1	Trace elements in sulfides from the Maozu Pb-Zn deposit, Yunnan Province, China: Implications
2	for trace element incorporation mechanisms and ore genesis
3	Zhenli Li ^{1,2} , Lin Ye ^{1*} , Yusi Hu ^{1,2} , Chen Wei ^{1,2} , Zhilong Huang ¹ , Yulong Yang ³ , Leonid Danyushevsky ⁴
4	¹ State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of
5	Sciences, Guiyang 550081, China
6	² University of Chinese Academy of Sciences, Beijing, 100049, China
7	³ College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
8	⁴ CODES, University of Tasmania, Hobart, Tas. 7001, Australia
9	
10	ABSTRACT: The Sichuan-Yunnan-Guizhou Pb-Zn metallogenic province (SYGMP) is an important
11	region for Pb-Zn resources in China. However, considerable controversy remains as to whether the
12	Pb-Zn deposits are Mississippi Valley Type (MVT). The Maozu deposit, a typical example of the
13	carbonate-hosted Pb-Zn deposits in the SYGMP, occurs in the late Ediacaran Dengying Formation and
14	its ore bodies are divided into three types: lower layer (LL), vein layer (VL) and upper layer (UL) ore
15	bodies based on the spatial relationship. In this study, laser ablation-inductively coupled plasma-mass
16	spectrometry (LA-ICP-MS) was used to systematically analyze the trace element compositions of
17	sphalerite and galena in these three ore bodies. The results show that sphalerite is characterized by Cd
18	and Ge enrichment; Fe, Mn and Co depletion; and local In and Sn enrichment. Most of these elements
19	likely appear as solid solutions in sphalerite and show a wide variation, which is probably related to the
20	medium- and low-temperature mixing of the ore-forming fluids. The local enrichment of In and Sn has
21	likely attributed to the long-distance migration of ore-forming fluids through In-Sn-bearing
22	volcaniclastic rocks. In vs Sn and (Cu + Sb) vs (Ag + Ge) show strong correlations and similar element

23	distribution in the mapped images, indicating that these elements may be incorporated into sphalerite
24	via a coupled substitution for Zn as $2In^{3+} + Sn^{4+} + 2\Box \leftrightarrow 5Zn^{2+}$ (\Box = vacancies) and 4(Cu ⁺ + Sb ³⁺) +
25	$(Ge^{4+} + 2Ag^{+}) + 2\Box \leftrightarrow 13Zn^{2+}$. Galena is enriched in Ag and Sb with minor Cd and Se and depleted in
26	Bi, and most of the elements may occur as solid solutions. Ag vs Sb in galena displays a strong positive
27	correlation, implying the coupled substitution of $Ag^+ + Sb^{3+} \leftrightarrow 2Pb^{2+}$. Notably, the majority of the trace
28	element concentrations gradually decrease in the order $LL \rightarrow UL$ except Fe, Co, Cu and Ge, while Fe,
29	In and Sn in sphalerite and Ag and Sb in galena have the highest concentration in the VL, indicating
30	that the VL is a secondary migration channel for the ore-forming fluids. Furthermore, the trace element
31	compositions of the sulfides in the Maozu Pb-Zn deposit are consistent with the typical MVT deposit
32	(hosted in the carbonate sequence) but are markedly different from sedimentary exhalative (SEDEX),
33	volcanogenic massive sulfide (VMS) and skarn-type deposits. Based on these results, as well as the
34	geological and geochemical characteristics of the deposit, the Maozu Pb-Zn deposit is an MVT deposit.
35	Keywords: Maozu Pb-Zn deposit, Sulfides, Trace elements, LA-ICP-MS, Mapping, MVT
36	
37	Introduction
38	The Sichuan-Yunnan-Guizhou Pb-Zn metallogenic province (SYGMP), located in the
39	southwestern margin of the Yangtze Block, China, is an important region of the South China giant
40	low-temperature metallogenic domain and the major source of Pb-Zn-Ag-Ge in China (Hu and Zhou
41	2012; Zhou et al. 2013; Zhang et al. 2015; Ye et al. 2016). Approximately 400 Pb-Zn ore deposits and
42	occurrences have been explored in the SYGMP (e.g., Zhang 2008; Wu 2013), most of which are hosted
43	in the late Ediacaran to early Permian carbonate rocks; notably, late Ediacaran and Carboniferous
44	carbonates are the principal host rocks (Wu 2013; Ye et al. 2016). Previous studies have shown that all

45	the Pb-Zn deposits in the SYGMP have striking epigenetic characteristics and share features with
46	typical Mississippi Valley Type (MVT) deposits (Leach et al. 1993, 2005) in terms of mineral
47	assemblages, mineralization types, ore host rocks, wall rock alterations. (e.g., Han et al. 2007; Zhang et
48	al. 2015). However, the ore bodies of the Pb-Zn deposits in the SYGMP are typically characterized by
49	massive, thick veinlets filling open spaces controlled by the structure of the host rock, with high grades
50	of Pb and Zn at generally >20%, such as the Huize (Huang et al. 2004; Han et al. 2007), Maoping (Wei
51	et al. 2015) and Fule (Zhu et al. 2016; Li et al. 2018a, b) Pb-Zn deposits, which present slightly
52	different characteristics from those of typical MVT deposits (Leach et al. 1993, 2005). Accordingly, the
53	genetic types of these Pb-Zn deposits in the SYGMP remain inconclusive (e.g., Huang et al. 2004;
54	Zhou et al. 2013; Zhang et al. 2015; Li et al. 2018b). Several hypotheses for the ore genesis have been
55	proposed in the past two decades, such as a distal magmatic-hydrothermal type related to a Permian
56	Emeishan mantle plume (Xie, 1963; Huang et al. 2004), a sedimentary reworked type (Liu and Lin
57	1999; Tu, 1984), MVT (e.g., Zhang, 2005; Li, 2016; Li et al. 2018a; Wei et al. 2018a), or a unique
58	Sichuan-Yunnan-Guizhou (SYG) type (Han et al. 2007; Zhou et al. 2013b, 2018a, 2018b).
59	The Maozu deposit, a typical carbonate-hosted Pb-Zn deposit in the SYGMP, occurs in the Late
60	Ediacaran Dengying Formation and has proven Pb + Zn reserves of ~2 Mt, with average grade of 4.15
61	wt.% Pb and 7.25 wt.% Zn (e.g., Liu et al. 2009; Zhou et al. 2013; Li et al. 2018). Previous studies
62	mainly focused on the geology (Liu and Lin 1999; He et al. 2006), metallogenic regularity (Chen 2002;
63	Liu 2009) and source of the ore-forming metal (Zhou et al. 2013) in the deposit. Due to the lack of
64	geochemical data, in particular the study of trace elements in sulfide, the ore genesis remains a subject
65	of debate, although the following have been postulated: a) sedimentary reworked type (Zhang et al.
66	1984; Liu and Lin 1999; Zhang 2013); b) SEDEX-type (Chen 2002; He et al. 2006); c) SYG-type

67 (Zhou et al. 2013); or d) MVT (Liu 2009). These disparate classifications are confusing for exploration
68 or mining design.

69	Sphalerite, as the chief mineral in Pb-Zn deposits, contains a variety of useful elements such as Ga
70	(Moskalyk 2003), Ge (Höll et al. 2007), In (Alfantazi and Moskalyk 2003), Cd (Bonnet et al. 2016) and
71	Ag (Cook et al. 2009). Previous studies indicated that trace elements, such as Fe, Mn, Cd, Ge, In, Ga,
72	Se and Te, can be used to ascertain important genetic information and can, to a large extent, be used to
73	classify ore genesis types (Zhang 1987; Cook et al. 2009; Ye et al. 2011, 2012, 2016; Li et al. 2016;
74	Wei et al., 2018a, b). The obvious limitation of bulk analysis of trace elements of sulfide separates is
75	that a sample may include fine-grained sulfide minerals with complex texture from different origins,
76	which is common in the Maozu deposit. However, laser ablation-inductively coupled plasma-mass
77	spectrometry (LA-ICP-MS) can accurately and effectively determine the sulfide trace element
78	concentrations of individual sulfide grains (e.g., Watling et al. 1995; Cook et al. 2009; Ye et al. 2011,
79	2016), making it possible to discriminate different stages in microscale sulfide grains (Cook et al. 2009;
80	Ye et al. 2011, 2016; George et al. 2015, 2016). Furthermore, time-resolved LA-ICP-MS depth
81	profiling can provide information on whether a given trace element is present within the sulfide matrix
82	or enclosed as micro-inclusions, even in elements at extremely low concentrations (e.g., Cook et al.
83	2009; George et al. 2015; Bonnet et al. 2016).

In this study, to understand the distribution features and substitution mechanisms of the trace elements in the sulfides from the Maozu Pb-Zn deposit in Yunnan, China, LA-ICP-MS (spot and mapping analyses) was used to determine sphalerite and galena trace element chemistry in the deposit. When combined with the geologic setting, these analyses contribute to the development of a robust deposit model.

89 1. Geology of the Maozu Pb-Zn deposit

90	The Maozu Pb-Zn deposit is located in the western Yangtze block and northern SYGMP (Fig. 1).
91	The SYGMP is an important production base of Pb, Zn, Ge and Ag in China, and ~400 Pb-Zn deposits
92	or occurrences (no economic value) have been found in the area. The exposed strata in the area include
93	late Ediacaran to Quaternary strata (Fig. 2), including the late Ediacaran Dengying Formation, one of
94	the chief ore-bearing strata in the region, which is mainly composed of phosphorus-bearing and
95	silicified dolomite. The Cambrian strata consist of phosphorite, sandstone and carbonate rocks.
96	Ordovician strata are composed of sandy shale and argillaceous limestone. Silurian rocks are composed
97	of siltstone and carbonates. The lower Devonian is chiefly composed of sandstone and carbonates, and
98	the upper Devonian is mainly composed of dolostone, which is one of the important ore-hosting strata
99	in the region. The Carboniferous strata are predominantly composed of (siliceous) carbonate rocks,
100	which is another important ore-hosting strata in the region; for example, the world-class Huize Pb-Zn
101	deposit mainly occurs in this Carboniferous strata. The Permian rocks predominantly consist of
102	carbonates and basalts. The Triassic layer is mainly composed of clastic rocks and includes the main
103	coal-bearing strata. The chief composition of the Tertiary and Quaternary rocks is sediments that are
104	exposed in the valley or river areas (Han et al. 2007). The NS-striking faults and anticlines are well
105	developed in this region (Zhang et al. 2006). The principal regional structures are the
106	Anninghe-Lvzhijiang, Mile-Shizhong-Shuicheng, Kangding-Yilian-Shuicheng tectonic belts (Fig. 1),
107	most of which are regional compression thrust faults. The Permian Emeishan flood basalts are among
108	the most widely distributed magmatic rocks in the area.

109 The Maozu deposit is a representative large-scale Pb-Zn deposit hosted in the late Ediacaran
110 Dengying Formation dolostone in the SYGMP. The deposit is located in a triangular area bounded by

111 the Jinsha River in the north, the Maozu reverse fault in the west and the Choushuijing fault in the 112 southeast (Fig. 3a). Some folds are observed in the ore fields, such as the Ganshulin and Baika 113 synclines and the Hongfadong and Changpo anticlines (Fig. 3a). The rocks in the Maozu ore fields are 114 dominated by late Ediacaran carbonate rocks, Cambrian sediments (black shale, sandstone and 115 limestone) and Permian Emeishan basalts (Fig. 3a, b). The late Ediacaran Dengying Formation is the 116 ore-hosting rock and is structurally controlled by the Maozu thrust fault-fold (Fig. 3a). The Permian 117 Emeishan basalts are widely distributed in the western Maozu thrust fault (Fig. 3). 118 The ore bodies of the Maozu deposit are strictly controlled by stratigraphy (late Ediacaran 119 Dengying Formation) and lithology (dolostone) and can be divided from shallow to deep into three 120 types: upper layer (UL), vein layer (VL) and lower layer (LL) ore bodies. The VL connects the LL and 121 UL (Fig. 3b), and these layers are characterized as follows: 1) The UL occurs in fine to 122 coarse-crystalline stratiform dolomite that is below the phosphorus-bearing layer (Fig. 4a); the 123 thickness is 15-30 m; predominant minerals are sphalerite, fluorite, and dolomite (Fig. 4a-d), and minor 124 amounts of tetrahedrite (Fig. 4d). 2) The VL ores occur in veinlets within the tectonic fractures (Fig. 4e) 125 formed by ore-bearing hydrothermal fluids filling the cracks on both sides of the syngenetic fault (Gao 126 et al. 2011; Liu et al. 2013); Pb-Zn ores are surrounded by breccias (Fig. 4f), in which the volume of 127 galena in sulfide ore is relatively higher than that of the other two ore body types (He et al. 2006; Liu 128 2009, Fig. 4g-h), with fluorite, quartz and calcite as the main gangue minerals; the VL is probably a 129 secondary hydrothermal channel for ore-forming fluids (Gao et al. 2011; Liu et al. 2013). 3) The LL 130 occurs in stratoid shape within siliceous dolostone; the ore body thickness varies from 50 to 120 m; the 131 minerals are predominantly sphalerite and quartz (Fig. 4i-l), and minor bitumen occurs around the 132 sulfides (Fig. 41).

