1 Revision 1

2	
3	Jasonsmithite, a new phosphate mineral with a complex microporous
4	framework, from the Foote mine, North Carolina, U.S.A.
5	
6	ANTHONY R. KAMPF ^{1§} , AARON J. CELESTIAN ¹ , AND BARBARA P. NASH ²
7 8 9	¹ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, U.S.A.
10	² Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, U.S.A.
11	
12	Abstract
13	Jasonsmithite (IMA2019–121), Mn ²⁺ 4ZnAl(PO4)4(OH)(H2O)7·3.5H2O, is a pegmatite-
14	phosphate mineral from the Foote Lithium Company mine, Kings Mountain district, Cleveland
15	County, North Carolina, USA. It is is interpreted as having formed by late-stage, low-
16	temperature hydrothermal alteration. Crystals are colorless to light brown, slightly flattened
17	prisms to about 1 mm in length with wedge-shaped terminations. The mineral is transparent with
18	vitreous luster, white streak, Mohs hardness 2, brittle tenacity, irregular fracture, and perfect
19	{001} cleavage. The density is 2.63(2) g/cm ³ . Jasonsmithite is biaxial (–), with $\alpha = 1.561(2)$, $\beta =$
20	1.580(2), $\gamma = 1.581(2)$, measured in white light. The 2V is 25(5)° and dispersion is $r < v$

§ Email address: akampf@nhm.org

21	moderate. The optical orientation is $Y = \mathbf{b}$, $X \wedge \mathbf{c} = 18^{\circ}$ in obtuse β . The Raman spectrum is
22	dominated by vibrational modes of PO4 and ZnO4 tetrahedra, AlO6 and MnO6 octahedra, and OH
23	groups. Electron-microprobe analyses gave the empirical formula
24	$(Mn_{3.09}Fe_{0.87})_{\Sigma 3.96}Zn_{1.05}Al_{0.98}(PO_4)_4(OH)(H_2O)_7 \cdot 3.5H_2O$. The mineral is monoclinic, $P2_1/c$, $a = 1000$
25	8.5822(3), $b = 13.1770(6)$, $c = 20.3040(14)$ Å, $\beta = 98.485(7)^{\circ}$, $V = 2271.0(2)$ Å ³ , and $Z = 4$.
26	The structure ($R_1 = 0.0443$ for 3685 $I > 2\sigma I$ reflections) contains zig–zag chains of edge–sharing
27	MnO ₆ octahedra that corner link to adjacent chains and to PO ₄ tetrahedra to form sheets, which
28	are decorated by ZnO4 tetrahedra. The sheets are linked to one another via dimers of AlO6
29	octahedra, forming a framework with large channels containing H2O groups. With H2O groups
30	removed, the framework has a void space of 70.2% per unit cell, and a framework density of 14.5
31	polyhedral atoms/1000 Å ³ , which would place jasonsmithite among the most porous minerals.
32	
33	Keywords: jasonsmithite; new mineral; phosphate; microporous framework structure;
34	Raman spectroscopy; Foote mine, Kings Mountain, North Carolina, U.S.A.
35	
36	INTRODUCTION
37	The Foote Lithium Company mine in the Kings Mountain district, Cleveland County,
38	North Carolina (USA) exploits spodumene-bearing pegmatites that have yielded a wide variety
39	of rare silicate and phosphate minerals, among them 14 new mineral species. Herein, we describe
40	jasonsmithite, the 15 th new mineral from the Foote mine.
41	The mineral is named 'jasonsmithite' in honor of American mineral collector Jason B.
42	Smith (b. 1977) of Charlotte, North Carolina, USA. Jason has long specialized in the minerals of
43	the Foote Lithium Company mine, where he has collected extensively. He is responsible for the

discovery of the new Foote-mine mineral species fanfaniite, ferraioloite, footemineite, and
kayrobertsonite, as well as for jasonsmithite. Jason Smith has given permission for this mineral to
be named in his honor.
The new mineral and name have been approved by the Commission on New Minerals,
Nomenclature and Classification of the International Mineralogical Association (IMA2019–121).
The holotype and two cotype specimens are deposited in the collections of the Mineral Sciences

