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Abstract 14 

Lingbaoite, AgTe3, is a new silver telluride discovered in the S60 gold-bearing 15 

quartz vein, Xiaoqinling gold district, central China. The new mineral is named after 16 

Lingbao city, the municipality of which covers a major part of the Xiaoqinling gold 17 

district. Lingbaoite is only microscopically visible and occurs within pyrite as small 18 

composite inclusions (<50 μm), which commonly consist of lingbaoite, sylvanite, and 19 

chalcopyrite, and locally of bornite, galena, altaite, and stützite. The largest lingbaoite 20 

grain is about 30 × 12 μm in size. At least two stages of gold and telluride 21 
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mineralization are recognized in the lingbaoite-bearing sample set. The first stage is 22 

characterized by the deposition of lingbaoite, native tellurium, and sylvanite, within 23 

the commonly observed mineral assemblages of lingbaoite + sylvanite + chalcopyrite 24 

and sylvanite + native tellurium + stützite. The second stage is characterized by the 25 

deposition of Bi-bearing minerals and native gold, within the commonly observed 26 

mineral assemblages of rucklidgeite + altaite + volynskite ± hessite ± petzite and 27 

rucklidgeite + gold ± altaite. 28 

Lingbaoite is opaque and exhibits no internal reflections. In plane-polarized 29 

reflected light, lingbaoite shows a creamy yellow reflection color. The calculated 30 

density is 7.06 g·cm-3. Seventeen WDS spot analyses from 17 different lingbaoite 31 

grains gave an empirical formula of Ag0.946Fe0.134Cu0.008Pb0.003Te2.841S0.067. When 32 

considering Ag and Te as the only two essential structural components, the empirical 33 

formula is Ag1.00Te3.00. 34 

The EBSD and SAED data confirm the structural identity of lingbaoite and 35 

synthetic AgTe3. Synthetic AgTe3 is trigonal, space group R3m, with a = 8.645 Å, c = 36 

5.272 Å, V = 341.2 Å3, and Z = 3. The unit-cell parameters of lingbaoite are: a = 8.60 37 

(5) Å, c = 5.40 (18) Å, V = 346 (9) Å3, and Z = 3. Synthetic AgTe3, and by analogue 38 

lingbaoite, can be viewed as silver-stabilized cubic tellurium, which is an ordered (1:3; 39 

Ag:Te) analogue of the α-polonium structure (i.e., simple cubic crystal structure). 40 

Synthetic AgTe3 becomes a stable phase at above 0.4 GPa, but can also occur in a 41 

metastable state at atmospheric pressure. 42 

Lingbaoite probably formed through cooling of polymetallic melt droplets within 43 
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the hydrothermal system. Lingbaoite and associated minerals (e.g., sylvanite, native 44 

tellurium) reveal a previously unrecognized but perhaps common 45 

magmatic-hydrothermal process in the Xiaoqinling gold district, preceding the 46 

precipitation of native gold, suggesting gold mineralization in the Xiaoqinling gold 47 

district involves multiple superimposed processes of gold enrichment.  48 

Keywords: Lingbaoite, AgTe3, new mineral, silver telluride, polymetallic melt, 49 

magmatic-hydrothermal origin  50 

Introduction 51 

The compound AgTe3, was first recognized in nature as fine-grained mineral 52 

inclusions in pyrite from the S60 gold-bearing quartz vein, Xiaoqinling gold district, 53 

central China (Jian et al. 2014). Further investigation of the AgTe3 grains from the 54 

same sample set confirms the structural identity of lingbaoite and synthetic AgTe3 55 

(Range et al., 1982). The mineral and the mineral name were approved by the 56 

Commission on New Minerals, Nomenclature and Classification of the International 57 

Mineralogical Association (Application 2018-138). The new mineral is named after 58 

Lingbao city, which is about 30 km north-east of the mine where the new mineral was 59 

discovered. The municipality of Lingbao constitutes a major part of the Xiaoqinling 60 

gold district, which is the second largest gold production area in China. Holotype 61 

material is deposited in the collections of the Geological Museum of China, Beijing, 62 

China, catalog number M13812. 63 
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Occurrence and associated minerals 64 

Lingbaoite was discovered as abundant micrometer-sized grains in gold ore 65 

samples collected underground from the S60 gold-bearing quartz vein (34°23′N, 66 

110°34′E), which is about 30 km south-west of Lingbao city, Henan province, central 67 

China.  68 

The Xiaoqinling gold district is located at the southern margin of the North China 69 

