1	Revision 1					
2						
3	The new K, Pb-bearing uranyl-oxide mineral kroupaite: crystal-chemical implications for					
4	the structures of uranyl-oxide hydroxy-hydrates					
5 6 7 8	Jakub Plášil ^{1§} , Anthony R. Kampf ² , Travis A. Olds ³ , Jiří Sejkora ⁴ , Radek Škoda ⁵ , Peter C. Burns ³ and Jiří Čejka ⁴					
9	¹ Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic					
10	² Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition					
11	Boulevard, Los Angeles, CA 90007, USA					
12	³ Department of Civil and Environmental Engineering and Earth Sciences, University of Notre					
13	Dame, Notre Dame, IN 46556, USA					
14	⁴ Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9 -					
15	Horní Počernice, 193 00, Czech Republic					
16	⁵ Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611					
17	37, Brno, Czech Republic					
18						
19	ABSTRACT					
20	Kroupaite (IMA2017-031), ideally KPb _{0.5} [(UO ₂) ₈ O ₄ (OH) ₁₀]·10H ₂ O, is a new uranyl-oxide					
21	hydroxyl-hydrate mineral found underground in the Svornost mine, Jáchymov, Czechia.					
22	Electron-probe microanalysis (WDS) provided the empirical formula					
23	$(K_{1.28}Na_{0.07})_{\Sigma 1.35}(Pb_{0.23}Cu_{0.14}Ca_{0.05}Bi_{0.03}Co_{0.02}Al_{0.01})_{\Sigma 0.48}[(UO_2)_{7.90}(SO_4)_{0.04}O_{4.04}(OH)_{10.00}]\cdot 10H_2O,$					
24	basis of 40 O atoms apfu. Sheets in the crystal structure of kroupaite adopt the fourmarierite					
25	anion topology, and therefore kroupaite belongs to the schoepite-family of minerals with related					
26	structures differing in the interlayer composition and arrangement, and charge of the sheets.					
27	Uptake of dangerous radionuclides (90Sr oir 135Cs) into the structure of kroupaite and other					

[§] Email: plasil@fzu.cz

28	uranyl-oxide hydro	xy-hydrate is	evaluated	based	on	crystal-chemical	considerations	and
29	Voronoi-Dirichlet po	olyhedra meas	ures. These	calculat	tions	show the importa	ancy of these ph	ases
30	for the safe disposal	of nuclear was	ste.					

31

32 *Keywords:* kroupaite; new mineral species; uranyl-oxide hydroxy-hydrate; crystal structure;

33 Voronoi-Dirichlet polyhedra; ¹³⁵Cs; ⁹⁰Sr; Jáchymov.

- 34
- 35

INTRODUCTION

36 Uranium dioxide, as nuclear fuel or uraninite (Janeczek et al. 1996), UO_{2+x} , readily reacts with 37 oxygen and water to form a fascinating family of uranyl-oxide hydroxyl-hydrates (UOHs) (Finch 38 and Ewing 1992; Wronkiewicz et al. 1996; Plášil 2014). These occur in nature as minerals and 39 are amongst the first alteration products that form during weathering of uraninite in oxidized 40 zones of U deposit worldwide (Finch et al. 1996a, b; Plášil 2018a). They are of interest in 41 forensics studies of intercepted illicit nuclear materials as they provide insights into uranium 42 oxide history. Number of studies has focused on their structure, solubility, and thermodynamic 43 stability (Casas et al. 1997; Finch and Murakami 1999; Klingensmith et al. 2007; Kubatko et al. 44 2006a; Gorman-Lewis et al. 2008; Kirkegaard et al. 2019). It is due to their general importance in 45 nuclear waste disposal and the environmental chemistry of uranium.

The onset of oxidation and hydration of uranium oxide often yields phases consisting of electroneutral sheets of uranyl pentagonal bipyramids with substantial H₂O in the interlayer region, and typically little, if any, additional metal cations (Burns 2005; Krivovichev and Plášil 2013; Lussier et al. 2016; Plášil 2018a). In some cases, uranium oxide hydrates containing mixtures of U(IV), U(V) or U(VI) oxidation states occur as well. Continued alteration of uranium

51 oxide, alteration in more chemically diverse aqueous fluids, and alteration of geologically old 52 uranium oxide that contains substantial radiogenic lead leads to formation of uranyl-oxide 53 hydroxy-hydrates with anionic sheets of uranyl polyhedra charge-balanced by cations in the 54 interstitial regions of the structures.

