1	
2	Revision 2
3	
4	
5	
6	
7	
8	
9	The composition of garnet in granite and pegmatite from the
10	Gangdese orogen in southeastern Tibet: constraints on pegmatite
11	petrogenesis
12	
13	Meng Yu ¹ , Qiong-Xia Xia ^{1, 2*} , Yong-Fei Zheng ^{1, 2} , Zi-Fu, Zhao, Yi-Xiang Chen ^{1, 2} , Ren-Xu
14	Chen ^{1, 2} , Xu Luo ¹ , Wan-Cai Li ^{1, 2} , Haijun Xu ³
15	
16	1. CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and
17	Space Sciences, University of Science and Technology of China, Hefei 230026, China
18	2. CAS Center for Excellence in Comparative Planetology, Hefei 230026, China
19	3. State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth
20	Sciences, China University of Geosciences, Wuhan 430074, China
21	

^{*} Corresponding author. Email: qxxia@ustc.edu.cn

22 ABSTRACT

Two generations of garnet are recognized in a granite and a pegmatite from the Gangdese 23 orogen in southeastern Tibet on the basis of a combined study of petrography, major and trace 24 element profiles, and garnet O isotopes. Zircon U-Pb dating and Hf-O isotope compositions 25 also help constrain the origin of both granite and pegmatite. The first generation of garnet 26 (Grt-I) occurs as residues in the center of garnet grains, and it represents an early stage of 27 nucleation related to magmatic-hydrothermal fluids. Grt-I is dark in BSE images, rich in 28 spessartine, and poor in almandine and grossular. Its chondrite-normalized REE patterns show 29 obvious negative Eu anomalies and depletion in HREE relative to MREE. The second 30 31 generation of pegmatite garnet (Grt-II) occurs as the rim of euhedral garnets or as patches in 32 Grt-I domains of the pegmatite, and it crystallized after dissolution of the preexisting pegmatite garnet in the presence of the granitic magma. Compared with Grt-I domains, Grt-II 33 is bright in BSE images, poor in spessartine, and rich in almandine and grossular contents. Its 34 chondrite-normalized REE patterns exhibit obvious negative Eu anomalies but enrichment in 35 36 HREE relative to MREE. The elevated grossular and HREE contents for Grt-II relative to Grt-I domains indicate that the granitic magma had higher contents of Ca than the magmatic-37 38 hydrothermal fluids. The garnets in the granite, from core to rim, display homogenous profiles in their spessartine, almandine, and pyrope contents but increasing grossular and decreasing 39 40 REE contents, and they are typical of magmatic garnets that crystallized from the granitic 41 magma. Ti-in-zircon temperatures demonstrate that the granite and pegmatite may share the similar temperatures for their crystallization. Grt-II domains in the pegmatite have the same 42 major and trace element compositions as the garnets in the granite, suggesting that the 43 pegmatite Grt-II domains crystallized from the same granitic magma. Therefore, the 44 pegmatite crystallized at first from early magmatic-hydrothermal fluids, producing small 45 amounts of Grt-I, and the fluids were then mixed with the surrounding granitic magma. The 46 U-Pb dating and Hf-O isotope analyses of zircons from the granite and pegmatite yield 47 almost the same U–Pb ages of 77–79 Ma, positive $\varepsilon_{Hf}(t)$ values of 5.6 to 11.9, and δ^{18} O values 48 of 5.2% to 7.1%. These data indicate that the granite and pegmatite were both derived from 49 reworking of the juvenile crust in the newly accreted continental margin prior to the 50 51 continental collision in the Cenozoic.

52

53 Keywords: hydrothermal garnet; magmatic garnet; pegmatite; dissolution-reprecipitation

54

55

INTRODUCTION

Garnet is common in metamorphic rocks, and it is useful for assessing metamorphic 56 conditions. Due to its stability over a wide range of temperatures and pressures, it is found 57 widely in a remarkably diverse range of tectonic settings and rock types (e.g., Baxter and 58 Scherer, 2013). Although garnet is less frequently present in magmatic rocks, it is common in 59 S-type granites (e.g., Steven et al., 2007; Erdmann et al., 2009; Villaros et al., 2009; Lackey et 60 al., 2012; Melo et al., 2017). Similar to metamorphic garnet, the composition of magmatic 61 garnet is also useful for constraining the origin of host granites (e.g., Dahlquist et al., 2007; 62 Steven et al., 2007; Villaros et al., 2009). It is therefore essential to determine the origin of 63 garnet in a granite in order to understand the petrogenesis of the rock. Several different 64 65 origins have been proposed for garnet in granites: (1) phenocrysts crystallized from magmatic melts (Dahlquist et al., 2007; Narduzzi et al., 2017), (2) xenocrysts derived from crustal rocks 66 67 (Kawabata and Takafuji, 2005), (3) peritectic growth from incongruent melting (Stevens et al., 2007; Dorais et al., 2009; Xia et al., 2016), and (4) precipitation from hydrothermal fluids 68 69 (Gasper et al., 2008; Dziggel et al., 2009).

There are also many reported examples of garnet in aplites and pegmatites (Arredondo et 70 71 al., 2001; Gadas et al., 2013; Samadi et al., 2014a, b), which is generally considered magmatic in origin (Manning, 1983; Deer et al., 1992; Muller et al., 2012). In most cases, 72 73 however, zoning of major and trace elements in the garnets of aplites and pegmatites differs from those in the other magmatic garnets (e.g., Samadi et al., 2014a, b), implying possibly 74 different origins. Pegmatites have long been viewed as essentially igneous rocks because of 75 76 their bulk compositions. The origins of pegmatites, however, is still controversial on some fronts such as textures and trace elements (London and Kontak, 2012). It is commonly 77 accepted that most pegmatites crystallized from residual melts after the crystallization of 78 granitic magmas, but some pegmatites may form as a result of protracted fractional 79 crystallization and crustal anatexis (Simmons and Webber, 2008). Because the composition of 80 garnet is very sensitive to changes in temperature and pressure, a study of its features may 81 provide insights into pegmatite petrogenesis. 82

Numerous garnet-bearing pegmatite veins occur in granite bodies in the Gangdese orogen in southeastern Tibet (Fig. 1). To understand the origin of these pegmatite veins and their relationship to the granite bodies, we have made EPMA, LA–ICP–MS and SIMS analyses to establish the major and trace element zoning patterns of garnets and to determine the O isotope compositions of garnet and zircon grains from the pegmatites and associated

granites. The results provide new constraints on the origin of both types of rock as well as their petrogenetic relationships.

90

91

GEOLOGICAL SETTING AND SAMPLES

The Himalayan-Tibetan plateau is composed mainly of four E-W-trending orogens or 92 terranes (Fig. 1a), which from south to north are the Himalayan orogen, Lhasa terrane, 93 Qiangtang orogen and Songpan-Ganzi terrane. It is not produced by a simple episode of 94 continental collision in the Cenozoic as originally thought. Instead, it consists of composite 95 orogens that were generated not only by accretionary orogenies from the Early Paleozoic 96 through the Late Paleozoic to the Mesozoic but also by collisional orogeny in the Cenozoic 97 (Zheng et al. 2013, 2019). The Lhasa terrane is separated from the Himalayan orogen to the 98 99 south by the Indus-Yarlung suture zone, and from the Qiangtang orogen to the north by the Bangong-Nujiang suture zone (Yin and Harrison, 2000). The Lhasa terrane is a huge 100 tectonic-magmatic unit approximately 100-300 km wide and 2500 km long (Dewey et al., 101 102 1988; Pearce and Deng, 1988), and it is composed of Mesozoic to Cenozoic igneous rocks, 103 Paleozoic–Mesozoic sedimentary rocks, and a Precambrian metamorphic basement (e.g., Xu 104 et al., 1985; Dewey et al., 1988; Harris et al., 1988a; Yin and Harrison, 2000; Pan et al., 2006; Dong et al., 2014). Based on the distribution of different sedimentary rocks and ophiolites 105 106 (Pan et al., 2006; Zhu et al., 2011; Pan et al., 2012), the Lhasa terrane is subdivided into the northern, central, and southern subterranes that are separated by the Shiquan River-Nam Tso 107 108 Mélange Zone (SNMZ) and the Luobadui–Milashan Fault (LMF), respectively (Fig. 1b).

109

110 <Figure 1>

111

The southern margin of Asian continent was subducted by the Neo-Tethyan oceanic slab 112 in the Mesozoic, giving rise to continental arc magmatism for accretionary orogeny to form 113 the Gangdese orogen in the Lhasa terrane (Zheng et al., 2013). Then the Gangdese continental 114 arc llithosphere was subducted by the Indian continental lithosphere in the Early Cenozoic, 115 leading to collisional orogeny for the formation of the Himalayan orogen (Zheng and Wu, 116 2018). The Gangdese orogen is a huge belt of plutonic rocks in the southern and central parts 117 of the Lhasa terranes (Searle et al., 1987). It is the largest individual batholith in the 118 Himalayan-Tibetan magmatic belt, extending from the Kailas in the west to Namche Barwa in 119 the east, and it is made up mainly of diorites, granodiorites and granites with emplacement 120

ages lasting from 198 to 43 Ma (e.g., Debon et al., 1986; Harris et al., 1990; Chung et al., 121 2003, 2005, 2009; Chu et al., 2006; Wen, 2007; Wen et al., 2008a, b; Ji et al., 2009, 2014; 122 Ravikant et al., 2009). Numerous studies of the Gangdese intermediate to felsic intrusive 123 rocks in the southern Gangdese area indicate a magmatic "flare-up" at ca. 100-80 Ma in the 124 early phase of Late Cretaceous (Harris et al., 1988a, b; Chung et al., 2005; Chu et al., 2006; 125 Mo et al., 2007; Wen et al., 2008a, b; Ji et al., 2009; Zhu et al., 2011, 2012; Ma et al., 2013a, b, 126 c). Furthermore, three stages of magmatism at 95-86, 85-73, and 68-60 Ma during the Late 127 Cretaceous to early Paleocene have been identified in the Gangdese orogen along the northern 128 129 margin of the southern Lhasa subterrane (Wen et al., 2008a, b; Ji et al., 2014; Tang et al., 2019). The last stage of felsic magmatism is delayed to the continental collision at 55 ± 10 Ma 130 (Zheng and Wu, 2018). 131

The present study focuses on Late Cretaceous felsic plutons and pegmatitic veins at 132 Langxian in the southeastern margin of the Gangdese orogen (Fig. 1b). These plutons were 133 134 intruded into Late Paleozoic metamafic to metafelsic rocks that crop out close to the Langxian area (Wang et al., 2013). Two samples were collected from the Langxian pluton (Fig. 1), 135 136 which consists mainly of medium-grained granitoids (granite 12LS257) with minor felsic or pegmatite veins (pegmatite 12LS258) (Fig. 2). There are clear contact boundaries between 137 138 pegmatites and granites, and the pegmatite is included within and cut by the granite (Fig. 2a). The mineral assemblages of the pegmatite and granite are similar, with quartz, K-feldspar, 139 plagioclase, and muscovite as the major minerals, and biotite, garnet, zircon, and apatite as 140 the common accessory minerals (Fig. 3). Garnet grains in the pegmatite are conspicuous in 141 142 the field and about 1 mm in size (Fig. 2b and c), and under a microscope they can be described as phenocrysts (Fig. 3d-f). In contrast, the garnets in granite 12LS257 are not 143 visible in the field, even in thin-section, but were separated using heavy liquid methods. 144

The mineral abbreviations used in this paper are from Whitney and Evans (2010). For trace elements we follow the conventional terminology of light rare earth elements (LREE), heavy rare earth elements (HREE), and high field strength elements (HFSE).

148

```
149 <Figures 2 and 3>
```

- 150
- 151

ANALYTICAL METHODS

- 152 Whole-rock major and trace elements
- 153 Major and trace elements of whole-rock samples were analyzed at the ALS laboratory

Group in Guangzhou, China. Sample powders were mixed with either lithium borate or 154 lithium metaborate flux and fused in a furnace at ~1000 °C. Flat glass discs were prepared 155 from the melt and analyzed by X-ray fluorescence spectrometry for major elements. 156 Trace-element analysis was performed by inductively coupled plasma-mass spectrometry 157 (ICP-MS) on solutions after flat glass has been completely dissolved in 4% nitric acid. The 158 repeated analyses of the standards GSR-2 and GSR-3 indicate that analytical uncertainties are 159 160 better than $\pm 1-2\%$ for major elements and better than $\pm 5\%$ for most trace elements. Majorand trace- element compositions of granite and pegmatite are presented in the appendix Table 161 162 S1.

163

164 Mineral major and trace elements

Mineral separates were extracted by crushing, sieving and heavy liquid methods, and then purified by hand picking under a binocular microscope. Zircon and garnet were mounted in epoxy resin and then polished down to expose the grain centers. Transparent zircon grains with few cracks were selected for O and Hf isotopes, U–Pb dating, and trace element analysis. Some garnets were selected for major and trace element analyses.

Mineral inclusions in garnet and zircon were carefully examined in thin section under a 170 171 microscope and by the Laser Raman before major and trace element analyses. The laser Raman analysis of mineral inclusions was made on a Jobin Yvon LabRAM HR Evolution 172 micro-Raman spectrometer, equipped with a confocal optics, Air-cooled CCD detector and a 173 532 nm Ar laser excitation source at CAS Key Laboratory of Crust-Mantle Materials and 174 Environments (CAS-KL-CMME) in University of Science and Technology of China (USTC), 175 Hefei. The beam size for Raman spectroscopy was ~1 µm. Monocrystalline silicon and 176 polystyrene were analyzed during the analytical session to monitor the precision and accuracy 177 of the Raman data. 178

Major element mapping of garnet was undertaken by the energy dispersive spectrometry
(EDS) on Oxford Inca X-Max 50 and the scanning electron microscope (SEM) on Fei Quanta
450 FEG at State Key Laboratory of Geological Processes and Mineral Resources in China
University of Geosciences, Wuhan. The measurements were carried out with an accelerating
voltage of 20 kV, a spot size of 6.0 µm and a working distance of 12 mm.

Major element analyses of garnet were made on a Shimadzu EPMA-1600 electron microprobe (EMP) at CAS-KL-CMME in USTC, Hefei, China. The working conditions were set at 15 kV of accelerating voltage and a beam current of 2×10^{-8} A, with a beam size of 1 μ m. Homogenously synthetic oxides and well-characterized natural minerals from SPI Supplies Standards were used as standards. The procedures of standard correction on the three components of matrix effects, including atomic number (Z), absorption (A) and fluorescence (F), commonly called the ZAF correction, were used for data reduction. The precision for most major elements (e.g., atomic numbers are greater than 10 and concentrations are higher than 10%) are better than $\pm 2\%$ (1 σ).

Major and trace elements in garnet were also simultaneously analyzed utilizing a laser 193 ablation-inductively coupled plasma mass spectrometer (LA-ICPMS) at CAS-KL-CMME in 194 USTC, Hefei. This was made on the same garnet grains as the EMP analysis, and BSE images 195 196 were used to efficiently avoid cracks and mineral inclusions. Detailed operating conditions for 197 the laser ablation system and the ICP-MS instrument and data reduction are the same as 198 descriptions by Liu et al. (2008). Laser sampling was performed using a GeoLas HD laser with a diameter of 32 µm for zircon and 24 µm for garnet. The laser frequency was 6 Hz and 199 the energy density was 7 J·cm⁻², and a laser depth was $\sim 10 \mu m$. An Agilent 7900 ICP-MS 200 instrument was used to acquire ion-signal intensities. Helium was applied as a carrier gas. 201 202 Argon was used as the make-up gas and mixed with the carrier gas via a T-connector before 203 entering the ICP.

204 Each analysis incorporated a background acquisition of approximately 20 s (gas blank) 205 followed by 50 s data acquisition from the sample. The Agilent Chemstation was utilized for the acquisition of each individual analysis. Off-line selection and integration of background 206 and analyzed signals, and time-drift correction and quantitative calibration were performed by 207 ICPMSDataCal (Liu et al., 2008, 2010a). Trace element concentrations were calibrated by 208 using ²⁹Si as internal calibrant and NIST SRM610 as the reference material. The precision and 209 accuracy of the NIST-610 analyses are $\pm 2-5\%$ for most elements at the ppm concentration 210 level. Element contents were calibrated against multiple-reference materials (BCR-2G, 211 BIR-1G and BHVO-2G) without applying internal standardization (Liu et al., 2008). The 212 preferred values of element concentrations for the USGS reference glasses are from the 213 GeoReM database (http://georem.mpch-mainz.gwdg.de/). Analyses of USGS rock standards 214 215 (BCR-2G and BHVO-2G) indicate that the precision and accuracy (1σ) are better than $\pm 10\%$ for trace elements and rare earth elements, and $\pm 2\%$ for major elements. Limits of detection 216 (LOD) for these USGS standards were described by Gao et al. (2002) in detail. LOD for each 217 element and analysis were calculated individually as three times the standard deviation of the 218 219 background signal (taken before ablation) divided by element sensitivity during the respective ablation. For non-significant analytical signals, LOD values are also reported (marked by < 220 221 LOD). It has to be mentioned that the area and depth of laser ablation are much bigger than

the volume sampled by the EMP analysis, thus the major elements analyzed by EMP and LA-ICPMS are not exactly the same, and the LA-ICPMS analysis may have a lower precision than the EMP analysis. Major element compositions analyzed by EMP were used in this study.