133	The primary sulfide ores are predominantly by sphalerite and galena, with minor pyrite and
134	tetrahedrite. Gangue minerals consist of dolomite, calcite, fluorite, quartz and bitumen. Ore textures
135	and structures separately include the following: granular, porphyritic and metasomatic (Fig. 4c, d, k);
136	massive, banded (Fig. 4i); and disseminated and veined (Fig. 4e). Wall rock alterations are principally
137	dolomitization and calcitization, which are closely associated with Pb-Zn mineralization.
138	Based on macro- to microscale geological observations, the paragenesis in the Maozu deposit has
139	been identified. Fine pyrite (Py1) in sphalerite precipitated first (Fig. 4k, l), and the particles of the fine
140	pyrites are small due to replacement by later sphalerite or other sulfides. Under a microscope, the
141	sphalerite is cross-cut by later galena veins (Fig. 4c, k), which also wraps around the coarse pyrite (Py2,
142	Fig. 4k), i.e., the coarse pyrite and galena were formed simultaneously. The edges of the galena are in
143	some cases replaced by later tetrahedrite (Fig. 4d, k). Fluorite is frequently cut by sphalerite and galena
144	veins (Fig. 4g). The Pb-Zn ores are in some cases are cut by calcite veins (Fig. 4b), which may indicate
145	that the calcite (and dolomite) is the last mineral to form in the deposit. Based on the macro- to
146	micro-scale geological observations, the mineralization stages in the Maozu deposit were divided into
147	diagenetic, hydrothermal and supergene stages (Fig. 5), and the simplified mineralization sequence is
148	as follows:
149	Fine pyrite (Py1) \rightarrow fluorite (Flu) \rightarrow sphalerite (Sp) \rightarrow galena (Gn) + coarse pyrite (Py2) \rightarrow

- 150 tetrahedrite (Tet) \rightarrow quartz (Q) \rightarrow calcite (Cal) + dolomite (Dol).
- 151 **2. Analytical method**

152 The sulfide samples were collected from all three types of ore bodies in the Maozu mine area, 153 including 6 samples from the upper layer, 4 samples from the vein layer and 3 samples from the lower 154 layer. The details are listed in Table 1, and the sample locations are shown in Fig. 3b. All samples were 155 prepared as one-inch polished blocks.

156	LA-ICP-MS spot and mapping analyses of trace elements in sphalerite and galena were
157	performed using the Agilent 7700x Quadrupole ICPMS instrument at CODES (University of Tasmania,
158	Hobart, Australia) coupled with a high-performance RESOlution 193-nm ArF ATL excimer laser
159	ablation system equipped with Geostar software. The diameter of the analytical spot was 30 μ m. Trace
160	element analyses of the sphalerite (9 samples, 72 spots) and galena (4 samples, 26 spots) from the three
161	ore bodies (UL, VL and LL) were completed, and an average of 8 spots were analyzed for each sample.
162	Each analysis was performed in the time-resolved mode, which involves sequential peak hopping
163	through the mass spectrum. The laser system was operated at a consistent 5 Hz pulse rate, and the laser
164	energy was typically 2.7 J/cm ² , with a dwell ratio of 3.0 μ m/sec. The masses of the following elements
165	were measured: ⁵⁵ Mn, ⁵⁷ Fe, ⁵⁹ Co, ⁶⁰ Ni, ⁶⁵ Cu, ⁶⁶ Zn, ⁷² Ge, ⁷⁵ As, ⁷⁷ Se, ¹⁰⁷ Ag, ¹¹¹ Cd, ¹¹⁵ In, ¹¹⁸ Sn, ¹²¹ Sb,
166	¹²⁵ Te, ²⁰⁵ Tl, ²⁰⁸ Pb and ²⁰⁹ Bi. The analysis time for each sample was 90 s, including 30-s background
167	with laser off and 60s analysis with laser on. Acquisition time for all masses was set to 0.02 s, with a
168	total sweep time of ~0.6 s. Calibration was performed using STDGL2b-2 (an in-house standard), which
169	is suitable for quantitative analyses in different sulfide matrixes (Danyushevsky et al. 2003, 2011). For
170	more details about the analytical process, please refer to Cook et al. (2009) and Ye et al. (2011).
171	Each measured values of sphalerite samples were adjusted by the following correction factors
172	(Danyushevsky et al. 2011): Mn 1.46, Fe 1.49, Co 1.51, Ni 1.59, Cu 1.53, As 1.36, Se 1.85, Ag 1.40,
173	Cd 1.50, In 1.45, Sn 1.60, Sb 1.17, Te 1.00, Tl 2.17, Pb 1.37 and Bi 1.33. These correction factors have
174	been established by analyzing sphalerite secondary standards using STDGL2b-2 and reflect the
175	significant elemental fractionation between Zn and the other elements during ablation. The correction
176	factor error is <5% (Cook et al. 2009). Whereas, the measured value of galena did not require

177 correction.

178	The raw analytical data for each spot analysis were plotted as a line graph, and the integration
179	times for background and sample signal were selected. The counts were then corrected for instrument
180	drift (standards were run every $1\frac{1}{2}$ to 2 hours) and converted to concentration values using known
181	values of Zn in the analyzed sphalerite as an internal standard. Data reduction was undertaken using Zn
182	(640,600 ppm) as the internal standard for sphalerite and Pb (866,000 ppm) for galena.
183	3. Results
184	The sphalerite (9 samples, 72 spots) and galena (4 samples, 26 spots) from three ore bodies (UL,
185	VL and LL) of the Maozu Pb-Zn deposits are summarized in Table 1, and the data include the mean,
186	median, median absolute deviation (MAD), minima and maxima for each selected sample. The ranges
187	for each selected element in absolute concentrations are shown in Fig. 6 (sphalerite) and Fig. 8 (galena).
188	Representative time-resolved profiles of given elements are shown in Fig. 9. Complete LA-ICP-MS
189	datasets can be found in Electronic Appendix A.
190	During the analysis, the areas that are free of obvious inclusions or other features in the sulfides
191	were chosen for the experiment. Flat and irregular (inconsistent with Zn and S profiles) acquisition
192	profiles in the time-resolved depth acquisition profiles likely represent elements distributed as solid
193	solutions and microscale inclusions, respectively. Inclusions were excluded during the data reduction.
194	
195	3.1 Trace elements in sphalerite
196	Fe: The <i>iron</i> concentrations in the sphalerite of the Maozu deposit range from 698 to 20,570 ppm

197 (median 6273 ppm, n=72), which is the highest trace element content in sphalerite and slightly lower

than the *iron* content of the MVT deposit (Cook et al. 2009; Ye et al. 2011, 2016; Yuan et al. 2018) (Fig.

199	6). The Fe counts in the time-resolved depth acquisition profiles are flat and smooth (Fig. 9a-c). The Fe
200	concentrations of the sphalerite in the VL are the most enriched (Fig. 6, 7c), and the Fe content changes
201	in the order LL \rightarrow VL \rightarrow UL, with values of 1555-8156 ppm (median 2257 ppm, n=16) \rightarrow
202	4386-20,570 ppm (median 9527 ppm, n=16) \rightarrow 698-14,752 ppm (median 9257 ppm, n=40),
203	respectively.

204 Cd: cadmium has the second highest measured values in sphalerite with respect to any other 205 element analyzed in this study. Its concentration ranges from 2237-4685 ppm (median 3465 ppm, 206 n=72), which is much higher than the content of by-products extracted from sphalerite (100-900 ppm) 207 and consistent with the Cd content of MVT (Cook et al. 2009; Ye et al. 2011, 2016; Yuan et al. 2018). 208 Cadmium was uniformly distributed in the mapping image (Fig. 10) and appeared as a smooth 209 acquisition profile (Fig. 9a-c). Cadmium is negatively correlated with Fe and Mn (Fig. 7a-b). Moreover, 210 the median contents of Cd tend to decrease from the LL to VL to UL at 3945 ppm (n=16) \rightarrow 3678 ppm 211 $(n=16) \rightarrow 3162 \text{ ppm} (n=40)$, respectively.

212 Cu: The copper concentrations are not constant and vary from 9.23 to 2752 ppm, with a median of 213 334 ppm (n=72). The compositions of Cu in sphalerite are similar to those in MVT (Cook et al. 2009; 214 Ye et al. 2011, 2016; Yuan et al. 2018) (Fig. 6). Although Cu is unevenly distributed in the mapping 215 images and has overlapping enrichment areas with Ge, Sb and Ag (Fig. 10), the acquisition profiles of 216 Cu, Ge, Sb and Ag are parallel to the Zn and S acquisition profile (Fig. 9d). Furthermore, the 217 distribution in the (Cu + Sb) vs (Ag + Ge) plot (Fig. 9k) exhibits a strong positive correlation (r=0.80). 218 Sn: The tin concentrations in the Maozu deposit are abnormally enriched compared with those in 219 the typical MVT deposit (Cook et al. 2009) and reach the values observed in skarn and massive sulfide 220 deposits (Cook et al. 2009; Ye et al. 2011) (Fig. 6), which vary from 0.05 to 2192 ppm (median 1.52

221	ppm, n=71). The Sn concentration range is relatively wide, but the majority of Sn is low and only
222	partially enriched. Sn is positively correlated with In (r=0.82, Fig. 7j, Fig. 10). The acquisition profiles
223	of Sn are analogous with In and parallel to the Zn and S acquisition profiles (Fig. 9c). Sn is most
224	abundant in the VL, and the Sn contents in the LL, VL and UL vary from 0.06-14.5 ppm (median 0.25
225	ppm, n=16), 0.1-2192 ppm (median 54.8 ppm, n=16) and 0.05-179 ppm (median 1.67 ppm, n=39),
226	respectively.
227	In: The <i>indium</i> concentrations in sphalerite of different deposit types vary as shown in Fig. 6. The
228	skarn and massive sulfide deposits (Cook et al. 2009; Ye et al. 2011) contain the highest volume of In,
229	whereas low In contents was observed in the MVT (Fig. 6; Cook et al. 2009; Ye et al. 2011, 2016; Yuan
230	et al. 2018). In concentration in Maozu extend from 0.001 pp to 1191 ppm, with a median of 2.84 ppm
231	(n=66). A remarkable feature is that the maximum concentration of In in the Maozu deposit has reached
232	the levels observed in typical skarn and massive sulfide deposits (Cook et al. 2009; Ye et al. 2011),
233	which are much higher than the In levels of the MVT. Additionally, In and Sn show the same element
234	enrichment areas (Fig. 10). The acquisition profile of In is smooth and parallel to Sn, Zn and S on the
235	time-resolved depth profiles (Fig. 9c). Similar to Sn, In is most enriched in the VL (Fig. 6, Fig. 7j); the
236	variation of In is in the order LL \rightarrow VL \rightarrow UL, with values of 0.01-464 ppm (median 0.94 ppm, n=13)
237	\rightarrow 0.001-1191 ppm (median 35.7 ppm, n=15) \rightarrow 0.01-397 ppm (median 1.40 ppm, n=38), respectively.
238	Sb: The antimony content is relatively low in the skarn and massive sulfide deposits but those in
239	typical MVT deposits relatively high (Cook et al. 2009; Ye et al. 2011) (Fig. 6). The composition of Sb
240	in the sphalerite of the Maozu deposit is 0.35-835 ppm (median 36.3 ppm, n=71), and it presents a wide
241	variation range and a nonuniform distribution. As previously described, Sb has the same enrichment
242	characteristics as Cu, Ge and Ag (Fig. 10), and these elements have a strong positive correlation

243 (r=0.83, Fig. 7h, k-m). The profile of Sb is smooth and parallel to Cu, Ge, Ag, Zn and S (Fig. 9d).

244	Pb: The lead content shows an uneven enrichment in the mapping image (Fig. 10), and the
245	concentrations are within the range of 0.62-399 ppm (median 8.22 pm, n=72). The ragged and irregular
246	profiles (Fig. 9b) imply that Pb is present as micro-inclusions in sphalerite rather than as a solid
247	solution. Pb and As have similar profiles.
248	Ge: The germanium content ranges widely from 0.30-342 ppm (median 36.9 ppm, n=72), and the
249	Ge concentrations within sphalerite from the Maozu deposit are consistent with those in the MVT
250	(Cook et al. 2009; Ye et al. 2011, 2016; Yuan et al. 2018) while low levels observed in typical skarn
251	(Cook et al. 2009; Ye et al. 2011) and massive sulfide deposits (Cook et al. 2009 and references therein;
252	Ye et al. 2011). The spectrum of Ge is smooth (Fig. 9b, d). Ge shares similar enrichment areas with Cu,
253	Sb and Ag in the mapping images and is positively correlated with these elements (Fig. 7e, h, k).
254	As: The arsenic content in the sphalerite of Maozu varies from 0.75 to 275 ppm (median 9.36
255	ppm, n=58), which is more enriched than that in the skarn (Cook et al. 2009; Ye et al. 2011) and
256	massive sulfide deposits (Cook et al. 2009 and references therein; Ye et al. 2011) but similar to the
257	concentration in the MVT deposits (Fig. 6). Most of As show smooth LA-ICP-MS down-hole spectral
258	profiles, but several anomalous LA-ICP-MS time-resolved signal spectra (Fig 9d) could be observed
259	which consistent with that of Pb. In the mapping images, Arsenic also shows a relatively concordant
260	distribution with Pb.
261	Ag: The silver concentrations range from 1.34-254 ppm (median 12.5 ppm, n=72), and a certain
262	amount of Ag was found in all samples. The Ag contents in the deposits with different genesis types are
263	similar (Fig. 6). Although Ag is unevenly distributed in the mapping images (Fig. 10), the Ag

264 enrichment areas are consistent with the enrichment areas of Cu, Ge and Sb (Fig. 10). In addition, all

13

spot analyses show that Ag show a positive correction with the Cu (r=0.59, Fig.7f), Ge (r=0.48, Fig.7g)

and Sb (r=0.76), respectively.