50 Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los

51 Angeles, California 90007, USA, catalogue numbers 74374 (holotype), 74375 (cotype), and

- 52 74376 (cotype).
- 53
- 54

OCCURRENCE

55 Jasonsmithite was found by Jason B. Smith on the East dump of the Foote Lithium 56 Company mine, Kings Mountain district, Cleveland County, North Carolina, USA (35°12'40"N, 57 81°21'20"W). A brief summary of the history and geology of the Foote mine was provided by 58 Rakovan et al. (2016). Jasonsmithite was found in solution fractures and small vugs of partially 59 oxidized pegmatite. The pegmatite matrix consists of albite, columbite–(Fe), ferrisicklerite, 60 fluorapatite, muscovite, quartz, sphalerite, and spodumene. The secondary association found in 61 vugs with jasonsmithite includes eosphorite, hureaulite, jahnsite–(MnMnMn), kastningite, 62 mangangordonite, metaswitzerite, nizamoffite, stewartite, variscite, and whiteite-(CaMnMn). 63 Jasonsmithite is interpreted as having formed by late-stage, low-temperature hydrothermal alteration. The order of formation of secondary phases at the Foote mine typically follows a trend 64 65 defined by lowering temperature and concomitant increasing degree of hydration. For the 66 jasonsmithite association, the order from early to late is interpreted as (1) eosphorite, (2)

67	hureaulite, (3) nizamoffite, (4) metaswitzerite + jasonsmithite + mangangordonite + kastningite +
68	whiteite-(CaMnMn), (5) jahnsite-(MnMnMn) + stewartite + varsicite.
69	
70	PHYSICAL AND OPTICAL PROPERTIES
71	Jasonsmithite crystals are slightly flattened prisms to about 1 mm in length with wedge-
72	shaped terminations. Elongation is parallel to [100] and flattening is on {001}. The crystal forms
73	are {010}, {001}, {011}, and {11-1} (Fig. 1). Crystals commonly occur in subparallel
74	intergrowths (Fig. 2). No twinning was observed. The color of prisms commonly varies from
75	colorless to light brown with indistinct color boundaries (Fig. 2). The cause of the color has not
76	been determined, although the appearance is what might be expected from indistinct
77	submicroscopic inclusions. No compositional variation that can be correlated with the color
78	variation was observed in the electron-probe microanalyses.
79	The streak is white, the luster is vitreous, and crystals are transparent. The mineral does
80	not fluoresce under long- or short-wave ultraviolet light. The Mohs hardness is about 2 based on
81	scratch tests. The tenacity is brittle, cleavage is perfect on {001}, and the fracture is irregular.
82	The density measured by flotation in methylene iodide – toluene is 2.63(2) g/cm ³ . The calculated
83	density is 2.630 g/cm ³ for the empirical formula and 2.627 g/cm ³ for the ideal formula. At room
84	temperature, the mineral is easily soluble in dilute HCl.
85	Optically, the mineral is biaxial (–), with $\alpha = 1.561(2)$, $\beta = 1.580(2)$, $\gamma = 1.581(2)$,
86	measured in white light. The 2V was estimated as $25(5)^{\circ}$ from conoscopic observation. The
87	calculated 2 <i>V</i> is 25.6° Dispersion is $r < v$ moderate. The optical orientation is $Y = \mathbf{b}$, $X^{\wedge} \mathbf{c} = 18^{\circ}$
88	in the obtuse angle β . No pleochroism was observed.
89	