Craton and belongs to the Qinling-Dabie Orogen. The strata exposed in the 70 

Xiaoqinling gold district are dominated by Archean amphibolite-facies metamorphic 71 

rocks (e.g., biotite plagiogneiss, amphibolite gneiss, amphibolite, quartzite, and 72 

marble: Cai and Su 1985) of the Taihua Group, which hosts most of the gold-bearing 73 

quartz veins. The Archean rocks were intruded by Paleoproterozoic pegmatite (Li, 74 

H.M. et al. 2007), Proterozoic and Mesozoic granitic intrusions (Wang et al. 2010, 75 

Ding et al. 2011, Hu et al. 2012, Zhao et al. 2012), and Paleoproterozoic and Early 76 

Cretaceous mafic dikes (Wang et al. 2008, Zhao et al. 2010, Bi et al. 2011a).  77 

The Xiaoqinling gold district represents the second largest gold production area in 78 

China and has a proven gold reserve of more than 630 tonnes (Jian et al., 2015), with 79 

more than 1200 gold-bearing quartz veins documented (Li et al. 1996; Mao et al., 80 

2002). The gold-bearing quartz veins show a very pronounced Te signature (Bi et al. 81 

2011b; Jian et al. 2014, 2015, 2018). Tellurium concentration in the gold ores is 82 

typically in the range of tens to hundreds of ppm (Luan et al. 1985; Xue et al. 2004). 83 

The S60 gold-bearing quartz vein, with estimated gold resources of about 100 tonnes 84 

(average Au grade ~ 10 g/t), represents one of the largest gold-bearing quartz veins in 85 
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the Xiaoqinling gold district (Fig. 1).  86 

Abundant micrometer-sized grains of lingbaoite were observed in polished 87 

sections prepared from gold ores. Other minerals observed in the polished sections 88 

include quartz, sulfides (pyrite, chalcopyrite, bornite, sphalerite, and galena), 89 

tellurides (altaite, stützite, hessite, sylvanite, petzite, calaverite, rucklidgeite, 90 

volynskite, and buckhornite), Bi-sulfosalts (wittichenite and an unnamed phase 91 

Cu20FePb11Bi9S37), as well as native gold and tellurium (Figs. 2, 3).  92 

At least two stages of gold and telluride mineralization are recognized in the 93 

lingbaoite-bearing sample set. The first stage (I) is in the form of mineral inclusions in 94 

pyrite, with the commonly observed mineral assemblages of lingbaoite + sylvanite + 95 

chalcopyrite and sylvanite + native tellurium + stützite. Lingbaoite, for example, 96 

occurs within pyrite as small composite inclusions (<50 μm), which commonly 97 

consist of lingbaoite, sylvanite, and chalcopyrite, and locally of bornite, galena, altaite, 98 

and stützite (Figs. 2, 3). Lingbaoite and native tellurium often occur in adjacent 99 

composite inclusions (Fig. 2e), but they have not been found to coexist in the same 100 

composite inclusion.   101 

The second stage (II) is characterized by the deposition of Bi-bearing minerals 102 

(i.e., rucklidgeite, volynskite) and native gold. They occur in the two commonly 103 

observed mineral assemblages: rucklidgeite + altaite + volynskite ± hessite ± petzite 104 

(e.g., Fig. 3d), rucklidgeite + gold ± altaite (Fig. 3c). These mineral assemblages 105 

occur as larger patches connecting with fractures or as fracture fillings in pyrite (Fig. 106 

3), contrasting with the lingbaoite-bearing assemblages, which occur as mineral 107 



6 

inclusions in pyrite. Trails of lingbaoite-bearing inclusions are also cut by fractures 108 

filled by assemblages of Bi-bearing minerals (Fig. 3e) and native gold (Fig. 3b). 109 

Physical and optical properties 110 

Lingbaoite is only microscopically visible and occurs within pyrite as small 111 

composite inclusions (<50 μm). The largest lingbaoite grain is about 30 × 12 μm in 112 

size (Fig. 2b). Despite its small grain size, lingbaoite is widespread in the polished 113 

sections. Color (megascopic), streak, hardness, tenacity, cleavage, fracture, and density 114 

could not be determined because of the small grain size. The calculated density is 7.06 115 

g·cm-3 based on the empirical formula of AgTe3 and the cell parameters of lingbaoite. 116 

This mineral is opaque and exhibits no internal reflections. In plane-polarized 117 

reflected light, lingbaoite shows a creamy yellow reflection color, without discernable 118 

reflectance pleochroism or anisotropy, similar to the reflection color of native gold but 119 

with lower reflectance (Figs. 3a, b). 120 

Reflectance values of lingbaoite were measured in air using a CRAIC 20/30 PV 121 

microspectrophotometer at Southern University of Science and Technology, China. 122 

