- 1769 metal-poor stars from the cosmic dawn in the bulge of the Milky Way. Nature, 527, 484-487.
- 1770 Hua, X., and Buseck, P.R. (1995) Fayalite in Kaba and Mokoia carbonaceous chondrites.
- 1771 Geochimica et Cosmochimica Acta, 59, 563-578.
- 1772 Hua, X., Adam, J., Palme, H., and El Goresy, A. (1988) Fayalite-rich rims, veins, and halos around
- 1773 and in forsteritic olivines in CAIs and chondrules in carbonaceous chondrites: Types,

- 1774 compositional profiles and constraints on their formation. Geochimica et Cosmochimica Acta,
- 1775 52, 1389-1408.
- 1776 Hubbard, A., and Ebel, D.S. (2014) Protoplanetary dust porosity and FU Orionis outbursts: Solving
- 1777 the mystery of Earth's missing volatiles. Icarus, 237, 84–96.
- 1778 Hubbard, A., and Ebel D.S. (2015) Semarkona: Lessons for chondrule and chondrite formation.
- 1779 Icarus, 245, 32-37.
- 1780 Hubbard, A., and Ebel, D.S. (2018) Evaluating non-shock, non-collisional models for chondrule
- 1781 formation. In S.A. Russell, H.C. Connolly Jr., and A.N. Krot, Eds., Chondrules: Records of
- 1782 Protoplanetary Disk Processes, pp. 400-427. Cambridge University Press.
- 1783 Hutchison, R. (2004) Meteorites: A Petrologic, Chemical and Isotopic Synthesis. Cambridge 1784 University Press.
- 1785 Iida, A., Nakamoto, T., Susa, H, and Nakagawa, Y. (2001) A shock model for chondrule formation 1786 in a protoplanetary disk. Icarus, 153, 430-450.
- 1787 Ikeda, Y. (1980) Petrology of the Allan Hills-764 chondrite (LL3). Memoirs of the NIPR Special 1788 Issue, 17, 50-82.
- 1789 Ikeda, Y. (1982) Petrology of the ALH-77003 chondrite (C3). Memoirs of the NIPR Special Issue, 1790 25, 34-65.
- 1791 Ikeda, Y. (1983) Alteration of chondrules and matrices in the four Antarctic carbonaceous
- 1792 chondrites ALH 77307 (C3), Y-790123 (C2), Y-75293 (C2), and Y-74662 (C2). Memoirs of
- 1793 the NIPR Special Issue, 30, 93-108.
- 1794 Ikeda, Y. (1988a) Petrochemical study of the Yamato-691 enstatite chondrite (E3) I: Major
- 1795 element chemical compositions of chondrules and inclusions. Proceedings of the NIPR
- 1796 Symposium on Antarctic Meteorites, 1, 3-13.

- 1797 Ikeda, Y. (1988b) Petrochemical study of the Yamato-691 enstatite chondrite (E3) II: Descriptions
- and mineral compositions of unusual silicate-inclusions. Proceedings of the NIPR Symposiumon Antarctic Meteorites, 1, 14-37.
- 1800 Ikeda, Y. (1989a) Petrochemical study of the Yamato-691 enstatite chondrite (E3) IV: Description
- 1801 and mineral chemistry of opaque nodules. Proceedings of the NIPR Symposium on Antarctic
- 1802 Meteorites, 2, 109-146.
- 1803 Ikeda, Y. (1989b) Petrochemical study of the Yamato-691 enstatite chondrite (E3) III: Description
- and mineral compositions of chondrules. Proceedings of the NIPR Symposium on Antarctic
- 1805 Meteorites, 2, 75-108.
- 1806 Ikeda, Y., and Kimura, M. (1995) Anhydrous alteration of Allende chondrules in the solar nebula
- 1807 I. Description and alteration of chondrules with known oxygen-isotope compositions.
 1808 Proceedings of the NIPR Symposium on Antarctic Meteorites, 8, 97-122.
- 1809 Ivanov, I., MacPherson, G.J., Zolensky, M.E., Kononkova, N.N., and Migdisova, L.F. (1996) The
- 1810 Kaidun meteorite: Composition and origin of inclusions in the metal of an enstatite chondrite
- 1811 clast. Meteoritics & Planetary Science, 31, 621-626.
- 1812 Ivanov A.V., Zolensky M.E., Saito A., Ohsumi K., Yang V., Kononkova N.N., and Mikouchi T.
- 1813 (2000) Florenskyite, FeTiP, a new phosphide from the Kaidun meteorite. American
 1814 Mineralogist, 85, 1082-1086.
- 1815 Ivanova, M.A., Kononkova, N.N., Krot, A.N., Greenwood, R.C., Franchi, I.A., Verchovsky, A.B.,
- 1816 Trieloff, M., Korochantseva, E.V., and Brandstätter, F. (2008) The Isheyevo meteorite:
- 1817 Mineralogy, petrology, bulk chemistry, oxygen, nitrogen, carbon isotopic compositions, and
- 1818 40 Ar- 39 Ar ages. Meteoritics & Planetary Science, 43, 915-940.

- 1819 Izawa, M.R.M., King, P.L., Flemming, R.L., Peterson, R.C., and McCausland, P.J.A. (2010)
- 1820 Mineralogical and spectroscopic investigation of enstatite chondrites by X-ray diffraction and
- 1821 infrared reflectance spectroscopy. Journal of Geophysical Research Planets, 115, E7, E07008
- 1822 (18 pp.).
- 1823 Jacquet, E., Piani, L., and Weisberg, M.K. (2018) Chondrules in enstatite chondrites. In S.A.
- 1824 Russell, H.C. Connolly Jr., and A.N. Krot, Eds., Chondrules: Records of Protoplanetary Disk
- 1825 Processes, pp. 175-195. Cambridge University Press.
- 1826 Johansen, A., Blum, J., Tanaka, H., et al. (2014) The multifaceted planetesimal formation process.
- 1827 In H. Beuther, R.S. Klesson, C.P. Dullemond, and T. Henning, Eds., Protostars and Planets VI,
- 1828 pp. 547-570. University of Arizona Press.
- Johnson, B.C., Minton, D.A., Melosh, H.J., and Zuber, M.T. (2012) Impact jetting as the origin of
 chondrules. Nature, 517, 339-341.
- Johnson, B.C. Bowling, T.J., and Melosh, H.J. (2014) Jetting during vertical impacts of spherical
 projectiles. Icarus, 238, 13-22.
- 1833 Johnson, B.C., Ciesla, F.J., Dullemond, C.P., and Melosh, H.J. (2018) Formation of chondrules by
- 1834 planetesimal collisions. In S.A. Russell, H.C. Connolly Jr., and A.N. Krot, Eds., Chondrules:
- 1835 Records of Protoplanetary Disk Processes, pp. 343-360. Cambridge University Press.
- 1836 Johnson, C.A., and Prinz, M. (1991) Chromite and olivine in type II chondrules in carbonaceous
- 1837 and ordinary chondrites: Implications for aqueous alteration. Geochimica et Cosmochimica1838 Acta, 55, 893-904.
- 1839 Jones, R.H. (1990) Petrology and mineralogy of type II, FeO-rich, chondrules in Semarkona
- 1840 (LL3.0): Origin by closed-system fractional crystallization, with evidence for supercooling.
- 1841 Geochimica et Cosmochimica Acta, 54, 1785-1802.

- 1842 Jones, R.H. (1994) Petrology of FeO-poor, porphyritic pyroxene chondrules in the Semarkona
- 1843 chondrite. Geochimica et Cosmochimica Acta, 58, 5325-5340.
- 1844 Jones, R.H. (1996) FeO-rich, porphyritic olivine chondrules in unequilibrated ordinary chondrites.
- 1845 Geochimica et Cosmochimica Acta, 60, 3115-3138.
- 1846 Jones, R.H. (1997) Alteration of plagioclase-rich chondrules in CO3 chondrites: Evidence for late-
- 1847 stage sodium and iron metasomatism in a nebular environment. In M.E. Zolensky, A.N. Krot,
- and E.R.D. Scott, Eds., Workshop on Parent-body and Nebular Modification of Chondritic
- 1849 Materials, pp. 30-31. Lunar and Planetary Institute.
- Jones, R.H. (2012) Petrographic constraints on the diversity of chondrule reservoirs in the
 protoplanetary disk. Meteoritics & Planetary Science, 47, 1176–1190.
- 1852 Jones, R.H., and Scott, E.R.D. (1989) Petrology and thermal history of type IA chondrules in the
- 1853 Semarkona (LL3.0) chondrite. Proceedings of the Lunar and Planetary Science Conference, 19,
 1854 523-536.
- 1855 Jones, R.H., McCubbin, F.M., Dreeland, L., Guan, Y., Burger, P.V., and Shearer, C.K. (2014)
- 1856 Phosphate minerals in LL chondrites: A record of the action of fluids during metamorphism on
- 1857 ordinary chondrite parent bodies. Geochimica et Cosmochimica Acta, 132, 120–140.
- 1858 Jones, R.H., Villeneuve, J., and Libourel, G. (2018) Thermal histories of chondrules: Petrologic
- 1859 observations and experimental constraints. In S.A. Russell, H.C. Connolly Jr., and A.N. Krot,
- 1860 Eds., Chondrules: Records of Protoplanetary Disk Processes, pp. 57-90. Cambridge University1861 Press.
- 1862 Kawasaki, N., Kato, C., Itoh, S., Wakaki, S., Ito, M., and Yurimoto, H. (2015) ²⁶Al-²⁶Mg
- 1863 chronology and oxygen isotope distributions of multiple melting for a Type C CAI from
- 1864 Allende. Geochimica et Cosmochimica Acta, 169, 99-114.