90

RAMAN SPECTROSCOPY

91	Raman spectroscopy was done on a Horiba XploRa+ micro-Raman spectrometer using an
92	incident wavelength of 532 nm, laser slit of 50 $\mu m,$ 2400 gr/mm diffraction grating, and a 100x
93	(0.9 NA) objective. The spectrum was recorded from 4000 to 60 cm ^{-1} . It was featureless between
94	2500 and 1200 cm ^{-1} . The spectrum from 4000 to 2500 cm ^{-1} is shown as an insert in the spectrum
95	from 1200 to 60 cm ⁻¹ in Figure 3. A list of the band positions, HWHMs (half-width at half
96	maximum intensity), and integrated intensities is on deposit as Supplemental ¹ Table S1.
97	The Raman spectrum of jasonsmithite is dominated by vibrational modes of the PO ₄ and
98	ZnO4 tetrahedra, the AlO6 and MnO6 octahedra, and the OH groups. The OH stretching
99	associated with H_2O and OH groups is dominant above 2200 cm ⁻¹ (see Figure 3 insert). The lack
100	of any apparent band around 1630 cm ⁻¹ corresponding to H ₂ O bending could be related to the
101	existence of many different H ₂ O sites (both on the framework and in the channel). These are
102	likely to result in many overlapping, broad low-intensity peaks, which we do not have the
103	resolution to observe, especially considering the high-background fluorescence in that region.
104	The stretching modes for the PO ₄ and ZnO ₄ overlap in the region at approximately 1050
105	to 900 cm ^{-1} . Bending modes for PO ₄ and ZnO ₄ , as well as the stretching modes for the AlO ₆ and
106	MnO_6 groups are approximately located in the 700 – 400 cm ⁻¹ region. Below 400 cm ⁻¹ is
107	dominated by octahedral bending vibrations and lattice vibrations. Because of the complexity of
108	the crystal structure, including the number of different polyhedra components within the structure
109	and the varying local geometry of those components, it is not possible at this time to identify the
110	precise vibrational mode for each peak in the Raman spectrum.

- 111
- 112

CHEMICAL COMPOSITION

113	Analyses (14 points on 2 crystals) were performed at the University of Utah on a Cameca
114	SX-50 electron microprobe with four wavelength dispersive spectrometers and using Probe for
115	EPMA software. Analytical conditions were 15 kV accelerating voltage, 10 nA beam current, and
116	a beam diameter of 10 μ m. Raw X–ray intensities were corrected for matrix effects with a $\phi\rho(z)$
117	algorithm (Pouchou and Pichoir 1991); total oxygen, including H2O, was used in matrix
118	corections. No other elements were detected by EDS or by WDS wave scans. There was only
119	minor damage from the electron beam. Because insufficient material is available for a direct
120	determination of H_2O , it has been calculated based upon the structure determination (P = 4 and O
121	= 27.5 apfu). The analytical results are provided in Table 1.
122	The empirical formula (based on 4 P and 27.5 O apfu) is
123	$(Mn_{3.09}Fe_{0.87})_{\Sigma 3.96}Zn_{1.05}Al_{0.98}(PO_4)_4(OH)(H_2O)_7 \cdot 3.5H_2O (+0.05 H \text{ for charge balance}).$ The
124	simplified formula is (Mn ²⁺ ,Fe ²⁺) ₄ ZnAl(PO ₄) ₄ (OH)(H ₂ O) ₇ ·3.5H ₂ O. The ideal formula is
125	Mn ²⁺ ₄ ZnAl(PO ₄) ₄ (OH)(H ₂ O) ₇ ·3.5H ₂ O, which requires MnO 31.59, ZnO 9.06, Al ₂ O ₃ 5.68, P ₂ O ₅
126	31.61, H ₂ O 22.06, total 100 wt%.
127	The Gladstone–Dale compatibility index $1 - (K_P/K_C)$ for the empirical formula is –0.010
128	indicating superior compatibility among the average index of refraction, calculated density, and
129	chemical composition (Mandarino 2007).
130	
131	X–RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATION
132	Powder X-ray studies were done using a Rigaku R-Axis Rapid II curved imaging plate
133	microdiffractometer, with monochromatized MoK α radiation ($\lambda = 0.71075$ Å). A Gandolfi–like
134	motion on the φ and ω axes was used to randomize the samples. Observed <i>d</i> values and
135	intensities were derived by profile fitting using JADE 2010 software (Materials Data, Inc.