The reference material is Al with MgF2 coating. Although the used reference material 123 

is not an approved Commission on Ore Mineralogy of the International Mineralogical 124 

Association standard, the calibration of this reference material is traceable to 125 

NIST/NRC. The reflectance values were obtained from five spots in three different 126 

lingbaoite grains from two polished sections, with x100 objective and 1.1 x 1.1 μm 127 

aperture size. Reflectance data are given in Table 1 and Figure 4. 128 
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Chemical composition 129 

Electron microprobe data for lingbaoite were reported in a preceding study (Jian et 130 

al. 2014) and are cited below. Electron microprobe analysis was carried out at 131 

Clausthal University of Technology, Germany, using a Cameca SX100 electron 132 

microprobe. Preliminary qualitative analyses by energy-dispersive X-ray spectrometry 133 

(EDS) revealed the presence of only four elements: Te, Ag, Fe, and S. Quantitative 134 

chemical analyses were obtained by wavelength-dispersive X-ray spectrometry 135 

(WDS), operated at 20 kV and 20 nA, with beam diameter of 1 μm. The X-ray 136 

emission lines used were: SKα, FeKα, CuKα, AgLα, TeLα, AuLα, PbMα, and BiMα. 137 

The count times for peak and background were: 10 s and 5 s for SKα, 14 s and 7 s for 138 

FeKα, 14 s and 7 s for CuKα, 18s and 9 s for AgLα, 12 s and 6 s for TeLα, 20 s and 10 139 

s for AuLα, 16 s and 8 s for PbMα, and 10 s and 5 s for BiMα. The detection limits for 140 

the measured elements are as follows: 0.05–0.07 wt% S, 0.24–0.30 wt% Bi, 0.15–0.17 141 

wt% Ag, 0.26–0.49 wt% Au, 0.12–0.13 wt% Cu, 0.21–0.24 wt% Te, 006–0.07 wt% 142 

Fe, 0.23–0.31 wt% Pb. Results of 17 WDS spot analyses from 17 different lingbaoite 143 

grains are summarized, together with the standard used, in Table 2.  144 

All the analyzed lingbaoite grains contain small amounts of Fe (1.04–1.97 wt%) 145 

and S (0.12–0.85 wt%), some lingbaoite grains also contain trace amounts of Cu 146 

(0.1–0.6 wt%). A contribution to these Fe, Cu, and S concentration is probably caused 147 

by contamination by adjacent sulfide minerals. This is because lingbaoite grains are 148 

small and always occur as inclusions in pyrite. Indeed, seven out of eight lingbaoite 149 

grains containing Cu are in assemblages with chalcopyrite and/or bornite. Lead was 150 
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only detected in two grains, while Au and Bi are always below minimum detection 151 

limits. 152 

The mean empirical formula is Ag0.946Fe0.134Cu0.008Pb0.003Te2.841S0.067 assuming 153 

that the measured Fe, Cu, and Pb contents are real. When considering Ag and Te as 154 

the only two essential structural components, the empirical formula of lingbaoite 155 

ranges between Ag0.99Te3.01 and Ag1.03Te2.97, average Ag1.00Te3.00. The ideal formula is 156 

AgTe3, which requires Ag 21.98, Te 78.02, total 100 wt%.  157 

Crystallography 158 

The small grain size of lingbaoite prevented investigations by means of X-ray 159 

diffraction. Instead, electron backscattered diffraction (EBSD) and selected-area 160 

electron diffraction (SAED) were carried out for the crystallographic characterization. 161 

Electron backscattered diffraction 162 

EBSD analyses were performed at the State Key Laboratory for Advanced Metals 163 

and Materials at University of Science and Technology Beijing, using a ZEISS 164 

SUPRA55 Field Emission Scanning Electron Microscope equipped with a 165 

NordlysMax3 EBSD system for collecting Kikuchi bands and Aztec software for data 166 

interpretation. The analytical parameters were as follows: accelerating voltage = 20 167 

kV, magnification = 2500 ~ 10000, working distance = 14 ~ 21 mm, tilt angle = 168 