- 1865 Keil, K. (1968) Mineralogical and chemical relationships among enstatite chondrites. Journal of1866 Geophysical Research, 73, 6945-6976.
- 1867 Keil, K., and Snetsinger, K.G. (1967) Niningerite: A new meteoritic sulfide. Science, 155, 4511868 453.
- 1869 Kerridge, J.F., and Matthews, M.S. (1988) Meteorites and the Early Solar System. University of1870 Arizona Press.
- 1871 Kimura, M., and Ikeda, Y. (1992) Mineralogy and petrology of an unusual Belgica-7904
 1872 carbonaceous chondrite. Proceedings of the NIPR Symposium on Antarctic Meteorites, 5, 741873 119.
- 1874 Kimura, M., Weisberg, M.K., Lin, Y., Suzuki, A., Ohtani, E., and Okazaki, R. (2005) Thermal
- history of the enstatite chondrites from silica polymorphs. Meteoritics & Planetary Science, 40,855-868.
- 1877 Kimura, M., Mikouchi, T., Suzuki, A., Miyahara, M., Ohtani, E., and El Goresy, A. (2009)
- 1878 Kushiroite, CaAlAlSiO₆: A new mineral of the pyroxene group from the ALH 85085 CH
- 1879 chondrite, and its genetic significance in refractory inclusions. American Mineralogist, 94,
 1880 1479–1482.
- 1881 Kimura, M., Barrat, J.A., Weisberg, M.K., Imae, N., Yamaguchi, A., and Kojima, H. (2014)
- 1882 Petrology and bulk chemistry of Yamato-82094, a new type of carbonaceous chondrite.
- 1883 Meteoritics & Planetary Science, 49, 346-357.
- 1884 King, A.R., and Pringle, J.E. (2010). The accretion disc dynamo in the solar nebula. Monthly
 1885 Notices of the Royal Astronomical Society, 404, 1903-1909.
- 1886 King, E.A. [Ed.] (1983) Chondrules and their Origins. Lunar and Planetary Institute.

- 1887 Kita, N.T., and Ushikubo, T. (2012) Evolution of protoplanetary disk inferred from ²⁶Al
- 1888 chronology of individual chondrules. Meteoritics & Planetary Science, 47, 1108-1119.
- 1889 Kita, N.T., Yin, Q-Z., MacPherson, G.J., Ushikubo, T., Jacobsen, B., Nagashima, K., Kurahashi,
- 1890 E., Krot, A.N., and Jacobsen, S.B. (2013) ²⁶Al-²⁶Mg isotope systematics of the first solids in
- 1891 the early solar system. Meteoritics & Planetary Science, 48, 1383-1400.
- 1892 Kita, N.T., Tenner, T.J., Ushikubo, T., Bouvier, A., Wadhwa, M., Bullock, E.S., and MacPherson,
- 1893 G.J. (2015) Why do U-Pb ages of chondrules and CAIs have more spread than their ²⁶Al ages?
- 1894 78th Annual Meteoritic Society Meeting, p. 5360.
- 1895 Kitamura, M., Watanabe, S., Isobe, H., and Morimoto, N. (1987) Diopside in chondrules of
 1896 Yamato-691 (EH3). Memoirs of the NIPR Special Issue, 46, 2113-122.
- 1897 Kitamura, M., Isobe, H., and Watanabe, S. (1988) Relict minerals and their assemblages in
 1898 Yamato-691 (EH3). Proceedings of the NIPR Symposium on Antarctic Meteorites, 1, 38-50.
- 1899 Kleine, T., Budde, G., Hellman, J. L., Kruijer, T.S., and Burkhardt, C. (2018) Tungsten isotopes
- and the origin of chondrules and chondrites. In S.A. Russell, H.C. Connolly Jr., and A.N. Krot,
- 1901 Eds., Chondrules: Records of Protoplanetary Disk Processes, pp. 276-299. Cambridge1902 University Press.
- 1903 Kööp, L., Nakashima, D., Heck, P.R., Kita, N.T., Tenner, T.J., Krot, A.N., Nagashima, K., Park,
- 1904 C., and Davis, A.M. (2016a) New constraints on the relationship between ²⁶Al and oxygen,
- 1905 calcium, and titanium isotopic variation in the early solar system from a multielement isotopic
- 1906 study of spinel-hibonite inclusions. Geochimica et Cosmochimica Acta, 184, 151-172.
- 1907 Kööp, L., Davis, A.M., Nakashima, D., Park, C., Krot, A.N., Nagashima, K., Temmer, T.J., Heck,
- 1908 P.R., and Kita, N.T. (2016b) A link between oxygen, calcium and titanium isotopes in ²⁶Al-

- poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust
 reservoirs in the solar nebula. Geochimica et Cosmochimica Acta, 189, 70-95.
- 1911 Kööp, L., Heck, P.R., Busemann, H., Davis, A.M., Greer, J., Maden, C., Meier, M.M.M., and
- 1912 Wieler, R. (2018) High early solar activity inferred from helium and neon excess in the oldest
- 1913 meteorite inclusions. Nature Astronomy, 2, 709-713.
- 1914 Krivovichev, S.V. (2012) Topological complexity of crystal structures: quantitative approach.
- 1915 Acta Crystallographica, A68, 393-398.
- 1916 Krivovichev, S.V. (2013) Structural complexity of minerals: information storage and processing
- in the mineral world. Mineralogical Magazine, 77, 275-326.
- Krot, A.N. (2019) Refractory inclusions in carbonaceous chondrites: Records of early solar
 systems processes. Meteoritics & Planetary Science, 54, 1647-1691.
- Krot, A.N., and Rubin, A.E. (1994) Glass-rich chondrules in ordinary chondrites. Meteoritics, 29,
 697-707.
- 1922 Krot, A.N., and Rubin, A.E. (1996) Microchondrule-bearing chondrule rims: Constraints on
- 1923 chondrule formation. In R.H. Hewins, R.H. Jones, and E.R.D. Scott, Eds., Chondrules and the
- 1924 Protoplanetary Disk., pp. 181-184. Cambridge University Press.
- Krot, A.E., and Wasson, J.T. (1994) Silica-merrihueite/roedderite-bearing chondrules and clasts
 in ordinary chondrites: New occurrences and possible origin. Meteoritics, 29, 707-718.
- 1927 Krot, A.N., Ivanova, M.A., and Wasson, J.T. (1993) The origin of chromitic chondrules and the
- 1928 volatility of Cr under a range of nebular conditions. Earth and Planetary Science Letters, 119,
- 1929 569–584.
- 1930 Krot, A.N., Scott, E.R.D., and Zolensky, M.E. (1995) Mineralogical and chemical modification of
- 1931 components in CV3 chondrites: Nebular or asteroidal processing? Meteoritics, 30, 748-775.

- 1932 Krot, A.N., Rubin, A.E., Keil, K., and Wasson, J.T. (1997a) Microchondrules in ordinary
- chondrites: Implications for chondrule formation. Geochimica et Cosmochimica Acta, 61, 463-473.
- 1935 Krot, A.N., Zolensky, M.E., Wasson, J.T., Scott, E.R.D., Keil, K., and Ohsumi, K. (1997b) Carbide
- magnetite assemblages in type 3 ordinary chondrites. Geochimica et Cosmochimica Acta, 61,219-237.
- 1938 Krot, A.N., Ulyanov, A.A., Meibom, A., and Keil, K. (2001a) Forsterite-rich accretionary rims
- around Ca, Al-rich inclusions from the reduced CV3 chondrite Efremovka. Meteoritics &
- 1940 Planetary Science, 36, 611–628.
- 1941 Krot, A.N., Meibom, A., Russell, S.S., Alexander, C.M.O'D., Jeffries, T.E., and Keil, K. (2001b)
- A new astrophysical setting for chondrule formation. Science, 291, 1776–1779.
- 1943 Krot, A.N., Petaev, M.I., Russell, S.S., Itoh, S., Fagan, T.J., Yurimoto, H., Chizmadia, L.,
- 1944 Weisberg, M.K., Komatsu, M., Ulyanov, A.A., and Keil, K. (2004a) Amoeboid olivine
- 1945 aggregates and related objects in carbonaceous chondrites: records of nebular and asteroid
- 1946 processes. Chemie der Erde Geochemistry, 64, 185-239.
- 1947 Krot, A.N., Libourel, G., Goodrich, C.A., and Petaev, M.I. (2004b) Silica-rich igneous rims around
- 1948 magnesian chondrules in CR carbonaceous chondrites: Evidence for fractional condensation
- during chondrule formation. Meteoritics & Planetary Science, 39, 1931-1955.
- Krot, A.N., Amelin, Y., Cassen, P., and Meibom, A. (2005) Young chondrules in CB chondrites
 from a giant impact in the early Solar System. Nature, 436, 989-992.
- 1952 Krot, A.N., Nagashima, K., Bizzarro, M., Huss, G.R., Davis, A.M., McKeegan, K.D., Meyer, B.S.,
- and Ulyanov, A.A. (2008) Multiple generations of refractory inclusions in the metal-rich

- carbonaceous chondrites Acfer 182/214 and Isheyevo. The Astrophysical Journal, 672, 713–
 721.
- 1956 Krot, A.N., Makide, K., Nagashima, K., Huss, G.R., Ogliore, R.C., Ciesla, F.J., Yang, L.,
- 1957 Hellebrand, E., and Gaidos, E. (2012) Heterogeneous distribution of ²⁶Al at the birth of the
- 1958 solar system: Evidence from refractory grains and inclusions. Meteoritics & Planetary Science,

1959 47, 1948–1979.