226

227 SIMS zircon in-situ oxygen isotopes

Firstly, catholuminescence (CL) images of zircons were obtained using a microprobe 228 JEOL JXA-8900RL in Chinese Academy of Geological Sciences, Beijing, with imaging at 20 229 230 kV and 15 nA. Then the in-situ O isotopes in zircon were analyzed using a Cameca IMS 1280-HR at State Key Laboratory of Isotope Geochemistry in Guangzhou Institute of 231 Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou. Analytical procedures are 232 the same as those described by Li et al. (2010a). The Cs⁺ primary ion beam was accelerated at 233 234 10 kV, with an intensity of ca. 2 nA (Gaussian mode with a primary beam aperture of 200 µm to reduce aberrations) and rastered over a 10 µm area. The analysis spot was about 20 µm in 235 236 diameter (10 µm beam diameter + 10 µm raster). Oxygen isotopes were measured in multi-collector mode using two off-axis Faraday cups. The NMR (Nuclear Magnetic 237 238 Resonance) probe was used for magnetic field control with stability better than 2.5 ppm over 16 h on mass 17. One analysis takes ~3.5 min consisting of pre-sputtering (~30 s), 120 s of 239 automatic tuning of the secondary beam, and 64 s of analysis. The instrumental mass 240 fractionation (IMF) was corrected using in-house zircon standard Penglai with a 241 recommended δ^{18} O value of 5.31±0.10‰ with reference to the Vienna standard mean oceanic 242 water (VSMOW) that has a recommended ${}^{18}O/{}^{16}O$ ratio of 0.0020052 (Li et al., 2010b). The 243 measured ¹⁸O/¹⁶O ratios for samples (raw data) were firstly normalized relative to the 244 VSMOW, and then corrected for IMF (Li et al., 2010a). 245

The internal precision of a single analysis was generally better than $\pm 0.20\%$ (2 σ standard 246 error) for δ^{18} O values. The external precision, measured by the reproducibility of repeated 247 analyses of the Penglai standard during three sessions of this study, is $\pm 0.41\%$ (2SD, n=38), 248 $\pm 0.34\%$ (2SD, n = 34) and $\pm 0.34\%$ (2SD, n = 50). During the three sessions, a second zircon 249 standard Qinghu was measured as an unknown to ascertain the veracity of the IMF. Three 250 series of analyses in twenty, eighteen and twenty-six measurements, respectively, of Qinghu 251 zircon standard yield a weighted mean of $\delta^{18}O = 5.51 \pm 0.30\%$ (2SD), $5.51 \pm 0.36\%$ (2SD) 252 and $5.53 \pm 0.53\%$ (2SD). These values are in good agreement within errors with a reported 253 value of $5.4 \pm 0.2\%$ (Li et al., 2013). Zircon O isotope data are listed in Table 5. 254

255

Zircon U–Pb ages and trace elements

After the SIMS zircon O isotope analysis, zircon U–Pb dating and trace element analysis 257 were simultaneously performed by the LA-ICPMS in-situ method at State Key Laboratory of 258 Geological Processes and Mineral Resources in China University of Geosciences, Wuhan. 259 Laser ablation sampling was performed using a Geolas 2005 system equipped with a 193 nm 260 ArF-excimer laser. An Agilent 7500a ICP-MS was used to acquire ion-signal intensities. 261 Detailed instrumental conditions and data acquisition were described by Liu et al. (2010b, 262 2010c) and Zong et al. (2010). For zircon trace element and U–Pb isotope analyses, the blank 263 264 was very low because high purity argon and helium was used. The ICP-MS measurements were carried out by using time-resolved analysis and peak hopping at one point per mass and 265 the dwell time for each isotope was set at 6 ms for Si, Ti, Nb, Ta, Zr and REE, 15 ms for ²⁰⁴Pb, 266 ²⁰⁶Pb, ²⁰⁷Pb and ²⁰⁸Pb, and 10 ms for ²³²Th and ²³⁸U. Each spot analysis includes 20s of 267 background acquisition and 40s sample data acquisition. Trace element concentrations were 268 calibrated by using ²⁹Si as an internal calibrant and NIST SRM610 as a reference material. 269 270 The precision and accuracy of NIST-610 analyses are $\pm 2-5\%$ for most elements at the ppm concentration level. Zircon Ti temperatures are calculated following the calibration of Watson 271 272 et al. (2006).

The U–Pb isotope ratios such as 207 Pb/ 206 Pb, 206 Pb/ 238 U, 207 Pb/ 235 U and 208 Pb/ 232 Th ratios 273 were calculated using Glitter 4.0 software (Macquarie University), which were then corrected 274 using the zircon 91500 as an external calibrant with a ²⁰⁶Pb/²³⁸U age of 1065.4±0.6 Ma 275 (Wiedenbeck et al., 1995). All the measured isotope ratios of zircon 91500 were regressed 276 over the course of the analytical session and used to calculate correction factors. These 277 correction factors were then applied to each sample in order to correct both instrumental mass 278 279 bias and depth-dependent elemental and isotopic fractionation. Apparent and discordant U-Pb ages were calculated by the ISOPLOT program (Ludwig, 2003). The obtained U-Pb ages for 280 zircon standards GJ-1 are consistent with the preferred values within about $\pm 2\%$ uncertainty 281 (2σ) by simple external calibration against zircon standard 91500 (Liu et al., 2010b). 282

283

284 Zircon Lu-Hf isotopes

After the zircon O isotope analysis, U–Pb dating and trace element analysis, the in-situ measurement of zircon Lu-Hf isotopes was performed on a Neptune MC-ICPMS at State Key Laboratory of Geological Processes and Mineral Resources in China University of Geosciences, Wuhan. A "wire" signal smoothing device is included in this laser ablation system, by which smooth signals are produced even at very low laser repetition rates down to

1 Hz (Hu et al., 2012a). The energy density of laser ablation that was used in this study was 290 5.3 J cm⁻². Helium was used as the carrier gas within the ablation cell and was merged with 291 argon (makeup gas) after the ablation cell. As demonstrated by our previous study, for the 193 292 293 nm laser a consistent 2-fold signal enhancement was achieved in helium than in argon gas (Hu et al., 2008a). We used a simple Y junction downstream from the sample cell to add small 294 amounts of nitrogen (4 ml min⁻¹) to the argon makeup gas flow (Hu et al., 2008b). Compared 295 to the standard arrangement, the addition of nitrogen in combination with the use of the newly 296 designed X skimmer cone and Jet sample cone in Neptune Plus improved the signal intensity 297 of Hf, Yb and Lu by a factor of 5.3, 4.0 and 2.4, respectively. All data were acquired on 298 zircon in single spot ablation mode at a spot size of 44 µm in this study. Each measurement 299 300 consisted of 20 s of acquisition of the background signal followed by 50 s of ablation signal acquisition. Detailed operating conditions for the laser ablation system and the MC-ICP-MS 301 302 instrument and analytical method are the same as description by Hu et al. (2012b).

The major limitation to the accuracy of in-situ Hf isotope determination by 303 LA-MC-ICP-MS is the very large isobaric interference from ¹⁷⁶Yb and, to a much lesser 304 extent ¹⁷⁶Lu on ¹⁷⁶Hf. It is known that the mass fractionation of Yb (β_{Yb}) is not constant over 305 306 time and that the β_{Yb} from the introduction of solutions is unsuitable for *in situ* zircon measurements (Woodhead et al., 2004). The under- or over-estimation of the β_{Yb} value would 307 undoubtedly affect the accurate correction of ¹⁷⁶Yb and thus the determined ¹⁷⁶Hf/¹⁷⁷Hf ratio. 308 We applied the directly obtained β_{Yb} value from the zircon sample itself in real-time in this 309 study. The 179 Hf/ 177 Hf and 173 Yb/ 171 Yb ratios were used to calculate the mass bias of Hf ($\beta_{\rm Hf}$) 310 and Yb (β_{Yb}), which were normalised to 179 Hf/ 177 Hf =0.7325 (Segal et al., 2003) and 311 ¹⁷³Yb/¹⁷¹Yb=1.132685 (Fisher et al., 2014) using an exponential correction for mass bias. 312 Interference of ¹⁷⁶Yb on ¹⁷⁶Hf was corrected by measuring the interference-free ¹⁷³Yb isotope 313 and using 176 Yb/ 173 Yb =0.79639 (Fisher et al., 2014) to calculate 176 Yb/ 177 Hf. Similarly, the 314 relatively minor interference of ¹⁷⁶Lu on ¹⁷⁶Hf was corrected by measuring the intensity of the 315 interference-free ¹⁷⁵Lu isotope and using the recommended ¹⁷⁶Lu/¹⁷⁵Lu =0.02656 316 (Blichert-Toft et al., 1997) to calculate ${}^{176}Lu/{}^{177}Hf$. We used the mass bias of Yb (β_{Yb}) to 317 calculate the mass fractionation of Lu because of their similar physicochemical properties. 318 Off-line selection and integration of analyte signals, and mass bias calibrations were 319 performed using ICPMSDataCal program (Liu et al., 2010b). 320

321

Oxygen isotopes in garnet and quartz grains 322

323

The O isotope analysis of mineral separates was carried out by laser fluorination

technique using a 25W CO₂ laser MIR-10 at CAS-KL-CMME in USTC, Hefei. About 1.5 to 324 2.0 mg mineral separates reacted with BrF_5 at vacuum, and the obtained O_2 was directly 325 transferred to a Delta+ mass spectrometer for the measurement of ${}^{18}O/{}^{16}O$ and ${}^{17}O/{}^{16}O$ ratios 326 (Zheng et al., 2002). Oxygen isotope data were reported in the δ^{18} O notation relative to the 327 VSMOW standard. Reproducibility for repeated measurements of each standard on a given 328 day was better than $\pm 0.1\%$ (1 σ) for δ^{18} O. The National Standard of China GBW04416 guartz 329 with $\delta^{18}O = 11.1\%$ was used as the reference material (Zheng et al., 1998). The results are 330 listed in Table 5. Oxygen isotopic temperatures are calculated by differences in δ^{18} O values 331 between guartz and other minerals in terms of theoretically calibrated fractionation factors by 332 Zheng (1993), assuming preservation of isotope equilibration at the scale of sample 333 334 measurement. The calculated temperature uncertainties are about at levels of ± 30 to $\pm 50^{\circ}$ C.

335

336

RESULTS

337 Garnet major elements

Five garnet grains from the two granite and pegmatite samples were selected for profile 338 analyses by EMP and LA-ICP-MS, respectively. The garnets from both granite and pegmatite 339 consist of spessartine-almandine solid solutions, with compositions of Sps₄₆₋₄₉Alm₄₀₋₄₃Pyr₄₋ 340 ₅Grs₁₋₅ in the granite and Sps₄₈₋₆₀Alm₃₂₋₄₃Pyr₃₋₅Grs₀₋₃ in the pegmatite (Table 1). BSE images 341 show that the garnets from the granite are almost homogeneous, whereas those from the 342 pegmatite have obvious chemical zoning (Fig. 4). Major element X-ray mappings on the three 343 garnet grains from the pegmatite show strong zoning with respect to Mn, Fe, and Ca, but 344 weak zoning or no zoning with respect to Mg (Fig. 5). For instance, from center to rim, the 345 concentrations of spessartine decrease from 58.7 to 48.2 mol.%, the concentrations of 346 almandine increase from 33.7 to 42.5 mol.%, and for garnet grain 12LS258-G2 the grossular 347 content increases from almost zero to 2.0 mol.% (Table 1; Fig. 4h-j). In contrast, the 348 compositional profiles for garnets from the granite display almost flat patterns for almandine, 349 spessartine, and pyrope, and two grains show only weak zoning in grossular (Fig. 4f and g). 350

351

353 <Table 1>

354

355 Garnet trace elements

356 Garnets from the granite show slight variations in their chondrite-normalized REE

^{352 &}lt;Figures 4 and 5>

distributions (Fig. 4k and l). They all display flat MREE–HREE distributions in their centers, with $(Yb/Gd)_N$ values of 3.2 to 14 (Table 2). On the other hand, the rims show steeper MREE–HREE distributions, with $(Yb/Gd)_N$ values of 28 to 85. In general, the trace element profiles of garnets from the granite show obvious zoning with both compatible elements (e.g., Y, Dy, Sc, and V) and incompatible elements (e.g., Nd, Zr, and Nb) decreasing from centers to rims (Fig. 6a-b).

Similar to the major element profiles, three garnets from the pegmatite show evident 363 variations in chondrite-normalized REE distributions and trace element profiles (Figs. 4 and 364 365 6). As illustrated in Fig. 4m-o, the inner domains (e.g., LA spots 1-4, 2-4, and 3-5) display almost flat MREE–HREE distributions, with $(Yb/Gd)_N$ values of 1.4 to 2.7 (Table 2). 366 367 However, the outer rims are relatively enriched in HREE, with (Yb/Gd)_N values of 3.7 to 24. In contrast, the in-between domains have the lowest HREE concentrations and display 368 369 depleted MREE-HREE distributions with (Yb/Gd)_N values of 0.2 to 2.1. In trace element profiles (Fig. 6c-e), the compatible elements (e.g., Y, Yb, and Dy) show oscillatory variations, 370 371 with the highest concentrations in the centers or rims and the lowest concentrations in the in-between domains. But the incompatible elements (e.g., Sm and Zr) gradually decrease from 372 373 centers to rims.

374

375 <Figure 6>

376

377 Zircon U–Pb ages and trace elements

Zircons from the granite are light yellow, translucent, short to long prisms with lengths 378 of 100 to 200 µm. They are euhedral and display core-rim structures (Fig. 7a). CL images 379 show that most grains have bright rounded cores with obscure oscillatory or planar zoning and 380 dark rims with clear oscillatory zoning. Some grains with dark CL images are euhedral 381 crystals with regular oscillatory zoning. Raman analysis of these zircon grains indicated the 382 presence of many inclusions of minerals such as apatite, quartz, and feldspar. Seven analyses 383 384 on the bright cores of zircons from the granite yield variable U-Pb ages from 133 to 363 Ma (Fig. 7b) and relatively low Th/U ratios of 0.10 to 0.31 (Table 3). Their chondrite-normalized 385 386 REE patterns show a characteristic feature of magmatic zircon (Fig. 7d), with positive Ce anomalies (Ce/Ce^{*} = 3.8-16.3), negative Eu anomalies (Eu/Eu^{*} = 0.02-0.33), and steep 387 MREE-HREE patterns and (Yb/Gd)_N values of 22.4 to 68.1 (Table 4). On the other hand, 26 388 389 analyses of black rims or single grains give consistent U–Pb ages of 76.1–80.5 Ma (Fig. 7b), 390 yielding a weighted mean of 79.1 ± 0.5 Ma (Fig. 7c). These analyses give Th and U contents

that vary markedly from 58.1 to 4987 ppm and 267 to 6615 ppm, respectively. 391 Correspondingly, they have highly variable Th/U ratios of 0.04 to 1.11 (Table 3). Their 392 chondrite-normalized REE patterns also show a characteristic features of magmatic zircon 393 (Fig. 7d), with positive Ce anomalies (Ce/Ce* = 3.6-502), negative Eu anomalies (Eu/Eu* = 394 0.03–0.49), and steep MREE-HREE patterns and (Yb/Gd)_N values of 14.9 to 78.0 (Table 4). 395 Except for three analyses showing exceptionally high Ti contents of 22.6–25.7 ppm, the 396 remaining Ti contents vary from 1.84 to 12.4 ppm, yielding Ti-in-zircon temperatures of 611 397 to 760 °C with a mean of 677 ± 37 °C (Table 4). 398

399 Zircons from the pegmatite are anhedral, murky-brown, and translucent, have a very 400 weak CL brightness, and are unzoned or have a spongy texture (Fig. 7e). Raman analyses 401 show that these zircons contain many inclusions of minerals such as quartz, apatite, biotite, and thorite. U-Pb dating of 14 grains yields consistent ages of 76.0-78.3 Ma, with a weighted 402 403 mean of 76.8 \pm 0.4 Ma (Fig. 7g). These zircons have exceptionally high U contents of 17,272–52,154 ppm and moderately high Th contents of 360–1691 ppm, leading to very low 404 405 Th/U ratios of 0.02–0.03. Raman spectra obtained from the zircon domains with high Th–U contents show sharp peaks on the main bands, similar to those for the zircon domains with 406 low Th-U contents from the granite. The apparent ²⁰⁶Pb/²³⁸U ages of ~77 Ma obtained for 407 domains with high Th-U contents are indistinguishable from each other (Fig. 7d and f). 408 Therefore, the effect of metamictization on zircon U-Pb ages is negligible. 409

The chondrite-normalized REE patterns (Fig. 7h) show positive Ce anomalies (Ce/Ce* = 1.1-90.9), negative Eu anomalies (Eu/Eu* = 0.04-0.33), flat MREE-HREE distributions, and (Yb/Gd)_N values of 0.6 to 5.2 (Table 4). Except for three analyses with exceptionally high Ti values of 21.8–119 ppm, the remaining Ti contents of these zircons vary widely from 0.56 to 9.7 ppm, yielding a wide range of Ti-in-zircon temperatures of 538 to 738 °C with a mean of 634 ± 65 °C (Table 4).

416

417 <Figure 7 >

418

419 Zircon Lu–Hf isotopes

As shown in Fig. 8, the residual cores of magmatic zircon with the U–Pb ages of 133 to 363 Ma from the granite have low $^{176}Lu/^{177}$ Hf ratios of 0.000821 to 0.002019 and $^{176}Hf/^{177}$ Hf ratios of 0.282365 to 0.282470 (Table 5); their initial Hf isotope ratios vary from 0.282339 to 0.282447, yielding $\varepsilon_{Hf}(t)$ values of –11.7 to –3.5 and two-stage Hf model (T_{DM2}) ages of 1595 to 1932 Ma. In contrast, the newly grown domains of zircon at ~79 Ma from the granite have relatively high ¹⁷⁶Lu/¹⁷⁷Hf ratios of 0.001044 to 0.003875 and high ¹⁷⁶Hf/¹⁷⁷Hf ratios of 0.282884 to 0.283107; their initial Hf isotope ratios are evidently higher than those of the residual cores, yielding positive $\varepsilon_{Hf}(t)$ values of 5.6 to 11.9 and single-stage Hf model ages of 221 to 538 Ma with a peak at ~350 Ma (Fig. 8c).

In contrast, zircons from the pegmatite have the lowest $^{176}Lu/^{177}$ Hf ratios of 0.00014 to 0.000617, except for a very high value of 0.005564 in analysis #16. Nevertheless, these zircons have relatively high and homogeneous 176 Hf/ 177 Hf ratios of 0.282980 to 0.283026 and their initial Hf isotope ratios give positive $\varepsilon_{Hf}(t)$ values of 9.0 to 10.4, similar to those of the newly grown domains of zircon from the granite. The corresponding single-stage Hf model ages are 341 to 365 Ma, with a peak at ~356 Ma (Fig. 8d).

435

436 <Figure 8>

437

438 Oxygen isotopes in zircon, garnet, and quartz

Thirty-two spots were selected for the *in situ* O isotope analysis on zircons from the granite. All these domains have concordant U–Pb ages. The results show that the residual cores and overgrown rims of zircons from the granite have distinct δ^{18} O values, varying from 8.62 to 9.78‰ with an average of 8.45±1.48‰ for the cores and 6.06 to 7.05‰ with an average of 6.43 ± 0.13‰ for the rims (Fig. 8b). The residual cores are higher the overgrown rims in their δ^{18} O values, and both are higher than the normal mantle values of 5.3 ± 0.3‰ (Valley et al., 1998).

The garnet and quartz separates from the granite gave δ^{18} O values of 6.06‰ and 9.73‰, respectively. The O isotope fractionation between quartz and garnet yields a temperature of 657 °C, and the fractionation between quartz and the zircon rims gives a temperature of 708 °C (Table 5).

Fifteen *in situ* O isotope analyses on zircons from the pegmatite yield homogeneous δ^{18} O values of 5.19 to 6.00‰, with an average of 5.68 ± 0.27‰. This value is very close to the δ^{18} O values of 5.99‰ for garnet separates. Quartz from the pegmatite has a δ^{18} O value of 9.74‰. The O isotopic fractionation between quartz and garnet gives a temperature of 645 °C, and that between quartz and zircon yields a temperature of 597 °C.

455

456

DISCUSSION

457 Major element zoning in garnets

Garnet is highly refractory and can be stable over a wide rang of pressure and 458 temperature (e.g., Kohn, 2003; Caddick and Kohn, 2013; Baxter et al, 2017). It usually 459 displays a progressive decrease from core to rim in the spessartine component (called 460 bell-shaped zoning) during prograde metamorphism (e.g., Hollister, 1966), although the 461 zoning is always much more complex if the garnet grew during multiple stages of 462 metamorphism (e.g., Kohn et al., 1997). This is due to the Rayleigh fractionation effect of Mn 463 incorporation in garnet. In contrast, magmatic garnets in igneous rocks are characterized by 464 homogeneous compositions, or even inverse bell-shaped zoning of the spessartine component, 465 466 with Fe-rich and Mn-poor cores (e.g., Miller and Stoddard, 1981; du Bray, 1988; Dahlquist et 467 al., 2007).