136	Livermore, CA). Data are given in Supplemental ² Table S1. The observed powder diffraction
137	pattern compares very well with the pattern calculated from the crystal structure (Fig. 4). Unit
138	cell parameters refined from the powder data using JADE 2010 with whole pattern fitting are $a =$
139	8.574(5), $b = 13.168(5)$, $c = 20.387(5)$ Å, $\beta = 98.577(13)^{\circ}$, and $V = 2276.0(17)$ Å ³ .
140	Single-crystal data were collected using the same diffractometer and radiation noted
141	above. The Rigaku CrystalClear software package was used for processing the structure data,
142	including the application of an empirical absorption correction using the multi-scan method with
143	ABSCOR (Higashi 2001). The structure was solved by the charge-flipping method using
144	SHELXT (Sheldrick 2015a). Refinement proceeded by full–matrix least–squares on F^2 using
145	SHELXL-2016 (Sheldrick 2015b). A difference Fourier synthesis located most H atom positions,
146	which were then refined with soft restraints of 0.82(3) Å on the O-H distances and 1.30(3) Å on
147	the H–H distances and with the U_{eq} of each H set to 1.2 times that of the donor O atom. The
148	crystallographic data can be found in the original CIF (as supplemental file ¹). Selected bond
149	distances are given in Table 2 and a bond-valence analysis in Table 3.
150	Attempts to refine the occupancies of the cation sites suggested full occupancies of the
151	Mn ²⁺ sites (Mn1, Mn2, Mn3 and Mn4) by Mn, the Zn site by Zn and the Al site by Al. The
152	scattering powers of Mn and Fe are too similar to provide a meaningful indication of preferential
153	occupancy of Fe in any of the Mn sites; however, the high BVS for the Mn3 site of 2.12 valence
154	units (v.u.) suggests that Fe^{2+} is likely to prefer this site. The BVS for this site with occupancy
155	only by Fe^{2+} is only 1.89 v.u., suggesting that the Mn3 site is likely to be occupied roughly
156	equally by Mn and Fe. Based on the BVS values for the other Mn sites, 2.06 v.u. for Mn1, 1.99
157	v.u. for Mn2 and 2.07 v.u. for Mn4, we suggest that the 0.87 Fe apfu provided by the EPMA
158	could be allocated as follows: Mn1: $Mn_{0.80}Fe_{0.20}$ (BVS = 2.02 v.u.), Mn2: $Mn_{1.00}Fe_{0.00}$ (BVS =

159 1.99 v.u.), Mn3: Mn0.55Fe0.45 (BVS = 2.02 v.u.), and Mn4: Mn0.78Fe0.22 (BVS = 2.02 v.u.).

160 Nevertheless, the best refinement was obtained with all four Mn sites assigned full occupancies161 by Mn only.

- 162
- 163

ATOMIC ARRANGEMENT

164	The structure of jasonsmithite (Figs. 5 and 6) contains zig-zag chains of edge-sharing
165	MnO ₆ octahedra along [100]. The chains are linked into sheets parallel to {001} by sharing
166	corners with octahedra in adjacent chains and by sharing corners with peripheral PO ₄ tetrahedra.
167	A ZnO ₄ tetrahedron decorates the sheet, sharing three of its corners with polyhedra in the sheet;
168	its unshared fourth corner is an H ₂ O group. Dimers of edge-sharing AlO ₆ octahedra corner link
169	to PO ₄ tetrahedra in adjacent sheets, thereby linking the sheets into a framework. The framework
170	contains large channels along [100] that contain five different H2O sites (OW25, OW26, OW27,
171	OW28, and OW29). OW25 and OW26 are fully occupied. OW27 and OW28 are only 0.710(16)
172	Å apart and OW29 is only 1.65(2) Å from an equivalent OW29 site across the $0,0,\frac{1}{2}$ center of
173	symmetry. These three sites refined to close to half occupancy and were assigned half
174	occupancies in the final refinements. The OW27, OW28, and OW29 sites were the only H_2OO
175	sites for which the associated H sites could not be located.
176	While the structure of jasonsmithite is unique among natural and synthetic phases, the
177	sheet of octahedra and tetrahedra that it contains (Fig. 6) is topologically identical to those in
178	angarfite, NaFe ³⁺ 5(PO ₄)4(OH)4(H ₂ O)4 (Kampf et al. 2012), bakhchisaraitsevite,
179	Na2Mg5(PO4)4(H2O)6·H2O (Liferovich et al. 2000; Yakubovich et al. 2000), liversidgeite,
180	Zn ₆ (PO ₄) ₄ (H ₂ O) ₅ ·2H ₂ O (Elliott et al. 2010), mejillonesite, NaMg ₂ (PO ₃ OH)(PO ₄)(OH)(H ₅ O ₂)

181 (Atencio et al. 2012), and rimkorolgite, BaMg5(PO4)4(H2O)7·H2O (Krivovichev et al. 2002). The
 182 manner in which these sheets are linked to one another differs for each of these minerals.