267	Mn: The manganese content presents a relatively narrow distribution range (Table 1, Fig. 6), with
268	concentrations from 2.78-206 ppm (median 74.5 ppm, n=72). The Mn contents gradually increased
269	from the center to the edge of the sphalerite particles in the mapping image (Fig. 10). The concentration
270	of Mn is generally consistent with that of the MVT deposits but significantly lower than that of the
271	massive sulfide and skarn deposits.

- 272 Co: *Cobalt* concentration varies 3 orders of magnitude, ranging from 0.04 ppm to 35.1 ppm
- 273 (median 4.59 ppm, n=71), which is slightly higher than that of the MVT deposits (Fig. 6). A positive
- 274 correlation between Co and Ni was observed in Fig. 7d, and Co show coordination changes between
- 275 Co and Fe (Fig. 10). From the LL to UL, Co shows a trend of gradual enrichment (Fig. 7d). In the
- 276 profiles, Co presents a flat and smooth acquisition profile that is nearly parallel to Fe.
- 277 Ni: The nickel concentrations are relatively low, with most below the detection limit, and the
- 278 maximum is only 3.08 ppm and medians are lower than the concentrations in the massive sulfide and
- skarn-type sphalerites (Fig. 6). Due to the low contents, the Ni acquisition profiles cannot be shown in
- 280 the LA-ICP-MS profiles. However, Ni is evenly distributed in the mapping image of sphalerite (Fig.
- 281 10). Co and Ni have a strong positive correlation (Fig. 7d).
- 282 Se: The *selenium* concentration in sphalerite from the Maozu deposit is mostly lower than the 283 detection limit, and the maximum content is only 3.52 ppm, which is analogous to the concentrations in
- the MVT and lower than that in the skarn deposits (Fig. 6).
- 285 In addition, the concentrations of other elements, such as Te, Tl and Bi, from the Maozu deposit
- have been detected in a few spots with the contents mostly below the detection limits (Appendix A).

- 287 Although the Hg acquisition profile is obvious in the measured samples (Fig. 9a), an accurate Hg value
- 288 cannot be obtained because there is no available sample standard.
- 289 **3.2 Trace elements in galena**
- 290 Sb: Antimony is the most enriched element in galena of the Maozu deposit (Fig. 8b), ranging from
- 291 342 to 1033 ppm (median 724 ppm, n=26). Sb and Ag are positively correlated (Fig. 7n) and both show
- smooth LA-ICP-MS acquisition profiles (Fig. 9e-f). Sb contents gradually increase from the LL (498
- 293 ppm, n=7) to the UL (740 ppm, n=6), with the highest concentration in the VL ore body (764 ppm,
- 294 n=13).
- Ag: Silver is widely distributed in galena of the Maozu deposit (Fig. 8a), ranging from 293-910
- 296 ppm (median 582 ppm, n=26). There is a very strong positive correlation between Ag and Sb (r=0.98,
- 297 n=26; Fig. 7n). In the time-resolved depth acquisition profiles, Ag and Sb appear as flat acquisition
- 298 profiles that are parallel to the Pb and S (Fig. 9e-f). From the LL (median 426 ppm, n=7) to the UL
- 299 (median 575 ppm, n=6), Ag gradually increases, and the content of Ag in the VL (median 666 ppm,
- 300 n=13) is the highest (Fig. 8a).
- 301 Se: *Selenium* is relatively enriched in the galena of the Maozu deposit from 0.44-96.4 ppm
- 302 (median 56.6 ppm, n=22). Although Se is widely distributed (Fig. 8h), Se appears in a flat acquisition
- 303 profile in the time-resolved depth acquisition profiles (Fig. 9f).
- Cd: *Cadmium* is relatively enriched and concentrated in the galena from the Maozu deposit and presents a normal distribution (Fig. 8c) from 19.7-56.7 ppm (median 36.1 ppm, n=26). The Cd acquisition profile is smooth and flat and parallel to Pb and S. The Cd of galena from the three ore
- 307 bodies shows no obvious differences.
- 308

Sn: Tin content in galena is relatively low, with most concentrations <10 ppm, and the variation

309	range is 0.61-16.6 ppm (median 2.74 ppm, n=26). From the LL to VL to UL, the median contents
310	change from 0.76 ppm (n=7) to 5.29 ppm (n=13) to 2.33 ppm (n=6), respectively, and the highest Sn
311	concentration occurs in the VL.
312	Bi: Bismuth content in galena is mostly <10 ppm (Fig. 8f), and it ranges from 0.01-14.2 ppm
313	(median 0.48 ppm, n=26). The Bi acquisition profile is smooth and flat and parallel to the Pb and S
314	acquisition profiles (Fig. 9f). The correlation between Bi and Sb is strong (Fig. 7o).
315	Tl: Thallium is the most concentrated trace element in the galena of the LL (Fig. 8e), and the total
316	content range is 4.73-8.59 ppm (median 5.76 ppm, n=26). The acquisition profile of Tl is smooth and
317	flat (Fig. 9e-f). From LL \rightarrow VL \rightarrow UL, the median content changes from 8.15 ppm (n=7) \rightarrow 5.17 ppm
318	$(n=13) \rightarrow 5.84 \text{ ppm} (n=6)$, respectively.
319	Cu: Copper is present in relatively low concentrations except in the LL, where its concentration is
320	relatively high (Fig. 8d). The Cu concentrations in the VL and UL are all <1 ppm, and the total
321	distribution range is 0.15-3.04 ppm (median 0.67 ppm, n=24). The correlation between Cu and Tl is
322	strong (Fig. 7o).
323	In addition, other elements in the galena from the Maozu deposit, such as Fe, Mn, and As, are
324	generally below the minimum detection limit.
325	4. Discussion
326	4. 1 Occurrence and substitution mechanisms of trace elements
327	LA-ICP-MS analysis could provide significant information for the occurring of a particular
328	element. Micro-inclusions are commonly noted in the LA-ICP-MS acquisition profiles (peak) if they
329	are sufficiently large (e.g., Cook et al. 2009; Ye et al., 2011, 2016; George et al. 2015), whereas

330 lattice-bound trace elements and nanoparticles would present flat in the signal spectra and thus hard to

16

distinguish (e.g., Gregory et al. 2014, 2015). In those cases, trace element mapped images may provide
additional constrain on the occurring of the elements in hosted minerals. But the hypothesis that these
elements occurs as nanoparticles could not be ruled out.

334

4.1.1 The occurrence of trace elements in sphalerite

335 Although trace elements of Mn, Cd, Fe and Co show highly variation (Table 1, Fig. 6), these trace 336 elements occur as smooth and flat and follow changes of Zn and S in the LA-ICP-MS acquisition 337 profiles (Fig. 9a). Moreover, these elements are uniformly distributed in the trace element mapping 338 images (Fig. 10), suggesting that these elements likely mainly occur as solid solutions in sphalerite. 339 Notably, in the mapping images (Fig. 10), from the center to the edge of the sphalerite particles, Mn 340 contents gradually increase, probably because the later formation of hydrothermal dolomite contained a 341 certain amount of Mn. Additionally, several spot-like concentration areas enriched Fe and Co are 342 evenly distributed in the mapping images (Fig. 10), which may be attributed to the disseminated pyrite 343 in the sphalerite (Fig. 4k, 10a) and indicates that the Co enrichment is related to the Fe distribution. 344 The concentrations of elements In, Sn, Cu, Ge, Sb and Ag vary widely (Fig. 6), and these trace 345 elements are unevenly distributed in the mapping images. However, the element acquisition profiles are 346 flat and smooth, which is consistent with the Zn and S acquisition profiles (Fig. 9c, d), implying that 347 these elements did not exist as micro-inclusions. In, Sn and Cu, Ge, Sb, and Ag have overlapping 348 element enrichment areas in the mapping images (Fig. 10), suggesting that these elements may enter 349 into the sphalerite crystal structure by coupled substitution. 350

The sphalerite contains measurable concentrations of Pb and As, which typically vary greatly (Fig. 6) and are unevenly distributed in the mapped images (Fig. 10). Several acquisition profiles appear as ragged and irregular in the time-resolved profiles and show a coordination change with the profile of 353 Pb (Fig. 9d), suggesting partly Pb and As exist in sphalerite as micro-inclusions.

354 The concentrations of Bi, Tl, Ni, Se and other trace elements are extremely low (< 5 ppm), and the 355 acquisition profiles of these elements could not be reflected in the LA-ICP-MS profiles. 356 4.1.2 The occurrence of trace elements in galena 357 Although the Ag and Sb concentrations vary widely, these element spectral profiles present 358 smooth and flat and are parallel with the Pb and S in the time-resolved profiles (Fig. 9e-f), which may 359 indicate that Ag and Sb likely enter into the galena crystal structure. Meanwhile, Cd, Se Bi and Tl 360 appear as smooth and flat profiles, which is consistent with the changes in the Pb and S (Fig. 9e, f), 361 revealing that these elements may also occur as solid solutions in galena. 362 4.1.3 Substitution mechanisms Many studies have demonstrated that the bivalent cations (e.g., Cd²⁺, Fe²⁺, Mn²⁺, Co²⁺) are easily 363 364 incorporated into sphalerite via simple substitution of Zn^{2+} , due to the similar ion radii (Johan 1988; Cook et al. 2009). Tri- and tetravalent elements (e.g., Ge⁴⁺, Sb⁴⁺, In³⁺) are thought to enter sphalerite 365 366 via coupling with monovalent elements (Cu⁺, Ag⁺) or through the creation of vacancies (e.g., Bernstein 367 1986; Cook et al. 2009; Ye et al. 2011; Belissont et al. 2014; Wei et al. 2019). Johan (1988) proposed a 368 general coupled substitution mechanism for trivalent and tetravalent elements in sphalerite as follows: $(x + 2y) M^+ + y M^{2+} + x M^{3+} + y M^{4+} \leftrightarrow (2x + 4y) Zn^{2+}$ 369 370 where M⁺=Ag, Cu; M²⁺=Cu, Fe, Cd, Hg, Zn; M³⁺=In, Ga, Fe, Tl; M⁴⁺=Ge, Sn, Mo, W; and x and 371 y are atomic proportions of M3+ and M4+, respectively. However, substitution mechanisms these 372 elements still debated. For example, some authors proposed the intake of Ge²⁺ in sphalerite via direct 373 substitutions $(Zn^{2+} \leftrightarrow Ge^{2+})$ (e.g., Cook et al. 2009; Ye et al. 2011). In contrast, Cook et al. (2015) postulated that Ge enters sphalerite lattice through the creation of vacancies such as $2Zn^{2+}\leftrightarrow Ge^{4+} + \Box$. 374

375	Wei et al. (2019) considered that Cu and Ge show a coupled substitution of Zn $(3Zn^{2+} \leftrightarrow 2Cu^{+} + Ge^{4+})$
376	due to the correlation between Ge and Cu with a trend to parallel to the molar ratio $(Cu/Ge)_{mol} = 2$.
377	The atomic ratio (AR) was an effective method to understand the substitution mechanisms of
378	trace elements in sphalerite (e.g., Johan 1988; Belissont et al. 2014; Wei et al. 2019). Therefore, it was
379	applied to determine the substitution of the tri- and tetravalent elements in sulfide from Maozu. Based
380	on the research results of Johan (1988), the slope (k) of different Ars is determined according to the
381	weight ratio (WR) (Mx/My) of the elements to make a line (Fig. 7i) with different Ars (i.e., different
382	slopes). Even in different coordinate systems, the slope (k) is constant due to the constant WR;
383	therefore, the AR is also constant. The AR of each element in the substitution reaction can be
384	determined according to the slope of the regression line in the correlation plot (Fig. 7i). The premise of
385	the application of this plot (Fig. 7i) is that Mx and My have a good linear relationship, basically
386	presenting a linear distribution (e.g., Fig. 7j-o), and the contents of elements are concentrated and
387	cannot be scattered (Fig. 7e-h); otherwise, the calculated AR is not accurate.
388	As noted above, although In and Sn are not evenly distributed in sphalerite, these elements have
389	similar element distribution features in the mapped images and show a good linear relationship in Fig.
390	7j (r=0.82, n=66), indicating that these elements are coupled substitutions for Zn in sphalerite, a similar
391	result has been reported by Belissont et al. (2014). Other than In and Sn, there may be the presence of
392	vacancies (represented by D) for other uncertain elements. According to the equation of Johan (1988),
393	the possible substitution equation is $xIn^{3+} + ySn^{4+} + z\Box \leftrightarrow (x + y + z) Zn^{2+}$.
394	As the plots are concentrated and linearly distributed in the In-Sn correlation plot, the regression
395	line (r=0.82, k=0.6) is approximately parallel to In/Sn=2/1 (k=0.5) (Fig. 7j). The slope of the regression

396 line is slightly higher than the slope of the line with an AR of 2/1, which is attributed to the existing

397	vacancies (\Box). The atomic ligand ratio of In ³⁺ and Sn ⁴⁺ is 2/1; therefore, the most likely coupled
398	substitution is $2\text{In}^{3+} + \text{Sn}^{4+} + 2\Box \leftrightarrow 5Zn^{2+}$.