Pressure, temperature and the matrix compositions are three important variables 468 affecting the garnet compositions (Baxter et al. 2017). As the granite and pegmatite were 469 emplaced into the Gangdese batholith at a short time of ~77-79 Ma, they may have shared the 470 same pressure. The Ti-in-zircon thermometry can be used to constrain the crystallization 471 472 temperature of magmatic rocks (Watson et al., 2006). The LA-ICPMS analysis of zircons from the granite and pegmatite yields the variable Ti contents from 1.84 to 12.4 ppm and 0.56 473 474 to 9.7 ppm, respectively (Table 4). These correspond to Ti-in-zircon temperatures of 611 to 760 °C (mean 677 \pm 37 °C) and 538 to 738 °C (mean 634 \pm 65 °C), respectively. Thus the 475 granite and pegmatite may share the similar pressure and temperature for their crystallization. 476 In this regard, the garnet compositions are mainly controlled by the melt compositions from 477 which they crystallized (du Bray, 1988). 478

It has been suggested that granitic magmas and pegmatite-forming melts differ 479 significantly with regard to their dissolved H₂O contents and viscosities at comparable 480 temperatures and pressures (Thomas and Davidson, 2012), and that these differences have a 481 major influence on their element partitioning. Usually, hydrous felsic melts for pegmatite 482 crystallization are of low viscosity and extremely evolved, exhibiting the melt-fluid 483 484 immiscibility. Miller and Stoddard (1981) and Abbott (1981) argued that Mn/(Fe + Mg) ratios 485 for magmatic garnet increase with melt differentiation and that Mn-rich garnets are probably precipitated from evolved Mn-rich melts. Moretz et al. (2013) also showed that garnet from 486 the least evolved melt has the lowest MnO, MgO and CaO contents but the highest FeO 487 content. Thus, magmatic garnets in less evolved granitoids are commonly Fe²⁺-rich, whereas 488

garnets in highly evolved granitic aplites and pegmatites commonly have higher Mn contents
(Fig. 9) (e.g., Baldwin and Von Knorring, 1983; du Bray, 1988; Whitworth, 1992; Arredondo
et al., 2001; Samadi et al., 2004a; London, 2008; Muller et al., 2012). Our specimens of
garnet from both granite and pegmatite have high MnO contents of ~20–25 wt.% (Table 1).
This demonstrates that the granite and pegmatite are likely highly evolved products of the
same granitic melt.

Garnets from the granite display almost homogeneous compositions except Ca (Fig. 4f 495 and g), which is typical of magmatic garnets in granitoid batholiths (Aydar and Gourgaud, 496 497 2002; Mirnejad et al., 2008). However, the major element profiles for garnets from the pegmatite show a systematic decrease in spessartine but increase in almandine from centers to 498 499 rims (Fig. 4h-j). This kind of center-to-rim decrease profile for spessartine has also been reported for pegmatite garnets from other localities (e.g., Manning, 1983; Whitworth, 1992; 500 501 Thöni et al., 2003; Gadas et al., 2013; Samadi et al., 2014a), and has been explained by the compatible property of Mn in garnet. In a pegmatite-forming melt, garnet is the only phase 502 503 that incorporates Mn. The precipitation and growth of garnet would lead to depletion of Mn relative to Fe in the melt and to a progressive change in the composition of garnet from 504 505 Mn-rich (core) to Fe-rich (rim). Nevertheless, the compositions of garnet rims in the pegmatite are almost identical to those of garnets in the granite, implying that the granitic 506 melts were compositionally similar to the pegmatite-forming melt from which the garnet rims 507 crystallized. 508

Oscillatory zoning in the pegmatite garnet is defined by variations in grossular 509 510 composition (Figs. 4h-j and 5). The decoupling between the Ca zoning and the Mn or Fe zoning may be related to the lower diffusion rate of Ca (Ganguly et al., 1998). For this reason, 511 the grossular zoning in our garnet samples is more likely to represent the growth zoning 512 profile than the zoning of other major components. Oscillatory zoning of major elements has 513 often been reported for garnets in dacite and pegmatite (e.g., Thoni and Miller; 2004; 514 Kawabata and Takafuji, 2005), and the repeated increases and decreases in elemental 515 516 concentrations have been interpreted variously as due to (1) cyclic changes in pressure, temperature, fluid pressure, or fluid composition (e.g., García-Casco et al., 2002; Dziggel et 517 al., 2009); (2) changes in the garnet-producing reactions (e.g., Jamtveit and Anderson, 1992); 518 or (3) rapid, cyclic growth of the garnet (Kohn, 2004). X-ray mapping of three grains of the 519 520 pegmatite garnet shows that the low-Ca and high-Mn domains form irregular shapes within 521 the mantles of the garnet phenocrysts, whereas the highest-Ca and lowest-Mn concentrations 522 occur in the rims or in some centers (Fig. 5). As the major element concentrations in the

centers and rims are almost identical, it is possible that the original centers were dissolved and 523 replaced by new growths of garnet at the same time as the rims formed. This kind of garnet 524 resorption and regrowth were also reported in atoll-shaped garnets in ultrahigh-pressure (UHP) 525 eclogites from the Dabie orogen (Cheng et al., 2007). Many voids or pores are visible within 526 the low-Ca domains (Grt-I), which may represent the passage of magmatic-hydrothermal 527 fluids or volatiles during garnet growth (Geisler et al., 2003; Rubatto et al., 2008). Therefore, 528 the domains of Grt-I were precipitated during an early stage of magmatic-hydrothermal fluid 529 activity, whereas the high-Ca rims (Grt-II) were formed later from a second episode of fluids 530 531 or melts, at which time some of the early Grt-I was replaced by Grt-II.

532

533 Trace element zoning in garnets

Trace element zoning in garnet is a tracer for the history of host metamorphic rocks, 534 535 plutons, or batholiths (e.g., Spear and Kohn, 1996; Otamendi et al., 2002; Zhou et al., 2011; Xia et al., 2016). In many cases, trace elements provide a relatively complete history of the 536 537 host rock, and this is because trivalent trace elements, especially the MREE and HREE, have large ionic radii and are thus relatively resistant to diffusion and metamorphic resetting (e.g., 538 539 Hickmott and Spear, 1992; Gaspar et al., 2008; Konrad-Schmolke et al., 2008a, b). In contrast, major element zoning produced during garnet growth is often partially or completely 540 homogenized at temperatures >680 °C after a period of time due to intracrystalline diffusion 541 of divalent cations (Carlson and Schwarze, 1997; Carlson, 2002; Caddick et al., 2010; Cheng 542 et al., 2020). As illustrated in Fig. 4, garnets from the granite have almost homogeneous 543 compositions of several major elements such as Mn, Fe, and Mg, but with exception of Ca. 544 However, their trace element profiles show a progressive zoning from core to rim with 545 decreasing amounts of REE (Sm and Dy), Y and Zr (Fig. 6a-b), which can be well explained 546 by the Rayleigh fractionation during garnet crystallization with cooling (Otamendi et al., 547 2002). However, the contents of Yb show irregular variations distinct from those of Y, which 548 is very unusual and remains unknown. In garnet grains G1 and G2 from the granite, MREE 549 550 contents display an obvious decrease relative to HREE, producing steeper MREE-HREE distribution patterns in the rims (Fig. 4k and 1). This may be related to the preferential 551 552 incorporation of HREE relative to MREE, which is consistent with the compatibility of REE 553 within garnet (Draper et al., 2003).

The major element and some incompatible trace element profiles (such as for Nd, Zr, and Nb) for the pegmatite garnets show progressive variations from core to rim, but the compatible trace element profiles (such as for Dy, Yb, and Y) display oscillations (Fig. 6c-e).

The two episodes of garnet growth recorded by Ca zoning (Fig. 4) point to two episodes of 557 magmatic or hydrothermal activity during the garnet growth, and this is confirmed by the 558 positive correlations between concentrations of Y (Yb) and CaO (Fig. 10). The centers of the 559 pegmatite garnets (e.g., LA spots 1-4C, 2-4C, and 3-5C) have flat to declining MREE-560 HREE distribution patterns (Fig. 4m-o), identical to the distributions in the centers of garnet 561 from the granite (Fig. 4k-l). The trace element concentrations in the pegmatite garnet centers 562 and outer-rims have concentrations comparable to those in the centers of garnets from the 563 granite (Table 2; Fig. 6), suggesting that the pegmatite Grt-II domains were precipitated from 564 565 the same granitic melts as the granite garnets. In contrast, the pegmatite Grt-I domains have the lowest Ca and HREE contents and depleted MREE-HREE patterns, thus confirming that 566 567 the Grt-I and Grt-II domains have distinct sources. Depleted MREE-HREE distributions are usually observed in garnets related to hydrothermal fluids (e.g., Smith et al, 2004; Gasper et 568 569 al., 2008; Dziggel et al., 2009). Therefore, the pegmatite Grt-I domains were precipitated from magmatic-hydrothermal fluids. 570

571 It has been reported that the incorporation of REE into garnet is strongly controlled by the major element compositions of the garnet (Gasper et al., 2008; Dziggel et al., 2009). For 572 573 example, grossular-rich garnet tends to be more enriched in HREE, whereas andradite-rich garnet typically exhibits less HREE-enriched patterns (Dziggel et al., 2009). Our LA-ICP-574 MS analyses show that the HREE concentrations in the pegmatite garnets increase with CaO 575 contents (Fig. 10), suggesting an increase of Ca in the second episode of fluids or melts. But 576 the question then is posed: what is the reason for these elevated Ca contents? Positive 577 correlations between Yb (Y) and CaO are often found in hydrothermal garnets from altered 578 calc-silicate rocks (Gasper et al., 2008; Dziggel et al., 2009). However, in our studying area 579 there are no carbonate rocks exposed near the outcrops of both granite and pegmatite, nor are 580 there any carbonate inclusions in the garnets or the other minerals. Therefore, the high-Ca 581 fluids or melts could not have been produced by the dissolution of local carbonate-rich rocks. 582

Whole-rock analyses of our granite and pegmatite samples show no Eu anomalies 583 584 $(Eu/Eu^* = 1.10 \text{ and } 1.00, \text{ respectively})$ in the chondrite-normalized REE distribution patterns (Appendix Fig. 1a). However, the negative Eu anomalies are prominent in the garnets from 585 both granite and pegmatite (Fig. 4k-o), indicating that plagioclase had crystallized from the 586 granitic magma and pegmatite-forming melts before the garnet growth. Both garnet and 587 plagioclase are the two major Ca-rich phases in the granite and pegmatite. In a closed system, 588 589 the early crystallization of plagioclase would decrease the Ca concentrations in the melt, 590 leading to a decrease in the Ca content of garnet crystallized from the residual melt. However, this is contrary to the observation that our studied garnets from both granite and pegmatite display an increase in Ca at the rims (Fig. 4f–j). Thus, the early crystallization of plagioclase cannot explain the elevated Ca concentrations in the garnet rims. However, the comparably high major and trace element compositions of Grt-II domains in the pegmatite and garnet centers in the granite suggest that Grt-II domains in the pegmatite are related in some way to the magmatic garnet of the granite. In other words, the elevated Ca concentrations of Grt-II domains in the pegmatite are related to the granitic magma.

- 598 The trace element zoning in the pegmatite garnets demonstrates that Grt-I domains were 599 precipitated from a magmatic-hydrothermal fluid whereas Grt-II domains in the pegmatite and the magmatic garnet in the granite crystallized from the granitic magma. As a 600 601 consequence of the infiltration of the pegmatite by the granitic melt, some of Grt-I domains were dissolved and replaced by Grt-II, and the remnants of Grt-I domains were overgrown by 602 603 rims of Grt-II. The results of these processes are shown by the patchy Grt-I domains in Fig. 5, and the oscillatory zoning of major and trace elements in the pegmatite garnets (Fig. 6). The 604 605 decoupling of Ca and the compatible elements (Y and HREEs) between Grt-I and Grt-II domains (Fig. 10) also support that the pegmatites could not crystallize from the residual 606 607 melts after the crystallization of the granitic magma. Otherwise, the crystallization of phases (quartz and plagioclase) poor in Fe, Mg, and Mn would drive the residual melts to the 608 progressive enrichment in these elements as well as Y and HREE. Thus it is also reasonable to 609 infer that the pegmatite was formed earlier than the granite, consistent with the inclusion of 610 the pegmatite within the granite (Fig. 2a). 611
- 612

613 IMPLICATIONS FOR THE ORIGIN OF BOTH GRANITE AND 614 PEGMATITE

The use of zircon Hf isotopes to trace the origins of igneous rocks and the evolution of 615 crust and mantle over time is now well established (e.g., Amelin et al., 1999, 2000; Griffin et 616 al., 2000, 2002; Andersen et al., 2002; Samson et al., 2003; Zheng et al., 2006, 2009). It also 617 demonstrated that magmatic zircon is capable of preserving their igneous δ^{18} O values through 618 subsolidus hydrothermal alteration and granulite-facies metamorphism (Valley, 2003; Zheng 619 et al., 2004). In other words, zircon O isotopes can also be used to trace the composition of 620 magmatic sources with little influence from closed-system metamorphic and magmatic 621 processes (Chen et al., 2015; Gao et al., 2016). The *in situ* Hf and O isotope analyses of zircon 622 cores and rims in our granite give quite distinct compositions, suggesting different origins. 623

The residual zircon cores show highly variable U–Pb ages from 133 to 363 Ma, negative $\epsilon_{Hf}(t)$ values of -11.7 to -3.5, two-stage Hf model (T_{DM2}) ages of 1595 to 1932 Ma, and higher $\delta^{18}O$ values of 8.62 to 9.78‰. These features indicate that the granite was derived from partial melting of sedimentary rocks, whose crustal provenance was produced by felsic magmatism in the Late Devonian to Early Cretaceous and the original crust was generated via the crust-mantle differentiation in the Middle to Late Paleoproterozoic.

630 On the other hand, the zircon rims in the granite have concordant ages of 76.1 to 80.5 Ma with an average of 79.1 \pm 0.5 Ma, positive $\varepsilon_{Hf}(t)$ values of 5.6 to 11.9, single-stage Hf 631 model ages of 221 to 538 Ma with a peak at ~350 Ma, and lower δ^{18} O values of 6.06 to 632 7.05‰. These features demonstrate that the granite was derived from reworking of the 633 juvenile crust in the Late Cretaceous. Zircons from our pegmatite have concordant U-Pb ages 634 of 76.0 to 78.3 Ma with an average of ~76.8 \pm 0.4 Ma, positive $\varepsilon_{\text{Hf}}(t)$ values of 9.0 to 10.4. The 635 corresponding single-stage Hf model ages are 341 to 365 Ma with a peak at ~356 Ma, and 636 δ^{18} O values of 5.19 to 6.00%. These signatures are very similar to those of the magmatic rims 637 of zircon from the granite, indicating that they share the same source of the juvenile crust 638 during the partial melting. In addition, the δ^{18} O values of garnet and quartz from the 639 pegmatite are also similar to those from the granite, and yield a similar O isotope temperature 640 of 645 °C in view of the uncertainties of ±30-50°C (Zheng, 1993). Therefore, the pegmatite 641 and granite would have crystallized from the same composition of granitic magmas. 642

However, the major and trace element profiles in the garnets from the pegmatite 643 indicate two generations of garnet growth. The first generation (Grt-I domains) was 644 precipitated from a magmatic-hydrothermal fluid. The slightly lower zircon δ^{18} O values for 645 the pegmatite relative to the granite zircon imply that the magmatic-hydrothermal fluid would 646 have more evolved than the magmatic fluid when the granitic magmas were emplaced into the 647 upper crust. The second generation of garnet (Grt-II domains) in the pegmatite grew from the 648 same composition of granitic magmas as the granitic garnets. The early Grt-I domains were 649 partly dissolved at this time, patchily replaced by Grt-II, with Grt-II overgrowths crystallizing 650 as rims in the presence of the granitic magmas. Therefore, the pegmatite may have formed 651 before the solidification of granitic magmas, which is consistent with the field observation 652 653 that the pegmatite is intruded by the granite (Fig. 2a). However, the almost identical zircon U– Pb ages and Hf-O isotope compositions, as well as the almost identical major and trace 654 element compositions of Grt-II domains in both granite and pegmatite, indicate that the 655 pegmatite and granite were crystallized from the differently evolved granitic magmas. The 656

identical U–Pb ages show that the time interval between these evolved magmas was too short
to be distinguished from each other.

It is commonly accepted that pegmatites form at the terminal stage of the fractional 659 crystallization of granitic magmas with fluid saturation (Anderson, 2012). The pegmatite and 660 granite studied in this study share the similar pressure and temperature of magma 661 crystallization. However, the differences in major and trace elements between the pegmatitic 662 and granitic garnets suggest an earlier crystallization of pegmatite and a later mixture with the 663 664 surrounding granitic magma. Therefore, the relationship between pegmatite and its associated 665 granite in the field may not imply the later stage of pegmatite after granite. The elements and isotopes in whole-rock and minerals (such as garnet and zircon) can be used as good 666 indicators of melt evolution. The characteristics of Grt-I domains in the pegmatite suggest that 667 the pegmatite was precipitated from the magmatic-hydrothermal fluids, which were not 668 669 evolved from the granitic melts. Nevertheless, the similarities in their zircon Hf-O isotope compositions indicate that both pegmatite and granite were derived from partial melting of the 670 671 same crustal material in Gangdese orogen. In view of the similarities in zircon U-Pb ages and Hf-O isotope compositions between the pegmatite-granite association (this study) and the 672 Gangdese mafic igneous rocks of Late Cretaceous (Tang et al., 2019), it appears that both 673 pegmatite and granite were produced by partial melting of the juvenile continental arc crust 674 along this newly accreted continental margin. 675