- 1960 Krot, A.N., Keil, K., Scott, E.R.D., Goodrich, C.A., and Weisberg, M.K. (2014) Classification of
- 1961 meteorites and their genetic relationships. Treatise on Geochemistry, 2nd edition, 1, 2-63.
- 1962 Krot, A.N., Nagashima, K., van Kooten, E.M.M., and Bizzarro, M. (2017) Calcium-aluminum-
- rich inclusions recycled during formation of porphyritic chondrules from CH carbonaceous
 chondrites. Geochimica et Cosmochimica Acta, 201, 185–223.
- 1965 Krot, A.N., Nagashima, K., Libourel, G., and Miller, K.E. (2018) Multiple mechanisms of transient
- 1966 heating events in the protoplanetary disk. In S.A. Russell, H.C. Connolly Jr., and A.N. Krot,
- 1967 Eds., Chondrules: Records of Protoplanetary Disk Processes, pp. 11-56. Cambridge University1968 Press.
- 1969 Krot, A.N., Ma, C., Nagashima, K., Davis, A.M., Beckett, J.R., Simon, S.B., Komatsu, M., Fagan,
- 1970 T.J., Brenker, F., Ivanova, M.A., and Bischoff, A. (2019) Mineralogy, petrology, and oxygen
- 1971 isotopic compositions of ultra-refractory inclusions from carbonaceous chondrites.
- 1972 Geochemistry, 79, 125519 (29 pp.).
- 1973 Kruijer, T.S., Touboul, M., Fischer-Godde, M., Bermingham, K.R., and Kleine, T. (2014)
- 1974 Protracted core formation and rapid accretion of protoplanets. Science, 344, 1150-1154.

- 1975 Kruijer, T.S., Burkhardt, C., Budde, G., and Kleine, T. (2017) Age of Jupiter from the distinct
- 1976 genetics and formation times of meteorites. Proceedings of the National Academy of Sciences

1977 USA. Doi: 10.1073/pnas.1704461114

- 1978 Kuebler, K.E., McSween, H.Y. Jr., Carlson, W.D., and Hirsch, D. (1999) Sizes and masses of
- chondrules and metal-troilite grains in ordinary chondrites: Possible implications for nebular 1979 1980 sorting. Icarus, 141, 96–106.
- Kurahashi, E., Kita, N.T., Nagahara, H., and Morishita, Y. (2008) ²⁶Al-²⁶Mg systematics of 1981
- 1982 chondrules in a primitive CO chondrite. Geochimica et Cosmochimica Acta, 72, 3865–3882.
- 1983 Lambrechts, M., Johansen, A., and Morbidelli, A. (2014) Separating gas-giant and ice-giant 1984 planets by halting pebble accretion. Astronomy & Astrophysics, 572, A35.
- 1985 Larsen, K., Trinquier, A., Paton, C., Schiller, M., Wielandt, D., Ivanova, M., Connelly, J.N.,
- 1986 Nordlund, A., Krot, A.N., and Bizzarro, M. (2011) Evidence for magnesium-isotope 1987 heterogeneity in the solar protoplanetary disk. The Astrophysical Journal, 735, L37–L40.
- 1988 Lauretta, D.S., Kremser, D.T., and Fegley, B.J. (1996) A comparative study of experimental and
- 1989 meteoritic metal-sulfide assemblages. Proceedings of the NIPR Symposium on Antarctic 1990 Meteorites, 9, 97-110.
- 1991 Lehner, S.W., Buseck, P.R., and McDonough, W.F. (2010) Origin of kamacite, schreibersite, and
- 1992 perryite in metal-sulfide nodules of the enstatite chondrite Sahara 97072 (EH3). Meteoritics &
- 1993 Planetary Science, 45, 289–303.
- 1994 Lehnert, K.A., Su, Y., Langmuir, C.H., Sarbas, B., and Nohl, U. (2000) A global geochemical 1995 database structure for rocks. Geochemistry Geophysics Geosystems, 1.
- 1996 Lehnert, K.A., Walker, D., and Sarbas, B. (2007) EarthChem: A geochemistry data network.
- 1997 Geochimica et Cosmochimica Acta, 71, A559.

- 1998 Leitch, C.A., and Smith, J.V. (1980) Petrography, mineral chemistry and origin of Type I enstatite
- 1999 chondrites. Geochimica et Cosmochimica Acta, 46, 2083-2097.
- 2000 Lewis, J.A., and Jones, R.H. (2016) Phosphate and feldspar mineralogy of equilibrated L
- 2001 chondrites: The record of metasomatism during metamorphism in ordinary chondrite parent
- 2002 bodies. Meteoritics & Planetary Science, 51, 1886-1913.
- 2003 Lewis, J.A., and Jones, R.H. (2019) Primary feldspar in the Semarkona LL3.00 chondrite:
- 2004 Constraints on chondrule formation and secondary alteration. Meteoritics & Planetary Science, 2005 54, 72-89.
- Libourel, G., Krot, A.N., and Tissandier, L. (2006) Role of gas-melt interaction during chondrule 2006 2007 formation. Earth and Planetary Science Letters, 251, 232-240.
- 2008 Lin, Y., El Goresy, A., Boyer, M., Feng, L., Zhang, J. and Hao, J. (2011) Earliest solid condensates
- consisting of the assemblage oldhamite, sinoite, graphite and excess ³⁶S in lawrencite from 2009
- 2010 Almahata Sitta MS-17 EL3 chondrite. Workshop on Formation of the First Solids in the Solar
- 2011 System, Abstract #9040.
- 2012 Luck, J.-M., Ben Othman, D., and Albarède, F. (2005) Zn and Cu isotopic variations in chondrites
- 2013 and iron meteorites: Early solar nebula reservoirs and parent-body processes. Geochimica et
- 2014 Cosmochimica Acta, 69, 5351-5363.
- Lusby, D., Scott, E.R.D., and Keil, K. (1987) Ubiquitous high-Fe silicates in enstatite chondrites. 2015
- 2016 Proceedings of the Lunar and Planetary Science Conference (Journal of Geophysical Research),
- 2017 17, E679-E695.
- 2018 Luu, T.-H., Hin, R.C., Coath, C.D., and Elliott, T. (2016) High precision Mg-isotope
- measurements of bulk chondrites and the homogeneity of ²⁶Al in the solar nebula. 79th Annual 2019
- 2020 Meteoritical Society Meeting, #6485.

- Ma, C., and Rossman, G.R. (2009) Grossmanite, CaTi³⁺AlSiO₆, a new pyroxene from the Allende 2021
- 2022 meteorite. American Mineralogist, 94, 1491–1494.
- Ma, C., and Rubin, A.E. (2019) Edscottite, Fe₅C₂, a new iron carbide mineral from the Ni-rich 2023
- 2024 Wedderburn IAB iron meteorite. American Mineralogist, 104, 1351–1355.
- 2025 MacPherson, G.J. (2014) Calcium-aluminum-rich inclusions in chondritic meteorites. In A.M.
- 2026 Davis, H.D. Holland, and K.K. Turekian, Eds., Treatise on Geochemistry, Vol. 1: Meteorites,
- Comets, and Planets, Second Edition. pp.139-179. Elsevier-Pergamon. 2027
- 2028 MacPherson, G.J., Bullock, E.S., Janney, P.E., Kita, N., Ushikubo, T., Davis, A.M., Wadhwa, M.,
- 2029 and Krot, A.N. (2010) Early solar nebula condensates do not have supracanonical initial
- 2030 26Al/27Al. The Astrophysical Journal, 711, L117–L121.
- 2031 MacPherson, G.J., Kita, N.T., Ushikubo, T., Bullock, E.S., and Davis, A.M. (2012) Well-resolved
- 2032 variations in the formation ages for Ca-Al-rich inclusions in the early solar system. Earth and 2033 Planetary Science Letters, 331, 43–54.
- 2034 Mai, C, Desch, S.J., and Boley, A.C., and Weiss, B.P. (2018) Magnetic fields recorded by
- chondrules formed in nebular shocks. The Astrophysical Journal, 857, 96 (13 pp.). 2035
- 2036 Mann, C.R., Boley, A.C., and Morris, M.A. (2016) Planetary embryo bow shocks as a mechanism
- 2037 for chondrule formation. The Astrophysical Journal, 818, 103-123.
- 2038 Marrocchi, Y., Euverte, R., Villeneuve, J., Batanova, V., Welsch, B., Ferrière, L., and Jacquet, E.
- (2019) Formation of CV chondrules by recycling of amoeboid olivine aggregate-like 2039
- precursors. Geochimica et Cosmochimica Acta, 247, 121-141. 2040
- 2041 Mason, B. (1966) The enstatite chondrites. Geochimica et Cosmochimica Acta, 30, 23-39.
- 2042 Massalski, T.B., Park, F.R., and Vassalmillet, L.F. (1966) Speculations about plessite. Geochimica
- 2043 et Cosmochimica Acta, 30, 649-662.