399	2) Cu, Ge, Ag, and Sb have consistent element distribution characteristics in the mapping images,
400	and (Cu + Sb) vs (Ag + Ge) (r=0.8, n=72, Fig. 7k) show strongly positive correlation, therefore these
401	characteristics reveal that the elements are incorporated into sphalerite by coupled substitution. In the
402	correlation plots of Cu vs Ge (Fig. 7e), Cu vs Ag (Fig. 7f), Ge vs Ag (Fig. 7g) and Sb vs Ge (Fig. 7h),
403	the corresponding plots are scattered or not linearly distributed; thus, the AR cannot be determined.
404	Although the correlation coefficients of (Cu + Sb) vs (Ag + Ge) reached 0.8 (n=69) and 0.98 (n=3),
405	there are two groups of linear relations (Fig. 7k), which suggested that other metal atoms (vacancies)
406	may participate in the substitution; therefore, the AR cannot be determined by these plots.
407	The plots of Cu vs Sb (r=0.73, k=1.11, Fig. 7l) and Sb vs Ag (r=0.76, k=0.47, Fig. 7m) are
408	concentrated and linearly distributed, and their slopes are approximately parallel to those of the AR, at
409	1/1 (k=1) and $2/1$ (k=0.5), respectively. The atomic ratio of Cu/Sb is $1/1$ and that of and Sb/Ag is $2/1$.
410	According to the equation of Johan (1988), Ge is tetravalent and Ag is monovalent. Belissont et al.
411	(2014) reported Sb is trivalent and Cu is monovalent, in agreement with the results of AR. As noted
412	above, other uncertain atoms (vacancies) may participate in the substitution, which may cause the
413	coupled substitution of these elements (Cu, Ge, Ag, and Sb) to be slightly different from the equation of
414	Johan (1988). Consequently, the possible coupled substitution is $4(Cu^+ + Sb^{3+}) + (Ge^{4+} + 2Ag^+) + 2\Box$
415	$\leftrightarrow 13 Zn^{2+}.$

Regarding galena, the contents of Ag and Sb vary greatly (Fig. 8a-b). Conventionally, many
researches on galena have principally focused on elements with high concentrations, such as Ag, Sb
and Bi (Van Hook 1960; Jeppsson 1989; Lueth et al. 2000; Chutas et al. 2008; Renock and Becker

419	2011). Thallium is more readily incorporated into the crystal lattices of galena with Bi, Ag and Sb by
420	coupled substitution due to the existence of Cu (George et al. 2015). Although all these elements have
421	good linear relationships (r=0.98, n=26) in the correlation plots of Ag vs Sb (Fig. 7n) and (Bi + Sb) vs
422	(Cu + Ag + Tl) (Fig. 7o), the coupled relationship of Ag and Sb is only considered because of the low
423	contents of Bi, Cu and Tl in galena from the Maozu deposit. The regression line slope of Ag vs Sb
424	(k=0.97, Fig. 7n) is close to 1 (AR is 1/1), (Ag/Sb) at=1/1. Additionally, previous studies generally
425	proposed Ag as monovalent and Sb as trivalent (Renock and Becker 2011; George et al. 2015; Ye et al.
426	2016). Hence, the coupled substitution between Ag, Sb and Pb may be simplified as $Ag^+ + Sb^{3+} \leftrightarrow$
427	2Pb ²⁺ .

428

4.2 Mineralization temperature

429 Many studies have indicated that trace elements in sphalerite have a close connection with the 430 temperature during sulfide precipitation; therefore, the contents of trace elements in sphalerite can 431 indicate the temperature of mineral formation (Oftedahl 1940; Moller 1987; Mladenova and Valchev 432 1998; Kelley et al. 2004; Frenzel et al. 2016). Conventionally, sphalerite enriched in Fe, Mn, In, Sn, 433 and Te indicate sulfide formation under a high-temperature condition, while sphalerite formed at low 434 temperature is enriched in Cd, Ga and Ge with a low In/Ge ratio (Ye et al. 2016). Sphalerite in the 435 Maozu deposit is characterized by the enrichment of Cd and Ge and depletion of Fe, Mn, Co, Se and Te. 436 Fe content (698.1-20,570 ppm) in sphalerite from the Maozu deposit is similar to the Fe content 437 (0.6-4.2 wt %) in sphalerite formed at 100-200 °C according to Kelley et al. (2004). The compositions 438 of the trace elements in sphalerite from the Maozu Pb-Zn deposit show enrichment of low-temperature 439 elements, such as Cd and Ge, which are consistent with those in the typical MVT Pb-Zn deposits (Cook 440 et al. 2009; Ye et al. 2011) (Fig. 6).

21

441	Cao et al. (2014) showed that sphalerite formed at a high temperature (200-355 °C), the color of
442	sphalerite is dark and rich in Fe (3.58%-11.42%) and Mn (0.2%-0.4%). While sphalerite formed at a
443	low temperature (110-180 °C) is lighter and relatively depleted in Fe (0.23%-2.0%) and Mn
444	(0.003%-0.05%). The colors of the sphalerite in the Maozu Pb-Zn deposit are dominated by brown and
445	yellow (Fig. 4a, e, j). The contents of Fe and Mn are 0.07%-2.1% and ~0.02%, respectively, which are
446	similar to the contents of Fe and Mn in low-temperature sphalerite. These characteristics indicate that
447	the mineralization temperature of the sphalerite in the Maozu Pb-Zn deposit is mainly medium to low
448	temperature.
449	Frenzel et al. (2016) demonstrated that the trace element concentrations (Ga, Ge, In, Fe, Mn, Ag,
450	Co and Cu) of sphalerite can be used to calculate the formation temperature. Because our experiment
451	did not analyze the content of Ga, we use the Ga content (~20 ppm, Ye et al. 2011) from the Huize
452	deposit (a typical Pb-Zn deposit in SYGMP that is similar in geological and geochemical features to the
453	Maozu deposit) as a proxy according to the data from Frenzel et al. (2016). As a result, the formula
454	(Frenzel et al. 2016) for calculating the ore-forming temperature of sphalerite was used, and the
455	considered trace elements were Fe, Ge, In and Mn from this paper and Ga from Huize. The calculated
456	ore-forming temperature of sphalerite in the Maozu deposit is 120.5-288.7 °C (average 179.3 °C),
457	which is similar to a previous analysis of fluid inclusions in the Maozu deposit (140-280 °C, Yang et al.
458	2017), revealing that the ore-forming fluids of the deposit are medium-low temperature fluids.
459	In addition, the concentrations of In and Sn in the VL are the highest (Fig. 6, 7j), and relatively
460	more galena occurs in the VL than in the LL and UL (Fig. 4). These characteristics may indicate that
461	the VL is the secondary channel for the migration of ore-forming fluids. The concentrations of Fe, In,
462	and Sn in sphalerite and Ag and Sb in galena are the most enriched in the VL (Fig. 6). This finding may

463 suggest that ore-forming fluid migration occurs from deep to shallow and that the VL connects the UL

464 and LL by tectonic fracture zone and is the secondary migration channel of the ore-forming fluids.

465

4.3 Ore genetic type

466 The sulfide ore bodies of the Maozu deposit mainly occurs as stratiform and lentiform bodies, 467 resulting in some researchers consider it as a sedimentary reworked type or SEDEX-type of deposit 468 (e.g., Chen et al. 2002; He et al. 2006). In fact, the ore-hosting rock is the late Ediacaran Dengying 469 Formation dolostone, which differs from the host rocks (siliciclastic rocks) of the SEDEX-type. 470 Moreover, the steeply VL has been discovered with the mining exposures (Fig. 4), suggesting that the 471 Maozu deposit shows clear epigenetic origin. Furthermore, George et al (2015) found that galena from 472 the SEDEX Pb-Zn deposit is enriched in Bi (>100 ppm, up to 1000 ppm), but Bi in galena from the 473 Maozu deposit is normally below 1 ppm. In plots of Fe vs Mn, Fe vs Bi, Mn vs Bi and Ag vs Bi (Fig. 474 11), the trace elements in galena of the Maozu deposit plot away from those of the SEDEX deposits 475 (George et al. 2015, 2016; Ye et al. 2016). Therefore, we consider that the Mazu deposit is unlikely 476 attributed to a syngenetic origin.

477 Previous studies have suggested that the Maozu deposit is characterized by: (1) stratiform and 478 dipping vein ore bodies hosted in the Late Ediacaran Dengying Formation dolostone; (2) relatively 479 simple mineral assemblage, and including sphalerite, galena, dolomite, and minor pyrite and quartz; (3) 480 ore-forming fluids with low-medium temperature (140-280°C) and medium-high salinity (10-18 wt.% 481 NaCl eqv.)(Yang et al. 2017); (4) a mixing metal source of metamorphic basement rocks and 482 ore-hosting sedimentary rocks (Zhou et al. 2013); (5) sulfur from a thermochemical reduction the 483 ore-hosting sulfate (Zhou et al. 2013). All these geological features are consistent with those of typical 484 MVT deposits (Leach et al. 1993, 2005).

485	Trace elements in sphalerite, such as Fe, Mn, Cd, Ge, In, Ga, Se and Te, has been used to classify
486	the deposit genesis in recent decades because trace elements can be used to provide genetic information
487	(Zhang 1987; Cook et al. 2009; Ye et al. 2011, 2012, 2016; Wei et al. 2018a, b). In general, the MVT
488	Pb-Zn deposit is enriched in Cd, Ge, and Ga (Ye et al. 2011; Bonnet et al. 2016; Yuan et al. 2018) and
489	depleted in Fe, Mn, In, Sn, and Co (Ye et al. 2011, 2016; Wei et al. 2018a). The massive sulfide
490	deposits (SEDEX and VMS) are characterized by enrichment in Fe, Mn, and In and depletion in Cd, Ge,
491	and Ga (Cook et al. 2009; Ye et al. 2011; Wei et al. 2018b). The skarn-type deposits are enriched in Mn
492	and Co and depleted in In, Sn and Fe (Cook et al. 2009; Ye et al. 2011). For the Maozu deposit, trace
493	element compositions in sphalerite are characterized by depletion in Fe, Mn, and Co. The Mn and Co
494	contents in sphalerite from the Maozu deposit are lower than that of the skarn-type (most of Mn >1000
495	ppm and Co >200 ppm, Table 2) (Cook et al. 2009; Ye et al. 2011), and the Fe and Mn contents are
496	significantly lower than those in the sedimentary exhalative deposit (most of Fe and Mn >1000 ppm,
497	Table 2) (Ye et al. 2011). Whereas, these sphalerite samples are enriched in Cd and Ge which are
498	analogous to those of MVT deposits from the USA, China and Mexico (Cook et al. 2009; Ye et al. 2011;
499	Bonnet et al. 2016; Wei et al. 2018a). Furthermore, in the binary plots of different genesis deposits (Fig.
500	12), including Mn vs Fe, Mn vs Co, Mn vs Ge and Cd/Fe vs Mn, all the samples fall into the MVT
501	range.
502	In conclusion, the composition of trace elements in sulfides from the Maozu Pb-Zn deposit is

significantly different from that of the sedimentary exhalative and skarn-type deposits but consistent with that of the MVT deposits (Cook et al. 2009; Ye et al. 2011, 2016; Wei et al. 2018a, b). Combined with the geological and geochemical characteristics of the deposit, we propose that the deposit is an MVT deposit.

507	4.4 A possible reason for anomalies Indium and Tin in sphalerite
508	Generally, the magma-related deposits show high In and Sn concentrations in sphalerite (e.g.,
509	Cook et al. 2009; Belissont et al. 2014; Wei et al. 2018b). Most of the Pb-Zn deposits in the SYGMP
510	are considered as MVT that have no genetic relationship with igneous rock (Leach et al. 2005).
511	Therefore, the concentrations of In and Sn in these deposits are very low (most <10 ppm, Fig. 6).
512	However, several LA-ICP-MS spot analyses in this study display high concentrations of In and Sn.
513	Interestingly, Mo et al. (2013) found that the volcanic rocks in the basement (the main metal source of
514	these Pb-Zn deposits in the SYGMP) contain high level of In (78 ppm) and Sn (120 ppm). Meanwhile,
515	the mineralizing fluids of MVT deposits are defined as a long-distance migration of basinal fluid
516	(Garven, 1985, Garven and Raffensperger, 1997). Therefore, a possible explanation is that the
517	hydrothermal fluid flow through the basement including In-Sn-bearing volcanic rocks and leach metals
518	out, and final form in In-Sn-bearing sphalerite because In and Sn preferred host in sphalerite (Höll et al.
519	2007; Cook et al. 2009). But this hypothesis should be verified in the future.
520	5. Implications
521	To understand the genesis of Pb-Zn deposits in the SYGMP, the trace elements in different
522	sulfides (sphalerite and galena) from the Maozu Pb-Zn deposit, which is a representative Pb-Zn deposit
523	in the SYGMP, were analyzed by LA-ICP-MS. Compared with trace elements in sulfides from the
524	different genetic type Pb-Zn deposits, the Maozu Pb-Zn deposit is characterized by enrichment of Ge,
525	Fe, Mn, Co in sphalerite and Ag, Sb, Cd, Se in galena, which is similar to the composition of typical
526	MVT deposits and different from those of SEDEX, VMS, and skarn-type Pb-Zn deposits, suggesting
527	that the Maozu deposit is an MVT deposit.