Both granite and pegmatite were emplaced at 76-81 Ma, indicating that this episode of 676 granitic magmatism in the Gangdese orogen predates the collisional orogeny at 55±10 Ma 677 between the Indian and Asian continents (Zheng and Wu, 2018). Because the Gangdese 678 orogen acted as the hangwall of the subducting Indian continent in the Early Cenozoic, the 679 Late Cretaceous magmatism at 76-81 Ma was caused by subduction of the Neo-Tethyan 680 oceanic slab prior to the closure of Neo-Tethyan Ocean. During this episode of felsic 681 magmatism, the preexisting continental arc juvenile crust was reworked via partial melting to 682 produce the evolved continental crust along the convergent plate boundary. Numerous studies 683 of the Langxian granitoids have demonstrated that there was a "flare-up" of magmatic activity 684 at 85–75 Ma (Wen et al., 2008b; Ji et al., 2014; Zhu et al., 2019), which has been ascribed to 685 flat subduction of the Neo-Tethyan oceanic slab (Wen et al., 2008a, 2008b). However, flat 686 subduction leads to compressional heating, which disfavor crustal anataxis in active 687 continental margins (Zheng and Chen, 2016). Instead, steep subduction for extensional 688 heating can induce crustal anataxis in active continental margins (Zheng, 2019). In this regard, 689 the subducting Neo-Tethyan oceanic slab would have rolled back at that time in order to 690

produce the extensional regime for this episode of crustal anatexis in the Gangdese orogen. 691 692 **ACKNOWLEDGMENTS** 693 This study was supported by funds from the B-type Strategic Priority Program of the 694 Chinese Academy of Sciences (XDB41000000) and the National Natural Science Foundation 695 of China (41822201 and 41772048). Thanks are due to Yixin Liu for her assistance with EMP 696 analyses, to Wenlong Liu for his assistance with the SEM imaging, to Qi Chen for his 697 assistance with the operation of the MC-LA-ICP-MS. We are grateful to Hao Cheng and an 698 anonymous reviewer for their helpful reviews that improve the manuscript. 699 700 **REFERENCES CITED** 701 702 Abbott, Jr., R.N. (1981) The role of manganese in the paragenesis of magmatic garnet: an 703 example from the Old Woman-Piute Range, California: a discussion. The Journal of 704 Geology, 89, 767–769. Amelin, Y., Lee, D.C., Halliday, A.N., and Pidgeon, R.T. (1999) Nature of the earth's earliest 705 crust from hafnium isotopes in single detrital zircons. Nature, 399, 252-255. 706 707 Amelin, Y., Lee, D.C., and Halliday, A.N. (2000) Early-middle Archean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et 708 709 Cosmochimica Acta, 64, 4205–4225. Andersen, T., Griffin, W.L., and Pearson, N.J. (2002) Crustal evolution in the SW part of the 710 Baltic Shield: the Hf isotope evidence. Journal of Petrology, 43, 1725–1747. 711 712 Anderson, J.L. (2012) Cold pegmatite. Elements, 8, 248-248. 713 Arredondo, E.H., Rossman, G.R., and Lumpkin, G.R. (2001) Hydrogen in spessartinealmandine garnets as a tracer of granitic pegmatite evolution. American Mineralogist, 86, 714 485-490. 715 Aydar, E., and Gourgaud, A. (2002) Garnet-bearing basalts: an example from Mt. Hasan, 716 Central Anatolia, Turkey. Mineralogy and Petrology, 75, 185-201. 717 Baldwin, J.R., and Von Knorring, O. (1983) Compositional range of Mn-garnet in zoned 718 granitic pegmatites. The Canadian Mineralogist, 21, 683–688. 719 Baxter, E.F., and Scherer, E.E. (2013) Garnet geochronology: Timekeeper 720 of tectonometamorphic processes. Elements, 9, 433–438. 721 722 Baxter, E.F., Caddick, M.J., and Dragovic, B. (2017) Garnet: A Rock-Forming Mineral Petrochronometer. Reviews in Mineralogy and Geochemistry, 83, 469–533. 723

- Blichert-Toft, J., Chauvel, C., and Albarède, F. (1997) Separation of Hf and Lu for
 high-precision isotope analysis of rock samples by magnetic sector-multiple collector
 ICP–MS. Contributions to Mineralogy and Petrology, 127, 248–260.
- Caddick, M.J., and Kohn, M.J. (2013) Garnet: Witness to the evolution of destructive plate
 boundaries. Elements, 9, 427–432.
- Caddick, M.J., Konopásek, J., and Thompson, A.B. (2010) Preservation of garnet growth
 zoning and the duration of prograde metamorphism. Journal of Petrology, 53, 2327–2347.
- Carlson, W., and Schwarze, E. (1997) Petrological significance of prograde homogenization
 of growth zoning in garnet: an example from the Llano Uplift. Journal of Metamorphic
 Geology, 15, 631–644.
- Carlson, W.D. (2002) Scales of disequilibrium and rates of equilibration during
 metamorphism. American Mineralogist, 87, 185–204.
- Chen, Y.-X., Zhou, K., Zheng, Y.-F., Chen, R.-X., and Hu, Z.C. (2015) Garnet geochemistry
 records the action of metamorphic fluids in ultrahigh-pressure dioritic gneiss from the
 Sulu orogen. Chemical Geology, 398, 46–60.
- Cheng, H., Nakamura, E., Kobayashi, K., and Zhou, Z. (2007) Origin of atoll garnets in
 eclogites and implications for the redistribution of trace elements during slab exhumation
 in a continental subduction zone. American Minerologist, 92, 119–1129.
- Cheng, H., Bloch, E.M., Moulas, E., and Vervoort, J.D. (2020). Reconciliation of discrepant
 U–Pb, Lu–Hf, Sm–Nd, Ar–Ar and U–Th/He dates in an amphibolite from the Cathaysia
 Block in Southern China. Contributions to Mineralogy and Petrology, 175, 4.
- 745 https://doi.org/10.1007/s00410-019-1644-9.
- 746 Chu, M.F., Chung, S.L., Song, B., Liu, D.Y., O'Reilly, S.Y., Pearson, N.J., Ji, J.Q., and Wen,
- D.J. (2006) Zircon U–Pb and Hf isotope constraints on the Mesozoic tectonics and crustal
 evolution of southern Tibet. Geology, 34, 745–748.
- Chung, S.L., Liu, D.Y., Ji, J.Q., Chu, M.F., Lee, H.Y., Wen, D.J., Lo, C.H., Lee, T.Y., Qian, Q.,
 and Zhang, Q. (2003). Adakites from continental collision zones: melting of thickened
- lower crust beneath southern Tibet. Geology, 31, 1021–1024.
- Chung, S.L., Chu, M.F., Zhang, Y., Xie, Y., Lo, C.H., Lee, T.Y., Lan, C.Y., Li, X., Zhang, Y.Q.,
 and Wang, Y. (2005). Tibetan tectonic evolution inferred from spatial and temporal
 variations in post-collisional magmatism. Earth Science Reviews, 68, 173–196.
- 755 Chung, S.L., Chu, M.F., Ji, J.Q., O'Reilly, S.Y., Pearson, N.J., Liu, D.Y., Lee, T.L., and Lo,
- 756 C.H. (2009) The nature and timing of crustal thickening in Southern Tibet: geochemical
- and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477, 36–

- Dahlquist, J.A., Galindo, C., Pankhurst, R.J., Rapela, C.W., Alasino, P.H., Saavedra, J., and
 Fanning, C.M. (2007). Magmatic evolution of the Penon Rosado Granite: Petrogenesis of
 garnet bearing granitoids. Lithos, 95, 177–207.
- Debon, F., Le Fort, P., Sheppard, S.M., and Sonet, J. (1986) The four plutonic belts of the
 Transhimalaya–Himalaya: a chemical, mineralogical, isotopic, and chronological
 synthesis along a Tibet–Nepal section. Journal of Petrology, 27, 219–250.
- Deer, W.A., Howie, R.A., and Zussman, J. (1992) An introduction to the rock-forming
 minerals, 2nd edition. Longmans, London.
- Dewey, J.F., Shackleton, R.M., Chang, C.F., and Sun, Y.Y. (1988) The tectonic evolution of
 the Tibetan Plateau. Philosophical Transactions of the Royal Society of London (Series
 A): Mathematical and Physical Sciences, 327, 379–413.
- Dong, X., Zhang, Z.M., Liu, F. He, Z.Y., and Lin, Y.H. (2014). Late Paleozoic intrusive rocks
 from the southeastern Lhasa terrane, Tibetan Plateau, and their Late Mesozoic
 metamorphism and tectonic implications. Lithos, 198–199, 249–262.
- Dorais, M.J., Pett, T.K., and Tubrett, M. (2009). Garnetites of the Cardigan Pluton, New
 Hampshire: Evidence for peritectic garnet entrainment and implications for source rock
 compositions. Journal of Petrology, 50, 1993–2016.
- du Bray, E.A. (1988). Garnet compositions and their use as indicators of peraluminous
 granitoid petrogenesis-southeastern Arabian Shield. Contributions to Mineralogy and
 Petrology, 100, 205–212.
- Dziggel, A., Wulff, K., Kolb, J., Meyer, F.M., and Lahaye, Y. (2009) Significance of
 oscillatory and bell-shaped growth zoning in hydrothermal garnet: Evidence from the
 Navachab gold deposit, Namibia. Chemical Geology, 262, 262–276.
- Erdmann, S., Jamieson, R. A., and MacDonald, M. A. (2009). Evaluating the origin of garnet,
 cordierite, and biotite in granitic rocks: a case study from the South Mountain Batholith,
 Nova Scotia. Journal of Petrology, 50, 1477–1503.
- Fisher, C. M., Vercoort J.D., and Hanchar, J.M. (2014) Guidelines for reporting zircon Hf
 isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data.
 Chemical Geology, 363, 125–133.
- Gadas, P., Novak, M., Talla, D., and Galioca, M.V. (2013) Compositional evolution of
 grossular garnet from leucotonalitic pegmatite at Ruda nad Moravou, Czech Republic; a
- complex EMPA, LA–ICP–MS, IR and CL study. Mineralogy and Petrology, 107, 311–
- *326.* 326.

^{758 48.}

- Ganguly, J., Cheng, W., and Chakraborty, S. (1998) Cation diffusion in aluminosilicate
 garnets: experimental determination in pyrope–almandine diffusion couples.
 Contributions to Mineralogy and Petrology, 131, 171–180.
- Gao, S., Liu, X.M., Yuan, H.L., Hattendorf, B., Günther, D., Chen, L., and Hu, S.H. (2002)
 Determination of forty-two major and trace elements in USGS and NIST SRM glasses
 by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards
 Newsletter, 26, 181–195.
- Gao, P., Zheng, Y.-F., and Zhao, Z.-F. (2016) Distinction between S-type and peraluminous
 I-type granites: Zircon versus whole-rock geochemistry. Lithos, 258–259, 77–91.
- García-Casco, A., Torres-Roldán, R.L., Millán, G., Monié, P., and Schneider, J. (2002)
 Oscillatory zoning in eclogitic garnet and amphibole, Northern Serpentinite Melange,
 Cuba: a record of tectonic instability during subduction? Journal of Metamorphic
 Geology, 20, 581–598.
- Gaspar, M., Knaack, C., Meinert, L.D., and Moretti, R. (2008) REE in skarn systems: a
 LA-ICPMS study of garnets from the Crown Jewel Deposit. Geochimica et
 Cosmochimica Acta, 72, 185–205.
- Geisler, T., Pidgeon, R. T., Kurtz, R., van Bronswijk, W., and Schleicher, H. (2003)
 Experimental hydrothermal alteration of partially metamict zircon. American
 Mineralogist, 88, 1496–1513.
- Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O'Reilly, S.Y.,
- and Shee, S.R. (2000) The Hf isotope composition of cratonic mantle: LA–MC–ICPMS
 analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64,
 133–147.
- Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X., and Zhou, X.
 (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes.
 Tonglu and Pingtan igneous complexes. Lithos, 61, 237–269.
- Harris, N.B.W., Xu, R.H., Lewis, C.L., and Jin, C.W. (1988a) Plutonic rocks of the 1985
 Tibet Geotraverse, Lhasa to Golmud. Philosophical transactions of the Royal Society of
 London. Series A, mathematical and physical. Sciences, 327, 145–168.
- Harris, N.B.W., Holland, T.J.B., and Tindle, A.G. (1988b) Metamorphic rocks of the 1985
 Tibet Geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society of
 London Series A-Mathematical Physical and Engineering Sciences, 327, 203–213.
- Harris, N.B.W., Inger, S., and Xu, R.H. (1990) Cretaceous plutonism in Central Tibet: an
 example of post-collision magmatism? Journal of Volcanology and Geothermal

- 826 Research, 44, 21–32.
- Hickmott, D., and Spear, F.S. (1992) Major- and trace-element zoning in garnets from
 calcerous pelites in the NW Shelburne Falls Quadrangle, Massachusetts: garnet growth
 histories in retrograded rocks. Journal of Petrology, 33, 965–1005.
- Hollister, L. S. (1966) Garnet zoning: an interpretation based on the Rayleigh fractionation
 model. Science, 154, 1647–1651.
- Hu, Z.C, Liu, Y. S., Gao S., Hu S.H., Dietiker R., and Günther D. (2008a) A Local Aerosol
 Extraction Strategy for the Determination of the Aerosol Composition in Laser Ablation
 Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic
 Spectrometry, 23, 1192–1203.
- Hu, Z.C., Gao S., Liu, Y. S., Hu, S.H., Chen, H.H., and Yuan, H.L. (2008b) Signal
 Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel
 Gas. Journal of Analytical Atomic Spectrometry, 23, 1093–1101.
- Hu, Z.C, Liu, Y. S., Gao S., Xiao, S.Q., Zhao, L.S., Günther, D., Li, M., Zhang, W., and Zong,
 K.Q. (2012a) A "wire" signal smoothing device for laser ablation inductively coupled
 plasma mass spectrometry analysis. Spectrochimica Acta Part B, 78, 50–57.
- Hu, Z.C, Liu, Y. S., Gao S., Liu, W.G., Yang, L., Zhang, W., Tong, X.R., Lin, L., Zong, K.Q.,
 Li, M., Chen, H.H., Zhou, L., and Yang, L. (2012b) Improved in situ Hf isotope ratio
 analysis of zircon using newly designed X skimmer cone and Jet sample cone in
 combination with the addition of nitrogen by laser ablation multiple collector ICP-MS.
 Journal of Analytical Atomic Spectrometry, 27, 1391–1399.
- Jamtveit, B., and Anderson, T.B. (1992) Morphological instabilities during rapid growth of
 metamorphic garnets. Physics and Chemistry of Minerals, 19, 176–184.
- Ji, W.Q., Wu, F.Y., Chung, S.L., Li, J.X., and Liu, C.Z. (2009). Zircon U–Pb
 geochronological and Hf isotopic constraints on petrogenesis of the Gangdese batholith
 in Tibet. Chemical Geology, 262, 229–245.
- Ji, W.Q., Wu, F.Y., Chung, S.L., and Liu, C.Z. (2014). The Gangdese magmatic constraints on
 a latest Cretaceous lithospheric delamination of the Lhasa terrane, southern Tibet. Lithos,
 210–211, 168–180.
- Kawabata, H., and Takafuji, N. (2005) Origin of garnet crystals in calc–alkaline volcanic
 rocks from the Setouchi volcanic belt, Japan. Mineralogical Magazine, 69, 951–971.
- Kohn, M.J., Spear, F.S., and Valley, J.W. (1997). Dehydration-melting and fluid recycling
 during metamorphism. Rangely Formation, New Hampshire, USA. Journal of
 Petrology, 38, 1255–1277.

- Kohn, M.J. (2003) Geochemical zoning in metamorphic minerals. In: Rudnick RL (ed.)
 Treatise on Geochemistry, vol. 3, pp. 229–261. Oxford: Elsevier.
- Kohn, M.J. (2004) Oscillatory- and sector-zoned garnets record cyclic (?) rapid thrusting in
 central Nepal. Geochemistry, Geophysics, Geosystems 5: Q12014.
 http://dx.doi.org/10.1029/2004GC000737.
- Konrad-Schmolke, M., Zack, T., O'Brien, P.J., and Jacob, D.E. (2008a). Combined
 thermodynamic and rare earth element modeling of garnet growth during subduction:
 Examples from ultrahigh-pressure eclogite of the Western Gneiss Region, Norway.
 Earth and Planetary Science Letters, 272, 488–498.
- Konrad-Schmolke, M., O'Brien, P.J., de Capitani, C., and Carswell, D.A. (2008b). Garnet
 growth at high– and ultra–high pressure conditions and the effect of element
 fractionation on mineral modes and composition. Lithos, 103, 309–332.
- Lackey, J.S., Romero, G.A., Bouvier, A.S., and Valley, J.W. (2012). Dynamic growth of
 garnet in granitic magmas. Geology, 40, 171–174.
- Li, Z.X., Li, X.H., Wartho, J.A., Clark, C., Li, W.X., Zhang, C.L., and Bao, C. (2010a).
 Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny,
 southeastern South China: new age constraints and pressure-temperature conditions.
 Geological Society of America Bulletin, 122, 772–793.
- Li, Q.L., Li, X.H., Liu, Y., Tang, G.Q., Yang, J.H., and Zhu, W.G. (2010b). Precise U–Pb and
 Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique.
 Journal of Analytical Atomic Spectrometry, 25, 1107–1113.
- Li, X.H., Tang, G.Q., Gong, B., Yang, Y.H., Hou, K.J., Hu, Z.C., Li, Q.L., Liu, Y., and Li,
 W.X. (2013) Qinghu zircon: a working reference for microbeam analysis of U–Pb age
 and Hf and O isotopes. Chinese Science Bulletin, 58, 4647–4654.
- Liu, Y.S., Hu, Z.C., Gao, S., Günther, D., Xu, J., Gao, C.G., and Chen, H.H. (2008). In situ analysis of major and trace elements of anhydrous minerals by LA–ICP–MS without applying an internal standard. Chemical Geology, 257, 34–43.
- Liu, Y. S., Gao, S., Hu, Z., Gao, C., Zong, K., and Wang, D. (2010a). Continental and oceanic
 crust recycling-induced melt peridotite interactions in the Trans–North China Orogen:
 U–Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of
 Petrology, 51, 537–571.
- Liu, Y.S., Hu, Z.C., Zong, K.Q., Gao, C.G., Gao, S., Xu, J., and Chen, H.H. (2010b).
 Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by
- LA-ICP-MS. Chinese Science Bulletin, 55, 1535–1546.