- 183
- 184

IMPLICATIONS

185 The structure of jasonsmithite contains 1D channels that are contained within 14-member 186 rings (14MR) comprised of six MnO₆ octahedra, four AlO₆ octahedra, and four PO₄ tetrahedra 187 (Fig. 7), which define a high-porosity framework with the potential for high molecular 188 conductivity. The 14MR are oriented parallel to the {103} plane that creates a pillared-like 189 geometry to support the Mn-sheets (cf. Clearfield and Wang 2002). The channels have side-190 branch pockets containing extra-framework H₂O that are similar to other interrupted microporous 191 frameworks [e.g. scandium phosphates (Bull et al. 2003, Park et al. 2004)]. Calculated void space 192 (with extra-framework H₂O removed) using the CrystalMaker software yielded a void space of 70.2% per unit cell, and a framework density of 14.5 polyhedral atoms/1000 Å³, which would 193 194 place it among the most porous minerals as compared to zeolites (Baerlocher et al. 2007). The 195 largest cavity is located at $0.\frac{1}{2},0$ with a diameter of 6.4 Å. The tetrahedrally coordinated P atoms 196 at sites P3 and P4 each have one oxygen (O10 and O14, respectively) that does not bridge 197 directly to another framework cation. Sites O10 and O14 form hydrogen bonds to the extra-198 framework H₂O in the channels. Framework Zn in microporous structures has been previously 199 found to show promising catalytic activity (Orazov and Davis 2016). The presence of a hydrated 200 Zn polyhedron along the walls of the jasonsmithite channels may provide a site for catalytic 201 activity if hydrolyzed to form a Lewis acid center, and this would be worth further exploration in 202 the search of low-temperature microporous catalysts. The solvent-accessible void space is shown 203 in Figure 8.

204	
205	ACKNOWLEDGEMENTS
206	Reviewers Ian Grey and Fernando Colombo and are thanked for their constructive
207	comments on the manuscript. A portion of this study was funded by the John Jago Trelawney
208	Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles
209	County.
210	
211	References
212	Atencio, D., Chukanov, N.V., Nestola, F., Witzke, T., Coutinho, J.M.V., Zadov, A.E., Contreira
213	Filho, R.R., and Färber, G. (2012) Mejillonesite, a new acid sodium, magnesium hydrogen
214	phosphate mineral from Mejillones, Antofagasta, Chile. American Mineralogist, 97, 19–25.
215	Baerlocher, C., McCusker, L.B., and Olson, D.H. (2007) Atlas of Zeolite Framework Types.
216	Elsevier.
217	Bull, I., Young, V., Teat, S.J., Peng, L., Grey, C.P., and Parise, J.B. (2003) Hydrothermal
218	synthesis and structural characterization of four scandium phosphate frameworks. Chemistry
219	of Materials, 15 , 3818–3825.
220	Clearfield, A. and Wang, Z. (2002) Organically pillared microporous zirconium phosphonates.
221	Journal of the Chemical Society, Dalton Transactions, 15, 2937–2947.
222	Elliott, P., Giester, G., Libowitzky, E., and Kolitsch, U. (2010) Description and crystal structure
223	of liversidgeite, Zn ₆ (PO ₄) ₄ ·7H ₂ O, a new mineral from Broken Hill, New South Wales,
224	Australia. American Mineralogist, 95, 397–404.
225	Ferraris G. and Ivaldi G. (1988) Bond valence vs. bond length in OO hydrogen bonds. Acta
226	Crystallographica, B44 , 341–344.