55 Here we describe the new mineral kroupaite that was found underground in the Svornost 56 (formerly "Einigkeit" in German) mine in Jáchymov, Western Bohemia, Czechia. Details of the 57 mineralogy, geology and history of the Jáchymov ore district can be found elsewhere (Ondruš et 58 al. 2003; Hloušek et al. 2014). The specimens studied originate from the Jan Evangelista vein at 59 the Daniel level of the Svornost mine. Associated minerals include fourmarierite, Na-rich 60 metaschoepite, uranopilite, liebigite, ewingite and gypsum. The new mineral and its assemblage 61 are of supergene origin associated with oxidation-hydration alteration of uraninite in old mine 62 workings. The name honors mining engineer Gustav Kroupa (1857–1935), who was employed by 63 the state mines in Jáchymov beginning in 1886, and who as head of the mining district, approved 64 shipment of 10 tons of leachate obtained from processing pitchblende ore to Marie-Curie 65 Sklodowska and Pierre Curie in 1898. They went on to isolate three grams of the new substance 66 radium chloride, and subsequently the new element radium. The Commission on New Minerals, 67 Nomenclature and Classification of the International Mineralogical Association approved the 68 new mineral and name (IMA2017-031). The description is based upon the holotype specimen 69 deposited in the mineralogical collection of the National Museum in Prague (catalogue number 70 no. P1P 16/2017). Crystals used in this study are deposited in the Natural History Museum of Los 71 Angeles County (catalogue number 66572).

72

73

PHYSICAL AND OPTICAL PROPERTIES

74	Kroupaite forms as radial aggregates of thick platy, orange-yellow crystals up to 1 mm in
75	diameter (Fig. 1) growing in interstices of gypsum crystals. Tablets are flattened on {100}, with
76	the prominent crystal forms {100}, {013} and {021} (Fig. 2). Crystals are brittle with at least one
77	perfect cleavage on {100} and uneven fracture. Crystals are translucent with vitreous luster, have
78	light yellow streak, and are non-fluorescent under LW and SW ultraviolet radiation. The Mohs
79	hardness is approximately 2, estimated by scratch tests . The density was not measured due to the
80	limited availability of material. The calculated density is 5.058 g/cm ³ based on the empirical
81	formula. Kroupaite is readily soluble in dilute HCl, with no effervescence.
82	Kroupaite is optically biaxial (–), with $\alpha = 1.691(2)$, $\beta = 1.752(2)$, $\gamma = 1.768(2)$ (measured
83	with white light). The $2V$ is 53(1)°, measured directly by conoscopic observation on a spindle
84	stage; the calculated 2V is 52.7°. Dispersion is strong, $r > v$. The mineral is pleochroic with X
85	colorless, <i>Y</i> yellow and <i>Z</i> yellow; $X < Y \approx Z$. The optical orientation is $X = \mathbf{a}$, $Y = \mathbf{c}$, $Z = \mathbf{b}$. The
86	Gladstone-Dale compatibility (Mandarino 2007), $1 - (K_p/K_c)$, is -0.018 (superior) for the
87	empirical formula.
88	
89	RAMAN SPECTROSCOPY
90	A Raman spectrum was collected in the range 4500–12 cm ⁻¹ using a DXR dispersive
91	Raman Spectrometer (Thermo Scientific) mounted on a confocal Olympus microscope. The
92	Raman signal was excited by a green 532 nm diode-pumped solid-state laser and was collected
93	by a CCD detector. The experimental parameters were: $50 \times$ objective, 10 s exposure time, 100
94	exposures, 400 lines/mm grating, 50 μ m pinhole spectrograph aperture and 1 mW laser power
95	level. The instrument was set up by a software-controlled calibration procedure using multiple
96	neon emission lines (wavelength calibration), multiple polystyrene Raman bands (laser frequency

97	calibration) and standardized white-light sources (intensity calibration). Spectral manipulations as
98	well as band-fitting were performed using the Omnic 9 software (Thermo Scientific).
99	In the Raman spectrum of kroupaite (Fig. 3a) a weak broad band at 3487 cm ⁻¹ is assigned
100	to the v O–H stretching vibrations of hydroxyl and molecular H_2O H-bonded into the structure.
101	The approximate bond-lengths of H-bonds (H···Acceptor) lie in the range 1.8–2.0 Å (Libowitzky
102	1999). The strong band centered at 833 cm^{-1} , with a shoulder at 812 cm^{-1} (Figure 3b), is
103	attributed to the v_1 symmetric stretching vibration of uranyl U–O. The splitting of the v_1 of
104	$(UO_2)^{2+}$ is concomitant with four unique U sites observed in the crystal structure. Based on recent
105	theoretical and experimental studies (Colmenero et al. 2018; Kirkegaard et al. 2019), the
106	assignment of the vibration bands directly to $v_1 (UO_2)^{2+}$ is not straightforward: the component
107	bands comprise both symmetric stretching $v_1 (UO_2)^{2+}$ and δ (U–OH), as well as libration
108	vibration of (H ₂ O). Nevertheless, using an empirical relationship to derive the approximate U–O
109	bond lengths from the band positions assigned to the $(UO_2)^{2+}$ stretching vibrations gives ~1.78 Å
110	(833 cm ⁻¹) and ~1.80 Å (812 cm ⁻¹) (Fig. 3b). These values are in line with U–O bond-lengths
111	obtained from the crystal structure data (see Table 2). There is a series of weak bands in the 580-
112	280 cm^{-1} range (570, 542, 500, 450, 400, 328, 298 cm ⁻¹). Those at 570–500 cm ⁻¹ are attributable
113	to librations of H ₂ O. Those at 450–328 cm ^{-1} can be assigned to δ (O–U–O _{eq}) vibrations.
114	According to a theoretical study of schoepite (Colemenero et al. 2018, 2019), these bands also
115	have a significant contribution of the v (U–O _{eq}), δ (U–OH) and libration of H ₂ O. The band at 298
116	cm ⁻¹ is attributed to v_2 (δ) (UO ₂) ²⁺ , but there may be contributions from δ (O–U–O _{eq}), δ (U–OH)
117	and water librations. Remaining bands located below 200 cm ⁻¹ (190, 155, 116, 63, 40 cm ⁻¹) are
118	assigned to molecular deformations and lattice modes.
110	