70.00°. 169 

The center of eight Kikuchi bands for lingbaoite was automatically detected using 170 
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the Aztec software. The solid angles calculated from the patterns were compared with 171 

synthetic AgTe3 to index the patterns. The EBSD patterns obtained from eight 172 

different lingbaoite grains were found to match the patterns generated from the 173 

structure of synthetic AgTe3 (Fig. 5). The values of the mean angular deviation (MAD, 174 

i.e., goodness of fit of the solution) between the calculated and measured Kikuchi175 

bands are between 0.33° and 0.79°. These values reveal a very good match; as long as 176 

values of mean angular deviation are less than 1°, they are considered as indicators of 177 

an acceptable fit (Vymazalová et al. 2009, 2012). 178 

Transmission electron microscopy 179 

A TEM foil of about 150 nm-thickness was prepared on a FEI focused ion beam 180 

(FIB)-SEM platform at the GeoForschungsZentrum (GFZ) in Potsdam, Germany. 181 

Details on TEM foil preparation can be found in Wirth (2004, 2009). The TEM foil 182 

consists mainly of a lingbaoite grain and its surrounding pyrite. Images of the foil and 183 

its location in polished section before cutting are shown in Figure 6. Selected-area 184 

electron diffraction (SAED) analyses for lingbaoite were carried out using a 185 

JEM-2100 (HR) Transmission Electron Microscope equipped with a double-tilt holder, 186 

a Gatan digital camera, and an INCA Energy TEM100 energy-dispersive spectroscopy 187 

instrument at the Institute of Mineral Resources, Chinese Academy of Geological 188 

Sciences, and operated at 200 kV. The SAED patterns of lingbaoite (Fig. 7) were 189 

taken from the circled area in the TEM foil (Fig. 6d) and from seven different zone 190 

axes. 191 
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Based on the obtained SAED patterns of lingbaoite, we measured the interplanar 192 

spacing values for lingbaoite. These values are in excellent agreement with the 193 

measured d-spacings for synthetic AgTe3, with the absolute value of difference less 194 

than 0.02 Å (Table 3). We also measured the angles between adjacent planes in the 195 

SAED patterns of lingbaoite. The measured angles of lingbaoite agree well with the 196 

calculated angles of synthetic AgTe3, with the absolute value of difference less than 197 

1.1° (Table 4). Therefore, the excellent agreement of the d-spacings and plane angels 198 

of lingbaoite with those for synthetic AgTe3 confirms the structural identity of 199 

lingbaoite and synthetic AgTe3. 200 

Unit-cell parameters 201 

The unit-cell parameters of lingbaoite are calculated based on the interplanar 202 

spacing values measured through the obtained SAED patterns. Lingbaoite belongs to 203 

the trigonal crystal system and R3m space group. The calculated unit cell parameters 204 

of lingbaoite are as follows: a = 8.60 (5) Å, c = 5.40 (18) Å, V = 346 (9) Å3, and Z = 3. 205 

The EBSD and SAED data confirm the structural identity of lingbaoite and synthetic 206 

AgTe3. Therefore, the unit-cell parameters of synthetic AgTe3 (Range et al. 1982) are 207 

also cited here: a = 8.645 Å, c = 5.272 Å, V = 341.2 Å3, and Z = 3. X-ray powder 208 

diffraction data were calculated from the data on the crystal structure of the synthetic 209 

equivalent, AgTe3 (Range et al. 1982), and are given in Table 3, along with the 210 

measured interplanar spacing data for lingbaoite.  211 
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Crystal structure 212 

AgTe3, the synthetic equivalent of lingbaoite, belongs to the trigonal crystal 213 

system. The crystal structure of synthetic AgTe3 (Range et al. 1982) is best interpreted 214 

in terms of an inner-centered, pseudocubic (a = 90.15°) arrangement of the 215 

rhombohedral unit cell. In this arrangement the Ag atoms occupy the center and 216 

corners, while the Te atoms occupy the face- and edge-centers of a cube. Thus the 217 

crystal structure of AgTe3 can be regarded as an ordered (1:3; Ag:Te) analogue of the 218 

α-polonium structure (i.e., simple cubic crystal structure). Silver is octahedrally 219 

coordinated by Te (Ag–Te: 3 × 302.2(5), 3 × 308.3(5) pm), each Te in turn being 220 

surrounded by a square arrangement of four further Te atoms together with two Ag 221 

atoms to give a Te(Te4Ag2) octahedron (distances: 4 × Te–Te 305.2(5), 1 × Ag–Te 222 

302.2(5), 1 × Ag–Te 308.3(5) pm). The Te–Te distances in the three-dimensional array 223 

of Te atoms are close to the value of 302 pm postulated for metallic tellurium with 224 

α-polonium structure (von Hippel, 1948); the valence angles at Te are almost 90° 225 