- 227 Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters
- for ion pairs involving oxygen. Acta Crystallographica, **B71**, 562–578.
- 229 Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.
- 230 Kampf, A.R., Mills, S.J., Housley, R.M., Boulliard, J.-C., and Bourgoin, V. (2012) Angarfite,
- 231 NaFe³⁺⁵(PO₄)₄(OH)₄·4H₂O, a new mineral from the Angarf–Sud pegmatite, Morocco:
- description and crystal structure. Canadian Mineralogist **50**, 781–791.
- 233 Krivovichev, S.V., Britvin, S.N., Burns, P.C., and Yakovenchuk, V.N. (2002) Crystal structure of

rimkorolgite, Ba[Mg5(H2O)7(PO4)4](H2O), and its comparison with

- bakhchisaraitsevite. European Journal of Mineralogy, **14**, 397–402.
- 236 Liferovich, R.P., Pakhomovsky, Ya.A., Yakubovich, O.V., Massa, W., Laajoki, K., Gehör, S.,
- Bogdanova, A.N., and Sorokhtina, N.V. (2000) Bakhchisaraitsevite, Na₂Mg₅[PO₄]₄·7H₂O, a
- new mineral from hydrothermal assemblages related to phoscorite–carbonatite complex of the
- Kovdor massif, Russia. Neues Jahrbuch für Mineralogie, Monatshefte, **2000**, 402–418.
- 240 Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting
- 241 mineral species for further study. Canadian Mineralogist, **45**, 1307–1324.
- 242 Orazov, M. and Davis, M.E. (2016) Catalysis by framework zinc in silica-based molecular
- sieves. Chemical Science, **7**, 2264–2274.
- 244 Park, H., Bull, I., Peng, L., Young, V. G., Grey, C. P., and Parise, J. B. (2004) Synthesis and
- structure determination of a new organically templated scandium fluorophosphate framework
- and its indium analogue. Chemistry of Materials, **16**, 5350–5356
- 247 Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified
- 248 microvolumes applying the model "PAP." In: Heinrich, K.F.J. and Newbury, D.E. (eds)
- Electron Probe Quantitation. Plenum Press, New York, pp. 31–75.

- 250 Rakovan, J., Barnett, B., and White, J.S. (2016) Fluorapatite from the Foote mine, Kings
- 251 Mountain, North Carolina. Rocks & Minerals, **91**, 251–256.
- 252 Sheldrick, G.M. (2015a) SHELXT Integrated space–group and crystal–structure determination.
- Acta Crystallographica, **A71**, 3–8.
- 254 Sheldrick, G.M. (2015b) Crystal Structure refinement with SHELX. Acta Crystallographica,
- **C71**, 3–8.
- 256 Yakubovich, O.V., Massa, W., Liferovich, R.P., and Pakhomovsky, Y.A. (2000) The crystal
- structure of bakhchisaraitsevite, [Na₂(H₂O)₂]{(Mg_{4.5}Fe_{0.5})(PO₄)₄(H₂O)₅}, a new mineral
- species of hydrothermal origin from the Kovdor phoscorite–carbonatite Complex, Russia.
- 259 Canadian Mineralogist, **38**, 831–838.
- 260
- 261 Endnote:
- ¹Deposit item AM-20-XXXXX, Supplemental tables and CIF. Deposit items are free to all
- readers and found on the MSA website, via the specific issue's Table of Contents (go to
- 264 http://www.minsocam.org/MSA/AmMin/TOC/2020/Xxx2020_data/ Xxx2020_data.html).

265	FIGURE CAPTIONS
266	Figure 1. Crystal drawing of jasonsmithite; clinographic projection in non-standard orientation, a
267	vertical.
268	Figure 2. Jasonsmithite on holotype specimen (LACMNH 74374); FOV 0.84 mm across.
269	Figure 3. Background-corrected Raman spectrum of jasonsmithite recorded using a 532 nm laser.
270	The recorded spectrum is in dark blue; the fitted bands are in various colors; the sum of
271	the fitted bands is in red.
272	Figure 4. The observed powder diffraction pattern compared with the pattern simulated from the
273	lines calculated from the crystal structure.
274	Figure 5. Crystal structure of jasonsmithite viewed down a . The O atoms of the channel H_2O
275	groups (OW25, OW26, OW27, OW28, and OW29) are numbered.
276	Figure 6. The sheet of octahedra and tetrahedra in the jasonsmithite structure viewed down c^*
277	with a vertical and b horizontal. Except for minor geometric deviations, this sheet is
278	identical to those in angarfite, bakhchisaraitsevite, and mejillonesite.
279	Figure 7. The 14-member ring (14MR) in the structure of jasonsmithite viewed along a .
280	Figure 8. Map of calculated solvent-accessible void space to a distance of 1.2 Å from the nearest
281	van der Waals surface. Blue shows inner surface of channel. Grey spheres show areas of
282	largest cage volume. The unit cell outline is shown.
283 284	