- 2044 McCoy, T.J., Pun, A., and Keil, K. (1991a) Spinel-bearing, Al-rich chondrules in two chondrite
- finds from Roosevelt County, New Mexico: Indicators of nebular and parent-body processes.
- 2046 Meteoritics, 26, 301-309.
- 2047 McCoy, T.J., Scott, E.R.D., Jones, R.H., Keil, K., and Taylor, G.J. (1991b) Composition of
- 2048 chondrule silicates in LL3-5 chondrites and implications for their nebular history and parent
- body metamorphism. Geochimica et Cosmochimica Acta, 55, 601-619.
- 2050 McNally, C.P., Hubbard, A., Yang, C-C., and Mac Low, M-M. (2014) Temperature fluctuations
- driven by magnetorotational instability in protoplanetary disks. The Astrophysical Journal, 791,
- 2052 62 (15pp).
- 2053 McSween, H.Y. Jr (1977a) Carbonaceous chondrites of the Ormans type: A metamorphic 2054 sequence. Geochimica et Cosmochimica Acta, 44, 477-491.
- 2055 McSween, H.Y. Jr (1977b) On the nature and origin of isolated olivine grains in carbonaceous
 2056 chondrites. Geochimica et Cosmochimica Acta, 411-418.
- Mendybaev, R.A., Beckett, J.R., Grossman, L., Cooper, R.F., and Bradley, J.P. (2002)
 Volatilization kinetics of silicon carbide in reducing gases: An experimental study with
 application to the survival of presolar grains in the solar nebula. Geochimica et Cosmochimica
 Acta, 66, 661-682.
- Mills, S.J., Hatert, F., Nickel, E.H., and Ferrais, G. (2009) The standardization of mineral group
 hierarchies: Application to recent nomenclature proposals. European Journal of Mineralogy,
- 2063 21, 1073-1080.
- 2064 Miúra, Y., and Tomisaka, T. (1984) Composition and structural substitution of meteoritic
 2065 plagioclases (I). Memoirs of the NIPR Special Issue, 9, 210-225.

- Miyamoto, M., Mikouchi, T., and Jones, R.H. (2009) Cooling rates of porphyritic olivine
 chondrules in the Semarkona (LL3.00) ordinary chondrite: A model for diffusional
 equilibration of olivine during fractional crystallization. Meteoritics & Planetary Science, 44,
 521-530.
- 2070 Morbidelli, A., Bitsch, B., Crida, A., Gounelle, M., Guillot, T., Jacobson, S.A., Johansen, A.,
- 2071 Lambrechts, M., and Lega, E. (2016) Fossilized condensation lines in the Solar System
 2072 protoplanetary disk. Icarus, 267, 368–376.
- 2073 Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J.,
- Aoki, K., and Gottardi, G. (1988) Nomenclature of pyroxenes. American Mineralogist, 73,
 1123–1133.
- Morlok, A., Sutton, Y.C., Braithwaite, N.St.J., and Grady, M.M. (2012) Chondrules born in
 plasma? Simulation of gas-grain interaction using plasma arcs with applications to chondrule
 and cosmic spherule formation. Meteoritics & Planetary Science, 47, 2269-2280.
- 2079 Morris, M.A., and Boley, A.C. (2018) Formation of chondrules by shock waves. In S.A. Russell,
- 2080 H.C. Connolly Jr., and A.N. Krot [Eds]. Chondrules: Records of Protoplanetary Disk Processes.
- 2081 Cambridge, UK: Cambridge University Press, pp. 375-399.
- 2082 Morrison, S.M., and Hazen, R.M. (2020) An evolutionary system of mineralogy, part II: 2083 interstellar and solar nebula primary condensation mineralogy (> 4.565 Ga). American

Mineralogist, in revision.

2084

- 2085 Morrison, S.M., Liu, C., Eleish, A., Prabhu, A., Li, C., Ralph, J., Downs, R.T., Golden, J.J., Fox,
- 2086 P., Hummer, D.R., Meyer, M.B., and Hazen, R.M. (2017) Network analysis of mineralogical
- 2087 systems. American Mineralogist, 102, 1588-1596.

- 2088 Morrison, S.M., Downs, R.T., Eleish, A., Fox, P., Hummer, D.R., Hystad, G., Golden, J.J., Liu,
- 2089 C., Prabhu, A., Zahirovic, S., and Hazen, R.M. (2020) Visualizing carbon minerals: Recent
- 2090 advances in C mineral evolution, mineral ecology, and network analysis. Frontiers in Earth
- 2091 Sciences, in press.
- 2092 Moynier, F., Dauphas, N., and Podosek, F.A. (2009) Search for ⁷⁰Zn anomalies in meteorites. The
- Astrophysical Journal Letters, 700, L92-L95.
- Mueller, G. (1962) Interpretation of micro-structures in carbonaceous meteorites. Nature, 196,
 929–932.
- Müller, W.F., Kurat, G., and Kracher, A. (1979) Chemical and crystallographic study of
 cronstedtite in the matrix of the Cochabamba (CM2) carbonaceous chondrite. Tschermaks
 Mineralogie und Petrographische Mitteilungen, 26, 293-304.
- 2099 Müller, W.F., Weinbruch, S., Walter, R., and Müller-Beneke, G. (1995) Transmission electron
- 2100 microscopy of chondrule minerals in the Allende meteorite: Constraints on the thermal and
- 2101 deformational history of granular olivine-pyroxene chondrules. Planetary and Space Science,
- 43, 469-483.
- Murakami, T., and Ikeda, Y. (1994) Petrology and mineralogy of the Yamato-86751 CV3
 chondrite. Meteoritics, 29, 397-409.
- Nagahara, H. (1982) Ni-Fe metals in Type 3 ordinary chondrites. Memoirs of the NIPR Special
 Issue, 25, 86-96.
- 2107 Nagahara, H., and Kushiro, I. (1982) Petrology of chondrules, inclusions and isolated olivine
- grains in ALH-77307 (CO3) chondrite. Memoirs of the NIPR Special Issue, 25, 66-77.

- 2109 Nagashima, K., Kita, N.T., and Luu, T.-H. (2018) ²⁶Al-²⁶Mg systematics of chondrules. In S.A.
- 2110 Russell, H.C. Connlly Jr., and A.N. Krot, Eds., Chondrules: Records of Protoplanetary Disk

- 2112 Nakamura-Messenger, K., Clemett, S.J., Rubin, A.E., Choi, B.-G., Zhang, S., Rahman, Z.,
- 2113 Oikawa, K., and Keller, L.P. (2012) Wassonite: A new titanium monosulfide mineral in the
- 2114 Yamato 691 enstatite chondrite. American Mineralogist, 97, 807-815.
- 2115 Newton, J., Bischoff, A., Arden, J.W., Franchi, I.A., Geiger, T., Greshake, A., and Pillinger, C.T.
- 2116 (1995) Acfer 094, a uniquely primitive carbonaceous chondrite from the Sahara. Meteoritics,
- 2117 30, 47-56.
- 2118 Noguchi, T. (1989) Texture and chemical composition of pyroxenes in chondrules in carbonaceous
- and unequilibrated ordinary chondrites. Proceedings of the NIPR Symposium on AntarcticMeteorites, 2, 169-199.
- 2121 Noguchi, T. (1995) Petrology and mineralogy of the PCA 91082 chondrite and its comparison
- with the Yamato-793495 (CR) chondrite. Proceedings of the NIPR Symposium on AntarcticMeteorites, 8, 33-62.
- 2124 Olsen, E.J. (1983) SiO₂-bearing chondrules in the Murchison (C2) meteorite. In E.A. King, Ed.,
- 2125 Chondrules and their Origins, pp. 223-234. Lunar and Planetary Institute.
- 2126 Oulton, J., Humayun, M., Fedkin, A. and Grossman, L. (2016) Chemical evidence for
- 2127 differentiation, evaporation and recondensation from silicate clasts in Gujba. Geochimica et
- 2128 Cosmochimica Acta, 177, 254-274.
- 2129 Pederson T.P. (1999) Schwertmannite and awaruite as alteration products in iron meteorites.
- 2130 Meteoritics, 62, 5117.

²¹¹¹ Processes, pp. 247-275. Cambridge University Press.

- 2131 Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lisauer, J.J., Podolak, M., and Greenzweig, Y.
- (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus, 124,62-85.
- 2134 Pratesi, G., Caporali, S., Greenwood, R.C., Moggi Cecchi, V., and Franchi, I.A. (2019) A detailed
- 2135 mineralogical, petrographic, and geochemical study of the highly reduced chondrite, Acfer 370.
- 2136 Meteoritics & Planetary Science, 54, 2996-3017.
- Prinz, M., Weisberg, M.K., and Nehru, C.E. (1988) Gunlock, a new type 3 ordinary chondrite with
 a golfball-sized chondrule. Meteoritics, 23, 297.
- 2139 Rambaldi, E.R., and Wasson, J.T. (1984) Metal and associated phases in Krymka and Chainpur:
- 2140 Nebular formational processes. Geochimica et Cosmochimica Acta, 48, 1885-1897.
- 2141 Rambaldi, E.R., Rajan, R.S., and Housley, R.M. (1986) Roedderite in the Qingzhen (EH3)
 2142 chondrite. Meteoritics, 21, 141-149.
- 2143 Ramdohr, P. (1967) Chromite and chromite chondrules in meteorites. Geochimica et
 2144 Cosmochimica Acta, 31, 1961-1967.
- Reed, S.J.B. (1968) Perryite in the Kota-Kota and South Oman enstatite chondrites. Mineralogical
 Magazine, 36, 850-854.
- 2147 Richter, F.M., Mendybaev, R.A., Christensen, J.N., Ebel, D., and Gaffney, A. (2011) Laboratory
- 2148 experiments bearing on the origin and evolution of olivine-rich chondrules. Meteoritics &
- 2149 Planetary Science, 46, 1152-1178.
- 2150 Robertson, B.E., Ellis, R.S., Furlanetto, S.R., and Dunlop, J.S. (2015) Cosmic reionization and
- 2151 early star-forming galaxies: A joint analysis of new constraints from Planck and the Hubble
- 2152 Space Telescope. The Astrophysical Journal, 802, L19-L23.