528 The occurrence of the trace elements in sulfides were determined by the LA-ICP-MS acquisition

529 profiles, mapped images and element inter-correlation. Bivalent cations such as Mn, Cd, Fe, and Co 530 likely enter sphalerite lattice via a direct substitution. Tri- and tetravalent elements including In³⁺, Sn⁴⁺, 531 Ge⁴⁺ and Sb³⁺ were incorporated into sphalerite by coupling with monovalent elements (Cu+, Ag+) as $2\text{In}^{3+} + \text{Sn}^{4+} + 2\square \leftrightarrow 5\text{Zn}^{2+}$ ($\square = \text{vacancies}$) and $4(\text{Cu}^+ + \text{Sb}^{3+}) + (\text{Ge}^{4+} + 2\text{Ag}^+) + 2\square \leftrightarrow 13\text{Zn}^{2+}$. Partly 532 533 Pb and As exist in sphalerite as micro-inclusions. In addition, strong binary correlations between Sb and Ag in galena imply the coupled substitution of $Ag^+ + Sb^{3+} \leftrightarrow 2Pb^{2+}$. 534 The enrichment of trace elements in sulfide minerals differs among the lower layer (LL), vein 535 536 layer (VL) and upper layer (UL). In sphalerite, Fe, Co, Cu, and Ge show a slight decrease trend while 537 Cd, Mn, Ag, Sb, and Pb display a gradually increasing trend from the upper to lower layer. Notably, Fe, 538 In and Sn in sphalerite and Ag and Sb in galena are the highest in the VL, suggesting that the VL is a 539 secondary migration channel of the ore-forming fluids. 540 Acknowledgments 541 This research project was jointly supported by the National Natural Science Foundation of China 542 (Grant No. 41673056, 41430315), the National Key R&D Program of China (No. 2017YFC0602502), 543 and the National '973 Project' (No. 2014CB440906). We would like to thank Dr. Ivan Belousov, Dr. 544 Paul Olin, Dr. Sarah Gilbert (CODES, University of Tasmania) for their assistance in LA-ICPMS 545 analysis. Associate Editor Daniel Gregory, and two anonymous reviewers are thanked for their 546 constructive comments and suggestions. 547 548 Reference 549 Alfantazi, A.M., and Moskalyk, R.R. (2003) Processing of indium: a review. Minerals Engineering, 16, 550 687-694.

- 551 Bellissont, R., Boiron, M.C., Luais, B., and Cathelineau, M. (2014) LA-ICP-MS analyses of minor and
- 552 trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac Saint-Salvy
- 553 deposit (France): Insights into incorporation mechanisms and ore deposition processes.
- 554 Geochimica et Cosmochimica Acta, 126, 518–540.
- 555 Benzaazoua, M., Marion, P., Pinto, A., Migeon, G., and Wagner, F.E. (2003) Tin and indium
- 556 mineralogy within selected samples from the Neves Corvo ore deposit (Portugal): a
- 557 multidisciplinary study. Minerals Engineering, 16, 1291–1302.
- 558 Bernstein, L.R. (1985) Germanium geochemistry and mineralogy. Geochimica et Cosmochimica Acta,
- 55949(11), 2409–2422.
- 560 Bernstein, L.R. (1986) Geology and mineralogy of the APEX germanium–gallium mine, Washington
 561 County, Utah. USGS Bull, 1577, 1–9.
- 562 Bonnet, J., Mosser, R.R., Caumon, M.C., Rouer, O., Andre, M.A.S., Cauzid, J., and Peiffert, C. (2016)
- 563 Trace element distribution (Cu, Ga, Ge, Cd, and Fe) in sphalerite from the Tennessee Mvt deposits,
- 564 USA, by combined EMPA, LA-ICP-MS, raman spectroscopy, and crystallography. Canadian 565 Mineralogist, 54(5), 1261–1284.
- 566 Cao, H.W., Zhang, S.T., Zheng, L., Liu, R.P., Tian, H.H., Zhang, X.H., and Li, J.J. (2014) Geochemical
- 567 characteristics of trace element of sphalerite in the Zhongyuku (Pb)-Zn deposit of the Luanchuan,
- 568 Southwest of China. Journal of Mineral Petrol, 34(3), 50–59 (in Chinese with English abstract).
- 569 Chen, Q.L. (2002) Metallogenetic geological features and ore guides of high-grade Pb-Zn deposits in
- 570 Yuhucun formation, northeast Yunnan. Geology Prospecting, 38(1), 22 26 (in Chinese with
- 571 English abstract).
- 572 Chutas, N.I., Kress, V.C., Ghiorso, M.S., and Sack, R.O. (2008) A solution model for hightemperature

- 573 PbS-AgSbS2-AgBiS2 galena. American Mineralogist, 93, 1630–1640.
- 574 Cook, N.J., Ciobanu, C.L., Brugger, J., Etschmann, B., Howard, D.L., De Jonge, M.D., Ryan, C., and
- 575 Paterson, D. (2012) Determination of the oxidation state of Cu in substituted CuIn-Fe-bearing
- 576 sphalerite via I-XANES spectroscopy. American Mineralogist, 97, 476–479.
- 577 Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B.,
- 578 and Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica
- 579 et Cosmochimica Acta, 73, 4761–4791.
- 580 Cook, N.J., Etschmann, B., Ciobanu, C.L., Geraki, K., Howard, D.L., Williams, T., Rae, N., Pring, A.,
- 581 Chen, G.R., Johannessen, B., and Brugger, J. (2015) Distribution and substitution mechanism of
- 582 Ge in a Ge-(Fe)-bearing sphalerite. Minerals, 5(2), 117–132.
- 583 Craig, J.R. (1973) The Cu–Zn–S system. Mineral Deposita, 8, 81–91.
- 584 Danyushevsky, L., Robinson, P., Gilbert, S., Norman, M., Large, R., Mcgoldrick, P., and Shelley, M.
- 585 (2011) Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS:
- 586 Standard development and consideration of matrix effects. Geochemistry Exploration
 587 Environment Analysis, 11(1), 51–60.
- 588 Danyushevsky, L., Robinson, P., McGoldrick, P., Large, R., and Gilbert, S. (2003) LA-ICPMS of
- 589 sulphides: evaluation of an XRF glass disc standard for analysis of different sulphide matrixes.
- 590 Geochimica et Cosmochimica Acta, 67(18), A73.
- 591 Frenzel, M., Hirsch, T., and Gutzmer, J. (2016) Gallium, germanium, indium, and other trace and minor
- 592 elements in sphalerite as a function of deposit type a meta-analysis. Ore Geology Reviews,
- 593 76(9), 52–78.
- 594 Gao, H.X., Ren, X.H., Guo, J., Li, F.R., and Li, X. (2011) Geological-geophysical characteristics and

- 595 orebody prediction of Maozu lead-zinc deposit. Mineral Resources and Geology, 25(2), 152–157
- 596 (in Chinese with English abstract).
- 597 Garven, G. (1985) The role of regional fluid flow in the genesis of the PinePoint deposit, western
- 598 Canada sedimentary basin: Economic Geology, 80, 307–324.
- 599 Garven, G., and Raffensperger, J.P. (1997) Hydrology and geochemistry of ore genesis in sedimentary
- basins, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits, 3rd ed.: New York, Wiley
- 601 and Sons, 125–189.
- 602 George, L., Cook, N.J., and Ciobanu, C.L. (2016) Partitioning of trace elements in co-crystallized
- 603 sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geology Reviews, 77, 97–116.
- 604 George, L., Cook, N.J., Ciobanu, C.L., and Wade, B.P. (2015) Trace and minor elements in galena: a
- 605 reconnaissance LA-ICP-MS study. American Mineralogist, 100(2–3), 548–569.
- 606 Gregory, D., Meffre, S., and Large, R., (2014) Comparison of metal enrichment in pyrite framboids
- from a metal-enriched and metal-poor estuary: American Mineralogist, 99, 633–644.
- 608 Gregory, D.D., Large, R.R., Halpin, J.A., Baturina, E.L., Lyons, T.W., Wu, S., Danyushevsky, L., Sack,
- 609 P.J., Chappaz, A., Maslennikov, V.V., and Bull, S.W. (2015) Trace element content of sedimentary
- 610 pyrite in black shales. Economic Geology, 110, 1389–1410.
- 611 Han, R.S., Liu, C.Q., Huang, Z.L., Chen, J., Ma, D.Y., Lei, L., and Ma, G.S. (2007) Geological features
- and origin of the Huize carbonate-hosted Zn–Pb–(Ag) District, Yunnan, South China. Ore
 Geology Reviews, 31, 360–383.
- 614 He, S.H., Rong, H.H., Shang, W., and Su, J.H. (2006) Geological characteristics and genesis of Maozu
- 615 lead and zinc deposit, Yunnan. Mineral Resource Geology, 4–5, 397–402 (in Chinese with English
- 616 abstract).

- 617 Höll, R., Kling, M., and Schroll, E. (2007) Metallogenesis of germanium a review. Ore Geology
- 618 Reviews, 30, 145–180.
- 619 Hu, R.Z., and Zhou, M.F. (2012) Multiple Mesozoic mineralization events in South China an
- 620 introduction to the thematic issue. Mineralium Deposita, 47, 579–588.
- 621 Huang, Z.L., Chen, J., Han, R.S., Li, W.B., Liu, C.Q., Zhang, Z.L., Ma, D.Y., Gao, D.R., and Yang, H.L.
- 622 (2004) The Ore Geochemistry and Its Ore Genesis of Huize Super Large Scale Pb-Zn
- 623 Deposit-Discussion on the Relationship between Pb-Zn Mineralization and Emeishanbasalt.
- 624 Beijing: Geology Publishing Company Press, 1–187 (in Chinese).
- 625 Jeppsson, M.L. (1989) Mineral chemistry of silver in antimony and bismuth rich sulphide ore in
- 626 Bergslagen, central Sweden. Neues Jahrbuch für Mineralogie Monatshefte, 205–216.
- Johan, Z. (1988) Indium and germanium in the structure of sphalerite: an example of coupled
 substitution with Copper. Mineralogy and Petrology, 39(3–4), 211–229.
- 629 Kelley, K. D., Leach, D. L., Johnson, C. A., Clark, J. L., Fayek, M., Slack, J. F., Anderson, V.M., Ayuso,
- 630 R.A., and Ridley, W. I. (2004). Textural, Compositional, and Sulfur Isotope Variations of Sulfide
- 631 Minerals in the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska: Implications for Ore
- 632 Formation. Economic Geology, 99(7), 1509–1532.
- 633 Leach, D.L. (1993) Mississippi Valley-type lead-zinc deposits. Geological Association of Canada
- 634 Special Paper, 40(3), 108–117.
- 635 Leach, D.L., and Taylor, R.D. (2009) Mississippi Valley-type lead-zinc deposit model: U.S. Geological
- 636 Survey Open-File Report, 1213, 5p.
- 637 Leach, D.L., Macquar, J.C., Lagneau, V., Leventhal, J., Emsbo, P., and Premo, W. (2006) Precipitation
- of lead-zinc ores in the Mississippi Valley type deposit at Trèves, Cévennes region of southern

- 639 France. Geofluids, 6, 24–44.
- 640 Leach, D.L., Sangster, D.F., Kelley KD, et al. (2005) Sediment-hosted lead-zinc deposits: a global
- 641 perspective. Economic Geology 100th Anniversary Volume, 100, 561 607.
- 642 Li, Z.L. (2016) Geological geochemical characteristics and prospecting directions in the Fule lead-zinc
- 643 deposit, Yunnan Province. Master Degree Thesis. Guiyang: Institute of Geochemistry, Chinese
- 644 Academy of Sciences, 1–75 (in Chinese with English abstract).
- 645 Li, Z.L., Ye, L., Hu, Y.S., and Huang, Z.L. (2018a) Geological significance of nickeliferous minerals in
- 646 the Fule Pb–Zn deposit, Yunnan Province, China. Acta Geochimica, 37(5), 684–690.
- 647 Li, Z.L., Ye, L., Huang, Z.L., Zhou, J.X., Hu, Y.S., and Nian, H.L. (2018b) Mineralogical
- 648 characteristics and geological significance of Copper minerals in Fule Pb-Zn deposit, Yunnan
- 649 Province, China. Geological Journal of China Universities, 24(2), 200–209 (in Chinese with
- English abstract).
- Liu, H.C., and Lin, W.D. (1999) Study on the law of Pb–Zn–Ag ore deposit in northeast Yunnan, China.
- 4652 Yunnan University Press, Kunming, 1–468 (in Chinese).
- Liu, H.T., and Zhang, Y.X. (2013) Study on leakage anomalies techniques of geochemical prospecting
- 654 Giving an example of Maozu Pb-Zn mining district, Qiaojia, Yunnan. Mineral Resources and
- 655 Geology, 27(5), 403–408 (in Chinese with English abstract).
- 656 Liu, W.Z. (2009) Geological and geochemical characteristics and metallogenic mechanism analysis of
- the Pb–Zn deposit in Maozu, Yunnan, China. Journal of Chengdu University of Technology, 36,
- 658 480–486 (in Chinese with English abstract).
- 659 Lueth, V.W., Megaw, P.K.M., Pingitore, N.E., and Goodell, P.C. (2000) Systematic Variation in Galena
- 660 Solid-Solution Compositions at Santa Eulalia, Chihuahua, Mexico. Economic Geology, 95,