Constituent	Mean	Range	SD	Standard
MnO	25.09	23.99 - 26.69	0.83	rhodonite
FeO	7.17	5.89 - 8.03	0.80	hematite
ZnO	9.75	8.69 - 10.72	0.68	syn. ZnO
Al ₂ O ₃	5.69	5.59 - 5.80	0.06	sanidine
P2O5	32.48	31.58 - 33.18	0.54	apatite
H ₂ O*	22.72			
Total	102.90			

285 286 Table 1. Analytical data (wt.%) for jasonsmithite.

* Based on the structure 287

292	Table 2.	Selected bon	d distances	(Å) for	jasonsmithite.

293				5				
294	Mn1012	2.117(4)	Mn4–O2		2.084(4)	P1O1	1.515(4)	
295	Mn1–O1	2.130(3)	Mn4–O7		2.122(3)	P1-O2	1.519(4)	
296	Mn1–O15	2.131(4)	Mn4–O16		2.161(3)	P1-O3	1.551(3)	
297	Mn1–O7	2.170(3)	Mn4–O11		2.177(3)	P1O4	1.571(4)	
298	Mn1–OW21	2.214(4)	Mn	4–OW24	2.270(4)	<p1-o></p1-o>	1.539	
299	Mn1–OW22	2.423(4)	Mn4–OW22		2.350(4)			
300	<mn1–o></mn1–o>	2.198	<m< td=""><td>n4–0></td><td>2.194</td><td>P2-O5</td><td>1.510(4)</td><td></td></m<>	n4–0>	2.194	P2-O5	1.510(4)	
301						P206	1.528(4)	
302	Mn2–O3	2.114(3)	Zn-	-013	1.922(4)	P207	1.533(3)	
303	Mn2–O6	2.125(4)	Zn-	-04	1.978(3)	P208	1.554(3)	
304	Mn2011	2.139(3)	Zn-	-OW18	1.990(4)	<p2–o></p2–o>	1.531	
305	Mn2016	2.175(3)	Zn-	-08	1.990(4)			
306	Mn2–OW21	2.279(4)	<zı< td=""><td>1–O></td><td>1.970</td><td>P309</td><td>1.517(4)</td><td></td></zı<>	1–O>	1.970	P309	1.517(4)	
307	Mn2–OW23	2.470(4)				P3-O10	1.535(4)	
308	<mn2–o></mn2–o>	2.217	Al-	-09	1.829(4)	P3011	1.542(3)	
309			Al-	-05	1.845(4)	P3012	1.543(4)	
310	Mn3012	2.117(4)	Al-	-OH17	1.899(4)	<p3–o></p3–o>	1.534	
311	Mn3–O3	2.160(3)	Al-	-OW20	1.936(4)			
312	Mn3–O8	2.165(3)	Al-	-OW19	1.940(4)	P4013	1.542(4)	
313	Mn3015	2.189(4)	Al-	-OH17	1.941(4)	P4014	1.542(4)	
314	Mn3–OW23	2.193(4)	<a< td=""><td>l-0></td><td>1.898</td><td>P4015</td><td>1.543(4)</td><td></td></a<>	l-0>	1.898	P4015	1.543(4)	
315	Mn3–OW24	2.228(4)				P4016	1.543(3)	
316	<mn3–o></mn3–o>	2.175				<p4–o></p4–o>	1.543	
317								
318	Hydrogen bonds							
319	$\dot{D-H\cdots A}$		D–H	$H^{\dots}A$	$D^{\dots}A$	<dha< td=""><td></td><td></td></dha<>		
320	OH17–H17…O1		0.81(3)	1.99(3)	2.799(5)	171(6)		
321	OW18-H18A	····OH17	0.85(3)	1.89(3)	2.731(5)	172(6)		
322	OW18-H18B	···OW25	0.81(3)	2.24(4)	2.911(8)	141(6)		
323	OW19-H19A	····O4	0.82(3)	1.92(3)	2.730(5)	167(5)		
324	OW19-H19B	····O4	0.81(3)	1.84(3)	2.644(5)	172(6)		
325	OW20-H20A	····06	0.84(3)	1.85(3)	2.685(5)	170(6)		
326	OW20–H20B	···OW26	0.78(3)	1.96(3)	2.735(7)	176(7)		
327	OW21–H21A	····014	0.84(3)	1.90(3)	2.706(5)	161(5)		
328	OW21–H21B	···O10	0.82(3)	1.85(3)	2.641(5)	164(5)		
329	OW22–H22A	OW27	0.83(3)	1.98(3)	2.801(16)	170(6)		
330	OW22–H22A	OW28	0.83(3)	1.91(4)	2.715(15)	163(5)		
331	OW22–H22B	···O6	0.82(3)	2.23(3)	3.043(5)	168(6)		
332	OW23–H23A	····O2	0.82(3)	1.89(3)	2.703(5)	171(6)		
333	OW23–H23B	···OW25	0.82(3)	1.89(3)	2.695(7)	166(6)		
334	OW24–H24A	····O10	0.83(3)	1.95(3)	2.709(5)	153(5)		
335	OW24–H24B	···O14	0.81(3)	1.85(3)	2.602(5)	154(6)		
336	OW25–H25B	···OW26	0.84(3)	2.52(4)	3.304(11)	156(8)		