- 2153 Rubin, A.E. (1983) The Adhi Kot breccia and implications for the origins of chondrites and silica-
- rich clasts in enstatite chondrites. Earth and Planetary Science Letters, 64, 201-212.
- 2155 Rubin, A.E. (1984) The Blithfield meteorite and the origin of sulfide-rich, metal-poor clasts and
- inclusions in brecciated enstatite chondrites. Earth and Planetary Science Letters, 67, 273-283.
- 2157 Rubin, A.E. (1989) An olivine-microchondrule-bearing clast in the Krymka meteorite.
- 2158 Meteoritics, 24,191–192.
- Rubin, A.E. (1990) Kamacite and olivine in ordinary chondrites: Intergroup and intragroup
 relationships. Geochimica et Cosmochimica Acta, 54, 1217-1232.
- 2161 Rubin, A.E. (1991) Euhedral awaruite in the Allende meteorite: Implications for the origin of
- awaruite- and magnetite-bearing nodules in CV3 chondrites. American Mineralogist, 76, 1356-
- 2163 1362.
- 2164 Rubin, A.E. (1994a) Metallic copper in ordinary chondrites. Meteoritics, 29, 93-98.
- Rubin, A.E. (1994b) Euhedral tetrataenite in the Jelica meteorite. Mineralogical Magazine, 58,
 2166 215-221.
- Rubin, A.E. (1997a) Igneous graphite in enstatite chondrites. Mineralogical Magazine, 61, 699703.
- 2169 Rubin, A.E. (1997b) Sinoite (Si₂N₂O): Crystallization from EL chondrite impact melts. American
- 2170 Mineralogist, 82, 1001-1006.
- 2171 Rubin, A.E. (2000) Petrologic, geochemical and experimental constraints on models of chondrule
- formation. Earth-Science Reviews, 50, 3–27.
- 2173 Rubin, A.E. (1984) Coarse-grained chondrule rims in type 3 chondrites. Geochimica et
- 2174 Cosmochimica Acta, 48, 1779-1789.

- 2175 Rubin, A.E. (2006) A relict-grain-bearing porphyritic olivine compound chondrule from LL3.0
- Semarkona that experienced limited remelting. Meteoritics & Planetary Science, 41, 1027-1038.
- 2178 Rubin, A.E. (2010) Physical properties of chondrules in different chondrite groups: Implications
- for multiple melting events in dusty environments. Geochimica et Cosmochimica Acta, 74,
- 4807-4828.
- Rubin, A.E. (2011) Origin of the differences in refractory-lithophile-element abundances among
 chondrite groups. Icarus, 213, 547-558.
- 2183 Rubin, A.E. (2018) Evaluation of petrologic evidence for high partial pressures of SiO_(g) in the
- solar nebula. Meteoritics & Planetary Science, 53, 2596-2607.
- Rubin, A.E., and Grossman, J.N. (1985) Phosphate-sulfide assemblages and Al/Ca ratios in type
 3 chondrites. Meteoritics, 20, 479-489.
- 2187 Rubin, A.E., and Kallemeyn, G.W. (1989) Carlisle Lakes and Allan Hills 85151: Members of a
- new chondrite grouplet. Geochimica et Cosmochimica Acta, 53, 3035-3044.
- Rubin, A.E., and Kallemeyn, G.W. (1994) Pecora Escarpment 91002: A member of the new
 Rumuruti (R) chondrite group. Meteoritics, 29, 255-264.
- Rubin, A.E., and Ma, C. (2017) Meteoritic minerals and their origins. Chemie der Erde, 77, 325385.
- Rubin, A.E., and Ma, C. (2020) Meteorite Mineralogy. Cambridge, UK: Cambridge University
 Press, in press.
- 2195 Rubin, A.E., and Scott, E.R.D. (1997) Abee and related EH chondrite impact-melt breccias.
- 2196 Geochimica et Cosmochimica Acta, 61, 425-435.

- 2197 Rubin, A.E., and Wasson, J.T. (1987) Chondrules, matrix and coarse-grained chondrule rims in
- the Allende meteorite. Geochimica et Cosmochimica Acta, 52, 425-432.
- 2199 Rubin, A.E., and Wasson, J.T. (1988) Chondrules and matrix in the Ornans CO3 meteorite:
- 2200 Possible precursor components. Geochimica et Cosmochimica Acta, 52, 425-432.
- 2201 Rubin, A.E., Scott, E.R.D., and Keil, K. (1982) Microchondrule-bearing clast in the Piancaldoli
- LL3 meteorite: A new type 3 chondrite and its relevance to the history of chondrules.
- 2203 Geochimica et Cosmochimica Acta, 46, 1763-1776.
- 2204 Rubin, A.E., James, J.A., Keck, B.D., Weeks, K.S., Sears, D.W.G., and Jarosewich, E. (1985) The
- 2205 Colony meteorite and variations in CO3 chondrite properties. Meteoritics, 20, 175-196.
- 2206 Rubin, A.E., Wang, D., Kallemeyn, G.W., and Wasson, J.T. (1988) The Ningqiang meteorite:
- 2207 Classification and petrology of an anomalous CV chondrite. Meteoritics, 23, 13-23.
- 2208 Rubin, A.E., Sailer, A.L., and Wasson, J.T. (1999) Troilite in the chondrules of type-3 ordinary
- chondrites: Implications for chondrule formation. Geochimica et Cosmochimica Acta, 63,2210 2281-2298.
- 2211 Rubin, A.E., Kallemeyn, G.W., Wasson, J.T., Clayton, R.N., Mayeda, T.K., Grady, M.,
- 2212 Verchovsky, A.B., Eugster, O., and Lorenzetti, S. (2003) Formation of metal and silicate
- 2213 nodules in Gujba: A new Bencubbin-like meteorite fall. Geochimica et Cosmochimica Acta,
- 67, 3283-3298.
- Russell, S.A., Connolly, H.C. Jr., and Krot, A.N. [Eds]. (2018) Chondrules: Records of
 Protoplanetary Disk Processes. Cambridge University Press.
- 2217 Russel, S.S., Lee, M.R., Arden, J.W., and Pillinger, C.T. (1995) The isotopic composition and
- origins of silicon nitride in the ordinary and enstatite chondrites. Meteoritics, 30, 399-404.

- Ruzicka, A. (1990) Deformation and thermal histories of chondrules in the Chainpur (LL3.4)
 chondrite. Meteoritics, 25, 101-114.
- Ruzicka, A. (2012) Chondrule formation by repeated evaporative melting and condensation in
 collisional debris clouds around planetesimals. Meteoritics & Planetary Science, 47, 22182223 2236.
- 2224 Sack, R.O., and Ghiorso, M.S. (2017) Ti^{3+} and Ti^{4+} -rich fassaites at the birth of the solar system:
- 2225 Thermodynamics and applications. American Journal of Science, 317, 807-845.
- 2226 Sanders, I.S., and Scott, E.R.D. (2012) The origin of chondrules and chondrites: Debris from low-
- velocity impacts between molten planetesimals? Meteoritics & Planetary Science, 47, 2170-
- 2228 2192.
- 2229 Sanders, I.S., and Scott, E.R.D. (2018) Making chondrules by splashing molten planetesimals: The
- dirty impact plume model. In S.A. Russell, H.C. Connolly Jr., and A.N. Krot, Eds., Chondrules:
- 2231 Records of Protoplanetary Disk Processes, pp. 361-374. Cambridge University Press.
- 2232 Schatz, H. (2010) The evolution of elements and isotopes. Elements, 6, 13-17.
- 2233 Schertl, H.-P., Mills, S.J., and Maresch, W.V. (2018) A Compendium of IMA-Approved Mineral
- 2234 Nomenclature. International Mineralogical Association.
- 2235 Schrader, D.L., Nagashima. K., Krot, A.N., Ogliore, R.C., Yin, Q.-Z., Amelin, Y., Stirling, C.H.,
- and Kaltenbach, A. (2017) Distribution of ²⁶Al in the CR chondrite chondrule-forming region
- of the protoplanetary disk. Geochimica et Cosmochimica Acta, 201, 275–302.
- 2238 Schulze, H., Bischoff, A., Palme, H., Spettel, B., Dreibus, G., and Otto, J. (1994) Mineralogy and
- 2239 chemistry of Rumuruti: The first meteorite fall of the new R chondrite group. Meteoritics, 29,
- 2240 275-286.

- Scott, E.R.D. (1988) A new kind of primitive chondrite, Allan Hills 85085. Earth and Planetary
 Science Letters, 91, 1-18.
- 2243 Scott, E.R.D., and Clarke, R.S. Jr. (1979) Identification of clear taenite in meteorites as ordered
- 2244 FeNi. Nature, 281, 113-124.
- 2245 Scott, E.R.D., and Jones, R.H. (1990) Disentangling nebular and asteroidal features of CO3 of
- 2246 carbonaceous chondrites. Geochimica et Cosmochimica Acta, 54, 2485-2502.
- 2247 Scott, E.R.D., and Krot, A.N. (2014) Chondrites and their components. In A.M. Davis,
- H.D.Holland, and K.K.Turekian, Eds., Treatise on Geochemistry, Vol. 1: Meteorites, Comets,
- and Planets, Second Edition, pp. 65-137. Elsevier-Pergamon.
- Scott, E.R.D., and Rajan, S. (1981) metallic minerals, thermal histories, and parent bodies of some
 xenolithic ordinary chondrites. Geochimica et Cosmochimica Acta, 45, 53-67.
- 2252 Scott, E.R.D., and Taylor, G.J. (1983) Chondrules and other components in C, O, and E chondrites:
- 2253 Similarities in their properties and origins. Journal of Geophysical Research, 88, B275-B286.
- Scott, E.R.D., Taylor, G.J., and Maggiore, P. (1982) A new LL3 chondrite, Allan Hills 79003, and
 observations on matrices in ordinary chondrites. Meteoritics, 17, 19-31.
- 2256 Scott, E.R.D., Jones, R.H., and Rubin, A.E. (1994) Classification, metamorphic history, and pre-
- 2257 metamorphic composition of chondrules. Geochimica et Cosmochimica Acta, 58, 1203–1209.
- Sears, D.W.G., and Hasan, F.A. (1987) The type three ordinary chondrites: A review. Surveys in
 Geophysics, 9, 43–97.
- 2260 Sears, D.W.G., Kallemeyn, G.W., and Wasson, J.T. (1982) The compositional classification of
- 2261 chondrites. II. The enstatite chondrite groups. Geochimica et Cosmochimica Acta, 46, 597–
- 2262 <u>608</u>.