- 661 1673–1687.
- Mladenova, V., and Valchev, S. (1998) Ga/Ge ratio in sphalerite from the carbonate-hosted
 Sedmochislenitsi Deposit as a temperature indication of initial fluids. Spis. Bulgar. Geol. Druzh.,
 59(2–3), 49–54.
- Mo, X.Y., Chen, T.Y., He, L.T., Jiang, S.D., Zhang, Y.C., and Yang, C. (2013) The Kunyang group in
- 666 Dongchuan, Yunnan, China. Kunming: Yunnan Science and Technology Press, 1–168 (in
 667 Chinese).
- 668 Möller, P. (1987) Correlation of homogenization temperatures of accessory minerals from 669 sphalerite-bearing deposits and Ga/Ge model temperatures. Chemical Geology, 61, 153–159.
- Moskalyk, R.R. (2003) Gallium: the backbone of the electronics industry. Minerals Engineering, 16,
 921–929.
- Oftedahl, I. (1940) Untersuchungen über die Nebenbestandteile von Erzmineralien norwegischer
 zinkblendführender Vorkommen. Skrift. Norsk Vidensk. Akad. Oslo, Math. Naturv. Kl., 8, 1–103.
- 674 Renock, D., and Becker, U. (2011) A first principles study of coupled substitution in galena. Ore
- 675 Geology Reviews, 42, 71–83.
- 676 Sangster, D.F. (1996) Mississippi Valley-type lead-zinc, Geology of Canadian Mineral Deposit Types:
- 677 Geological Survey of Canada. Geology of Canada, (8), 253–261.
- 678 Tu, G.C. (1984) Geochemistry of Strata-bound Ore Deposits in China (Volumes I). Science Press,
- 679 Beijing, 13–69 (in Chinese with English abstract).
- 680 Van Hook, H.J. (1960) The ternary system Ag2S-Bi2S3-PbS. Economic Geology, 55, 759–788.
- 681 Watling, R.J., Herbert, H.K., Barrow, I.S., and Thomas, A.G. (1995) Analysis of diamonds and
- 682 indicator minerals for diamond exploration by laser ablation/inductively coupled plasma mass

- 683 spectrometry. Analyst, 120(5), 1357–1364.
- Wei, A., Xue, C., Xiang, K., Li, J., Liao, C., and Akhter, Q.J. (2015) The ore-forming process of the
- 685 Maoping Pb–Zn deposit, Northeastern Yunnan, China: Constraints from cathodoluminescence (CL)
- 686 petrography of hydrothermal dolomite. Ore Geology Reviews, 70, 562–577.
- 687 Wei, C., Huang, Z.L., Yan, Z.F., Hu, Y.S., Ye, L. (2018a) Trace Element Contents in Sphalerite from the

688 Nayongzhi Zn-Pb Deposit, Northwestern Guizhou, China. Minerals, 8(11): 490-512.

- 689 Wei, C., Ye, L., Huang, Z.L., Gao, W., Hu, Y.S., Li, Z.L., Zhang, J.W. (2018b) Ore Genesis and
- 690 Geodynamic Setting of Laochang Ag-Pb-Zn-Cu Deposit, Southern Sanjiang Tethys Metallogenic
- 691 Belt, China: Constraints from Whole Rock Geochemistry, Trace Elements in Sphalerite, Zircon
- 692 U-Pb Dating and Pb Isotopes. Minerals, 8(11): 516-544.
- 693 Wei, C., Ye, L., Hu, Y.S., Danyushevskiy, L., Li, Z.L., Huang, Z.L. (2019)A Distribution and
- 694 occurrence of Ge and related trace elements in sphalerite from the Lehong carbonate-hosted Zn-Pb
- 695 deposit, northeastern Yunnan, China: Insights from SEM and LA-ICP-MS studies. Ore Geology
- 696 Reviews doi.org/10.1016/j.oregeorev.2019 .103175
- Wu, Y. (2013) The age and ore-forming process of MVT deposits in the boundary area of
 Sichuan-Yunnan-Guizhou provinces, Southwest China. Doctor Degree Thesis. Beijing: China
 University of Geosciences, 1–167 (in Chinese with English abstract).
- 700 Ye, L., Cook, N.J., Ciobanu, C.L., Liu, Y.P., Zhang, Q., Liu, T.G., Gao, W., Yang, Y.L., and
- 701 Danyushevskiy, L. (2011) Trace and minor elements in sphalerite from base metal deposits in
- 702 South China: a LA-ICPMS study. Ore Geology Reviews, 39, 188–217.
- 703 Ye, L., Gao, W., Yang, Y.L., Liu, T.G., and Peng, S.S. (2012) Trace elements in sphalerite in Laochang
- 704 Pb-Zn polymetallic deposit, Lancang, Yunnan Province, Acta Petrologica Sinica, 28(5),

- 705 1362–1372 (in Chinese with English abstract).
- 706 Ye, L., Li, Z.L., Hu, Y.S., Huang, Z.L., Zhou, J.X., Fan, H.F., and Danyushevsky, L. (2016) Trace
- 707 elements in sulfide from the Tianbaoshan Pb-Zn deposit, Sichuan Province, China: A LA-ICPMS
- 508 study. Acta Petrologica Sinica, 32(11), 3377–3393 (in Chinese with English abstract).
- 709 Yuan, B., Zhang, C.Q., Yu, H.J., Yang, Y.M., Zhao, Y.X., Zhu, C.C., Ding, Q.F., Zhou, Y.B., Yang, J.C.,
- 710 and Xu, Y. (2018) Element enrichment characteristics: insights from element geochemistry of
- 711 sphalerite in Daliangzi Pb-Zn deposit, Sichuan, Southwest China. Journal of Geochemical
- 712 Exploration, 186, 187–201.
- 713 Zhang, C.Q., Wu, Y., Hou, L., and Mao, J.W. (2015) Geodynamic setting of mineralization of
- 714 Mississippi Valley-type deposits in world-class Sichuan-Yunnan-Guizhou Zn-Pb triangle,
- southwest China: Implications from age-dating studies in the past decade and the Sm-Nd age of
- 716 Jinshachang deposit. Journal of Asian Earth Sciences, 103, 103–114.
- 717 Zhang, K., and Li, H.Y. (2014) Migration of trace elements in pyrite from orogenic gold deposits:
- 718 Evidence from LA-ICP-MS analyses. Acta Geologica Sinica (English Edition), 88 (Suppl. 2),
 719 841–842.
- Zhang, Q. (1987) Trace elements in galena and sphalerite and their geochemical significance in
 distinguishing the genetic types of Pb–Zn ore deposits. Chinese Journal of Geochemistry, 6,
- 722 177–190.
- Zhang, R.W. (2013) Geochemical characteristics and genetic type of the Maozu Pb-Zn deposit in
 Yunnan province, China. Kunming: Kunming University of Science and Technology, 1–82 (in
 Chinese with English abstract).
- 726 Zhang, W.J. (1984) The sedimentary genesis and metallogenic rules of Pb-Zn deposits in northeast

- 727 Yunnan province. Geology and exploration, (7), 11–16 (in Chinese).
- 728 Zhang, Z.B., Li, C.Y., Tu, G.C., Xia, B., and Wei, Z.Q. (2006) Geotectonic evolution background and
- 729 ore-forming process of Pb-Zn deposits in Chuan-Dian-Qian area of Southwest China.
- 730 Geotectonica et Metallogenia, 30(3), 343–354 (in Chinese with English abstract).
- 731 Zhou, J.X., Huang, Z.L., and Yan, Z.F. (2013) The origin of the Maozu carbonate-hosted Pb–Zn deposit,
- 732 southwest China: Constrained by C–O–S–Pb isotopic compositions and Sm-Nd isotopic age:
- Journal of Asian Earth Sciences, 73, 39–47.
- 734 Zhou, J.X., Xiang, Z.Z., Zhou, M.F., Feng, Y.X., Luo, K., Huang, Z.L., and Wu. T. (2018) The giant
- 735 Upper Yangtze Pb-Zn province in SW China: Reviews, new advances and a new genetic model.
- 736 Journal of Asian Earth Sciences, 154, 280-315.
- 737 Zhu, C.W., Wen, H.J., Zhang, Y.X., Fu, S.H., Fan, H.F., and Cloquet, C. (2017) Cadmium isotope
- 738 fractionation in the Fule Mississippi Valley-type deposit, Southwest China. Mineralium Deposita,
- 739 52, 675–686.
- 740
- 741 Figure captions
- 742 Figure 1. Regional tectonic sketch map of southern China and the location of the
- 743 Sichuan-Yunnan-Guizhou Pb-Zn metallogenic province (SYGMP) (modified from Huang et al. 2004;
- 744 Zhou et al. 2018). (Color online.)
- 745 Figure 2. Generalized stratigraphic column of the Maozu Pb-Zn deposit (modified from Zhou et al.
- 746 2018) (Color online.)
- 747 Figure 3. (a) Geological map of the Maozu Pb-Zn deposit (modified after Liu 2009). (b)
- 748 Representative cross-section A-A^{*} through the deposit. (Color online.)

749	Figure 4. Outcrop photographs coupled with photomicrographs of thin sections from lower layer (LL),
750	vein layer (VL) and upper layer (UL) three ore bodies in the Maozu deposit. (a) UL occurs as
751	stratiform in dolostone below the phosphorus-bearing layer. (b) Gangue minerals in the UL are
752	dominated by fluorite and dolomite. (c) Sphalerite is cross-cut by a later galena vein. (d) Galena edges
753	are replaced by later tetrahedrite. (e) VL ore bodies occur as veinlets in the tectonic fractures. (f) Pb-Zn
754	ores coexist with calcite. (g) Fluorite is cut by sphalerite and galena veins. (h) Galena is wrapped with
755	coarse pyrite (Py2). (i) LL occurs in siliceous dolomite as in stratoid form. (j) Quartz is the dominant
756	gangue mineral in the LL. (k) Fine pyrite (Py1) in sphalerite formed earlier than sphalerite. (l) Minor
757	bitumen occurs around the sulfides. Abbreviations: Sp=Sphalerite; Gn=Galena; Py=Pyrite;
758	Tet=Tetrahedrite; Flu=Fluorite; Q=Quartz; Cal=Calcite; Dol=Dolomite and Bit=Bitumen; UL=Upper
759	layer; VL=Vein layer; and LL=Lower layer. (Color online.)
760	Figure 5. Mineral paragenesis in the Maozu Pb-Zn deposit. (Color online.)
761	Figure 6. Trace element concentrations (LA-ICP-MS) in sphalerite from the Maozu Pb-Zn deposit and
762	trace element concentrations in different genesis deposits (the data on the skarn, SEDEX, VMS, MVT,
763	and Huize are from Ye et al. 2011; data on Tianbaoshan are from Ye et al. 2016; data on Daliangzi are
764	from Yuan et al. 2018, and data on Fule are from Li 2016). (Color online.)
765	Figure 7. Correlation plots of sphalerite: (a) Fe vs Cd, (b) Mn vs Cd, (c) Fe vs Mn, (d) Co vs Ni, (e) Cu
766	vs Ge, (f) Cu vs Ag, (g) Ge vs Ag, (h) Sb vs Ge, (i) Mx vs My, (j) In vs Sn, (k) (Cu + Sb) vs (Ag + Ge),
767	(1) Cu vs Sb, (m) Sb vs Ag. Galena of (n) Ag vs Sb, and (o) $(Bi + Sb)$ vs $(Cu + Ag + Tl)$. Note:
768	r=correlation coefficient; k=slope; dashed lines=regression lines; solid lines=lines with different WRs.
769	(Color online.)