(89.79, 89.84, 90.52°). The electron energy loss spectroscopy (EELS) spectrum and 226 

valence-electron density of AgTe3 are similar to those of Te (Stander and Range, 227 

1983). These similarities, together with the metallic luster and metallic conductivity 228 

(ρ(300 K) = 1 × 10-6 Ω⋅m) of AgTe3, strongly support the idea that AgTe3 can be 229 

viewed as silver-stabilized cubic tellurium (Range et al. 1982). The crystal structure 230 

of synthetic AgTe3 is shown in Figure 8. The Wyckoff positions, atom coordinates, 231 

and bond distances for synthetic AgTe3 are shown in Tables 5 and 6.  232 
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Relation to other species 233 

Minerals and synthetic phases chemically or structurally related to lingbaoite are 234 

shown in Tables 7. Structurally, lingbaoite is closely related to the α-polonium 235 

structure, a simple cubic crystal structure with a = 3.359 Å. Chemically, lingbaoite 236 

(AgTe3) is a new member of the silver telluride minerals, the other three silver 237 

telluride minerals are hessite (Ag2Te), stützite (Ag5−xTe3), and empressite (AgTe). 238 

Lingbaoite, however, clearly differs from the other silver tellurides by its much higher 239 

tellurium content (75 at% Te), as well as its creamy yellow reflection color and its 240 

crystal structure.  241 

Discussion 242 

The experimental study of Range and Thomas (1983) show that synthetic AgTe3 243 

becomes a stable phase at above 0.4 GPa (Fig. 9) and converts into a mixture of 244 

Ag5-xTe3 and Te at lower pressures. However, synthetic AgTe3 can also occur in a 245 

metastable state at lower pressures. For example, AgTe3 was successfully produced at 246 

atmospheric pressure through rapid quenching of Te-Ag melt (75 at% Te) 247 

from >365ºC, and retransformation of this phase required high temperature annealing 248 

(Range and Thomas 1983). The high-pressure AgTe3 and metastable AgTe3 obtained 249 

at atmospheric pressure are identical (Range and Thomas 1983). 250 

We speculate that lingbaoite either (1) formed at above 0.4 GPa (i.e., >15 km 251 

depth); or (2) formed at lower pressures through rapid cooling of polymetallic melt. 252 

The first mechanism, however, seems unlikely. First, the quartz vein hosting 253 
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lingbaoite is a large vein system which is 0.3 to 7 m in width and extends for more 254 

than 4 km along strike (Li et al., 1996), suggesting the vein was emplaced in a brittle 255 

environment (i.e., less than 10–15 km depth: Sibson 1986). Second, a formation depth 256 

of 15 km would suggest a temperature of 375450°C for the ambient rocks (assuming 257 

a geothermal gradient of 2530°C km-1), surpassing the expected formation 258 

temperature of lingbaoite and associated minerals. According to the experimental 259 

studies of Cabri (1965), sylvanite melts at 354°C and the intergrowth assemblage 260 

native tellurium + sylvanite + stützite (Fig. 2d) suggests a formation temperature of 261 

less than 330°C.  262 

Therefore, it appears more likely that lingbaoite formed through cooling of 263 

polymetallic melt at lower pressures. The mineral assemblages present in the 264 

lingbaoite-bearing composite inclusions (Figs. 2, 3) indicate a complex 265 

Au-Ag-Te-Fe-Cu–Pb–S system. Although it is impossible to tell at which temperature 266 

such a complex system would melt, we speculate that the minimum melting 267 

temperature for such a system will be lower than 304°C. This is because melts can 268 

exist in the Au–Ag–Te system down to 304°C (Cabri 1965), and additional elements 269 

will drive melting points lower in most chemical systems (Frost et al. 2002; Cook et al. 270 

2009). It is unclear how the polymetallic melt precipitating lingbaoite formed, but it 271 

has been experimentally proved that Bi-dominated melts can form directly from 272 

hydrothermal fluids through reduction of Bi3+ (Tooth et al. 2011), and the presence of 273 

polymetallic melts has been proposed in a wide variety of hydrothermal gold deposit 274 

(e.g., Frost et al. 2002; Cook and Ciobanu 2004; Ciobanu et al. 2006; Cook et al. 2009; 275 
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Cockerton and Tomkins 2012; Zhou et al. 2017). Bismuth and bismuth-tellurium melt 276 

inclusions have also been observed recently in quartz-cassiterite veins (Guimarães et 277 

al. 2019). 278 

Implications 279 

Lingbaoite and associated sylvanite reveal a previously unrecognized but perhaps 280 

common gold enrichment process in the Xiaoqinling gold district, preceding the 281 

precipitation of native gold and Bi-bearing minerals. This further suggests that gold 282 

mineralization in the Xiaoqinling gold district involves multiple gold enrichment 283 

processes, which seem essential for the formation of large deposits (e.g., Large et al. 284 