- 2263 Sears, D.W.G., Lu, J., Benoit, P.H., DeHart, J.M., and Lofgren, G.E. (1992) A compositional
- 2264 classification scheme for meteoritic chondrules. Nature, 357, 207-210.
- 2265 Sears, D.W.G., Morse, A.D., Hutchison, R., Guimon, R.K., Lu, J., Alexander, C.M.O'D., Benoit,
- 2266 P.H., Wright, I., Pillinger, C., Xie, T., and Lipschutz, M.E. (1995) Metamorphism and aqueous
- alteration in low petrographic type ordinary chondrites. Meteoritics, 30, 169-181.
- 2268 Sheng, Y.J., Hutcheon, I.D., and Wasserburg, G.J. (1991a) Origin of plagioclase-olivine inclusions
- in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 55, 581-599.
- 2270 Sheng, Y.J., Beckett, J.R., Hutcheon, I.D., and Wasserberg, G.J. (1991b) Experimental constraints
- 2271 on the origin of plagioclase-olivine inclusions and CA chondrules. Abstracts of the Lunar and
- 2272 Planetary Science Conference, 22, 1231.
- 2273 Shibata, Y. (1996) Opaque minerals in Antarctic CO3 carbonaceous chondrites. Yamato-74135,
- -790992, -79717, -81020, -81025, -82050, and Allan Hills 77307. Proceedings of the NIPR
- 2275 Symposium on Antarctic Meteorites, 9, 79-96.
- 2276 Shimizu, M., Yoshida, H., and Mandarino, J.A. (2002) The new mineral species keilite, (Fe,Mg)S,
- the iron-dominant analogue of niningerite. Canadian Mineralogist, 40, 1687-1692.
- Shu, F.H., Shang, H., and Lee, T. (1996) Toward an astrophysical theory of chondrites. Science,
 2779 271, 1545-1552.
- 2280 Simon, S.B., and Haggerty, S.E. (1980) Bulk compositions of chondrules in the Allende meteorite.
- 2281 Proceedings of the Lunar and Planetary Science Conference, 11, 901-927.
- 2282 Simon, S.B., Grossman, L., Podosek, F.A., Zinner, E., and Prombo, C.A. (1994) Petrography,
- 2283 composition, and origin of large chromian spinels from the Murchison meteorite. Geochimica
- et Cosmochimica Acta, 58, 1313-1334.

- 2285 Simon, S.B., Grossman, L., Casanova, I., Symes, S., Benoit, P., Sears, D.W.G., and Wacker, J.F.
- 2286 (1995) Axtell, a new CV3 chondrite from Texas. Meteoritics, 30, 42-46.
- 2287 Singerling, S.A., and Brearley, A.J. (2018) Primary iron sulfides in CM and CR carbonaceous
- 2288 chondrites: Insights into nebular processes. Meteoritics & Planetary Science, 53, 2078-2106.
- 2289 Smith, D.G.W., Miura, Y., and Launspach, S. (1993) Fe, Ni, and Co variations in the metals from
- some Antarctic chondrites. Earth and Planetary Science Letters, 120, 487-498.
- Sorrell, W. (1995) Nebular lightning and the chondrule factory. Comments of Astrophysics, 18,
 151-159.
- 2293 Stöffler, D., Keil, K., and Scott, E.R.D. (1991) Shock metamorphism of ordinary chondrite 2294 meteorites. Geochimica et Cosmochimica Acta, 55, 3845-3867.
- Tachibana, S., and Huss, G.R. (2005) Sulfur isotopic composition of putative primary troilite in
 chondrules from Bishunpur and Semarkona. Geochimica et Cosmochimica Acta, 69, 30753097.
- Taylor, G.J., and Heymann, D. (1971) Postshock thermal histories of reheated chondrites. Journal
 of Geophysical Research, 76, 1879-1893.
- 2300 Taylor, G.J., Okada, A., Scott, E.R.D., Rubin, A.E., Huss, G.R., and Keil, K. (1981) The
- 2301 occurrence and implications of carbide-magnetite assemblages in unequilibrated ordinary
- chondrites. Proceedings of the Lunar and Planetary Science Conference, 12, 1076-1078.
- Teitler, S.A., Paque, J.M., Cuzzi, J.N., and Hogan, R.C. (2010) Statistical tests of chondrule
 sorting. Meteoritics & Planetary Science, 45, 1124-1135.
- 2305 Tomeoka, K., and Buseck, P.R. (1990) Phyllosilicates in the Mokoia CV carbonaceous chondrite:
- 2306 Evidence for aqueous alteration in an oxidizing condition. Geochimica et Cosmochimica Acta,
- 2307 54, 1787-1796.

- 2308 Töpel-Schadt, J., and Müller, W.F. (1985) The submicroscopic structure of the unequilibrated
- 2309 ordinary chondrites, Chainpur, Mezö-Madaras, and Tieschitz. Meteoritics, 27, 136-143.
- 2310 Trieloff, M., Storck, J.-C., Mostefaoui, S., El Goresy, A., Hopp, J., Ludwig, T., and Altherr, R.
- (2013) A precise 53 Mn- 53 Cr age of sphalerites from the primitive EH3 chondrite Sahara 97158. 2311
- 2312 Meteoritics & Planetary Science Supplement, 76, 5251.
- 2313 Trinquier, A., Birck, J., and Allegre, C.J. (2007) Widespread ^sCr heterogeneity in the inner solar 2314 system. The Astrophysical Journal, 655, 1179-1185.
- 2315 Trinquier, A., Elliott, T., Ulfbeck, D., Coath, C., Krot, A.N., and Bizzarro, M. (2009) Origin of
- 2316 nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science, 324, 374-376.
- Van Schmus, W.R., and Wood, J.A. (1967) A chemical-petrologic classification for the chondrite 2317 2318 meteorites. Geochimica et Cosmochimica Acta, 31, 747-754.
- 2319 Wang, Y., and Hsu, W. (2009) Petrology and mineralogy of the Ningqiang carbonaceous 2320 chondrite. Meteoritics & Planetary Science, 44, 763-780.
- 2321 Wang, Y., Hsu, W., Li, X., Li, Q., Liu, Y., and Tang, G. (2016) Petrology, mineralogy, and oxygen
- 2322 isotope compositions of aluminum-rich chondrules from CV3 chondrites. Meteoritics & 2323 Planetary Science, 51, 116-137.
- 2324 Warren, P. (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and 2325 Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 2326 311, 93-100.
- 2327 Wasserburg, G.J., Wimpenny, J., and Yin, Q.-Z. (2012) Mg isotopic heterogeneity, Al-Mg
- isochrons, and canonical ²⁶Al/²⁷Al in the early solar system. Meteoritics & Planetary Science, 2328
- 2329 47, 1980-1997.

- 2330 Wasson, J.T., and Krot, A.N. (1994) Fayalite-silica association in unequilibrated ordinary
- chondrites: Evidence for aqueous alteration on a parent body. Earth and Planetary ScienceLetters, 122, 403-416.
- 2333 Wasson, J.T., and Rubin, A.E. (2003) Ubiquitous low-FeO relict grains in type-II chondrules and
- limited overgrowths on relicts and high-FeO phenocrysts following the final melting event.
- 2335 Geochimica et Cosmochimica Acta, 67, 2239-2250.
- 2336 Wasson, J.T., and Wai, C.M. (1970) Composition of the metal, schreibersite and perryite of
- enstatite achondrites and the origin of enstatite chondrites and achondrites. Geochimica et
- 2338 Cosmochimica Acta, 34, 169-184.
- Wasson, J.T., Krot, A.N., Lee, M.S., and Rubin, A.E. (1995) Compound chondrules. Geochimica
 et Cosmochimica Acta, 59, 1847-1869.
- 2341 Watanabe, S., Kitamura, M., and Morimoto, N. (1986) Oscillatory zoning of pyroxenes in ALH-
- 2342 77214 (L3). Symposium on Antarctic Meteorites, 11, 74-75.
- 2343 Weber, D., and Bischoff, A. (1997) Refractory inclusions in the CR chondrite Acler 059-El Djouf
- 2344 001: Petrology, chemical composition, and relationship to inclusion populations in other types
- of carbonaceous chondrites. Chemie der Erde, 57, 1-24.
- 2346 Weinbruch, S., Palme, H., Müller, W.F., and El Goresy, A. (1990) FeO-rich rims and veins in
- Allende forsterite: Evidence for high-temperature condensation at oxidizing conditions.
- 2348 Meteoritics, 25, 115-125.
- 2349 Weinbruch, S., Armstrong, J.T., and Palme, H. (1994) Constraints on the thermal history of the
- Allende parent body as derived from olivine-spinel thermometry and Fe/Mg interdiffusion in
- 2351 olivine. Geochimica et Cosmochimica Acta, 58, 1019-1030.
This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7564. http://www.minsocam.org/