- London, D. (2008) Pegmatites. Canadian Mineralogist, Special Publication, 10. p 347.
- London, D., and Kontak, D.J. (2012) Granitic pegmatites: Scientific wonders and economic
 bonanzas. Elements, 8, 257–261.
- Ludwig, K.R. (2003) User's Manual for Isoplot 3.00: A Geochronological Toolkit for
 Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. No. 4,
 70 pp.
- Ma, L., Wang, Q., Li, Z.X., Wyman, D.A., Jiang, Z.Q., Yang, J.H., Gou, G.N., and Guo, H.F.
 (2013a) Early Late Cretaceous (ca. 93Ma) norites and hornblendites in the Milin area,
 eastern Gangdese: Lithosphere-asthenosphere interaction during slab roll-back and an
 insight into early Late Cretaceous (ca. 100–80Ma) magmatic "flare-up" in southern
 Lithos, 172–173, 17–30.
- Ma, L., Wang, Q., Li, Z.X., Wyman, D.A., Jiang, Z.Q., Yang, J.H., Gou, G.N., and Guo, H.F.
 (2013b) Late Cretaceous (100–89 Ma) magnesian charnockites with adakitic affinities in
 the Milin area, eastern Gangdese: partial melting of subducted oceanic crust and
 implications for crustal growth in southern Tibet. Lithos, 175–176, 315–332.
- Ma, L., Wang, Q., Wyman, D.A., Jiang, Z.Q., Yang, J.H., Li, Q.-L., Gou, G.N., and Guo, H.F.
 (2013c) Late Cretaceous crustal growth in the Gangdese area, southern Tibet:
 Petrological and Sr–Nd–Hf–O isotopic evidence from Zhengga diorite-gabbro. Chemical
 Geology, 349–350, 54–70.
- Manning, D.A. (1983) Chemical variation in garnets from aplites and pegmatites, peninsular
 Thailand. Mineralogical Magazine, 47, 353–358.
- McDonough, W.F., and Sun, S. (1995) The composition of the Earth. Chemical Geology, 120,
 223–253.
- Melo, M.G., Lana, C., Steven, G., Pedrosa-Soares, A.C., Gerdes, A., Alkmin, L.A., Nalini Jr.,
 H.A., and Alkmim, F.F. (2017). Assessing the isotopic evolution of S-type granites of
 the Carlos Chagas Batholith, SE Brazil: Clues from U–Pb, Hf isotopes, Ti
 geothermometry and trace element composition of zircon. Lithos, 284–285, 730–750.
- Miller, C. F., and Stoddard, E. F. (1981). The role of manganese in the paragenesis of
 magmatic garnet: an example from the Old Woman-Piute Range, California. Journal of
 Geology, 89, 233–246.
- Mirnejad, H., Blourian, G.H., Kheirkhah, M., Akrami, M.A., and Tutti, F. (2008)
 Garnet-bearing rhyolite from Deh-Salm area, Lut block, Eastern Iran: anatexis of deep
 crustal rocks. Mineralogy and Petrology, 94, 259–269.
- 927 Mo, X.X., Hou, Z.Q., Niu, Y.L., Dong, G.C., Qu, X.M., Zhao, Z.D., and Yang, Z.M. (2007)

- Mantle contributions to crustal thickening during continental collision: evidence from
 Cenozoic igneous rocks in Southern Tibet. Lithos, 96, 225–242.
- 930 Moretz, L., Heimann, A., Bitner, J., Wise, M., Rodrigues Soares, D., and Mousinho Ferreira,
- A. (2013) The composition of garnet as indicator of rare metal (Li) mineralization in
 granitic pegmatites. Proceeding of The 6th International Symposium on Granitic
 Pegmatites, pp. 94–95.
- Muller, A., Kearsley, A., Spratt, J., and Seltmann, R. (2012) Petrogenetic implications of
 magmatic garnet in granitic pegmatites from southern Norway. The Canadian
 Mineralogist, 50, 1095–1115.
- Narduzzi, F., Farina, F., Stevens, G., Lana, C., and Nalini Jr., H.A. (2017) Magmatic garnet in
 the Cordilleran-type Galiléia granitoids of the Araçuaí belt (Brazil): Evidence for
 crystallization in the lower crust. Lithos, 282–283, 82–97.
- Otamendi, J.E., de la Rosa, J.D., Patiño Douce, A.E. and Castro, A. (2002). Rayleigh
 fractionation of heavy rare earths and yttrium during metamorphic garnet growth.
 Geology, 30, 159–162.
- Pan, G.T., Mo, X.X., Hou, Z.Q., Zhu, D.C., Wang, L.Q., Li, G.M., Zhao, Z.D., Geng, Q.R.,
 and Liao, Z. L. (2006). Spatial-temporal framework of the Gangdese Orogenic Belt and
 its evolution. Acta Petrologica Sinica, 22, 521–533 (In Chinese with English abstract).
- Pan, G.T., Wang, L.Q., Li, R.S., Yuan, S.H., Ji, W.H., Yin, F.G., Zhang, W.P., and Wang,
 B.D. (2012) Tectonic evolution of the Qinghai-Tibet Plateau: Journal of Asian Earth
- 948 Sciences, 53, 3–14.
- Pearce, J.A., and Deng, W.M. (1988) The ophiolites of the Tibetan Geotraverse, Lhasa to
 Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the
 Royal Society of London, Series A, Mathematical and Physical Sciences, 327, 215–238.
- Ravikant, V., Wu, F.Y., and Ji, W.Q. (2009) Zircon U–Pb and Hf isotopic constraints on
 petrogenesis of the Cretaceous–Tertiary granites in eastern Karakoram and Ladakh, India.
 Lithos, 110, 153–166.
- Rubatto, D., Müntener, O., Barnhorn, A., and Gregory, C. (2008). Dissolution-reprecipitation
 of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy). American
 Mineralogist, 93, 1519–1529.
- 958 Samadi, R., Miller, N.R., Mirnejad, H., Harris, C., Kawabata, H., and Shirdashtzadeh, N.
- 959 (2014a). Origin of garnet in aplite and pegmatite from Khajeh Morad in northeastern Iran:
 960 A major, trace element, and oxygen isotope approach. Lithos, 208–209, 378–392.
- 961 Samadi, R., Mirnejad, H., Kawabata, H., Valizadeh, M.V., Harris, C., and Gazel, E. (2014b)

- Magmatic garnet in the Triassic (215 Ma) Dehnow pluton of NE Iran and its petrogenetic
 significance. International Geology Review, 56, 596–621.
- 964 Samson, S.D., D'Lemos, R.S., Blichert-Toft, J., and Vervoort, J. (2003) U-Pb geochronology
- and Hf–Nd isotope compositions of the oldest Neoproterozoic crust within the Cadomian
 orogen: new evidence for a unique juvenile terrane. Earth and Planetary Science Letters,
 208, 165–180.
- Searle, M.P., Windley, B.F., Coward, M.P., Cooper, D.J.W., Rex, A.J., Rex, D., Li, T.D., Xiao,
 X.C., Jan, M.Q., Thakur, V.C., and Kumar, S. (1987) The closing of Tethys and the
 tectonics of the Himalaya. Geological Society of America Bulletin, 98, 678–701.
- Segal, I., Halicz, L., and Platzner, I.T. (2003) Accurate isotope ratio measurements of
 ytterbium by multiple collection inductively coupled plasma mass spectrometry applying
 erbium and hafnium in an improved double external normalization procedure. Journal of
 Analytical Atomic Spectrometry, 18, 1217–1223.
- Simmons, W.B., and Webber, K.L. (2008) Pegmatite genesis: state of the art. European
 Journal of Mineralogy, 20, 421–438.
- Smith, M.P., Henderson, P., Jeffries, T.E.R., Long, J., and Williams, C.T. (2004) The rare earth
 elements and uranium in garnet from the Beinn an Dubhaich aureole, Skye, Scottland,
 UK: constraints on processes in a dynamic hydrothermal system. Journal of Petrology,
 45, 457–484.
- Spear, F.S., and Kohn, M.J. (1996) Trace element zoning in garnet as a monitor of crustal
 melting. Geology, 24, 1099–1102.
- Stevens, G., Villaros, A., and Moyen, J.F. (2007) Selective peritectic garnet entrainment as
 the origin of geochemical diversity in S-type granites. Geology, 35, 9–12.
- Sun, S.-s., and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalt:
 implications for mantle composition and processes. Geological Society Special
 Publication, 42, 313–345.
- Tang, Y.-W., Cheng, L., Zhao, Z.-F., and Zheng, Y.-F. (2019) Geochemical evidence for the
 production of granitoids through reworking of the juvenile mafic arc crust in the
 Gangdese orogen, southern Tibet. Geological Society of America Bulletin.
 https://doi.org/10.1130/B35304.1.
- Thomas, R., and Davidson, P. (2012) Water in granite and pegmatite-forming melts. Ore
 Geology Reviews, 46, 32–46.
- ⁹⁹⁴ Thöni, M., and Miller, C. (2004) Ordovician meta-pegmatite garnet (NW Ötztal basement,
- 795 Tyrol, Eastern Alps): preservation of magmatic garnet chemistry and Sm-Nd age during

mylonitization. Chemical Geology, 209, 1–26.

- Thöni, M., Petrík, I., Janák, M., and Lupták, B. (2003) Preservation of Variscan garnet in
 Alpine metamorphosed pegmatite from the Veporic Unit, Western Carpathians: evidence
 from Sm-Nd isotope data. Journal of the Czech Geological Society, 48, 123–124.
- Valley, J.W. (2003) Oxygen isotopes in zircon. Reviews in Mineralogy and Geochemistry, 53,
 343–385.
- Valley, J.W., Kinny, P.D., Schulze, D.J., and Spicuzza, M.J. (1998) Zircon megacrysts from
 kimberlite: oxygen isotope variability among mantle melts. Contributions to Mineralogy
 and Petrology, 133, 1–11.
- Villaros, A., Stevens, G., and Buick, I.S. (2009) Tracking S-type granite from source to
 emplacement: Clues from garnet in the Cape Granite Suite. Lithos, 112, 217–235.
- Wang, J.L., Zhang, Z.M., and Shi, C. (2008). Anatexis and dynamics of the southeastern
 Lhasa terrane. Acta Petrologica Sinica, 24, 1539–1551.
- Wang, L., Zeng, L.S., Gao, L.E., and Chen, Z.Y. (2013) Early Cretaceous high Mg# and high
 Sr/Y clinopyroxene-bearing diorite in the southeast Gangdese batholith, Southern Tibet
 Yanshi Xuebao, 29, 1977–1994. (In Chinese with English abstract)
- Watson, E.B., Wark, D.A., and Thomas, J.B. (2006) Crystallization thermometers for zircon
 and rutile. Contributions to Mineralogy and Petrology, 151, 413–433.
- Wen, D.-R. (2007) The Gangdese Batholith, Southern Tibet: Ages, Geochemical
 Characteristics and Petrogenesis. (PhD thesis) National Taiwan University (140 pp.).
- Wen, D.-R., Liu, D., Chung, S.-L., Chu, M.-F., Ji, J., Zhang, Q., Song, B., Lee, T.-Y., Yeh,
 M.-W., and Lo, C.-H. (2008a). Zircon SHRIMP U–Pb ages of the Gangdese batholith
 and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252,
 191–201.
- Wen, D.R., Chung, S.L., Song, B., Iizuka, Y., Yang, H.J., Ji, J.Q., Liu, D.Y., and Gallet, S.
 (2008b) Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE
 Tibet: petrogenesis and tectonic implications. Lithos, 105, 1–11.
- Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals.
 American Mineralogist, 95, 185–187.
- Whitworth, M.P. (1992) Petrogenetic implications of garnets associated with lithium
 pegmatites from SE Ireland. Mineralogical Magazine, 56, 75–83.
- 1027 Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt, A.V.,
- 1028 Roddick, J.C., and Spiegel, W. (1995) Three natural zircon standards for U–Th–Pb, Lu–
- 1029 Hf, trace element and REE analyses. Geostandards and Geoanalytical Research, 19, 1–

1030 23.

- Woodhead, J., Hergt, J., Shelley, M., Eggins, S., and Kemp, R. (2004) Zircon Hf–isotope
 analysis with an excimer laser, depth profiling, ablation of complex geometries, and
 concomitant age estimation Chemical Geology, 209, 121–135.
- Xia, Q.-X., Wang, H.-Z., Zhou, L.-G., Gao, X.-Y., Van Orman, J.A., Zheng, Y.-F., Xu, H.J.,
 and Hu, Z.C. (2016). Growth of metamorphic and peritectic garnets in ultrahigh–
 pressure metagranite during continental subduction and exhumation in the Dabie orogen.
 Lithos, 266–267, 158–181.
- Xia, Q.-X., Gao, P., Yang, G., Zheng, Y.-F., Zhao, Z.-F., Li, W.-C., and Luo, X. (2020) The
 origin of garnets in anatectic rocks from the eastern Himalayan syntaxis, southeastern
 Tibet : Constraints from major and trace element zoning and phase equilibrium
 relationships. Journal of Petrology, 61, doi: 10.1093/petrology/egaa009.
- Xu, R.H., Schärer, U., and Allègre, C.J. (1985) Magmatismand metamorphism in the Lhasa
 block (Tibet): a geochronological study. Journal of Geology, 93, 41–57.
- Yin, A., and Harrison, T.M. (2000). Geologic evolution of the Himalayan Tibetan Orogen.
 Annual Review of Earth and Planetary Sciences, 28, 211–280.
- Zhang, J.Y., Ma, C.Q., and She, Z.B. (2012) An Early Cretaceous garnet-bearing
 metaluminous A-type granite intrusion in the East Qinling Orogen, central China:
 Petrological, mineralogical and geochemical constraints. Geoscience Frontiers, 3, 635–
 646.
- Zheng, Y.-F. (1993) Calculation of oxygen isotope fractionation in anhydrous silicate
 minerals. Geochimica et Cosmochimica Acta, 57, 1079–1091.
- Zheng, Y.-F., Fu, B., Li, Y.-L., Xiao, Y.-L., and Li, S.-G. (1998) Oxygen and hydrogen isotope
 geochemistry of ultrahigh pressure eclogites from the Dabie Mountains and the Sulu
 terrane. Earth and Planetary Science Letters, 155, 113–129.
- Zheng, Y.-F., Wang, Z.-R., Li, S.-G., and Zhao, Z.-F. (2002) Oxygen isotope equilibrium
 between eclogite minerals and its constraints on mineral Sm–Nd chronometer.
 Geochimica et Cosmochimica Acta, 66, 625–634.
- Zheng, Y.-F., Wu, Y.-B., Chen, F.K., Gong, B., Li, L., and Zhao, Z.-F. (2004) Zircon U–Pb
 and oxygen isotope evidence for a large–scale ¹⁸O depletion event in igneous rocks
 during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68, 4145–4165.
- 1061 Zheng, Y.-F., Zhao, Z.-F., Wu, Y.-B., Zhang, S.-B., Liu, X.M., and Wu, F.-Y. (2006) Zircon
- 1062 U–Pb age, Hf and O isotope constraints on protolith origin of ultrahigh–pressure eclogite
- and gneiss in the Dabie orogen. Chemical Geology, 231, 135–158.

- Zheng, Y.-F., Chen, R.-X., and Zhao, Z.-F. (2009) Chemical geodynamics of continental
 subduction-zone metamorphism: Insights from studies of the Chinese Continental
 Scientific Drilling (CCSD) core samples. Tectonophysics, 475, 327–358.
- Zheng, Y.-F., Xiao, W.J., and Zhao, G.C. (2013) Introduction to tectonics of China.
 Gondwana Research, 23, 1189–1206.
- Zheng, Y.-F., and Chen, Y.-X. (2016) Continental versus oceanic subduction zones. National
 Science Review, 3, 495–519.
- Zheng, Y.-F., and Wu, F.-Y. (2018) The timing of continental collision between India and
 Asia. Science Bulletin, 63, 1649–1654.
- 1073 Zheng, Y.-F. (2019) Subduction zone geochemistry. Geoscience Frontiers, 10, 1223-1254.
- Zheng, Y.-F., Mao, J.W., Chen, Y.J., Sun, W.D., Ni, P., and Yang, X.Y. (2019) Hydrothermal
 ore deposits in collision orogens. Science Bulletin, 64, 205–212.
- Zhou, L.-G., Xia, Q.-X., Zheng, Y.-F., and Chen, R.-X. (2011). Multistage growth of garnet
 in ultrahigh–pressure eclogite during continental collision in the Dabie orogen:
 constrained by trace elements and U–Pb ages. Lithos, 127, 101–127.
- Zhu, D.C., Zhao, Z.D., Niu, Y.L., Mo, X.X., Chung, S.L., Hou, Z.Q., Wang, L.Q., and Wu,
 F.Y. (2011). The Lhasa Terrane: Record of a microcontinent and its histories of drift and
 growth. Earth and Planetary Science Letters, 301, 241–255.
- Zhu, D.C., Zhao, Z.D., Niu, Y., Dilek, Y., Hou, Z.Q., and Mo, X.X. (2012) The origin and
 pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23, 1429–1454.
- Zhu, D.C., Wang, Q., Chung, S.-L., Cawood, P.A., and Zhao, Z.-D. (2019) Gangdese
 magmatism in southern Tibet and India–Asia convergence since 120 Ma, in Treloar, P.J.,
 and Searle, M.P., eds., Himalayan Tectonics: A Modern Synthesis: Geological Society of
 London, Special Publication, 483, 583–604.
- Zong, K., Liu, Y., Hu, Z., Kusky, T., Wang, D., Gao, C., Gao, S., and Wang, J. (2010)
 Melting–induced fluid flow during exhumation of gneisses of the Sulu ultrahigh–
 pressure terrane. Lithos, 120, 490–510.
- 1091 1092

1093 Supplementary Table

- 1094
- Table S1. Whole-rock major and trace element compositions of the granite and pegmatitefrom the Gangdese orogen.

1097

1098

1099	Figure Captions
1100	
1101	Fig. 1. (a) Sketch map of the geology of the Himalayan–Tibetan Plateau; (b) Distribution of
1102	the eastern Gangdese batholith in the Lhasa terrane showing the sampling location
1103	(modified after Ji et al., 2014)
1104	
1105	Fig. 2. Field photographs of the granite and pegmatite at Langxian in the southeastern Lhasa
1106	terrane. (a) Relationship between granite and pegmatite in the outcrop. (b)–(c) Close-up
1107	views of the coarse-grained garnet-bearing pegmatite and the fine-grained granite. (d)
1108	Samples collected from the pegmatite.
1109	
1110	Fig. 3. Photomicrographs of granite (a–b) and pegmatite (c–f). Mineral abbreviations are from
1111	Whitney and Evans (2010).
1112	
1113	Fig. 4. (a-e) BSE images of garnets from granite and pegmatite. (f-j) Major element profiles
1114	of the garnets from EMP analyses. (k-o) Chondrite-normalized REE distributions from
1115	LA-ICP-MS analyses. Chondrite values are from Sun and McDonough (1989).
1116	
1117	Fig. 5. Mn, Fe, Ca, and Mg mapping of three grains of garnet (G1–G3) from the pegmatite.
1118	
1119	Fig. 6. Trace element profiles from LA–ICP–MS analyses of four garnet grains from (a-b) the
1120	granite and (c–e) the pegmatite.
1121	
1122	Fig. 7. (a-d) CL images, U-Pb concordia diagrams, weighted mean ages, and
1123	chondrite-normalized REE distributions for garnets from the granite. (e-h) CL images,
1124	U-Pb concordia diagrams, weighted mean ages, and chondrite-normalized REE
1125	distributions for garnets from the pegmatite. The numbers in circles denote the analysis
1126	numbers, with adjacent values being the corresponding apparent ²⁰⁶ Pb/ ²³⁸ U ages. The
1127	oval shapes denote the analyzed O isotopes.
1128	
1129	Fig. 8. (a) Plots of zircon ¹⁷⁶ Lu/ ¹⁷⁷ Hf ratios versus ¹⁷⁶ Hf/ ¹⁷⁷ Hf ratios. (b) Plots of $\varepsilon_{\text{Hf}}(t)$ values
1130	versus δ^{18} O values. (c–d) Histograms of Hf model ages for the granite and pegmatite,
1131	respectively.
1132	

Fig. 9. Comparisons of CaO versus MnO contents (wt.%) for garnets from the granite and 1133 pegmatite, and also magmatic garnets from highly evolved granitoids and pegmatites, 1134 low-evolved experimental melts, and peritectic garnets from high-pressure (HP) to 1135 ultrahigh-pressure (UHP) metamorphic rocks. Data for the garnets from highly evolved 1136 granitoids and pegmatites are from Baldwin and Von Knorring (1983), du Bray (1988), 1137 Whitworth (1992), Arredondo et al. (2001), Dahlquist et al. (2007), Muller et al. (2012), 1138 Zhang et al. (2012), and Samadi et al. (2014a). Data for the garnets from low-evolved 1139 melts are from Wang et al. (2008), Xia et al. (2020), and some unpublished data 1140 1141 obtained from melting experiments. Data for the HP garnets from M/I-type magmas are 1142 from Samadi et al. (2014b). Data for other magmatic garnets are from Thoni and Miller 1143 (2004).