120

CHEMICAL ANALYSIS

121	Kroupaite was analyzed by electron microprobe using a Cameca SX100 electron
122	microprobe (Masaryk University, Brno) operating in wavelength dispersive spectroscopy mode
123	using an accelerating voltage of 15 kV, beam current of 4 nA and a 10–15 μ m beam diameter.
124	Concentrations of elements other than those reported in Table S1 were below detection limits (ca
125	0.03–0.10 wt. %). The low analytical totals are due to an uneven surface and the porosity of the
126	polished section; therefore, we also report normalized data (column "Norm." in Table 1). A
127	matrix correction was applied to the data using the 'PAP' software (Pouchou and Pichoir 1991).
128	The H ₂ O content was calculated by stoichiometry (obtained from the structure); the paucity of
129	pure material precluded a direct determination of the H ₂ O content. The empirical formula
130	calculated on the basis of 40 O atoms per formula unit is:
131	$(K_{1.28}Na_{0.07})_{\Sigma 1.35}(Pb_{0.23}Cu_{0.14}Ca_{0.05}Bi_{0.03}Co_{0.02}Al_{0.01})_{\Sigma 0.48}[(UO_2)_{7.90}(SO_4)_{0.04}O_{4.04}(OH)_{10.00}]\cdot 10H_2O.$
132	The ideal formula is $KPb_{0.5}[(UO_2)_8O_4(OH)_{10}] \cdot 10H_2O$, which requires: K ₂ O 1.73, PbO 4.11, UO ₃
133	84.21, H ₂ O 9.95, total 100 wt%.
134	
135	X-RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATION
136	Powder diffraction data were collected using a Rigaku R-Axis Rapid II curved imaging
137	plate microdiffractometer with monochromated MoK_{α} radiation. A Gandolfi-like motion on the ϕ
138	and ω axes was used to randomize the sample. Observed <i>d</i> -values and intensities were derived by
139	profile fitting using the JADE 2010 software (Materials Data, Inc.). Data are given in Table 2.
140	Unit-cell parameters refined from the powder data using JADE 2010 with whole pattern fitting
141	are: $a = 14.781(7)$ Å, $b = 14.095(6)$ Å, $c = 16.719(7)$ Å, $V = 3583(3)$ Å ³ , $Z = 4$ (space group:
142	Pbca).

143	Single-crystal X-ray diffraction data were collected at room temperature on a Rigaku
144	SuperNova diffractometer equipped with a microfocus X-ray source (Mo K_{α} , $\lambda = 0.71073$ Å) and
145	an Atlas S2 CCD detector. The crystal, $0.07 \times 0.06 \times 0.03$ mm large, was mounted on a cut
146	microloop. The raw data reduction was done using CrysAlis software (Rigaku 2019). An
147	absorption correction combining a Gaussian correction and an empirical scaling was applied to
148	the data using the Jana2006 software (Petříček et al. 2014). The structure was solved with
149	SHELXT using charge-flipping (Sheldrick 2015). Full-matrix least squares refinement of the
150	structure against F^2 was performed with Jana2006 (Petříček et al. 2014); the structure has been
151	refined to $R = 0.0447$ for 2587 unique observed reflection. The crystallographic data can be found
152	in the original cif file (as supplementary file); selected interatomic distances and results of the
153	bond-valence analysis are given in Tables 3 and 4, respectively
154	
155	DESCRIPTION OF THE STRUCTURE
156	Kroupaite crystallizes in orthorhombic space group <i>Pbca</i> and its structure (Fig. 4)
157	contains four U sites, one K site, one Pb site and nineteen O sites. Each U site is coordinated by
158	seven ligands (Table 3), forming pentagonal bipyramids, where the apices of each bipyramid are
159	comprised of strongly bonded O atoms, forming the approximately linear uranyl ion, $UO_2^{2^+}$. In
160	the equatorial plane, each uranyl ion is bonded to five ligands, either O or OH ⁻ (Table 4), and the
161	polyhedra polymerize by sharing edges and equatorial vertices (Fig. 4) into the well-known
162	fourmarierite anion sheet topology (Fig. 5) (Burns 2005; Krivovichev and Plášil 2013; Lussier et
163	al. 2016). In the interlayer, there are two independent cation sites that are occupied by K^+ and
164	Pb^{2+} . Both sites have occupancies lower than unity. Additionally, there are four O sites (O15,
165	O16, O18, O19) in the interlayer corresponding to H2O molecules (Table 4) that were identified