2007; Meffre et al. 2016; Fougerouse et al, 2017; Kerr et al. 2018). 285 

This study also reveals a magmatic affinity of the hydrothermal system. The fluid 286 

responsible for the deposition of lingbaoite and associated minerals is characterized 287 

by high sulfur and tellurium fugacity with no bismuth, as evidenced by the presence 288 

of lingbaoite, native tellurium, sylvanite, bornite, as well as the absence of native gold 289 

and Bi-bearing minerals. High sulfur and tellurium fugacity of the fluid implies a 290 

magmatic-hydrothermal origin of the hydrothermal system (e.g., Afifi et al. 1988; 291 

Einaudi et al. 2003). Minerals such as native tellurium and bornite, for example, 292 

commonly occur in magmatic-hydrothermal systems, such as porphyry Cu-Au-Mo 293 

(Einaudi et al. 2003; Cook et al. 2011) and epithermal Au deposits (Afifi et al. 1988). 294 

Biotite and sericite 40Ar/39Ar age data indicate that gold mineralization in the S60 vein 295 

took place in the Early Cretaceous (134.5−123.7 Ma: Li et al. 2012a). Although 296 
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causative intrusions have not been discovered, the early gold mineralization event in 297 

the S60 vein is likely related to the large-scale Early Cretaceous magmatism (e.g., 298 

alkaline granites and A-type granites: Ye et al. 2008; Zhou et al. 2008; Mao et al. 2010) 299 

in the Xiaoqinling gold district and adjacent areas, in relation to lithospheric thinning, 300 

asthenospheric upwelling, and partial melting of the lower crust and upper mantle in 301 

eastern China (Mao et al. 2008, 2010; Li et al. 2012a, b; Zhao et al. 2019).  302 
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Figure captions 320 

Figure 1. Geologic map of the Xiaoqinling gold district and its position in China (after 321 

Jian et al., 2014). 322 

323 

Figure 2. Photomicrographs (ae, plane-polarized reflected light, oil immersion) and 324 

SEM images (fg) of lingbaoite and associated minerals (stage I). (a) Trail of 325 

lingbaoite-bearing composite inclusions in pyrite. The largest composite inclusion in 326 

the right consists of lingbaoite, sylvanite, altaite, and other small, unidentified phases. 327 

(b) Composite inclusion consisting of lingbaoite, bornite, and digenite. (c) Composite328 

inclusion consisting of lingbaoite, chalcopyrite, sylvanite, and stützite. (d) 329 

Lingbaoite-bearing composite inclusions and native tellurium-bearing composite 330 

inclusions in pyrite (from Jian et al., 2014). (e) Composite inclusion consisting of 331 

lingbaoite, sylvanite, chalcopyrite, and stützite, detailed in f. (f) Close-up view of the 332 

composite inclusion indicated in e. (g) Close-up view of a part of the lingbaoite grain 333 

indicated in f. Note lingbaoite is compositionally homogeneous. Abbreviations: Alt = 334 

altaite, Au = gold, Bn = bornite, Cp = chalcopyrite, Dg = digenite, Gn = galena, Lb = 335 

lingbaoite, Ptz = petzite, Py = pyrite, Stz = stützite, Syl = sylvanite, Te = native 336 

tellurium. 337 

338 

Figure 3. Photomicrographs (ad, plane-polarized reflected light, oil immersion) and 339 

SEM image (e) of stage II tellurides, native gold, and their cross-cut relation to 340 
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lingbaoite. (a) Gold, galena, and chalcopyrite in pyrite fracture. Note two small 341 

lingbaoite grains (top left) have reflection color similar to gold but are slightly darker 342 

than gold. (b) Trail of lingbaoite-bearing composite inclusions cut by a fracture filled 343 

by gold (from Jian et al., 2014). (c) Gold and rucklidgeite in pyrite fracture. (d) 344 

Aggregate of rucklidgeite + altaite + volynskite + hessite in pyrite. Note that the left 345 

margin of the aggregate is delineated by a micro-fracture (arrow). (e) Trail of 346 

lingbaoite-bearing composite inclusions cut by a fracture filled by Ag–Bi–Pb telluride 347 

minerals (modified from Jian et al., 2014). Abbreviations: Alt = altaite, Au = gold, Cp 348 