- 1144
- 1145 **Fig. 10.** Plots of Y and Yb concentrations versus CaO contents for garnets from the pegmatite.
- 1146 Grt-I and Grt-II refer to the two stages of garnet growth.
- 1147

Sample																
Grain				G1				G2					G9			
Spot	1-1	1-3	1-5	1-7	1-9	1-10	2-1	2-3	2-5	2-7	9-1	9-3	9-5	9-7	9-8	9-9
Domain																
SiO ₂	36.73	36.22	36.03	36.55	36.36	36.64	36.49	36.57	36.48	35.81	36.85	35.98	36.39	37.23	36.61	36.33
TiO ₂	b.d	0.067	0.207	0.235	0.05	0.070	0.075	0.054	0.225	0.024	0.092	0.045	0.053	0.054	0.104	0.072
Al_2O_3	20.34	20.09	19.51	19.75	20.15	19.71	19.96	19.24	19.76	20.11	20.22	19.97	20.18	20.11	20.32	20.05
FeO	18.47	19.58	19.66	19.62	19.34	19.02	19.06	19.03	19.22	18.66	19.80	19.25	19.70	19.77	19.68	19.57
MnO	21.14	20.29	20.66	20.62	20.19	20.29	20.31	20.56	20.68	20.50	20.29	20.36	20.45	19.95	20.53	20.13
MgO	1.064	1.264	1.255	1.228	1.186	1.158	1.253	1.234	1.238	1.198	1.273	1.129	1.116	1.245	1.276	1.271
CaO	1.860	1.982	1.821	1.717	1.779	1.664	1.671	1.593	1.783	1.87	1.712	1.924	2.000	1.983	1.943	1.647
Cr ₂ O ₃	b.d	b.d	0.001	0.025	0.003	b.d	b.d	0.069	0.019	b.d	b.d	0.021	b.d	0.037	b.d	0.003
Total	99.60	99.50	99.15	99.74	99.05	98.55	98.81	98.35	99.41	98.17	100.25	98.68	99.90	100.38	100.44	99.07
Si	3.009	2.977	2.978	2.997	2.997	3.031	3.012	3.036	2.999	2.980	3.001	2.983	2.981	3.023	2.979	2.995
Al^{iv}	-	0.023	0.022	0.003	0.003	-	-	-	0.001	0.020	-	0.017	0.019	-	0.021	0.005
Al^{vi}	1.966	1.928	1.886	1.911	1.958	1.924	1.945	1.887	1.918	1.955	1.945	1.938	1.934	1.927	1.933	1.947
Ti	-	0.004	0.013	0.014	0.003	0.004	0.005	0.003	0.014	0.002	0.006	0.003	0.003	0.003	0.006	0.004
Cr	-	-	-	0.002	-	-	-	0.005	0.001	-	-	0.001	-	0.002	-	-
Fe ³⁺	0.023	0.060	0.089	0.065	0.035	0.035	0.035	0.061	0.059	0.038	0.043	0.051	0.055	0.039	0.054	0.043
Fe ²⁺	1.243	1.286	1.270	1.281	1.299	1.281	1.281	1.260	1.263	1.261	1.306	1.283	1.295	1.303	1.285	1.306
Mn	1.467	1.413	1.447	1.432	1.409	1.422	1.420	1.445	1.440	1.445	1.400	1.430	1.419	1.372	1.415	1.406
Mg	0.130	0.155	0.155	0.150	0.146	0.143	0.154	0.153	0.152	0.149	0.155	0.140	0.136	0.151	0.155	0.156
Ca	0.163	0.175	0.161	0.151	0.157	0.148	0.148	0.142	0.157	0.167	0.149	0.171	0.176	0.173	0.169	0.145
Total	8.000	8.021	8.021	8.006	8.006	7.989	7.998	7.992	8.004	8.016	8.004	8.017	8.018	7.994	8.017	8.008
Sps	49.22	47.46	48.58	48.34	47.14	48.44	47.89	49.46	48.62	48.49	47.04	47.93	47.59	46.55	47.50	47.07
Alm	40.94	41.48	40.81	41.50	42.73	41.67	41.93	40.46	40.95	40.93	42.75	41.66	41.95	42.49	41.62	42.84
Prp	4.36	5.20	5.19	5.07	4.88	4.87	5.20	5.23	5.12	4.99	5.193	4.678	4.571	5.111	5.196	5.229
Grs	4.34	2.85	0.92	1.74	3.51	3.23	3.24	1.47	2.26	3.67	2.867	3.076	3.107	3.748	2.957	2.701
Adr	1.13	3.02	4.50	3.27	1.74	1.80	1.75	3.15	2.98	1.92	2.153	2.585	2.781	1.982	2.731	2.159

Table 1 Representative microprobe data (in wt.%) of garnets and their calculated structural formula based on 12 oxygen atoms from the Gandese orogen.

Table 1 (Continued)
-----------	------------

Sample								12LS258								
Grain				G1								G2				
Spot	A1	A2	A5	A9	A14	A17	A18	A20	B1	B2	В5	B9	B12	B15	B19	B20
Domain																
SiO ₂	35.92	36.45	35.88	36.35	35.80	36.16	36.55	36.42	36.72	36.34	36.34	36.22	36.24	36.50	36.56	35.92
TiO ₂	0.049	0.06	0.052	0.196	0.188	0.169	0.009	0.057	0.094	0.094	0.18	0.117	0.095	0.063	0.058	0.069
Al ₂ O ₃	20.13	20.26	19.99	19.73	19.94	19.78	20.06	20.10	19.30	19.78	19.54	19.63	19.87	20.10	19.85	20.15
FeO	19.49	20.04	17.14	17.87	18.39	19.46	20.34	19.23	19.35	18.63	17.89	16.62	16.83	17.42	19.89	19.64
MnO	20.80	20.76	23.95	23.16	22.38	21.73	21.29	21.23	21.13	22.20	23.67	24.81	25.10	23.89	20.61	20.927
MgO	1.035	1.038	0.997	1.033	1.034	1.067	1.072	0.873	0.945	1.081	0.99	0.997	0.936	1.037	1.129	1.055
CaO	1.714	1.626	1.228	1.496	1.712	1.277	1.076	1.671	1.700	1.119	1.432	1.406	1.289	1.340	1.570	1.717
Cr ₂ O ₃	b.d	b.d	0.007	b.d	b.d	b.d	b.d	0.027	0.004	b.d	b.d	0.009	0.001	b.d	0.002	0.022
Total	99.14	100.23	99.25	99.84	99.44	99.65	100.39	99.61	99.25	99.24	100.05	99.82	100.36	100.35	99.66	99.49
Si	2.970	2.981	2.969	2.987	2.957	2.980	2.988	2.995	3.029	3.001	2.985	2.981	2.971	2.983	3.002	2.962
Al^{iv}	0.030	0.019	0.031	0.013	0.043	0.020	0.012	0.005	0.000	0.000	0.015	0.019	0.029	0.017	0.000	0.038
Al^{vi}	1.936	1.937	1.924	1.903	1.904	1.907	1.927	1.947	1.882	1.930	1.884	1.893	1.898	1.925	1.926	1.926
Ti	0.003	0.004	0.003	0.012	0.012	0.010	0.001	0.004	0.006	0.006	0.011	0.007	0.006	0.004	0.004	0.004
Cr	-	-	-	-	-	-	-	0.002	-	-	-	0.001	-	-	-	0.001
Fe ³⁺	0.054	0.053	0.064	0.075	0.075	0.073	0.064	0.042	0.073	0.057	0.093	0.088	0.086	0.063	0.060	0.061
Fe ²⁺	1.294	1.318	1.123	1.153	1.195	1.268	1.327	1.281	1.262	1.230	1.136	1.057	1.068	1.128	1.306	1.293
Mn	1.457	1.438	1.679	1.612	1.565	1.517	1.474	1.479	1.476	1.553	1.647	1.730	1.743	1.654	1.433	1.461
Mg	0.128	0.127	0.123	0.127	0.127	0.131	0.131	0.107	0.116	0.133	0.121	0.122	0.114	0.126	0.138	0.130
Ca	0.152	0.142	0.109	0.132	0.151	0.113	0.094	0.147	0.150	0.099	0.126	0.124	0.113	0.117	0.138	0.152
Total	8.024	8.018	8.026	8.014	8.030	8.018	8.018	8.009	7.996	8.007	8.019	8.022	8.027	8.018	8.008	8.028
Sps	49.05	48.23	56.55	54.14	52.94	50.89	49.33	49.48	50.48	52.23	55.58	58.04	58.67	55.44	48.23	49.33
Alm	41.54	42.75	35.65	37.19	37.63	40.92	43.14	42.01	40.41	39.96	36.08	33.70	33.67	36.39	42.47	41.17
Prp	4.30	4.24	4.14	4.25	4.31	4.40	4.37	3.58	3.97	4.48	4.09	4.10	3.85	4.24	4.65	4.38
Grs	2.39	2.14	0.42	0.65	1.33	0.09	-	2.73	1.40	0.48	-	-	-	0.77	1.60	1.97
Adr	2.72	2.64	3.22	3.78	3.80	3.70	3.15	2.11	3.73	2.85	4.25	4.13	3.81	3.16	3.04	3.08

Table 1 (C	ontinued)									
Sample				12LS258	3					
Grain				G3						
Spot	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
Domain										
SiO ₂	36.01	36.20	36.19	36.11	36.72	35.97	36.46	35.62	36.03	36.56
TiO ₂	0.08	0	0.055	0.194	0.147	0.058	0.116	0.044	0.006	0.083
Al_2O_3	20.26	19.95	20.07	19.62	19.76	19.86	19.46	19.89	20.21	19.64
FeO	19.74	19.77	17.38	17.30	16.65	16.63	17.11	17.13	18.81	19.70
MnO	20.74	21.33	23.54	23.90	24.30	24.81	24.68	24.41	21.75	20.89
MgO	1.192	1.155	1.043	0.898	0.999	0.837	0.954	0.988	1.211	1.05
CaO	1.572	1.237	1.216	1.687	1.697	1.431	1.364	1.423	1.097	1.666
Cr ₂ O ₃	b.d	b.d	b.d	0.001	b.d	0.021	0.012	0.004	0.026	b.d
Total	99.59	99.64	99.49	99.71	100.26	99.61	100.16	99.52	99.15	99.58
Si	2.963	2.981	2.983	2.976	3.000	2.970	2.992	2.947	2.977	3.007
Al^{iv}	0.037	0.019	0.017	0.024	-	0.030	0.008	0.053	0.023	-
Al^{vi}	1.932	1.922	1.937	1.889	1.909	1.909	1.883	1.895	1.949	1.909
Ti	0.005	0	0.003	0.012	0.009	0.004	0.007	0.003	0	0.005
Cr	-	-	-	-	-	0.001	0.001	-	0.002	-
Fe ³⁺	0.056	0.069	0.053	0.088	0.072	0.076	0.097	0.091	0.043	0.070
Fe ²⁺	1.303	1.292	1.144	1.105	1.066	1.072	1.078	1.095	1.256	1.285
Mn	1.446	1.488	1.643	1.669	1.682	1.735	1.716	1.711	1.522	1.456
Mg	0.146	0.142	0.128	0.110	0.122	0.103	0.117	0.122	0.149	0.129
Ca	0.139	0.109	0.107	0.149	0.149	0.127	0.120	0.126	0.097	0.147
Total	8.026	8.023	8.017	8.022	8.008	8.027	8.018	8.042	8.019	8.007
Sps	48.80	49.92	55.10	56.06	56.75	58.43	58.27	58.03	51.14	49.17
Alm	41.59	41.66	37.01	35.22	34.13	33.83	33.69	33.55	40.59	41.53
Prp	4.93	4.76	4.30	3.71	4.11	3.47	3.96	4.13	5.01	4.35
Grs	1.85	0.18	0.93	0.59	1.37	0.35	-	-	0.99	1.41
Adr	2.82	3.48	2.67	4.41	3.64	3.85	4.03	4.27	2.19	3.55

	5		U	5	5	5	,	1.6		U	e								
Grain	12LS257-G1			12LS257-G2						12LS257-G3					12LS258-G1				
Spot	101	102	103	104	105	201	202	203	204	205	301	302	303	304	305	101	102	103	104
Major eleme	nts (wt.%)																		
SiO_2	40.2	39.6	39.3	39.5	39.7	39.9	39.7	39.5	39.3	39.1	40.0	39.7	39.3	39.3	39.4	35.8	36.0	35.8	35.7
TiO ₂	0.051	0.17	0.17	0.063	0.046	0.048	0.059	0.14	0.20	0.046	0.045	0.054	0.076	0.048	0.041	0.062	0.045	0.055	0.170
Al_2O_3	18.3	18.0	18.2	18.7	18.8	18.3	18.7	18.5	18.2	18.9	18.4	18.5	18.6	18.7	18.8	21.2	21.2	20.9	20.6
FeO	18.6	18.7	18.7	18.4	18.3	18.7	18.1	18.0	18.2	18.1	18.2	18.5	18.6	18.6	18.4	18.4	17.7	16.0	17.0
MnO	19.6	19.7	19.8	20.1	19.9	19.8	20.0	20.2	20.5	20.4	20.1	19.9	19.9	20.0	20.0	21.4	23.0	24.8	23.4
MgO	1.07	1.11	1.14	1.14	1.07	1.08	1.14	1.15	1.15	1.10	1.04	1.13	1.14	1.12	1.07	1.12	1.11	1.00	1.05
CaO	1.34	1.46	1.53	1.40	1.40	1.39	1.39	1.47	1.45	1.57	1.40	1.41	1.48	1.49	1.57	1.63	1.18	1.32	1.60
Na ₂ O	0.027	0.053	0.036	0.022	0.020	0.021	0.029	0.042	0.036	0.017	0.018	0.022	0.032	0.021	0.016	0.036	0.016	0.014	0.034
P_2O_5	0.012	0.057	0.065	0.024	0.014	0.014	0.012	0.040	0.050	0.014	0.011	0.015	0.017	0.014	0.0070	0.027	0.036	0.040	0.055
Total	99.20	98.84	99.00	99.33	99.28	99.29	99.20	99.10	99.00	99.33	99.30	99.22	99.16	99.25	99.29	99.65	99.90	99.89	99.64
Trace elemer	nts (ppm)																		
Sc	38.2	22.3	21.3	16.4	38.9	40.6	26.6	16.5	21.0	40.0	37.3	36.0	20.5	30.8	44.9	24.8	5.38	4.70	18.5
V	17.6	5.70	5.67	8.75	15.4	15.8	14.3	10.6	10.2	12.7	15.4	17.1	16.0	13.1	14.0	9.46	1.01	1.30	2.36
Cr	1.14	b.d	b.d	0.34	0.18	0.75	1.61	3.52	0.0000	2.29	1.71	1.70	1.08	1.34	0.088	2.45	b.d.	3.22	b.d.
Sr	0.30	0.22	0.099	0.033	0.13	0.093	0.19	0.066	0.17	0.22	0.11	0.29	0.16	0.14	0.12	0.16	0.060	0.061	0.18
Y	932	3120	2384	701	754	760	1172	1951	2410	650	704	787	1446	851	753	1785	416	467	1845
Zr	2.69	20.9	23.7	4.84	2.31	2.53	3.58	8.95	20.1	2.81	1.96	2.20	4.15	2.95	1.12	5.62	8.51	9.64	23.5
Nb	b.d	6.53	8.60	0.024	0.003	b.d	b.d	0.30	4.02	0.019	0.0017	b.d	0.021	b.d	b.d	0.018	0.070	0.14	5.24
Pb	0.001	0.008	0.015	0.009	b.d	0.004	0.048	0.012	0.054	0.149	b.d	0.013	0.029	0.030	b.d	0.084	0.674	0.029	0.050
Th	0.003	0.005	0.008	b.d	b.d	0.005	b.d.	b.d.	0.044	0.002	0.016	0.002	0.009	0.004	b.d	b.d.	0.023	b.d.	b.d.
U	0.014	2.47	2.45	0.037	0.026	0.031	0.021	0.21	1.46	0.027	0.009	0.011	0.049	0.032	b.d	0.019	0.072	0.11	0.63
La	0.002	b.d.	b.d.	0.002	0.009	0.002	b.d	b.d	b.d	0.008	b.d	0.005	0.008	b.d	b.d	0.007	0.014	b.d.	b.d.
Ce	0.009	0.039	0.062	b.d	0.002	b.d	0.009	0.030	0.059	0.010	0.0078	b.d	0.002	0.003	b.d	0.009	0.16	0.030	b.d.
Pr	0.004	0.045	0.054	0.001	0.006	0.002	b.d	0.024	0.051	0.005	0.013	b.d	0.008	0.003	0.005	0.020	0.014	0.020	0.11
Nd	0.034	0.97	1.26	0.20	0.11	0.059	0.12	0.94	1.25	0.053	0.092	0.057	0.38	b.d	0.15	0.68	0.24	0.37	1.45
Sm	0.41	9.42	13.5	2.49	0.76	0.52	1.13	9.33	10.9	0.79	0.51	0.54	2.49	0.61	0.75	4.93	7.58	10.0	12.0
Eu	0.25	1.00	1.57	0.60	0.15	0.15	0.28	1.00	1.08	0.17	0.23	0.16	0.51	0.20	0.12	0.76	0.57	0.73	1.21
Gd	9.12	70.7	81.2	24.5	8.50	9.16	15.0	59.3	68.6	9.44	7.37	8.63	28.1	11.5	8.97	41.7	54.7	55.7	72.5
Tb	5.92	38.3	40.8	11.1	5.05	5.61	9.10	26.5	33.0	5.49	4.77	5.54	15.4	6.83	5.53	18.6	16.9	17.3	29.9
Dy	97.4	391	341	102	79.1	82.1	133	248	314	74.2	75.2	85.6	191	98.9	83.0	216	94.9	101	273
Но	43.2	88.5	59.5	21.2	31.7	31.1	47.2	54.5	67.8	24.1	29.8	38.3	52.2	37.6	30.6	56.8	8.27	10.5	50.6
Er	221	284	157	65.2	146	130	201	164	205	98.5	129	202	173	166	129	158	9.96	13.4	126
Tm	54.7	57.3	27.5	12.4	32.4	26.6	46.2	28.9	38.7	22.0	28.8	52.6	35.7	37.1	28.1	32.6	1.02	1.51	25.6
Yb	599	519	216	112	315	237	458	226	313	220	268	607	334	381	272	215	4.91	6.74	161
Lu	124	68.9	24.9	15.5	58.6	40.7	73.0	28.4	38.2	39.4	49.0	140	44.2	61.7	46.8	26.4	0.44	0.53	19.3
(Yb/Gd) _N	79	8.9	3.2	5.5	45	31	37	4.6	5.5	28	44	85	14	40	37	6.2	0.1	0.1	2.7

Table 2 Major and trace elements of garnets analyzed by LA-ICP-MS in granite and pegmatite from the Gangdese orogen.