166	based on the bond-valence sums incident upon the corresponding O atoms. The K atom is [7]-
167	fold coordinated (to 3.3 Å) and binds to five distinct O_{Ur} (Ur – uranyl) atoms. Site-scattering
168	refinement revealed that the site is partially occupied ($\sim 0.47/0.5$). The Pb site is [9]-fold
169	coordinated (to 3.3 Å); six of the ligands are Our atoms from adjacent structural sheets, with three
170	from each sheet, and thus the Pb cations directly bridge between sheets. There are dimers of Pb
171	polyhedra; one Pb-polyhedron is linked to its symmetrical equivalent through the pair of
172	symmetrically related O16(H ₂ O) atoms to form $Pb_2O(O_{Ur})_{10}(H_2O)_3$ dimers.
173	According to the bond-valence analysis and site-scattering refinement the formula,
174	assuming full metal-cation site occupancy for K (0.94 K from the site-scattering refinement) and
175	0.5 Pb (0.44 from refinement) and full occupancies of the $O(H_2O)$ sites, is
176	$KPb_{0.5}[(UO_2)_8O_4(OH)_{10}] \cdot 8H_2O, Z = 4$, although the H ₂ O content is likely somewhat lower.
177	
178	Relationship to other UOH minerals and Compounds
179	The structural unit in kroupaite is the well-known fourmarierite-type sheet, which
180	accommodates various combinations of OH ⁻ and O in uranyl minerals, and thus has variable
181	charge. Electroneutral sheets with composition [(UO ₂) ₄ O(OH) ₆] occur in schoepite and
182	metaschoepite (Plášil 2018b; Weller et al. 2000), whereas anionic sheets with composition
183	$[(UO_2)_4O_2(OH)_5]^-$ occur in synthetic Na-bearing metaschoepite (Klingensmith et al. 2007) and
184	leesite (Olds et al. 2018), and with composition $[(UO_2)_4O_3(OH)_4]^{2-}$ in fourmarierite (Li and
185	Burns 2000a).
186	Lead cations in the structure of kroupaite occupy the same site as Pb^{2+} in fourmarierite,
187	but surprisingly, also the same site as K^+ in leesite (Fig. 5). In the structure of kroupaite, K atoms

189	in the structures of kroupaite and leesite are well documented by distinct substitution trends
190	between kroupaite and fourmarierite (characteristic for the same Pb sites) and leesite (Fig. 6). The
191	substitution in leesite should take place at the single cationic site for Pb^{2+} and K^+ . The main
192	structural distinction of kroupaite from leesite is a unique K^+ site in kroupaite (Fig. 5). It appears
193	that in the presence of Pb^{2+} with a stereoactive lone pair of electrons, K^+ is favored at a site that
194	provides more space and, consequently, K atoms shift to a position beneath bounding O_{Ur} atoms.
195	The corresponding Voronoi-Dirichlet polyhedral values that characterize particular coordination
196	environments of metal cations in the interlayers of kroupaite, leesite, fourmarierite (Fig. 7) and
197	synthetic Na-metaschoepite are given in Table 5. Comparing Lewis acid (LA) strengths, Pb^{2+} is a
198	much stronger acid (0.22 vu) than K^+ (0.11 vu). Both kroupaite and leesite contain similar
199	amounts of H ₂ O in their interlayers (kroupaite is slightly more hydrated) and the arrangement of
200	(OH) ⁻ in the kroupaite sheet is identical to that found both in leesite and synthetic Na-
201	metaschoepite. The consequence is that Pb adopts a site in the kroupaite structure that is more
202	compatible with the distribution of higher bond-valence from Lewis acids to Lewis bases; in
203	kroupaite the average Pb^{2+} –O bond-strength is 0.16 vu while that of K ⁺ –O is 0.10 vu. Acceptors
204	of the majority of bonds from Pb^{2+} in kroupaite are apical uranyl atoms within the sheets.

205

URANYL-OXIDE HYDROXY-HYDRATES WITH VARIOUS INTERLAYER CATIONS

The interstitial complexes of uranyl-oxide hydrates incorporate various elements with distinct stereochemistry. Uranyl minerals form in complex multiphase chemical conditions arising from their geological settings (and geochemistry), and are also expected to form in complex environments such as underground repositories for long-term storage of nuclear (Maher et al. 2013; Ewing 2015).