= chalcopyrite, Gn = galena, Hes = hessite, Lb = lingbaoite, Py = pyrite, Rkl = 349 

rucklidgeite, Syl = sylvanite. 350 

 351 

Figure 4. Reflectance data for lingbaoite in air. The reflectance values (R%) are 352 

plotted versus wavelength in nm. The data were obtained from five spots in three 353 

different lingbaoite grains. 354 

 355 

Figure 5. EBSD images of two natural lingbaoite grains. The Kikuchi bands and the 356 

values of the mean angular deviation (MAD) are indicated in the right column. 357 

 358 

Figure 6. Images of the TEM foil for SAED analysis and its location in polished 359 

section before cutting. (a) Photomicrograph (plane-polarized reflected light, oil 360 

immersion) showing lingbaoite occurs as mineral inclusion in pyrite. (b) SEM image 361 

showing a close-up view of the rectangular area indicated in A, with the location of 362 
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the TEM foil to be cut indicated. (c) SEM image of the TEM foil extracted from the 363 

area indicated in b. (d) Bright-field TEM image showing a part of the TEM foil with 364 

the position for SAED analysis indicated (circled area) and the TEM-EDS spectra 365 

(inset) for the circled area (lingbaoite). The peaks for Cu are caused by the TEM 366 

Cu-grid. 367 

 368 

Figure 7. SAED patterns of Lingbaoite from 7 different zone axes. The SAED 369 

patterns were taken from the circled area in Figure 6d. In Figure 7G, the [0001] zone 370 

axis is not perfectly aligned parallel to the electron beam, because the Y-axis of the 371 

double-tilt specimen holder was already tilted to the limit (± 30°). 372 

 373 

Figure 8. Crystal structure of AgTe3, the synthetic equivalent of lingbaoite. (a) 374 

Pseudocubic structure (modified from Range et al., 1982). (b) The unit cell of AgTe3. 375 

The solid black lines outline a single unit cell. (c) Arrangement of the Te(Te4Ag2) 376 

octahedron (modified from Range et al., 1982).   377 

 378 

Figure 9. p, T-relations in the silver-tellurium system at 75 at% Te (from Range and 379 

Thomas 1983). 380 

 381 

 382 

 383 

384 
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Tables 572 

Table 1.  Reflectance values for lingbaoite 573 

λ (nm) Rmax(%) Rmin(%) λ (nm) Rmax(%) Rmin(%) 
400  26.2  22.4  560  51.6  45.8  
420  28.3  26.7  580  53.0  47.5  
440  33.4  30.4  589  53.6  48.2  

460  38.1  34.0  600  54.0  48.8  
470  39.9  35.6  620  55.0  50.2  
480  41.8  37.0  640  55.7  51.3  
500  45.0  39.6  650  55.9  51.7  

520  47.7  41.9  660  56.2  52.1  
540  49.8  44.0  680  56.6  53.0  
546  50.3  44.5  700  57.0  53.3  

Notes: The reflectance values were obtained from five spots in three different lingbaoite grains. 574 

Table 2. Chemical data (in wt%) for lingbaoite 575 

Constituent Mean Range Stand. Dev. Reference Material 
S 0.45  0.12 – 0.85 0.29  Natural pyrite 

Ag 21.34 20.83 – 22.00 0.33  Ag, pure metal 
Cu 0.11 0 – 0.62 0.16  Cu, pure metal 
Te 75.81 74.79 – 76.73 0.59  Synthetic PbTe 
Fe 1.57 1.04 – 1.97 0.26  Natural pyrite 
Pb 0.14 0 – 2.20 0.51  Synthetic PbTe 

Total 99.43 98.11 – 100.20     
 576 

577 
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Table 3. Powder X-ray diffraction data for synthetic AgTe3 and measured interplanar 578 