Table 2	(Continued)	
14010 2	(Commada)	

Grain	12LS258-G1						12LS25	8-G2			12LS25	12LS258-G3							
Spot	105	106	107	201	202	203	204	205	206	207	208	301	302	303	304	305	306	307	308
Major eleme	nts (wt.%)																		
SiO ₂	35.6	35.8	35.5	35.6	35.5	37.7	35.4	35.1	35.2	35.8	39.1	35.8	35.6	35.5	35.5	35.2	35.6	35.4	35.2
TiO ₂	0.120	0.120	0.061	0.042	0.0709	0.039	0.088	0.084	0.090	0.050	0.050	0.042	0.060	0.030	0.071	0.180	0.055	0.050	0.055
Al_2O_3	20.6	20.6	20.7	21.4	21.4	20.2	20.8	20.9	20.9	21.3	20.4	21.6	21.5	21.6	21.5	21.4	21.7	22.0	21.8
FeO	17.6	18.5	18.6	17.8	16.1	15.4	16.3	16.2	16.4	16.5	16.4	18.5	18.5	17.0	15.6	16.1	17.1	18.1	18.0
MnO	23.3	22.3	22.2	22.4	24.3	24.4	24.6	25.1	24.7	23.8	21.1	20.8	21.4	23.5	24.6	24.2	23.1	21.9	21.8
MgO	1.07	1.07	0.94	1.05	0.99	0.89	0.98	0.97	0.99	1.04	0.97	1.16	1.05	1.07	0.99	1.01	1.09	1.12	1.02
CaO	1.46	1.44	1.59	1.38	1.18	1.13	1.41	1.41	1.40	1.11	1.52	1.60	1.49	1.24	1.52	1.66	1.28	1.24	1.56
Na ₂ O	0.028	0.025	0.031	0.027	0.035	0.027	0.032	0.019	0.023	0.025	0.057	0.039	0.042	0.010	0.010	0.011	0.016	0.020	0.042
P_2O_5	0.051	0.037	0.028	0.028	0.051	0.035	0.055	0.066	0.074	0.038	0.028	0.026	0.028	0.030	0.042	0.050	0.040	0.035	0.027
Total	99.78	99.83	99.67	99.68	99.71	99.81	99.72	99.86	99.80	99.78	99.73	99.53	99.55	99.92	99.93	99.75	99.88	99.84	99.50
Trace element	nts (ppm)																		
Sc	23.3	21.4	22.6	18.8	11.1	6.00	9.45	12.3	10.6	6.64	23.2	22.0	23.0	5.65	4.86	18.3	9.07	11.4	23.0
V	2.65	2.73	8.96	6.67	2.02	0.81	1.91	2.04	1.76	2.04	7.17	5.76	8.75	0.58	0.72	3.03	0.80	1.46	7.95
Cr	b.d.	b.d.	1.75	0.70	0.92	2.99	b.d.	2.32	8.30	1.48	1.90	b.d.	1.30	b.d.	0.51	b.d.	1.70	1.79	b.d.
Sr	0.10	0.16	0.24	0.20	0.26	b.d.	0.19	0.12	0.34	0.20	0.82	0.24	0.38	0.039	0.020	0.095	0.0068	0.086	0.46
Y	1085	822	1725	1396	1406	971	1423	562	862	1111	1273	2244	2221	321	231	1155	511	728	2325
Zr	20.2	14.1	8.07	6.02	14.7	6.15	27.4	42.9	60.1	10.7	3.31	5.70	6.09	6.06	13.3	22.7	9.74	9.15	6.54
Nb	4.68	0.81	0.011	0.015	1.47	0.050	1.04	3.97	6.16	0.11	0.24	0.027	0.12	b.d.	0.36	7.37	0.37	0.098	0.018
Pb	1.957	0.640	0.022	0.031	1.384	1.038	2.685	1.721	3.761	2.257	16.6	0.037	4.579	b.d.	b.d.	0.514	0.013	b.d.	2.858
Th	0.067	0.030	0.007	b.d.	0.10	0.074	0.42	0.26	0.41	0.18	0.48	b.d.	0.37	b.d.	0.020	0.067	b.d.	0.019	0.039
U	0.35	0.25	0.018	0.023	0.36	0.050	0.26	0.62	1.17	0.017	0.045	0.007	0.007	0.026	0.26	0.58	0.099	0.056	0.026
La	0.007	0.012	b.d.	b.d.	0.042	b.d.	0.065	0.006	b.d.	0.007	0.021	b.d.	b.d.	0.016	b.d.	0.017	b.d.	b.d.	0.009
Ce	0.24	0.14	0.071	0.006	0.057	0.091	0.57	0.39	0.85	0.16	2.12	0.015	0.79	b.d.	0.070	0.17	0.024	0.015	0.055
Pr	0.040	0.027	0.009	0.010	0.010	0.026	0.062	0.043	0.11	0.005	0.057	0.012	0.015	0.006	0.050	0.056	0.038	0.010	0.019
Nd	0.78	0.83	0.26	0.032	0.44	0.32	0.88	1.54	2.65	0.26	0.45	0.056	0.47	0.28	1.64	1.64	0.47	0.52	0.17
Sm	8.63	7.18	3.26	2.42	7.91	4.67	10.4	11.5	17.0	5.04	2.63	2.79	2.26	8.03	10.7	14.0	6.29	6.44	2.13
Eu	0.86	0.92	0.54	0.25	0.57	0.32	1.00	1.10	1.23	0.37	0.47	0.41	0.50	0.63	1.47	1.13	0.88	0.48	0.36
Gd	53.8	37.1	32.1	27.7	52.9	40.5	65.3	60.7	78.4	52.9	28.8	31.0	31.5	47.2	32.6	60.1	32.0	48.8	28.8
Tb	19.3	13.7	16.7	13.0	22.5	19.3	25.8	18.7	23.3	22.9	13.9	17.2	17.1	13.4	7.52	21.1	11.5	16.7	16.2
Dy	164	119	209	178	199	157	217	110	157	200	160	254	242	67.5	43.8	179	87.1	119	251
Но	27.4	21.1	54.2	57.7	37.1	22.7	35.2	12.6	20.2	29.7	46.5	86.5	78.4	6.14	5.78	32.6	13.1	18.2	91.4
Er	57.3	49.2	155	215	97.1	38.6	71.1	18.0	34.9	55.3	141	317	267	8.35	10.5	82.6	26.0	44.6	333
Tm	11.9	10.1	31.2	51.9	22.5	5.49	13.0	2.61	5.45	9.48	29.7	71.7	59.1	1.61	1.64	19.4	4.86	9.24	79.9
Yb	68.0	65.7	203	374	160	27.8	74.5	11.6	30.9	57.5	201	482	389	7.62	9.60	126	30.1	61.6	579
Lu	7.37	7.52	23.6	67.4	24.3	2.70	8.22	1.24	3.21	6.53	31.4	75.2	55.1	0.77	0.86	17.0	3.49	8.68	88.8
(Yb/Gd) _N	15	2.1	7.7	16	3.7	0.8	1.4	0.2	0.5	1.3	8.4	19	15	0.2	0.4	2.5	1.1	1.5	24

Analysis	ysis Element							Isote	ope ratio				Apparent age (Ma)								
	Pb	Th	U		²⁰⁷ Pb [/]		²⁰⁷ Pb [/]		²⁰⁶ Pb [/]		²⁰⁸ Pb [/]		²⁰⁷ Pb [/]		²⁰⁷ Pb [/]		²⁰⁶ Pb [/]		²⁰⁸ Pb [/]		
No	(ppm)	(ppm)	(ppm)	Th/U	²⁰⁶ Pb	2σ	²³⁵ U	2σ	2σ 238 U		²³² Th	2σ	²⁰⁶ Pb	2σ	²³⁵ U	2σ	²³⁸ U	2σ	²³² Th	2σ	
12LS257																					
1	74.4	1759	5452	0.32	0.0445	0.0013	0.0765	0.0021	0.0124	0.0001	0.0040	0.0001	error	error	74.8	1.9	79.3	0.6	80.3	1.5	
2	17.38	72.6	342	0.21	0.0533	0.0017	0.3538	0.0116	0.0479	0.0008	0.0159	0.0005	343	39.8	308	8.7	302	5.1	319	10.	
3	10.42	253	767	0.33	0.0455	0.0018	0.0787	0.0031	0.0125	0.0002	0.0038	0.0001	error		76.9	2.9	80.2	1.0	76.8	2.2	
4	7.41	58.1	542	0.11	0.0518	0.0041	0.0922	0.0069	0.0130	0.0002	0.0045	0.0003	276	184	89.6	6.4	83.5	1.1	90.3	6.3	
5	31.58	103	508	0.20	0.0530	0.0014	0.4240	0.0110	0.0578	0.0006	0.0188	0.0005	328	26.9	359	7.9	363	3.4	376	9.9	
6	93.5	2664	6615	0.40	0.0472	0.0008	0.0826	0.0017	0.0126	0.0001	0.0038	0.0001	57.5	40.7	80.6	1.6	80.9	0.9	77.6	1.6	
7	39.54	115	3190	0.04	0.0478	0.0011	0.0799	0.0019	0.0121	0.0001	0.0084	0.0037	100	53.7	78.1	1.7	77.6	0.6	169	75.	
8	55.3	371	817	0.45	0.0529	0.0011	0.4387	0.0091	0.0605	0.0009	0.0185	0.0004	324	46.3	369	6.4	378	5.6	371	7.4	
9	21.74	709	1584	0.45	0.0477	0.0017	0.0796	0.0028	0.0122	0.0002	0.0039	0.0001	83.4	81.5	77.7	2.6	78.2	1.2	78.4	2.6	
10	52.78	186	894	0.21	0.0534	0.0010	0.3971	0.0086	0.0538	0.0006	0.0164	0.0004	346	42.6	340	6.3	338	3.4	329	8.9	
11	25.70	316	1825	0.17	0.0482	0.0013	0.0866	0.0024	0.0131	0.0001	0.0049	0.0003	106	67	84.3	2.3	83.9	0.7	97.9	5.3	
12	18.21	293	1361	0.21	0.0462	0.0013	0.0795	0.0024	0.0124	0.0001	0.0039	0.0001	9.4	66.7	77.7	2.2	79.7	0.6	79.5	2.4	
13	78.9	2031	5623	0.36	0.0504	0.0010	0.0871	0.0018	0.0126	0.0001	0.0045	0.0001	213	46.3	84.8	1.7	80.4	0.9	90.9	2.0	
14	7.30	273	496	0.55	0.0466	0.0024	0.0798	0.0040	0.0125	0.0002	0.0038	0.0001	27.9	119	77.9	3.8	80.1	1.0	77.2	2.8	
15	22.26	387	1650	0.23	0.0490	0.0013	0.0842	0.0024	0.0125	0.0001	0.0041	0.0001	146	64.8	82.1	2.3	79.8	0.7	83.2	2.2	
16	60.47	959	4535	0.21	0.0495	0.0010	0.0848	0.0018	0.0124	0.0001	0.0042	0.0001	172	50.0	82.6	1.7	79.7	0.8	84.1	2.3	
17	88.3	2693	6223	0.43	0.0490	0.0010	0.0833	0.0016	0.0123	0.0001	0.0039	0.0001	150	46.3	81.3	1.5	79.1	0.7	79.6	1.4	
18	17.08	559	1197	0.47	0.0484	0.0013	0.0815	0.0022	0.0123	0.0001	0.0043	0.0001	120	64.8	79.5	2.0	78.5	0.9	86.0	2.1	
19	7.39	247	519	0.48	0.0472	0.0023	0.0800	0.0038	0.0123	0.0001	0.0037	0.0001	57.5	111	78.1	3.6	79.0	0.8	74.8	2.6	
20	5.09	166	369	0.45	0.0503	0.0033	0.0837	0.0056	0.0120	0.0002	0.0038	0.0001	209	149	81.7	5.3	76.9	1.1	76.2	2.7	
21	14.22	265	1088	0.24	0.0522	0.0015	0.0864	0.0024	0.0120	0.0001	0.0041	0.0001	295	66.7	84.2	2.2	76.8	0.8	82.8	2.8	
22	10.78	336	732	0.46	0.0493	0.0018	0.0855	0.0032	0.0126	0.0001	0.0042	0.0001	161	85	83.3	3.0	80.5	0.8	84.2	2.4	
23	34.56	352	1561	0.23	0.0498	0.0011	0.1427	0.0034	0.0209	0.0003	0.0081	0.0003	183	51.8	135	3.0	133	2.1	163	6.4	
24	43.81	1243	3129	0.40	0.0482	0.0010	0.0826	0.0018	0.0124	0.0001	0.0039	0.0001	109	51.8	80.6	1.7	79.4	0.7	78.8	1.4	
25	39.8	1975	2572	0.77	0.0467	0.0012	0.0802	0.0021	0.0124	0.0001	0.0040	0.0001	35.3	64.8	78.3	2.0	79.3	0.6	81.1	1.5	
26	51.86	138	1369	0.10	0.0510	0.0010	0.2544	0.0050	0.0360	0.0003	0.0104	0.0003	243	46.3	230	4.0	228	1.8	210	6.0	

Table 3 Zircon U-Pb isotope data for granite and pegmatite from the Gangdese orogen.	
--	--

Table 3	(Continued)	۱
Tuble 5	(Commucu)	,

Analysis		Elei	ment					Isoto	pe ratio				Apparent age (Ma)							
No	Pb	Th	U	Th/U	²⁰⁷ Pb [/]	20	²⁰⁷ Pb [/]	20	²⁰⁶ Pb [/]	20	²⁰⁸ Pb [/]	20	²⁰⁷ Pb [/]	20	²⁰⁷ Pb [/]	2σ	²⁰⁶ Pb [/]	2σ	²⁰⁸ Pb [/]	20
	(ppm)	(ppm)	(ppm)	11.0	²⁰⁶ Pb	20	²³⁵ U	20	²³⁸ U	20	²³² Th	20	²⁰⁶ Pb	20	²³⁵ U	20	²³⁸ U	20	²³² Th	20
27	11.53	343	809	0.42	0.0490	0.0017	0.0846	0.0029	0.0125	0.0001	0.0040	0.0001	150	75.0	82.4	2.8	79.8	0.9	80.9	2.1
28	18.17	492	1289	0.38	0.0452	0.0015	0.0768	0.0022	0.0124	0.0002	0.0039	0.0001	error		75.1	2.1	79.3	1.0	78.1	2.1
29	18.30	92.1	293	0.31	0.0511	0.0014	0.3930	0.0106	0.0554	0.0006	0.0180	0.0005	256	63.0	337	7.7	347	3.9	360	9.7
30	24.55	725	1718	0.42	0.0478	0.0019	0.0824	0.0035	0.0123	0.0002	0.0039	0.0001	87	102	80.4	3.3	79.0	1.0	79.3	2.1
31	80.2	4024	5089	0.79	0.0461	0.0009	0.0798	0.0017	0.0125	0.0002	0.0040	0.0001	400	-344	77.9	1.6	79.8	1.2	81.7	1.6
32	41.0	1996	2716	0.74	0.0471	0.0011	0.0776	0.0017	0.0119	0.0001	0.0038	0.0001	50.1	56	75.9	1.6	76.1	0.8	77.1	1.5
33	7.27	127	439	0.29	0.0454	0.0019	0.0897	0.0036	0.0144	0.0002	0.0048	0.0002	error		87.2	3.4	91.9	1.5	97.7	3.8
34	34.68	690	2537	0.27	0.0477	0.0010	0.0821	0.0018	0.0124	0.0002	0.0040	0.0001	83.4	84.2	80.1	1.6	79.7	1.0	81.3	1.9
35	3.81	96.9	267	0.36	0.0460	0.0027	0.0771	0.0042	0.0123	0.0002	0.0039	0.0002	error		75.4	4.0	78.8	1.3	78.4	4.0
36	77.0	4987	4496	1.11	0.0470	0.0010	0.0805	0.0017	0.0124	0.0001	0.0039	0.0001	55.7	42.6	78.6	1.6	79.2	0.6	78.5	1.2
37	65.0	1843	3935	0.47	0.0470	0.0010	0.0925	0.0020	0.0143	0.0002	0.0049	0.0001	55.7	46.3	89.9	1.9	91.5	1.3	98.6	2.0
12LS258																				
1	289	686	24163	0.03	0.0496	0.0008	0.0824	0.0015	0.0120	0.0001	0.0042	0.0001	176	6.5	80.4	1.4	76.9	0.8	85.5	2.3
2	372	994	30782	0.03	0.0503	0.0008	0.0830	0.0017	0.0119	0.0001	0.0050	0.0003	209	43.5	81.0	1.6	76.3	0.8	102	6.1
3	407	1050	33350	0.03	0.0498	0.0007	0.0820	0.0013	0.0119	0.0001	0.0048	0.0002	183	35.2	80.0	1.2	76.5	0.8	95.9	3.5
4	634	1691	52154	0.03	0.0501	0.0008	0.0823	0.0015	0.0119	0.0001	0.0048	0.0002	211	37.0	80.3	1.4	76.2	0.9	97.2	3.1
5	244	409	20168	0.02	0.0473	0.0008	0.0783	0.0014	0.0120	0.0001	0.0043	0.0001	64.9	42.6	76.5	1.4	76.8	0.6	87.6	2.8
6	293	705	24363	0.03	0.0520	0.0009	0.0863	0.0017	0.0120	0.0001	0.0086	0.0006	287	36	84.1	1.6	76.7	0.7	174	11.0
7	233	401	19162	0.02	0.0479	0.0007	0.0792	0.0013	0.0119	0.0001	0.0040	0.0001	98.2	35.18	77.4	1.2	76.6	0.6	79.9	2.24
9	342	774	28098	0.03	0.0512	0.0009	0.0845	0.0020	0.0119	0.0001	0.0083	0.0007	250	45	82.3	1.9	76.0	0.9	167	13.6
10	352	650	28635	0.02	0.0471	0.0009	0.0781	0.0015	0.0120	0.0001	0.0039	0.0001	53.8	44.4	76.3	1.4	76.7	0.7	77.9	2.0
12	343	550	27991	0.02	0.0471	0.0008	0.0779	0.0014	0.0119	0.0001	0.0039	0.0001	57.5	38.9	76.2	1.3	76.4	0.7	79.2	2.1
13	283	557	23077	0.02	0.0470	0.0007	0.0780	0.0015	0.0120	0.0001	0.0042	0.0001	55.7	37.0	76.3	1.4	76.8	0.8	84.2	2.3
14	311	692	25200	0.03	0.0538	0.0011	0.0878	0.0021	0.0117	0.0001	0.0117	0.0009	365	44.4	85.5	1.9	75.2	0.7	235	17.9
15	346	897	27180	0.03	0.0498	0.0010	0.0842	0.0017	0.0122	0.0001	0.0063	0.0004	183	15.7	82.1	1.6	78.3	0.6	126	8.9
16	241	637	19777	0.03	0.0477	0.0007	0.0792	0.0014	0.0120	0.0001	0.0039	0.0001	87	35.2	77.4	1.3	76.8	0.8	77.7	2.2
17	211	360	17272	0.02	0.0483	0.0009	0.0807	0.0017	0.0121	0.0001	0.0040	0.0001	117	41.7	78.8	1.6	77.4	0.9	80.7	2.7