770 Figure 8. Histogram of trace elements for galena of the Maozu Pb-Zn deposit. (Color online.)

- Figure 9. Representative time-resolved depth acquisition profiles for sphalerite (a-d) and galena (e-f)
- analyzed by LA-ICP-MS. (Color online.)
- 773 Figure 10. Mapping images of sphalerite in the Maozu Pb-Zn deposit. (a) Scanning area of sphalerite.
- 774 (Color online.)
- Figure 11. Binary plots of (a) Fe vs Mn, (b) Fe vs Bi, (c) Mn vs Bi and (d) Ag vs Bi in galena from
- 776 Maozu and other genesis Pb-Zn deposits (the data of SEDEX are from Ye et al. 2011; George et al.
- 777 2015, 2016; the MVT data are from Ye et al. 2016). (Color online.)
- 778
- 779 Figure 12. Binary plots of (a) Mn vs Fe, (b) Mn vs Co, (c) Mn vs Ge and (d) Cd/Fe vs Mn in sphalerite
- 780 from Maozu and other genesis Pb-Zn deposits (the data of other genesis deposits are from Cook et al.
- 781 2009; Ye et al. 2011, 2016; Li 2016; Yuan et al. 2018; Wei et al., 2018a, b). (Color online.)
- 782
- 783
- 784 Table captions
- 785 **Table 1** Trace elements in sphalerite and galena from the Maozu Pb-Zn deposit, Yunnan, China (ppm)
- 786 Note: Sp=Sphalerite; Gn=Galena; S.D.=Standard deviation; UL=Upper layer; VL=Vein layer;
- 787 LL=Lower layer; "-"=Not detected or below the detectable limit.
- 788
- 789 Table 2 Concentrate variations for trace elements of sphalerite in Pb-Zn deposits of different genetic
- 790 types analyzed by LA-ICP-MS (ppm)

Mineral	Layer		Mn	Fe	Co	Ni	Cu	Ge	As	Se	Ag	Cd	In	Sn	Sb	Pb	Bi
Sp	UL	Mean	76.1	10257	3.01	-	786	138	19.6	-	87.6	2926	0.62	0.58	294	43.9	-
MZ-8		Median	73.7	9833	1.77	-	311	113	7.01	-	35.7	2963	0.13	0.24	95.6	30.0	-
(N=8)		MAD	17.3	439	1.22	-	177	73.3	3.70	-	21.9	43.2	0.32	0.14	76.2	21.6	-
		Min	51.5	9316	0.45	-	33.5	6.81	1.27	-	4.46	2787	0.01	0.08	0.49	1.02	-
		Max	97.9	13057	12.2	0.08	2074	342	77.9	1.86	254	3019	2.75	1.98	835	135	0.02
Sp	UL	Mean	136	4115	5.07	-	318.18	62.0	6.88	-	14.4	3618	0.54	0.36	32.2	24.0	-
MZ-30		Median	141	4199	4.88	-	333	42.1	4.28	-	12.8	3773	0.33	0.32	13.2	14.4	-
(N=8)		MAD	19.9	106	2.12	-	195	32.9	3.33	-	7.22	710	0.22	0.15	10.1	10.9	-
		Min	2.78	2915	2.65	-	43.1	3.95	0.82	-	6.05	2459	0.05	0.05	4.98	2.74	-
		MAX	206	4884	7.54	0.06	897	185	26.8	2.31	28.2	4569	1.86	1.34	120	64.4	0.01
Sp	UL	Mean	114	11114	17.2	0.73	684	83.0	6.32	-	10.6	2723	14.9	14.6	116	5.81	-
MZ-51		Median	120	11738	17.3	0.75	244	64.4	2.94	-	5.02	2724	7.54	9.31	21.9	2.11	-
(N=8)		MAD	28.6	2941	10.1	0.19	191	62.0	1.91	-	1.68	341	6.11	7.38	14.7	1.46	
		Min	54.0	6073	4.49	0.42	32.6	0.32	1.03	-	3.50	2237	0.15	0.50	0.35	0.62	-
		MAX	154	14752	28.2	0.94	1999	227	16.0	3.39	45.9	3236	72.5	47.5	633	30.7	0.01
Sp	UL	Mean	61.0	9917	18.7	1.49	362	65.9	15.5	-	4.11	3438	7.00	32.0	30.3	8.56	-
MZ-67		Median	57.5	9848	18.7	1.28	201	25.9	3.04	-	6.11	3563	0.44	0.40	26.2	1.37	-
(N=8)		MAD	27.2	554	1.84	0.21	37.0	17.4	2.29	-	4.29	137	0.42	0.31	24.7	1.37	-
		Min	25.2	8621	14.2	0.94	46.8	4.03	0.75	-	1.44	2746	0.02	0.12	1.31	2.74	-
<u> </u>		MAX	96.3	11021	26.0	3.08	1007	186	56.3	-	11.6	3778	32.6	179	134	13.7	0.01
Gn	UL	Mean	-	-	-	-	0.28	-	-	0.47	561	32.9	-	2.32	724	-	0.16
MZ-67		Median	-	-	-	-	0.22	-	-	0.47	575	33.9	-	2.33	740	-	0.16

Table 1 Trace elements in sphalerite and galena from the Maozu Pb-Zn deposit, Yunnan, China (ppm)

(N=6)		MAD	-	-	-	-	0.06	-	-	-	20.4	3.74	-	0.32	31.9		0.02
		Min	-	-	0.01	0.14	0.15	-	-	0.44	506	24.7	-	1.89	654	-	0.14
		MAX	-	-	-	-	0.66	-	-	0.50	606	37.6	-	2.78	773	-	0.19
Sp	UL	Mean	75.7	4225	7.27	-	609	75.1	66.6	-	89.3	3454	96.2	18.5	180	228	-
MZ-69		Median	75.9	3509	5.95	-	574	55.7	62.9	-	89.8	3506	29.8	30.2	121	219	-
(N=8)		MAD	14.9	1672	3.36	-	55.6	14.7	19.8	-	31.9	210	21.3	22.7	46.8	85.1	-
		Min	41.9	698	2.21	-	308	20.8	36.0	-	40.4	3185	3.06	6.72	29.0	90.4	-
		MAX	109	13025	14.4	0.19	1193	143	123	3.40	149	3731	397	32.8	776	399	0.01
Sp	VL	Mean	31.2	5554	1.62	-	274	60.0	70.4	-	7.47	4122	5.15	3.86	19.2	11.3	-
MZ-12		Median	29.7	5312	1.55	-	106	50.8	0.91	-	6.01	4037	0.07	0.44	3.79	6.17	-
(N=8)		MAD	12.8	572	0.71	-	73.4	37.4	1.98	-	2.17	100	0.07	0.31	1.50	2.05	-
		Min	15.4	4386	0.33	-	9.23	0.75	1.03	-	2.54	3739	0.00	0.10	0.75	1.37	-
		MAX	53.5	7358	3.70	-	1037	196	275	-	15.1	4685	20.6	12.3	78.3	50.7	0.01
Gn	VL	Mean	-	-	-	-	0.95	-	-	68.1	619	33.8	-	8.03	705	-	0.81
MZ-12		Median	-	-	-	-	0.74	-	-	72.1	640	29.8	-	7.17	724	-	0.60
(N=8)		MAD	-	-	-	-	0.43	-	-	7.99	37.4	7.60	-	2.85	53.3	-	0.12
		Min	-	6.63	0.01	0.03	0.23	-	0.69	13.7	485	21.2	-	3.45	583	-	0.17
		MAX	-	-	-	-	2.56	-	-	96.4	703	56.7	-	16.6	795	-	1.90
Sp	VL	Mean	61.7	17832	22.5	-	989	7.29	11.7	-	31.6	3161	483	496	87.7	20.8	-
MZ-14		Median	65.3	19298	22.6	-	659	2.01	1.04	-	13.5	3177	532	393	10.8	3.43	-
(N=8)		MAD	11.3	1073	3.81	-	255	1.17	11.3	-	11.8	97.9	286	273	10.7	3.43	-
		Min	32.7	11697	8.77	-	109	0.66	1.36	-	1.34	2386	35.7	15.8	2.05	1.37	-
-		MAX	79.9	20570	35.1	0.67	2752	34.7	20.9	3.14	141	3618	1191	2192	486	57.5	-
Gn	VL	Mean	-	-	-	-	0.37	-	-	4.07	869	32.8	-	4.36	990	-	0.22
MZ-14		Median	-	-	-	-	0.37	-	-	3.57	863	36.4	-	4.52	988	-	0.19
(N=5)		MAD	-	-	-	-	0.09	-	-	1.72	21.1	4.33	-	0.48	15.62	-	0.09

		Min	-	6.31	-	-	0.27	-	-	1.26	832	19.7	-	2.70	961	-	0.10
		MAX	-	-	-	-	0.47	-	0.47	6.96	910	40.7	-	5.29	1033	-	0.42
Sp	LL	Mean	38.4	4069	2.34	-	411	89.6	76.2	-	14.2	3760	93.0	0.96	48.3	6.43	-
MZ-2		Median	24.3	2845	1.55	-	743	40.8	38.4	-	16.2	3485	0.02	0.18	97.1	5.35	-
(N=8)		MAD	14.0	887	1.23	-	432	40.4	25.7	-	4.10	374	0.50	0.07	91.6	1.55	-
		Min	10.1	1555	0.04	-	20.7	0.30	23.5	-	6.92	3082	0.01	0.06	0.81	1.08	-
		MAX	87.1	8156	8.62	0.13	1029	238	164	1.73	29.1	4644	464	6.39	123	15.2	-
Sp	LL	Mean	101	2051	0.62	-	322	65.1	35.5	-	18.6	4052	7.94	3.32	63.2	46.6	-
MZ-35		Median	98.4	2033	0.44	-	235	39.2	10.3	-	14.1	4087	3.31	1.59	33.6	37.7	-
(N=8)		MAD	11.5	142	0.21	-	157	31.2	2.88	-	4.80	225	2.91	1.45	8.42	10.9	-
		Min	50.0	1830	0.10	-	31.3	2.49	0.92	-	5.93	3479	0.11	0.17	9.92	26.0	-
_		MAX	141	2327	1.54	-	994	201	117	3.52	41.4	4519	40.7	14.5	177	82.2	0.04
Gn	LL	Mean	-	-	-	-	2.02	-	-	55.9	398	40.2	-	0.75	460	-	5.13
MZ-35		Median	-	-	-	-	1.94	-	-	59.3	426	39.0	-	0.76	498	-	3.32
(N=7)		MAD	-	-	-	-	0.61	-	-	9.28	37.9	4.45	-	0.11	37.1	-	1.25
		Min	-	-	-	0.02	1.25	-	-	37.8	293	31.6	-	0.61	342	-	1.56
		MAX	-	-	-	-	3.04	-	-	68.7	464	51.6	-	0.89	535	-	14.2

Note: Sp- Sphalerite; Gn- Galena; MAD- Median absolute deviation; UL- Upper layer; VL- Vein layer; LL- Lower layer; "-"- Not detect or below detectable limit.

Ore deposit/		Mn	Fo	Co	N;	Cu	Co	As	Sa	٨σ	Cd	In	Sn	Sh	То	ті	Ph	Dofonronco
genetic type		IVIII	ге	CO	INI	Cu	Ge	As	56	Ag	Cu	111	511	30	It	11	r v	Kelenrence
The target de	posit																	
	Mean	77.4	7681	8.81	0.74	514	71.8	32.3	2.58	31.5	3473	81.4	73.9	96.3	0.35	0.09	42.6	
Maozu	Median	74.5	6273	4.59	0.67	334	37.0	9.36	2.48	12.5	3465	2.84	1.52	36.3	0.32	0.07	8.22	41
(N=72)	Min	2.78	698	0.04	0.04	11.6	0.30	0.75	1.73	1.60	2237	0.004	0.08	0.07	0.15	0.004	0.001	uns paper
	Max	206	20570	35.1	3.08	2394	342	275	3.52	257	4685	1191	1814	865	0.60	0.43	399	
SYGMP-MV	T deposits																	
	Mean	2.82	2636	13.5	2.06	1004	170	191	-	11.6	17182	-	-	248	-	-	198	
Fule	Median	3.25	2543	14.2	2.21	1035	184	153	-	32.3	3221	-	-	458	-	-	254	
(N=88)	Min	0.98	1305	8.08	0.59	5.09	0.54	1.59	-	1.55	2833	-	-	0.18	-	-	0.2	unpublished
	Max	10.6	5370	19.7	5.03	5650	632	1534	69.2	91.4	46662	3.25	31.71	2317	0.82	1.09	1182	
	Mean	7.40	13713	3.79	1.99	1485	66.9	109	-	225	5289	1.41	2.52	242	-	0.57	680	
Daliangzi	Median	5.13	11250	3.12	1.27	314	26.8	20.5	-	31.6	3681	0.11	0.74	66.1	-	0.13	52.9	Yuan et al.,
(N=85)	Min	0.11	570	0.44	0.29	8.79	0.11	0.27	-	1.85	529	0.002	0.24	0.13	-	0.001	1.08	2018
	Max	48.9	57683	10.3	10.8	15113	328	1863	-	4037	19479	15.3	24.7	3073	-	10.9	31653	
	Mean	10.1	16309	44.2	3.11	2903	29.5	276	2.42	205	7245	1.25	3.27	202	0.47	0.06	166	
Tianbaoshan	Median	10.5	16219	11.1	0.09	391	11.8	13.8	0.79	98.5	4761	0.01	0.38	35.0	0.48	0.01	59.9	Ye et al.,
(N=57)	Min	1.92	7251	3.03	0.03	40.6	0.52	0.56	0.48	25.4	2915	0.001	0.03	0.68	0.15	0.004	1.18	2016
	Max	20.1	30675	855	155	20042	206	4748	40.3	1011	28278	10.2	76.0	1546	0.89	0.67	3821	
Huize	Mean	96.5	21193	0.03	0.07	285	81.9	33.9	0.62	22.8	2131	0.72	1.68	28.5	0.12	0.08	9.99	Ye et al.,

Table 2 Concentrate variations for trace elements of sphalerite in different genetic types Pb-Zn deposits analyzed by LA-ICPMS (ppm)