spacing data for lingbaoite (d in Å).  579 

Synthetic AgTe3 (from PDF# 76-2328) Lingbaoite   

I dmeas. dcalc. dmeas-lb. hkil 

0.3 4.31 4.3105   1011 

0.3 4.31 4.3225   1120 

100 3.052 3.0522  3.0652  0221 

0.1 2.493 2.4933   2131 

0.1 2.493 2.4956   3030 

0.1 2.486 2.4864   0112 

35.6 2.161 2.1613  2.1608  2240 

49.8 2.155 2.1553   2022 

0.1 1.932 1.9320   1341 

0.1 1.928 1.9288   1232 

15.8 1.763 1.7638  1.7664  4041 

9.8 1.757 1.7573   0003 

0.1 1.633 1.6331   3251 

0.1 1.633 1.6338   4150 

0.1 1.631 1.6312   3142 

0.1 1.627 1.6279   1123 

8.8 1.526 1.5261  1.5362  0442 

0.1 1.439 1.4404   0551 

0.1 1.439 1.4391   2352 

0.1 1.436 1.4368   3033 

11.3 1.366 1.3665  1.3621  2461 

15.8 1.363 1.3635   2243 

0.1 1.302 1.3030   5161 

0.1 1.302 1.3020   5052 

0.1 1.298 1.2980   1014 

8.2 1.246 1.2466  1.2435  4262 

8.2 1.246 1.2478  1.2388  6060 

7.2 1.243 1.2432   0224 

0.1 1.198 1.1988   5270 

0.1 1.198 1.1986   4371 

0.1 1.197 1.1978   1562 

0.1 1.196 1.1965   1453 

0.1 1.194 1.1948   2134 

0.1 1.115 1.1152   3472 

0.1 1.115 1.1159   1671 

0.1 1.114 1.1142   3363 

0.1 1.112 1.1128    1344 

Notes: dmeas. = measured interplanar spacing values for synthetic AgTe3 from PDF# 76-2328; dcal. = calculated 580 

interplanar spacing values for synthetic AgTe3 based on the cell parameters of synthetic AgTe3 (Range et al. 1982); 581 

dmeas-lb. = measured values based on the SAED patterns of lingbaoite in Figure 8. 582 
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Table 4. Measured angles of lingbaoite in comparison with calculated angles of 583 

synthetic AgTe3 584 

Planes Angle between planes 
(hkil) Measured Calculated 

(2021)/(0441) 55.52° 54.7° 
(2420)/(0441) 35.12° 35.3° 
(2021)/(2642) 66.92° 65.82° 
(4621)/(2642) 23.65° 24.11° 
(6241)/(2462) 57.69° 56.76° 
(4621)/(2462) 56.63° 56.76° 
(4220)/(4261) 51.13° 50.78° 
(0441)/(4261) 39.70° 39.22° 
(0441)/(6600) 61.25° 61.89° 
(6241)/(6600) 42.32° 43.11° 
(2420)/(8621) 44.77° 45.01° 
(6241)/(8621) 26.38° 26.56° 
(2240)/(2420) 60.6° 60° 
(4220)/(2420) 59.23° 60° 

Measured = measured values based on the SAED patterns of lingbaoite in Figure 8, 585 

Calculated = calculated values based on the cell parameters of synthetic AgTe3 (Range et al. 586 

1982) 587 

 588 

Table 5. Wyckoff positions and atom coordinates for synthetic AgTe3 (from Range et 589 

al. 1982). 590 

Atom # Site x  y z 

Ag 3a 0 0 0 

Te 9b 0.1672 -0.1672 0.3412 

 591 

Table 6. Bond distances (Å) for synthetic AgTe3 within one Te(Te4Ag2) octahedron 592 

(from Range et al. 1982). 593 

Atom 1 Atom 2 Distance   
Te Te 3.052(5) ×4 
Ag Te 3.022(5) ×1 
Ag Te 3.083(5) ×1 
 594 

 595 

 596 

 597 

 598 

 599 

 600 
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Table 7. Minerals and phases chemically/structurally related to lingbaoite 601 

Mineral/Phase Formula Crystal system 
Space 
group 

Cell parameters 
Reference 

a (Å) b (Å) c (Å) Z cell angle 

Hessite  Ag2Te Monoclinic P21/C 8.162  4.467  8.973  4 β = 124.15° Schneider and Schulz (1993) 

Stützite Ag5−xTe3 Hexagonal C6/mmm 13.380  
 

8.450  7 
 

Honea (1964) 
Synthetic AgTe3 AgTe3 Trigonal R3m 8.645  

 
5.272  3 γ = 120° Range et al. (1982) 

Lingbaoite AgTe3 AgTe3 R3m 8.60  
 

5.40  3 γ = 120° This study 
Empressite  AgTe Orthorhombic Pnma 8.882  20.100  4.614  16 

 
Bindi et al. (2004) 

Native silver Ag Cubic Fm3m 4.086  
  

4 
 

Novgorodova et al. (1981) 

Native tellurium Te Trigonal P3221 4.447  
 

5.915  3 γ = 120° Wyckoff (1963) 

α-polonium Po Cubic Pm3m 3.345 
  

1 
 

Beamer and Maxwell (1949) 

Simple cubic tellurium 
(hypothetical phase) 

Te Cubic Pm3m 3.020      1   von Hippel (1948) 
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