211 The structures and compositions of uranyl-oxide hydrates have recently been reviewed 212 (Plášil 2018a). Crystal structures of uranyl-oxide hydrates sometimes contain U(V) or U(IV), 213 with U(V) observed in structures containing β -U₃O₈ (Burns and Finch 1999) and α -U₃O₈ (Plášil 2017a) types of uranyl-oxide layers. In nollmotzite, $Mg[U^{V}(U^{VI}O_{2})_{2}O_{4}F_{3}]\cdot 4H_{2}O$, the β -U₃O₈ type 214 215 of sheet contains fluorine as well as oxygen (Plášil et al. 2018). 216 The interstitial complexes of uranyl oxide hydrates incorporate various alkali and alkaline 217 earth cations as well as lanthanides (Zhang et al. 2018, 2019; Hill and Burns 1999; Burns and 218 Hill 2000a, b; Cahill and Burns 2000). The capacity of uranyl-oxide hydrates to accommodate 219 cations of various Lewis-acid strengths arises in part from the heterogeneous distribution of 220 different types of anions within the sheets: uranyl O atoms, which are somewhat undersaturated 221 with respect to their bond-valence requirements, and OH⁻ groups within the uranyl-oxide layers 222 that are bond-valence donors. These sheets readily accommodate cations of distinct charges and 223 radii (Zhang et al. 2016), and also of different stereochemistry (Olds et al. 2017). In comparison, 224 kamitugaite, PbAl[(UO₂)₅(PO₄)_{2,38}(AsO₄)_{0.62}O₂(OH)₂](H₂O)_{11.5} (Plášil 2017b) combines divalent and trivalent cations in its interstitial complexes, and the Pb^{2+} is electron lone-pair stereoactive. 225 The distribution of anions appears to preclude occurrence of both Pb^{2+} and Al^{3+} in the same 226 227 interlayer. Thus, there are two distinct interlayers in kamitugaite, giving a large unit cell. 228 Voronoi-Dirichlet polyhedra (VDP) calculations (Blatov et al. 2004) were used to 229 evaluate and quantify bonding environments in the interlayer regions of UOHs. The VDP 230 calculations are summarized in Table 5 and selected aspects are displayed in Figure 8. Generally, Pb²⁺ occupies sites with VDP volume (V_{VDP}) ~18 Å³. If there is an additional cation with a larger 231 ionic radius, as K^+ in gauthierite and kroupaite, it occupies sites with $V_{VDP} > 20 \text{ Å}^3$. In leesite, the 232 K⁺ occupies a site with $V_{VDP} > 19.66 \text{ Å}^3$ that is populated by Pb²⁺ in other uranyl-oxide-hydrate 233

structures. The structure of gauthierite is particularly interesting as it contains four symmetrically independent partially occupied K sites. Site K2 has $V_{\text{VDP}} \sim 27 \text{ Å}^3$.

236 **POTENTIAL CS⁺ AND SR²⁺ INCORPORATION**

237 Voronoi-Dirichlet polyhedra calculations for uranyl-oxide-hydrate structures can help in predicting incorporation of radionuclides of concern for nuclear waste disposal, such as 135 Cs ($t^{1/2}$ 238 = 2.3 MY) or 90 Sr ($t^{1/2}$ = 28.8 Y) that are important for long-term disposal and shorter-term heat 239 240 generation, respectively (Maher et al. 2013; Ewing 2015). VDP calculations are sensitive to the 241 size of the corresponding cation and can be employed to determine characteristic volumes of 242 corresponding cation polyhedra in uranyl-oxide-hydrate structures. Results of the analysis are 243 given in Table 5 and Figure 8, where bonding properties of interlayer cations in most uranyl-244 oxide-hydrate structures based on VDP volume and corresponding ionic radii (after Shannon 1976) are listed. The ionic radii of Cs^+ and Sr^{2+} are 1.81 and 1.36 Å, respectively, and Sr^{2+} 245 readily substitutes for Pb^{2+} and Ca^{2+} , as in agrinierite (Cahill and Burns 2000). Substitutions of 246 Sr²⁺ for Pb²⁺ and Ca²⁺ has been documented for synthetic UOHs related to curite and becquerelite 247 248 (Burns and Hill 2000a; Burns and Li 2002). Cesium is less likely to be incorporated into the 249 interlayers of UOHs structures, although a synthetic uranyl oxide hydrate containing Cs has been 250 reported (Hill and Burns 1999) as well as uptake of Cs⁺ by a uranyl oxide hydrate during 251 crystallization (Giammar and Hering 2004). It is plausible that Cs⁺ can be incorporated in Kbearing UOHs, as the V_{VDP} of K⁺ sites reaches ~24 Å³ (with an extreme value of ~27 Å³ in case 252 253 of K2 in gauthierite; Tables 7).