337	OW25–H25B…OW29	0.84(3)	2.33(7)	2.908(15)	126(7)
338	OW26–H26A…O10	0.83(3)	1.86(3)	2.677(7)	167(10)
339	OW26–H26B…OW27	0.84(3)	2.36(8)	2.976(16)	131(8)
340	OW26–H26B…OW29	0.84(3)	2.25(6)	3.005(15)	150(10)

	Mn1	Mn2	Mn3	Mn4	Al	Zn	P1	P2	P3	P4	Hydrogen bonds	sum
01	0.39						1.31				0.18	1.89
O2				0.44			1.30					1.74
O3		0.41	0.37				1.20					1.97
O4						0.46	1.14				0.21, 0.26	2.08
O5					0.58			1.33				1.91
O6		0.40						1.27			0.23, 0.12	2.02
O7	0.36			0.40				1.26				2.01
08			0.36			0.45		1.19				2.00
09					0.61				1.31			1.91
O10									1.25		0.24, 0.26, 0.22	1.97
011		0.38		0.35					1.23			1.96
O12	0.40		0.40						1.23			2.03
013						0.54				1.23		1.77
O14										1.23	0.22, 0.29	1.74
015	0.39		0.34							1.23		1.96
016		0.35		0.36						1.23		1.94
OH17					0.51 0.46						-0.18, 0.21	1.00
OW18						0.45					-0.21, -0.15	0.09
OW19					0.46						-0.21, -0.26	-0.01
OW20					0.46						-0.23, -0.21	0.01
OW21	0.32	0.27									-0.22, -0.26	0.11
OW22	0.19			0.23							-0.22, -0.12	0.08
OW23		0.17	0.34								-0.23, -0.23	0.06
OW24			0.31	0.28							-0.22, -0.29	0.08
OW25											-0.09, -0.15, 0.15	-0.09
OW26											-0.24, 0.21, 0.09	0.06
sum	2.06	1.99	2.12	2.07	3.07	1.90	4.96	5.05	5.01	4.91		

Table 3. Bond–valence analysis for jasonsmithite. Values are expressed in valence units.

Bond–valence parameters are from Gagné and Hawthorne (2015). Hydrogen–bond strengths based on O–O bond lengths from Ferraris and Ivaldi (1988). Half–occupied OW27, OW28, and OW29 sites are not included.