- 2352 Weinbruch, S., Palme, H., and Spettel, B. (2000) Refractory forsterite in primitive meteorites:
- 2353 Condensates from the solar nebula? Meteoritics and Planetary Science, 35, 161–171.
- 2354 Weisberg, M.K., and Kimura, M. (2012) The unequilibrated enstatite chondrites. Chemie der Erde,
- 2355 72, 101-115.
- Weisberg, M.K., Prinz, M., and Nehru, C.E. (1988) Petrology of ALH85085: A chondrite with
 unique characteristics. Earth and Planetary Science Letters, 91, 19-32.
- 2358 Weisberg, M.K., McCoy, T., and Krot, A.N. (2006) Systematics and evaluation of meteorite
- 2359 classification. In D. Lauretta and H. McSween, Eds., Meteorites and the Early Solar System II,
- pp. 19-52. University of Arizona Press.
- 2361 Weyrauch, M., and Bischoff, A. (2012) Macrochondrules in chondrites Formation by melting of
- mega-sized dust aggregates and/or by rapid collisions at high temperatures? Meteoritics &
 Planetary Science, 47, 2237-2250.
- Weyrauch, M., Horstmann, M., and Bischoff, A. (2018) Chemical variations of sulfides and metal
 in enstatite chondrites Introduction of a new classification scheme. Meteoritics & Planetary
 Science, 53, 394-415.
- 2367 Whitby, J.A., Gilmour, J.D., Turner, G., Prinz, M., and Ash, R.D. (2002) Iodine-xenon dating of
- chondrules from the Qingzhen and Kota Kota enstatite chondrites. Geochimica etCosmochimica Acta, 66, 347-359.
- 2370 Wlotzka, F. (1993) A weathering scale for the ordinary chondrites (abstract). Meteoritics, 28, 460.
- 2371 Wombacher, F., Rehkämper, M., Mezger, K., Bischoff, A., and Münker, C. (2008) Cadmium
- stable isotope cosmochemistry. Geochimica et Cosmochimica Acta, 72, 646-667.
- 2373 Wood, J.A. (1967) Chondrules: their metallic minerals, thermal histories, and parent planets.
- 2374 Icarus, 6, 1-49.

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7564. http://www.minsocam.org/

- Wood, J.A. (1996a) Processing of chondritic and planetary material in spiral density waves in thenebula. Meteoritics, 31, 641-645.
- 2377 Wood, J.A. (1996b) Unresolved issues in the formation of chondrules and chondrites. In R.
- 2378 Hewins, R.H. Jones, and E.R.D. Scott, Eds., Chondrules and the Protoplanetary Disk, pp. 55-
- 2379 70. Cambridge University Press.
- 2380 Wood, J.A., and Hashimoto, A. (1993) Mineral equilibrium in fractionated nebular systems.
- 2381 Geochimica et Cosmochimica Acta, 57, 2377-2388.
- Wood, J.A., and Holmberg, B.B. (1994) Constraints placed on chondrule-forming process by
 merrihueite in the Mezo-Madaras chondrite. Icarus, 108, 309-324.
- Zanda, B., Bouret-Denise, M., Peron, C., and Hewins, R.H. (1994) Origin and metamorphic
 redistribution of silicon, chromium, and phosphorus in the metal of chondrites. Science, 265,
 1846-1849.
- 2387 Zhang, A., and Hsu, W. (2009) Refractory inclusions and aluminum-rich chondrules in Sayh al
- Uhaymir 290 CH chondrite: Petrography and mineralogy. Meteoritics & Planetary Science, 44,
 787-804.
- 2390 Zhang, Y., Huang, S., Schneider, D., Benoit, P.H., and Sears, D.W.G. (1996) Pyroxene structures,
- cathodoluminescence and thermal history of the enstatite chondrites. Meteoritics and PlanetaryScience, 31, 87-96.
- 2393 Zhdankin, V., Boldryev, S., and Mason, J. (2017) Influence of a large-scale field on energy
- dissipation in magnetohydrodynamic turbulence. Monthly Notices of the Royal Astronomical
- 2395 Society, 468, 4025-4029.

This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7564. http://www.minsocam.org/

- 2396 Zolensky, M., Gounelle, M.U., Mikouchi, T., Ohsumi, K., Le, L., Hagiya, K., and Tachikawa, O.
- 2397 (2008) Andreyivanovite: A second new phosphide from the Kaidun meteorite. American
- 2398 Mineralogist, 93, 1295-1299.

2399

<u>Object</u>	Earliest Age	Latest Age	Description	Part	Reference ³
Stardust	~13 Ga	4.58 Ga	Presolar grains are distinguished by their extreme isotopic anomalies.	Ι	1-3
URIs	4567.3 Ma	<4567.0 Ma	Though usually grouped with CAIs, ultra-refractory inclusions display extreme	II	4-7
			(x 1000) enrichment in Sc, Zr, Ti, and other elements that lead to distinctive suites		
			of minerals.		
CAIs	4567.3 Ma	4567.0 Ma	CAIs formed in a high-temperature, high gas/dust region near the proto-sun. Within	II	8-10
			2 million years, most CAIs had migrated to beyond proto-Jupiter's orbit under the		
			influence of strong solar winds.		
AOAs	< 4567.3 Ma	4567.0 Ma	Amoeboid olivine aggregates form at lower temperatures than CAIs and URIs,	11	7,11,12
			but still in a low-pressure region close to the proto-sun, with high gas/dust.		
			Some AOAs incorporate CAIs and thus postdate the first CAIs.		
Embrvos	~4567 Ma		By the time the protoplanetary disk was ~ 1 million years old, embryonic Jupiter	III	13-16
5			(mass > 20 Earth mass) created a gravitational barrier between the inner and outer		
			solar system. Isotopic studies of iron meteorites suggest that their parent bodies		
			must have reached diameters of 10 to 100 km within the first 500,000 years.		
Chondrule	es**~4566 Ma	~4561 Ma	Chondrules vary widely in their physical and chemical characteristics, but most	III	9,17-1
			(if not all) chondrules significantly postdate CAIs. Chondrules represent igneous		
			processing of nebular material at high temperatures in regions with high dust/gas.		
СО	4565.6	4564.7			20

2400 <u>**Table 1.**</u> Chronology of nebular processes that affect mineral evolution. "Part" refers to the multi-part evolutionary system of mineralogy.

2427				
2428	CV	4565.1 +/- 0.8		21,22
2429		4565.6 +/- 1.0		23
2430		4564.5 +/- 0.5		24
2431		4564.3 +/- 0.8		25
2432				
2433	CR	4563.7 +/- 0.6		26
2434		4563.6 +/- 0.6		27
2435				
2436	CB	4562.5 +/- 0.2		28
2437		4562.7 +/- 0.5		29
2438		4562.3 +/- 0.4		30
2439				
2440	EH	4564	4561	31
2441		4562.7 +/- 0.5		
2442				
2443	* 1. Davis	(2011); 2. Heck et a	1. (2020); 3. Hazen & Morrison (2020); 4. El Goresy et al. (2002); 5. Rubin & Ma (2017); 6. Krot et a	ıl. (2019); 7. Morrison & Hazen
2444	(2020); 8.	Connelly et al. (20	12); 9. Kita et al. (2013); 10. Krot (2019); 11. Grossman & Steele (1976); 12. Krot et al. (2004)); 13. Kruijer et al. (2014); 14.
2445	Lambrecht	ts et al. (2014); 15.	Morbidelli et al. (2015); 16. Kruijer et al. (2017); 17. Bollard et al. 2017; 18. Nagashima et al. (2	.018); 19. Connelly & Bizzarro
2446	(2018); 20	. Kurahashi et al. (2	008); 21. Budde et al. (2015); 22. Kleine et al. (2018); 23. Amelin & Krot (2007); 24. Connelly et al. (2008); 25. Connelly & Bizzarro
2447	(2009); 26	. Kleine et al. (2018); 27. Schrader et al. (2017); 28. Bollard et al. (2015); 29. Krot et al. (2005); 30. Gilmour et al. (2005);	9); 31. Whitby et al. (2002); 32.
2448	Trieloff et	al. (2013)		
2449				
2450	** Alterna	tive Pb-Pb age mea	surements of unequilibrated chondrites suggest that the earliest chondrules formed contemporaneousl	y with CAIs at 4567.30 +/- 0.16
2451	Ma, and e	xtending to 4564.7	+/- 0.3 Ma. According to this model, most chondrules were produced within the first 1 million y	ears of the protoplanetary disk
2452	(Connelly	et al. 2012; Bollard	et al. 2017; Connelly & Bizzarro 2018; Krot 2019).	
2453				

2455	1 5 1			
2456	<u>Group Species (Formula)</u>	Natural Kind	Characteristics	References
2457 2458 2459	NATIVE ELEMENTS			
2460 2461	Iron (Fe,Ni) ["kamacite"]	PC iron	Occurs as a primary phase with up to 10 wt. % Ni	1-3
2462 2463	Taenite (Fe,Ni)	PC taenite	Typically 10 to 50 wt. % Ni	1,4-7
2464 2465	Tetrataenite (Fe,Ni)	PC tetrataenite	Typically ~50 wt. % Ni	1,5,6,8,9
2466 2467	Awaruite (Ni ₂ Fe to Ni ₃ Fe)	PC awaruite	Typically 65 to 75 wt. % Ni	1,10,11
2468 2469	Graphite (C)	PC graphite	A common minor phase in enstatite chondrites	1,12,13
2470 2471	CARBIDES			
2472 2473	Cohenite [(Fe,Ni)3C]	PC cohenite	Associated with haxonite and magnetite	1,3,10,14-18
2474 2475	Haxonite [(Fe,Ni)23C6]	PC haxonite	Associated with cohenite and magnetite	3,15,17,18
2476 2477	NITRIDES			
2478 2479	Sinoite (Si ₂ N ₂ O):	PC sinoite	Micron-scale needles in metal nodules from an EL3 clast	19,20
2480 2481	PHOSPHIDES			
2482 2483	Schreibersite [(Fe,Ni)3P]	PC schreibersite	Occurs as exsolution from P-rich Fe-Ni alloys	1,21-23
2484 2485	SILICIDES			
2486 2487	Perryite [(Ni,Fe)8(Si,P)3]	PC perryite	A minor phase in enstatite chondrites	12,24,25