254

CHARGE-DENSITY MATCH IN URANYL-OXIDE-HYDRATE STRUCTURES

11

255	We used charge density calculations to identify mis-matches in UOHs by modifying an
256	approach used earlier for uranyl germanates and uranyl silicates (Li et al. 2018). The charge
257	density ρ associated with the anionic structural units was calculated as $\rho = q_e \times Z/V$. Here q_e is the
258	effective charge of the structural unit, which is the formal charge $q_{\rm f}$ of the structural units
259	modified by the number of hydrogen bonds, $q_f + h \times 0.2$ (where h is the number of hydrogen
260	atoms in the structural unit and $0.2 vu$ is the assumed bond-strength of the corresponding H
261	bond). Z is the number of formula units in each unit cell, V is the unit-cell volume (Å ³), and ρ is
262	then the charge density associated with the structural unit. The charge density of the interlayer
263	complex is calculated in the same way, taking into account the formal charge of the interlayer
264	complex modified by the H-bonds emanating from it (Table 6). The majority of UOHs structures
265	exhibit an excess of charge density associated with the interlayer complex (Fig. 9). Exceptions
266	are the denser (polymerized) dehydrogenated structures such as for curite and spriggite. The
267	outlying value of the synthetic PbUOH phase (Li and Burns 2000b) is due to the density of the
268	bond-valence acceptors within the framework as compared to the relatively simple complex
269	occupying the channels. The high charge density of the REE ^{III} -containing UOHs is associated
270	with structural units of the α -U ₃ O ₈ topology that are highly versatile. The variation of the charge
271	densities for the α -U ₃ O ₈ type sheet is the largest within the most common topological types
272	(Table 7).

273

IMPLICATIONS

The new K,Pb-bearing uranyl-oxide hydroxy-hydrate kroupaite is particularly interesting due to ordering of monovalent and divalent cations of different stereochemistry in the interlayer region. Minerals provide unique insights into crystal chemical features that may be difficult to study *via* laboratory synthesis. Recent observations of natural samples, including kroupaite, leesite and gauthierite from several localities demonstrate that uranyl-oxide-hydrate sheet anion

278

279	topologies readily accommodate a range of heterovalent cations via unique configurations of their
280	interlayers. Some uranyl-oxide-hydrate structures investigated here were found, based on analysis
281	of their corresponding Voronoi-Dirichlet polyhedra, to be suitable for incorporation of large
282	monovalent cations such as Cs^+ .
283	ACKNOWLEDGEMENTS
284	Two anonymous reviewers as well as associate editor and structure editor are thanked for
285	constructive comments, which improved the manuscript. This study was funded, in part, by the
286	John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History
287	Museum of Los Angeles County, by the Department of Energy, Basic Energy Sciences, Heavy
288	Elements Program under grant number: DE-FG02-07ER15880, by the Czech Science Foundation
289	(GACR 17-09161S to JP, JS and JČ), and by OP VVV project (Geobarr
290	CZ.02.1.01/0.0/0.0/16_026/0008459 to RS).
291	REFERENCES
292	Belai, N., Frisch, M., Ilton, E.S., Ravel, B., and Cahill, C.L. (2008) Pentavalent Uranium Oxide
293	via Reduction of [UO ₂] ²⁺ Under Hydrothermal Reaction Conditions. Inorganic Chemistry, 47,
294	10135–10140.
295	Blatov, V.A. (2004) Voronoi–Dirichlet Polyhedra in Crystal Chemistry: Theory and
296	Applications. Crystallography Reviews, 10, 249–318.
297	Brandenburg, K. (2006) DIAMOND. Crystal Impact - Dr. H. Putz & Dr. K. Brandenburg GbR,
298	Kreuzherrenstr. 102, 53227, Bonn, Germany.

- 299 Brugger, J., Krivovichev, S.V., Berlepsh, P., Meisser, N., Ansermet, S., and Armbruster, T.
- 300 (2004) Spriggite, $Pb_3[(UO_2)_6O_8(OH)_2](H_2O)_3$, a new mineral with beta-U₃O₈-type sheets:
- description and crystal structure. American Mineralogist, 89, 339–347.
- 302 Brugger, J., Meisser, N., Etschmann, B., Ansermet, S., and Pring, A. (2011) Paulscherrerite from
- 303 the Number 2 Workings, Mount Painter Inlier, Northern Flinders Ranges, South Australia:
- 304 "Dehydrated schoepite" is a mineral after all. American Mineralogist, 96, 229–240.
- 305 Burns, P.C. (1997) A new uranyl-oxide-hydrate sheet in vandendriesscheite: implications for
- 306 mineral paragenesis and the corrosion of spent nuclear fuel. American Mineralogist, 82,
- 307 1176–1186.
- 308 Burns, P.C. (1998) The structure of compreignacite, K₂(UO₂)₃O₂(OH)₃]₂(H₂O)₇. Canadian
- 309 Mineralogist, 36, 1061–1067.
- Burns, P.C. (1999) A new complex sheet of uranyl polyhedra in the structure of wölsendorfite.
- 311 American Mineralogist, 84, 1661–1673.
- Burns, P.C. (2005) U⁶⁺ minerals and inorganic compounds: insights into an expanded structural
- hierarchy of crystal structures, Canadian Mineralogist, 43, 1839–1894.
- 314 Burns, P.C., and Finch, R.J. (1999) Wyartite: Crystallographic evidence for the first pentavalent-
- 315 uranium mineral. American Mineralogist, 84, 1456–1460.
- Burns, P.C., and Hanchar, J. (1999) The structure of masuyite, Pb[(UO₂)₃O₈(OH)₂](H₂O)₃, and its
- relationship to protasite. Canadian Mineralogist, 37, 1483–1491.
- Burns, P.C., and Hill, F.C. (2000a) Implications of the synthesis and structure of the Sr analogue
- 319 of curite. Canadian Mineralogist, 38, 175–181.
- Burns, P.C., and Hill, F.C. (2000b) A new uranyl sheet in $K_5[(UO_2)_{10}O_8(OH)_9](H_2O)$: new
- insights into sheet anion-topologies. Canadian Mineralogist, 38, 163–173.