(N=24)	Median	92.5	18840	0.02	0.03	186	59.5	1.62	0.71	16.4	1730	0.06	0.25	2.52	0.05	0.02	4.75	2011
	Min	7.27	5063	0.001	0.01	7.11	3.05	0.14	0.12	6.10	929	0.001	0.07	0.001	0.01	0.001	0.40	
	Max	305	45776	0.06	0.24	1169	348	399	1.65	74.4	4502	5.81	27.6	297	0.36	0.85	69.1	
MVT deposit	(Mexico)																	
	Mean	27.6	61805	0.34	0.68	20.2	704	510	1.94	3.52	5109	0.20	3.20	33.9	0.23	113	2094	
Tres Marias	Median	38.8	74829	0.39	0.23	13.4	970	532	2.00	2.69	5150	0.17	2.20	15.5	0.24	141	1376	Cook et al.,
(N=23)	Min	4.40	16681	0.09	0.12	1.00	174	122	1.23	1.64	3354	0.04	0.29	0.71	0.18	29.5	374	2009
	Max	50.0	106107	0.48	2.33	80.6	1242	1321	3.08	6.60	6581	0.70	11.1	161	0.27	179	12496	
VMS deposit																		
	Mean	531	1937	0.03	0.31	382	10.2	-	1.09	5.72	4745	0.05	0.10	3.25	0.29	0.24	462	Cook et al.,
Vorta DMV	Median	571	2084	0.02	0.31	381	8.90	-	1.05	3.12	4771	0.05	0.08	1.24	0.29	0.01	5.64	2009 and
(N=8)	Min	165	917	0.02	0.23	131	2.73	-	0.82	1.38	4169	0.04	0.05	0.04	0.21	0.01	0.46	references
	Max	761	2617	0.06	0.39	719	23.4	-	1.40	21.2	5088	0.06	0.24	17.1	0.36	1.14	3426	therein
Falvoy	Mean	3265	4882	0.10	1.93	770	2.08	211	2.35	535	3852	1.41	12.6	20420	0.63	3.97	11521	Cook et al.,
скау Сколь	Median	3373	4549	0.09	1.24	402	1.01	48.9	1.70	102	3898	0.20	7.60	4831	0.50	1.10	5390	2009 and
(N-12)	Min	2296	3880	0.04	0.47	67.0	0.47	1.00	1.30	6.80	2720	0.10	2.60	5.06	0.18	0.08	1.15	references
(N=12)	Max	4744	7112	0.17	4.01	3483	13.7	1550	4.10	2785	4955	13.7	31.1	117467	1.40	20.6	50955	therein
	Mean	970	78561	27.8	-	29.4	1.03	-	94.1	3.80	2202	29.7	0.65	0.03	-	-	-	Cook et al.,
Sauda	Median	924	74359	26.0	-	25.5	1.02	-	93.5	3.68	2079	28.0	0.50	0.02	-	-	-	2009 and
(N=10)	Min	874	69576	25.0	-	22.0	0.86	-	89.0	2.44	1973	27.0	0.27	0.01	-	-	-	references
	Max	1449	120205	44.0	-	44.0	1.43	-	109	5.48	3488	42.0	1.26	0.10	-	-	-	therein
Zinkgruvan	Mean	513	32337	160	0.74	3.44	1.06	-	1.90	6.51	3812	0.29	0.15	1.23	0.16	-	43.0	Cook et al.,
(N=5)	Median	507	31930	15	0.67	3.10	1.07	-	1.90	4.65	3807	0.30	0.11	0.28	0.16	-	2.95	2009 and

	Min	499	31735	157	0.56	1.90	0.82	-	1.90	4.55	3661	0.26	0.08	0.12	0.15	-	1.38	references
	Max	532	33261	164	0.95	5.10	1.19	-	1.90	12.6	3943	0.32	0.25	4.12	0.17	-	193	therein
	Mean	30101	96962	11.4	1.15	1077	2.08	0.52	1.97	5.22	1669	4.59	0.64	0.16	-	0.09	2620	Cook et al.,
Kaveltorp	Median	29491	85634	11.4	0.99	299	1.95	0.52	1.82	5.42	1688	4.55	0.94	0.17	-	0.08	14.3	2009 and
(N=8)	Min	27739	79809	10.7	0.69	13.5	1.82	0.52	1.34	3.11	1585	4.05	0.07	0.04	-	0.01	5.93	references
	Max	34816	163123	12.0	1.78	3743	3.09	0.52	2.68	7.57	1731	5.32	1.03	0.35	0.21	0.18	10443	therein
	Mean	4105	96877	170	0.74	4021	3.48	-	32.9	13.7	3251	26.4	0.27	0.06	0.18	0.18	11.8	Cook et al.,
Marketorp	Median	1853	91503	169	0.74	2807	2.08	-	33.2	10.3	3257	26.6	0.15	0.07	0.18	0.06	9.33	2009 and
(N=8)	Min	1684	86959	160	0.74	1414	1.78	-	29.1	7.42	2968	24.7	0.09	0.04	0.15	0.02	0.81	references
	Max	18729	119418	188	0.74	14368	12.6	-	35.6	33.6	3619	27.9	0.81	0.08	0.21	0.30	29.1	therein
	Mean	2841	121474	0.84	0.17	248	3.86	2.44	1.69	6.32	8119	186	6.49	0.94	0.20	0.35	23.7	
Laochang	Median	2905	119716	0.53	0.13	176	3.33	0.83	1.44	5.89	8071	179	4.73	0.42	0.24	0.11	2.02	Ye et al.,
(N=30)	Min	2438	114390	0.07	0.02	111	1.95	0.14	0.25	4.47	7605	62.0	2.06	0.001	0.03	0.001	0.28	2011
	Max	3711	139194	4.14	1.55	1883	14.1	32.9	3.70	9.49	8947	522	34.9	3.81	0.45	2.40	517	
SEDEX depos	sit																	
	Mean	2021	109851	2.01	0.08	741	3.07	0.59	0.84	32.9	5291	213	11.3	3.84	0.16	0.02	25.9	
Dabaoshan	Median	2094	110318	0.86	0.05	219	3.09	0.18	0.61	21.7	5359	242	6.32	1.24	0.06	0.01	2.38	Ye et al.,
(N=26)	Min	650	99050	0.02	0.01	105	2.44	0.08	0.17	8.71	4364	105	1.33	0.09	0.03	0.001	0.47	2011
	Max	2463	116763	6.16	0.34	5499	3.92	3.00	3.85	186	5609	388	44.5	17.9	0.35	0.13	465	
Skarn deposit	t																	
Late	Mean	3919	90412	34.3	0.64	251	1.09	-	75.9	1.77	2898	55.5	0.40	0.10	0.36	-	0.52	Cools at al
Cretaceous	Median	4134	91531	34.4	0.62	168	1.10	-	75.0	1.75	2859	48.6	0.16	0.05	0.31	-	0.43	2000 et al.,
(SE Europe)	Min	2545	85805	31.9	0.37	69.0	1.00	-	72.4	1.50	2773	38.6	0.07	0.02	0.29	-	0.12	2009

(N=8)	Max	4476	92590	36.3	1.06	541	1.20	-	81.5	2.06	3256	98.9	1.52	0.32	0.44	0.02	1.20	
	Mean	5308	30549	580	1.22	828	1.07	2.93	6.51	18.9	5865	20.7	0.44	0.59	2.01	0.17	4413	
Ocna de	Median	3070	20797	278	0.97	112	1.02	0.80	4.55	2.67	5896	10.10	0.13	0.26	0.38	0.10	225	Cook et al.,
Fier	Min	905	1619	5.90	0.11	4.60	0.58	0.50	1.50	1.50	4825	0.03	0.05	0.01	0.04	0.02	0.30	2009
(N=37)	Max	36136	99262	2828	3.95	13397	1.76	9.60	47.2	356	7146	175	4.83	3.04	12.7	0.91	57625	
	Mean	3019	13062	578	8.08	2872	0.95	0.55	7.59	11.6	6923	203	5.15	0.43	1.08	0.05	120	
Baita Bihor	Median	3422	11651	567	8.60	162	0.87	0.52	5.45	1.84	7363	49.8	0.40	0.10	0.29	0.04	0.92	Cook et al.,
(N=36)	Min	841	919	2.40	0.24	9.00	0.69	0.34	1.30	1.30	5102	10.3	0.05	0.02	0.16	0.01	0.07	2009
	Max	4924	32653	1458	17.4	25535	1.51	0.82	30.8	121	7999	867	46.0	2.22	2.95	0.11	3476	
	Mean	446	8216	11.1	0.79	1380	7.17	143	5.72	74.9	43576	12.9	30.4	154	0.83	25.0	2089	
Baisoara	Median	24.4	1185	9.95	0.70	1394	1.15	51.9	3.10	49.0	28717	2.30	11.7	30.0	0.72	17.0	541	Cook et al.,
(N=20)	Min	0.43	118	2.00	0.07	6.00	0.58	14.9	1.10	3.00	423	0.03	0.92	17.5	0.27	8.10	215	2009
	Max	5263	30578	23.5	2.41	6879	47.9	474	19.3	311	132317	74.8	121	1245	1.60	72.0	12140	
	Mean	3050	103995	328	4.59	306	2.25	0.90	16.2	3.38	10804	179	0.12	0.15	0.33	0.14	3.83	
Lefevre	Median	2789	102017	331	0.53	142	2.09	0.90	16.5	3.09	10602	183	0.11	0.09	0.33	0.09	2.37	Cook et al.,
(CLY) L-12	Min	2396	92428	300	0.25	107	1.73	0.90	12.9	1.95	10071	139	0.06	0.03	0.33	0.03	0.70	2009
(N=8)	Max	5186	119230	355	19.2	1268	3.58	0.90	19.2	5.19	11945	203	0.20	0.41	0.33	0.44	8.65	
	Mean	545	4236	1547	5 10	389	0.75	0.48	24.2	93.2	2449	7 58	0.09	0.08	12.2	_	3451	
Konnerudk	Median	551	4332	1542	4.55	350	0.79	0.50	12.30	4.79	2469	7.70	0.07	0.08	12.2	-	17.2	Cook et al
ollen Ko99.2	Min	483	3981	1576	2.13	103	0.59	0.37	10.5	3.05	2321	6 50	0.05	0.04	12.2	_	9 70	2009
(N=5)	Max	609	4405	1525	11.9	633	0.83	0.57	72.0	446	2321	8 20	0.15	0.11	12.2	1 55	17158	2007
		007	1105	1505		000	0.05	0.07	, 2.0	110		0.20	0.10	0.11	1	1.00	1,150	

Vamiaka	Mean	1380	20413	231	3.21	3.21	0.83	-	60.9	14.0	5446	0.99	0.20	0.06	1.92	0.24	1345	
Kannoka	Median	1397	20483	231	3.13	3.20	0.85	-	41.0	2.25	5455	0.98	0.16	0.04	1.90	0.17	30.3	Cook et al.,
Kam-I	Min	1249	19408	222	3.03	2.20	0.70	-	21.4	1.70	5334	0.76	0.09	0.02	0.35	0.09	0.22	2009
(N=8)	Max	1460	21553	245	3.54	4.20	0.87	-	190	94.4	5521	1.37	0.38	0.13	3.52	0.46	10630	
Skarn (China	ι)																	
	Mean	2985	51001	212	0.10	583	2.79	0.28	31.3	8.08	4643	0.05	0.10	4.43	0.12	0.01	37.2	
Hetaoping	Median	2817	37964	110	0.04	10.3	2.78	0.16	23.6	6.07	4254	0.01	0.10	2.81	0.05	0.001	6.32	Ye et al.,
(N=24)	Min	1254	20530	65.9	0.01	6.06	2.53	0.09	7.08	4.43	4033	0.001	0.06	0.001	0.02	0.001	0.20	2011
	Max	5486	105927	478	0.47	7714	3.13	1.76	86.7	23.3	6472	0.17	0.12	19.9	0.35	0.07	368	
	Mean	3466	46233	347	5.87	649	2.03	52.9	43.8	5.26	1808	0.09	0.78	22.7	0.14	0.05	1697	
Luziyuan	Median	1237	44529	377	0.47	44.5	2.70	0.88	1.54	4.49	1923	0.04	0.15	4.12	0.04	0.02	29.5	Ye et al.,
(N=39)	Min	442	-	63.4	0.08	4.99	0.12	0.08	-	0.42	1199	0.005	0.001	0.005	-	-	-	2011
	Max	22642	99651	1267	51.1	6636	3.51	324	327	22.4	2387	0.82	8.74	383	0.70	0.32	48958	

Note: "-"- Not detect or below detectable limit.

	Formation	Lithology	Lithological character
Quate Tert	rnary iary	<u> </u>	Sediments rocks that are exposed in valley or river areas
Tri	assic		Sandstone, shale, and claystone, hosting coal
2	Emeishan basalt	S.S.S	Flood basalt, hosting native Cu ore body
Permian	Yangxin		Limestone and dolostone
Carbo	niferous		Limestone, dolostone, and sandy shale
Street.	Zaige		Dolostone
Devonian	Haikou		Sandstone and carbonates
Silu	rian		Siltstone and carbonates
Ordov	vician		Sandy shale and argillaceous limestone
Cambrian	Qiongzusi/ Meishucun		Phosphorite, sandstone and carbonates
Ediacaran	Dengying		Phosphorus-bearing and silicified dolomite. Hosting Pb-Zn ore body of the Maozu.
Proterozoio	c basement	144444 12222	Volcaniclastic and Metamorphic rocks
Limes	stone stone aceous limes	tone	Shale Phosphate Sandstone Volcaniclastic rocks Sillstone Pb-Zn orebody

		Hydrothe	ermal stage	
MINERAL	Diagenetic stage	Early-ore stage	Late-ore stage	Supergene stage
Fine pyrite (Py1)				
Fluorite				
Sphalerite				
Galena				
Coarse pyrite (Py2)				
Tetrahedrite				
Quartz				
Calcite				
Dolomite				
Smithsonite				
Cerussite				

1000

(T1)