Sample		12LS257																		
Spot	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
La	0.013	0.008	0.004	0.17	0.019	0.029	1.09	0.34	0.008	0.038	0.009	-	0.027	0.045	-	0.059	0.010	0.002	0.004	0.021
Ce	47.7	2.20	33.7	9.54	1.78	48.5	5.31	6.83	66.2	3.80	23.6	28.0	57.3	32.8	24.8	33.0	53.9	42.4	29.9	17.0
Pr	0.038	0.046	0.057	0.080	0.043	0.078	0.024	0.27	0.100	0.057	0.040	0.043	0.099	0.089	0.015	0.048	0.076	0.047	0.057	0.030
Nd	1.12	0.75	1.37	0.37	0.93	1.52	0.77	3.26	1.40	1.33	0.93	1.40	1.79	1.46	0.43	0.88	1.85	1.20	0.95	1.28
Sm	6.42	2.36	4.49	1.34	3.48	7.66	1.93	7.54	7.35	4.40	4.47	5.58	8.58	4.79	2.99	4.50	9.05	4.70	3.14	3.18
Eu	1.95	0.10	1.84	0.70	0.11	2.42	0.46	0.23	1.50	0.36	1.31	2.11	2.96	2.07	1.59	1.40	2.74	2.73	1.93	1.56
Gd	61.8	18.9	45.6	9.75	28.2	73.1	20.9	53.4	71.6	34.7	46.8	55.5	86.3	39.5	35.6	45.0	76.9	47.0	30.8	22.0
Tb	27.6	7.88	20.2	3.96	11.9	30.9	12.1	21.6	29.5	15.4	22.3	26.7	38.3	15.2	17.2	21.2	32.3	18.7	12.3	8.26
Dy	396	101	287	58.8	160	429	199	294	405	207	328	394	524	206	254	322	436	255	165	109
Но	167	41.4	119	27.2	66.2	174	88.7	119	161	85.9	138	166	214	85.3	112	144	173	103	70.5	45.6
Er	784	196	555	140	314	806	477	544	750	411	669	790	991	405	551	729	791	483	334	222
Tm	175	43.0	120	33.4	66.8	176	125	115	164	90.0	153	176	218	88.8	123	171	170	104	74.3	50.1
Yb	1675	404	1159	354	625	1656	1348	1005	1537	839	1490	1669	2050	853	1204	1663	1570	987	713	491
Lu	322	81.5	221	79.6	126	319	281	190	296	170	287	317	401	177	245	339	303	201	149	108
MREE	493	130	359	75	203	543	235	377	515	262	403	483	660	268	312	394	557	328	213	144
HREE	3122	767	2173	634	1199	3131	2320	1973	2909	1596	2737	3117	3874	1609	2236	3045	3006	1878	1341	917
Ce/Ce*	342.4	13.9	179.1	19.8	11.0	167.2	3.6	5.3	200.2	16.3	169.7	200.1	161.6	95.4	501.9	142.5	210.7	275.0	158.1	136.0
Eu/Eu*	0.20	0.03	0.25	0.43	0.02	0.21	0.14	0.03	0.13	0.06	0.18	0.24	0.21	0.32	0.28	0.19	0.22	0.36	0.39	0.42
(Sm/La) _N	761	484	1819	12	278	402	3	35	1508	182	788	-	497	166	-	118	1518	3529	1142	233
(Yb/Sm) _N	235	154	232	238	162	195	629	120	188	172	300	269	215	160	362	333	156	189	204	139
Y	5167	1235	3704	899	1910	5327	2966	3507	5058	2507	4383	5289	6661	2647	3495	4575	5316	3205	2148	1450
Nb	71.9	1.73	15.5	5.28	1.87	74.2	12.9	2.81	33.2	3.34	21.9	19.8	67.8	6.74	26.5	64.6	65.6	16.7	7.16	2.45
Та	15.3	1.54	3.33	3.36	1.45	17.7	10.7	1.53	8.32	2.56	7.09	5.78	15.1	1.31	6.08	18.0	15.6	3.17	1.26	0.77
Hf	16508	12659	13387	11906	13166	16009	19190	12630	14115	13608	18540	13629	13992	10656	13766	13164	15694	11970	11107	10996
Ti	5.04	5.83	5.06	3.28	4.61	4.43	1.84	22.6	3.85	2.08	3.27	3.29	7.04	4.25	4.41	3.86	7.06	5.81	5.47	2.72
T _{Ti} (℃)	684	696	684	652	677	674	611	818	663	619	651	652	711	671	674	664	711	695	690	638

Table 4 Trace elements for zircon in granite and pegmatite from the Gangdese orogen

Note: T_{Ti} (°C) denotes the Ti-in-zircon temperature following the experimental calibration of Watson et al. (2006).

Sample No.		12LS257															
Spot	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
La	-	0.004	3.12	0.014	0.004	0.17	0.016	0.013	0.004	0.009	0.021	0.022	-	0.001	0.051	0.12	0.086
Ce	27.6	31.1	29.9	32.5	52.2	3.31	31.8	45.6	2.66	34.7	98.4	59.3	5.50	41.6	12.2	115	43.6
Pr	0.021	0.032	1.17	0.040	0.086	0.11	0.040	0.051	0.046	0.046	0.17	0.093	0.061	0.050	0.033	0.26	0.075
Nd	0.45	0.82	8.55	1.17	1.94	0.73	0.89	1.14	1.14	0.98	3.70	1.93	0.57	1.60	0.56	6.06	3.16
Sm	2.75	3.92	8.00	4.40	7.88	1.11	4.19	4.75	2.89	4.91	13.7	7.81	1.05	7.45	1.93	17.4	5.64
Eu	1.25	1.14	1.68	1.74	3.46	0.41	0.99	1.26	0.13	2.43	5.90	4.25	0.55	2.52	1.03	7.65	2.08
Gd	30.7	36.0	50.3	36.0	58.0	7.37	33.3	38.9	19.3	45.2	101	59.8	6.52	74.4	13.6	112	48.8
Tb	13.8	13.9	19.3	15.2	21.0	3.55	14.1	16.2	7.77	19.1	37.4	21.8	2.43	33.4	5.41	39.7	21.3
Dy	207	187	253	204	267	57.0	194	229	97.7	270	464	271	32.3	477	76.5	471	285
Но	88.5	76.1	102	84.1	103	26.6	79.9	92.7	38.4	110	178	105	14.2	193	33.7	173	111
Er	436	364	483	402	461	150	387	450	181	526	790	471	74.8	891	171	736	493
Tm	100	81.2	105	89.6	95.3	38.1	86.7	99.6	37.8	114	164	101	18.2	192	40.5	151	105
Yb	1009	787	1009	874	880	415	845	983	357	1088	1516	947	201	1793	431	1384	959
Lu	209	158	201	177	171	95.2	170	192	71.5	218	298	193	49.0	337	100	272	190
MREE	256	242	332	262	357	69	247	290	128	342	622	364	43	595	98	648	363
HREE	1843	1466	1901	1626	1710	724	1569	1817	685	2056	2945	1817	357	3405	776	2716	1858
Ce/Ce*	411.6	283.7	3.8	219.6	185.2	5.8	215.4	250.2	17.4	215.0	171.3	180.8	27.9	259.0	71.3	116.1	124.2
Eu/Eu*	0.26	0.20	0.19	0.29	0.36	0.33	0.18	0.20	0.04	0.33	0.35	0.43	0.49	0.21	0.45	0.40	0.26
(Sm/La) _N	-	1401	4	476	2742	10	411	567	1074	814	998	542	-	24555	59	226	102
(Yb/Sm) _N	330	181	113	179	101	337	181	186	111	199	99	109	172	217	201	72	153
Y	2851	2382	3098	2602	3099	857	2553	2945	1151	3384	5370	3196	469	5956	1084	5172	3351
Nb	20.1	6.77	10.4	30.3	32.5	4.69	6.64	18.6	1.86	25.3	61.0	27.0	0.53	38.9	3.08	48.6	47.2
Та	4.88	2.12	5.27	9.49	5.51	6.29	2.17	6.13	1.14	4.83	10.00	4.87	0.46	8.51	0.73	8.14	8.12
Hf	12991	13259	12733	14158	13017	16783	13221	15074	11410	12515	11524	11314	11423	15945	9947	10978	12986
Ti	3.07	2.85	4.61	25.7	6.80	25.1	2.24	2.55	7.53	4.95	9.73	5.34	4.78	12.4	3.40	10.8	10.8
T _{Ti} (℃)	647	641	677	831	708	829	625	634	716	683	738	688	680	760	654	747	747

Table 4 (Continued)

Note: T_{Ti} (°C) denotes the Ti-in-zircon temperature following the experimental calibration of Watson et al. (2006).

Table 4 (Continued)														
Sample No.		12LS258												
Spot	1	2	3	4	5	6	7	9	10	12	13	14	15	17
La	1.13	2.62	0.69	7.15	0.066	0.67	0.041	2.15	0.103	0.0165	0.096	0.47	0.150	0.147
Ce	9.54	9.81	10.08	24.4	5.96	8.56	5.30	7.70	8.72	9.57	6.75	8.31	10.06	4.97
Pr	0.70	0.64	0.55	3.87	0.052	0.378	0.051	0.88	0.091	0.0261	0.071	0.205	0.079	0.075
Nd	5.71	4.46	5.07	20.5	1.11	3.61	0.79	5.98	1.17	0.75	1.43	2.04	2.13	1.11
Sm	18.28	21.78	24.71	62.5	11.88	17.27	10.53	26.16	11.33	11.88	15.59	16.43	20.64	9.10
Eu	2.93	2.18	3.24	5.76	1.07	2.15	0.97	3.01	1.08	0.85	1.24	1.47	1.84	0.98
Gd	185.1	242.0	241.7	458	148.8	170.9	133.0	241.7	114.9	116.0	179.5	178.2	215.9	111.3
Tb	88.4	118.1	114.7	186.1	72.8	86.9	66.9	119.3	55.0	58.6	91.3	88.3	110.7	55.9
Dy	832	1099	1079	1169	690	818	605	1075	506	537	826	834	1080	525
Но	161.1	214.1	209.5	141.1	136.8	161.1	117.2	201.6	96.5	103.8	159.0	164.7	224.4	108.6
Er	405	517	503	248	361	407	300	478	236	253	398	408	583	317
Tm	61.1	76.8	75.0	32.50	58.8	63.0	48.8	73.0	34.8	37.6	62.5	61.6	90.5	56.5
Yb	432	526	515	213.4	441	444	365	517	247.9	260.9	454	427	623	482
Lu	58.4	68.6	65.7	25.86	67.4	57.1	56.8	65.9	31.74	33.70	59.9	55.7	76.7	73.4
MREE	1127	1483	1463	1881	924	1095	816	1465	688	724	1114	1118	1429	703
HREE	1117	1402	1368	661	1065	1132	888	1336	646	689	1134	1117	1597	1037
Ce/Ce*	2.6	1.8	3.8	1.1	23.4	4.1	24.3	1.4	20.5	90.9	19.2	6.6	22.4	11.5
Eu/Eu*	0.10	0.06	0.08	0.08	0.05	0.08	0.05	0.08	0.06	0.05	0.04	0.05	0.05	0.06
(Sm/La) _N	21	22	19	3	33	23	31	18	20	20	26	23	27	48
$(Yb/Sm)_N$	25	13	56	14	277	40	401	19	170	1112	253	55	213	96
Y	7370	9738	9426	8416	6335	7519	5426	9881	4474	4850	7481	7604	10074	4908
Nb	10.76	13.10	11.13	50.9	12.26	18.01	10.19	15.36	32.00	41.9	12.99	12.22	13.07	13.67
Та	9.63	10.44	9.57	89.4	11.42	10.31	10.99	11.68	32.55	37.9	10.02	9.44	9.84	13.33
Hf	33041	31975	32079	60910	37309	31145	38878	32047	36844	36755	33374	32864	29226	37365
Ti	60	6.0	1.89	21.8	23.0	119	1.29	9.7	0.56	0.60	1.64	3.63	3.33	7.0
T _{Ti} (℃)	927	698	613	814	820	1018	588	738	538	542	604	659	653	711

Note: T_{Ti} (°C) denotes the Ti-in-zircon temperature following the experimental calibration of Watson et al. (2006).

No.	¹⁷⁶ Yb/ ¹⁷⁷ Hf	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±(2σ)	t _{6/8} (Ma)	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	ε _{Hf} (t)	±(2σ)	Т _{DM1} (Ma)	±(2σ)	f _{Lu/Hf}	T _{DM2} (Ma)	±(2σ)	Concordance	δ ¹⁸ Ο	±(2o)
12LS257																
1	0.054217	0.001914	0.282967	0.000012	79.3	0.282939	8.5	0.2	415	17	-0.94	600	27	94%	6.24	0.23
2	0.025067	0.000884	0.282460	0.000020	302	0.282447	-4.6	0.3	1118	27	-0.97	1605	44	98%	9.53	0.28
3	0.052068	0.001972	0.282904	0.000011	80.2	0.282876	6.3	0.2	506	16	-0.94	741	25	95%	6.34	0.32
4	0.026151	0.001044	0.283007	0.000012	83.5	0.282992	10.1	0.2	348	16	-0.97	503	26	92%	6.08	0.21
5	0.056442	0.001951	0.282376	0.000015	363	0.282348	-6.5	0.3	1270	21	-0.94	1770	32	98%	9.78	0.20
6	0.064323	0.002164	0.282899	0.000012	80.9	0.282867	6.1	0.2	517	18	-0.93	754	28	99%	6.41	0.24
7	0.046830	0.001807	0.283012	0.000010	77.6	0.282986	10.1	0.2	347	15	-0.95	497	23	99%	6.63	0.19
8	0.062906	0.002019	0.282451	0.000013	378	0.282422	-3.5	0.2	1164	19	-0.94	1595	30	97%	8.98	0.13
9	0.076758	0.002057	0.283005	0.000011	78.2	0.282975	9.8	0.2	360	16	-0.94	515	25	99%	6.46	0.24
10	0.056458	0.001671	0.282439	0.000012	338	0.282414	-4.7	0.2	1172	17	-0.95	1641	26	99%	9.51	0.25
12	0.089786	0.002729	0.283041	0.000014	79.7	0.283001	11.1	0.2	313	21	-0.92	435	31	97%	6.27	0.26
13	0.092757	0.002798	0.283051	0.000014	80.4	0.283010	11.5	0.3	299	21	-0.92	411	32	94%	5.75	0.25
14	0.068099	0.002134	0.282987	0.000012	80.1	0.282955	9.2	0.2	388	17	-0.94	555	27	97%	6.82	0.20
15	0.066397	0.002050	0.283016	0.000012	79.8	0.282986	10.3	0.2	344	17	-0.94	488	27	97%	6.70	0.14
16	0.089544	0.002848	0.282944	0.000009	79.7	0.282902	7.7	0.2	459	14	-0.91	654	21	96%	6.74	0.18
17	0.070917	0.002186	0.283030	0.000010	79.1	0.282998	10.8	0.2	324	14	-0.93	457	22	97%	6.26	0.23
18	0.064734	0.002604	0.283010	0.000013	78.5	0.282972	10.0	0.2	358	19	-0.92	505	29	98%	7.05	0.14
19	0.064879	0.002001	0.282995	0.000013	79.0	0.282966	9.5	0.2	374	20	-0.94	536	30	98%	7.34	0.21
23	0.056695	0.001753	0.282365	0.000012	133	0.282339	-11.7	0.2	1280	17	-0.95	1922	27	98%	8.63	0.13
24	0.055159	0.002126	0.282884	0.000012	79.4	0.282853	5.6	0.2	538	17	-0.94	788	26	98%	6.36	0.21
25	0.070426	0.002430	0.283021	0.000019	79.3	0.282985	10.4	0.3	341	28	-0.93	480	43	98%	6.55	0.18
26	0.043961	0.001624	0.282470	0.000011	228	0.282446	-5.9	0.2	1125	16	-0.95	1632	25	99%	6.69	0.17
27	0.055196	0.001678	0.283049	0.000014	79.8	0.283024	11.5	0.2	293	20	-0.95	413	32	96%	6.13	0.18
28	0.060599	0.001844	0.283024	0.000010	79.3	0.282997	10.6	0.2	330	15	-0.94	470	23	94%	6.06	0.14

Table 5 Zircon Lu-Hf isotope and oxygen isotope data for granite and pegmatite from the Gangdese orogen

Table 5 (Continued)

No.	¹⁷⁶ Yb/ ¹⁷⁷ Hf	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±(2σ)	t _{6/8} (Ma)	(¹⁷⁶ Hf/ ¹⁷⁷ Hf) _i	ε _{Hf} (t)	±(2σ)	T _{DM1} (Ma)	±(2σ)	f _{Lu/Hf}	T _{DM2} (Ma)	±(2σ)	Concordance	δ ¹⁸ Ο	±(2σ)
12LS257																
29	0.025924	0.000821	0.282446	0.000012	347	0.282434	-4.1	0.2	1135	16	-0.98	1607	26	96%	9.06	0.16
30	0.041050	0.001253	0.283058	0.000015	79.0	0.283039	11.8	0.3	277	22	-0.96	391	35	98%	6.80	0.20
31	0.124955	0.003875	0.283107	0.000014	79.8	0.283050	13.4	0.2	221	21	-0.88	288	31	97%	6.67	0.17
32	0.056687	0.001788	0.283054	0.000011	76.1	0.283028	11.5	0.2	287	16	-0.95	404	25	99%	6.13	0.30
34	0.064244	0.002428	0.282975	0.000014	79.7	0.282940	8.8	0.2	408	20	-0.93	582	31	99%	7.52	0.28
35	0.042121	0.001534	0.283084	0.000013	78.8	0.283061	12.7	0.2	241	19	-0.95	333	30	95%	6.29	0.25
36	0.102056	0.003719	0.283064	0.000023	79.2	0.283010	11.9	0.4	287	35	-0.89	386	52	99%	6.38	0.20
37	0.071692	0.002600	0.283070	0.000036	91.5	0.283032	12.4	0.6	269	53	-0.92	361	81	98%	6.43	0.25
12LS258																
1	0.018948	0.000456	0.283005	0.000008	76.9	0.282998	9.9	0.1	345	11	-0.99	510	18	95%	5.48	0.23
2	0.022797	0.000449	0.283002	0.000009	76.3	0.282995	9.8	0.2	350	13	-0.99	517	20	94%	5.73	0.21
3	0.032588	0.000617	0.283001	0.000008	76.5	0.282992	9.7	0.1	353	11	-0.98	521	18	95%	5.48	0.22
4	0.007035	0.000154	0.282980	0.000007	76.2	0.282977	9.0	0.1	378	10	-1.00	567	16	94%	5.26	0.30
5	0.016902	0.000468	0.282998	0.000009	76.8	0.282991	9.7	0.2	355	13	-0.99	525	21	99%	5.83	0.18
6	0.021762	0.000468	0.283008	0.000008	76.7	0.283001	10.0	0.1	341	12	-0.99	504	19	90%	5.84	0.20
7	0.017280	0.000431	0.282997	0.000009	76.6	0.282991	9.6	0.2	356	13	-0.99	528	21	98%	5.93	0.18
9	0.014303	0.000303	0.282994	0.000008	76.0	0.282990	9.5	0.1	359	11	-0.99	534	19	92%	5.50	0.18
10	0.007139	0.000152	0.283000	0.000008	94.3	0.282998	10.1	0.1	349	11	-1.00	510	18	99%	5.19	0.21
12	0.006346	0.000142	0.283001	0.000009	76.4	0.282999	9.8	0.2	348	13	-1.00	518	21	99%	5.72	0.18
13	0.013865	0.000292	0.282994	0.000009	76.8	0.282989	9.5	0.2	359	12	-0.99	535	20	99%	5.84	0.19
14	0.014403	0.000348	0.282981	0.000019	75.2	0.282976	9.0	0.3	378	26	-0.99	566	43	87%	6.11	0.23
15	0.015027	0.000383	0.283001	0.000031	78.3	0.282995	9.8	0.6	351	44	-0.99	519	71	95%	5.95	0.25
16	0.155214	0.005564	0.283026	0.000016	76.8	0.282945	10.4	0.3	364	26	-0.83	479	36	99%	6.00	0.15
17	0.010732	0.000308	0.282990	0.000011	77.4	0.282985	9.4	0.2	365	15	-0.99	543	25	98%	5.73	0.23

(a) 12LS258-G1

700µm

(b) 12LS258-G2

600µm (c) 12LS258-G3

Mn Ka 🛏

─ 1 200 um Fe Ka ⊢

600µm

Ca Ka 🛏 🛶 200 um

Mg Ka ⊣ — 1 200 um

(e) 12LS258 Pegmatite #1/76.9/5.48 #3/76.5/5.48 #2/76.3/5.73 #4/76.2/5.26 #7/76.6/5.93 100 µm

.... Garnets from highly-evolved granitoids and pegmatite...