- 322 Burns, P.C., and Deely, K.M. (2002) Topologically novel sheet of uranyl pentagonal bipyramids
- in the structure of $Na[(UO_2)_4O_2(OH)_5](H_2O)_2$. Canadian Mineralogist, 40, 1579–1586.
- Burns, P.C., and Li, Y. (2002) The structures of becquerelite and Sr-exchanged becquerelite.
- 325 American Mineralogist, 87, 550–557.
- 326 Burns, P.C., Miller, M.L., and Ewing, R.C. (1996) U⁶⁺ minerals and inorganic phases: a
- 327 comparison and hierarchy of crystal structures. Canadian Mineralogist, 34, 845–880.
- 328 Burns, P.C., Finch, R.J., Hawthorne, F.C., Miller, M.L., and Ewing, R.C. (1997) The crystal
- 329 structure of ianthinite, $[U^{4+}_{2}(UO_{2})_{4}O_{6}(OH)_{4}(H_{2}O)_{4}](H_{2}O)_{5}$: a possible phase for Pu⁴⁺
- incorporation during the oxidation of spent nuclear fuel. Journal of Nuclear Materials, 249,
- 331 199–206.
- 332 Cahill, C.L., and Burns, P.C. (2000) The structure of agrinierite: a Sr-containing uranyl-oxide
- hydrate mineral. American Mineralogist, 85, 1294–1297.
- 334 Casas, I., Bruno, J., Cera, E., Finch, R.J., and Ewing, R.C. (1997) Characterization and
- dissolution behavior of a becquerelite from Shinkolobwe, Zaire. Geochimica et
- 336 Cosmochimica Acta, 61, 3879–3884.
- 337 Colmenero, F., Cobos, J., and Timón, V. (2018) Periodic Density Functional Theory Study of the
- 338 Structure, Raman Spectrum, and Mechanical Properties of Schoepite Mineral. Inorganic
- Chemistry, 57, 4470–4481.
- 340 Colmenero, F., Plášil, J., and Němec, I. (2019) Uranosphaerite: Crystal Structure, Hydrogen
- 341 Bonding, Mechanics, Infrared and Raman Spectroscopy and Thermodynamics. Journal of
- 342 Physical Chemistry, under review.
- Dao, N. Q. (1972) Structure cristalline de Cs₂UO₂F₄H₂O. Acta Crystallographica B, 28, 2011–
 2015.

- Ewing, R.C. (2015) Long-term storage of spent nuclear fuel. Nature Materials, 14, 252–257.
- 346 Finch, R.J., and Ewing, R.C. (1991) The corrosion of uraninite under oxidizing conditions.
- Journal of Nuclear Materials, 190, 133–156.
- 348 Finch, R.J., Suksi, J., Rasilainen, K., and Ewing, R.C. (1996a) Uranium-series ages of secondary
- 349 uranium minerals with applications to the long-term evolution of spent nuclear fuel. In W.M.
- 350 Murphy and D.A. Knecht, Eds. Scientific Basis for Nuclear Waste Management XIX, 412,
- 351 823–830. Materials Research Society, Pittsburgh.
- 352 Finch, R.J., Cooper, M.A., Hawthorne, F.C., and Ewing, R.C. (1996b) The crystal structure of

353 schoepite, $[(UO_2)_8O_2(OH)_{12}](H_2O)_{12}$. Canadian Mineralogist, 34, 1071–1088.

- Finch, R.J., and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. In P.C.
- Burns and R.C. Ewing, Eds., Uranium: Mineralogy, Geochemistry and the Environment.
- 356 Mineralogical Society of America, Chantilly, Virginia. Reviews in Mineralogy, 38, 91–179.
- 357 Finch, R.J., Burns, P.C., Hawthorne, F.C., and Ewing, R.C. (2006) Refinement of the crystal
- 358 structure of billietite $Ba[(UO_2)_6O_4(OH)_6](H_2O)_8$. Canadian Mineralogist, 44, 1197–1205.
- 359 Gagné, O.C., and Hawthorne, F.C (2015) Comprehensive derivation of bond-valence parameters
- 360 for ion pairs involving oxygen. Acta Crystallographica, B71, 562–578.
- 361 Ghazisaeed, S., Kiefer, B., Plášil, J. (2019) Revealing hydrogen atoms in a highly-absorbing
- 362 material: an X-ray diffraction study and Torque method calculations for lead-uranyl-oxide
- 363 mineral curite. RSC Advances, 9, 10058–10063.
- 364 Giammar, D.E., and Hering, J.G. (2004) Influence of dissolved sodium and cesium on uranyl-
- 365 oxide hydrate solubility. Environmental Science and Technology, 38, 171–179.