2454 Table 2. 43 primary mineral phases in chondrules.

2488 2489	SULFIDES			
2490 2491	Troilite (FeS)	PC troilite	The most common primary chondrule sulfide	1-3,26-31
2492 2493	Pentlandite [(Fe,Ni)9S8)	PC pentlandite	Occurs in unequilibrated OC and CC meteorites	1,27,32-34
2494 2495	Alabandite (MnS)	PC alabandite	Occurs with other reduced sulfides in EL chondrites	1-3,35-38
2496 2497	Caswellsilverite (NaCrS ₂)	PC caswellsilverite	Occurs with other reduced sulfides in enstatite chondrites	1-3,35-38
2498 2499	Daubréelite (FeCr ₂ S ₄)	PC daubréelite	Occurs with other reduced sulfides in enstatite chondrites	1-3,35-38
2500 2501	Niningerite (MgS)	PC niningerite	Occurs with other reduced sulfides in EH chondrites	1-3,35-38
2502 2503	Oldhamite (CaS)	PC oldhamite	Occurs with other reduced sulfides in enstatite chondrites	1-3,35-38
2504 2505	Sphalerite (ZnS)	PC sphalerite	A rare primary phase in EH enstatite chondrite Y-691	39
2506 2507 2508	Wassonite (TiS)	PC wassonite	A rare primary phase in EH enstatite chondrite Y-691	40
2508 2509	OXIDES			
2510 2511	Spinel (MgAl ₂ O ₄)	PC spinel	Spinel is a common, if minor, primary OC chondrule phase	1,41-48
2512 2513	Chromite (Fe ²⁺ Cr ₂ O ₄)	PC chromite	A common oxide phase in UC and CC chondrules	1,49-52
2514 2515	Magnetite (Fe ²⁺ Fe ³⁺ 2O4)	PC magnetite	In carbide-magnetite assemblages; with Fe-Ni alloys	1,27,34,53-56
2516 2517	Rutile (TiO ₂)	PC rutile	A minor phase in plagioclase-olivine inclusions	47
2518 2519	Ilmenite (FeTiO3)	PC ilmenite	In Na-Al-rich chondrules; plagioclase-olivine inclusions	47,57

2520 2521	Armalcolite [(Mg,Fe ²⁺)Ti ₂ O5]	PC armalcolite	A minor phase in plagioclase-olivine inclusions	47
2522 2523	Ferropseudobrookite (Fe ²⁺ Ti ₂ O ₅)	PC ferropseudobroc	okite Euhedral crystals in Allan Hills 77015 (EL3)	58,59
2524 2525	Perovskite (CaTiO ₃)	PC perovskite	A minor phase in plagioclase-olivine inclusions	47
2526 2527	Zirconolite (CaZrTi ₂ O ₇)	PC zirconolite	A minor phase in plagioclase-olivine inclusions	47
2528 2529	PHOSPHATES			
2530 2531	Merrillite [Ca9NaMg(PO4)7]	PC merrillite	Minor phase in glass-rich and silica-pyroxene chondrules	48,60,61
2532	SILICATES			
2533 2534	Cristobalite (SiO ₂)	PC cristobalite	Occurs in silica-rich chondrules in OC and EC chondrites	18,61-63
2535 2536	Tridymite (SiO ₂)	PC tridymite	Occurs in silica-rich chondrules in OC and EC chondrites	61-64
2537 2538	Silica Glass (SiO ₂)	PC silica glass	In silica-rich chondrules from both NC and CC chondrites	61,63,65,66
2539 2540	Olivine [(Mg,Fe) ₂ SiO ₄)	PC olivine	A common primary chondrule phase in all chondrite types	1-3,67
2541 2542	Orthoenstatite [(Mg,Fe)SiO3]	PC orthoenstatite	Less common than clinoenstatite; in OC, EC, and CC	1-3,33,68-71
2543 2544	Clinoenstatite [(Mg,Fe)SiO3]	PC clinoenstatite	A common primary chondrule phase in all chondrite types	1-3,70,72
2545 2546	Pigeonite [(Mg,Fe,Ca)SiO3]	PC pigeonite	As crystals and as layers coating clinoenstatite	1,64,70,73-74
2547 2548 2549	Augite [(Ca,Mg,Fe)(Mg,Fe,±Al,±Ti ³⁺	i)(±Al,±Ti⁴⁺,Si)SiO6] PC augite	A common primary chondrule phase	1,57,70,74-76

2550	Anorthite [(Ca,Na)(Al,Si)2Si2O8)	PC anorthite	A common primary phase; notable in Al-rich chondrules	1,64,77-82
2551				
2552 2553	Albite (NaAlSi3O8)	PC albite	Occurs with ferropseudobrookite in Allan Hills 77015 (EL3)	58,59
2554	Nepheline [Na3K(Al4Si4O16)]	PC nepheline	Epitaxial intergrowths with anorthite; Al-rich chondrules	1,68,74,77
2555				
2556 2557	Sapphirine [Mg4(Mg3Al9)O4(Si3Al9O36)]	PC sapphirine	A minor phase in plagioclase-olivine inclusions	47,74
2558	Roedderite [(Na,K)2Mg5Si12O30]	PC roedderite	A minor phase in silica-rich chondrules	83-86
2559				
2560	Silicate Glass (Ca,Mg,Al,Si,O)	PC silicate glass	Common in chondrule mesostasis	60
2561				
2562				

2563 References: 1. Brearley & Jones (1998); 2. Rubin & Ma (2017); 3. Rubin & Ma (2020); 4. Afiattalab & Wasson (1980); 5. Scott & Rajan 2564 (1981); 6. Nagahara (1982); 7. Wood (1967); 8. Bevan & Axon (1980); 9. Rubin (1994b); 10. Taylor et al. (1981); 11. Smith et al. (1993); 12. 2565 Keil (1968); 13. Leitch & Smith (1980); 14. Scott et al. (1982); 15. Scott & Jones (1982); 16. Herndon & Rudee (1978); 17. Shibata (1996); 18. 2566 Rubin (1983); 19. Lin et al. (2011); 20. El Goresy et al. (2011); 21. Wasson & Wei (1970); 22. Rambaldi & Wasson (1984); 23. Zanda et al. 2567 (1994); 24. Reed (1968); 25. Lehner et al. (2010); 26. Rubin et al. (1999); 27. Krot et al. (1997b); 28. Lauretta et al. (1996); 29. Singerling & 2568 Brearley (2018); 30. El Goresy et al. (1988); 31. Ikeda (1989a); 32. Jones & Scott (1989); 33. Jones (1996); 34. Barth et al. (2018); 35. Buseck 2569 & Holdsworth (1972); 36. Fogel (1997); 37. Avril et al. (2013); 38. Weyrauch et al. (2018); 39. El Goresy & Ehlers (1989); 40. Nakamura-2570 Messenger et al. (2012); 41. Bischoff & Keil (1983); 42. Ikeda (1980); 43. McCoy et al. (1991a); 44. Wang et al. (2016); 45. McSween (1977b); 46. Simon et al. (1994); 47. Sheng et al. (1991b); 48. Krot et al. (1993); 49. Bunch et al. (1967); 50. Davy et al. (1978); 51. Johnson & 2571 Prinz (1991); 52. Weinbruch et al. (1994); 53. Taylor et al. (1981); 54. Haggerty & McMahon (1979); 55. Ikeda (1983); 56. Scott & Jones 2572 (1990); 57. Bischoff & Keil (1984); 58. Fujimaki et al. (1981a); 59. Fujimaki et al. (1981b); 60. Krot & Rubin (1994); 61. Brigham et al. 2573 2574 (1986); 62. Bridges et al. (1995); 63. Kimura et al. (2005); 64. Ikeda (1989b); 65. Wasson & Krot (1994); 66. Olsen (1983); 67. Scott & Krot 2575 (2014); 68. Ikeda (1982); 69. Watanabe et al. (1986); 70. Noguchi (1989); 71. Zhang et al. (1996); 72. Müller et al. (1995); 73. Kitamura et al. 2576 (1987); 74. Sheng et al. (1991a); 75. Wang et al. (2016); 76. Noguchi (1995); 77. Jones (1997); 78. Greshake (1997); 79. Bischoff et al. (1985); 2577 80. Noguchi (1994); 81. Murakami & Ikeda (1994); 82. Ikeda & Kimura (1995); 83. Dodd et al. (1965); 84. Rambaldi et al. (1986); 85. Krot & 2578 Wasson (1994); 86. Wood & Holmberg (1994) 2579

PRIMARY MINERAL-FORMING ELEMENTS IN CHONDRULES

Major mineral-forming elements

1 H		Minor mineral-forming elements								
3 Li	4 Be									
11 Na	12 Mg									
19	20	21	22	23	24	25	26	27	28	29
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu
37	38	39	40	41	42	43	44	45	46	47
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag
55	56	57	72	73	74	75	76	77	78	79
Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au
87	88	89	104	105	106	107	108	109	110	111
Fr	Ra	#Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg

				2 He
6	7	8	9	10
C	N	O	F	Ne
14	15	16	17	18
Si	P	S	Cl	Ar
32	33	34	35	36
Ge	As	Se	Br	Kr
50	51	52	53	54
Sn	Sb	Te	I	Xe
82	83	84	85	86
Pb	Bi	Po	At	Rn
114	115	116	117	118
Fl	Мс	Lv	Ts	Og

5 B

13 Al

31 Ga

49

In

81

ТΙ

113

Nh

30 Zn

48 Cd

80

Hg

112

Cn