- 366 Glatz, R.E., Li, Y.P., Hughes, K.A., Cahill, C.L., and Burns, P.C. (2002) Synthesis and structure
- 367 of a new Ca uranyl-oxide hydrate, $Ca(UO_2)_4O_3(OH)_4)(H_2O)_2$, and its relationship to
- becquerelite. Canadian Mineralogist, 40, 217–224.
- 369 Gorman-Lewis, D., Fein, J.B., Burns, P.C., Szymanowski, J.E.S., and Converse, J. (2008)
- 370 Solubility measurements of the uranyl-oxide hydrate phases metaschoepite, compreignacite,
- 371 Na-compreignacite, becquerelite, and clarkeite. Journal of Chemical Thermodynamics, 40,
- **372 980–990**.
- 373 Hawthorne, F.C. (2015) Toward theoretical mineralogy: A bond-topological approach. American
- 374 Mineralogist, 100, 696–713.
- Hill, F.C., and Burns, P.C. (1999) The structure of synthetic Cs uranyl hydrate and its
- relationship to compreignacite. Canadian Mineralogist, 37, 1283–1288.
- 377 Hloušek; J., Plášil, J., Sejkora, J., and Škácha, P. (2014) News and new minerals from Jáchymov,
- 378 Czech Republic (2003–2014). Bulletin mineralogicko-petrologického oddělení Národního
- 379 Muzea (Praha), 22, 155–181. (in Czech with English abstract).
- Huang, J., Wang, X., and Jacobson, A.J. (2003) Hydrothermal synthesis and structures of the new
- 381 open-framework uranyl silicates $Rb_4(UO_2)_2(Si_8O_{20})$ (USH-2Rb), $Rb_2(UO_2)(Si_2O_6)$.H₂O
- 382 (USH-4Rb) and $A_2(UO_2)(Si_2O_6).0.5H_2O$ (USH-5A; A = Rb, Cs). Journal of Material
- 383 Chemistry, 13, 191.
- Janeczek, J., Ewing, R.C., Oversby, V.M., and Werme, L.O. (1999) Uraninite and UO₂ in spent
- nuclear fuel: a comparison. Journal of Nuclear Materials, 238, 121–130.
- 386 Kirkegaard, M.C., Niedziela, J.L., Miskowiec, A., Shields, A.E., and Anderson, B.B. (2019)
- 387 Elucidation of the Structure and Vibrational Spectroscopy of Synthetic Metaschoepite and Its
- 388 Dehydration Product. Inorganic Chemistry, 58, 7310–7323.

- 389 Klingensmith, A.L., Deely, K.M., Kinman, W.S., Kelly, V., and Burns, P.C. (2007) Neptunium
- incorporation in sodium-substituted metaschoepite. American Mineralogist, 92, 662–669.
- 391 Krivovichev, S.V., and Burns, P.C. (2001) Crystal chemistry of uranyl molybdates. IV. The
- 392 structures of $M_2((UO_2)_6(MoO_4)_7(H_2O)_2)$ (M = Cs, NH₄). Canadian Mineralogist, 39, 207–
- 393 214.
- 394 Krivovichev, S.V., and Plášil, J. (2013) Mineralogy and crystallography of uranium, Uranium
- from cradle to grave, Vol. 43, Burns, P.C. and Sigmon, G.E. edited, MAC Short Courses, 15–
 119.
- 397 Kubatko, K.A., Helean, K., Navrotsky, A., and Burns, P.C. (2006a) Thermodynamics of uranyl
- 398 minerals: Enthalpies of formation of uranyl oxide hydrates. American Mineralogist, 91, 658–
- **399 666**.
- 400 Kubatko, K.-A., and Burns, P.C. (2006b) Cation–Cation Interactions in
- 401 $Sr_5(UO_2)_{20}(UO_6)_2O_{16}(OH)_6(H_2O)_6$ and $Cs(UO_2)_9U_3O_{16}(OH)_5$. Inorganic Chemistry, 45,
- 402 10277–10281.
- 403 Li, Y., and Burns, P.C. (2000a) Investigations of crystal-chemical variability in lead uranyl-oxide
- 404 hydrates. II. Fourmarierite. Canadian Mineralogist, 38, 737–749.
- 405 Li, Y., and Burns, P.C. (2000) Synthesis and crystal structure of a new Pb uranyl-oxide hydrate
- 406 with a framework structure that contains channels. Canadian Mineralogist, 38, 1433–1441.
- 407 Li, Y., and Burns, P.C. (2000) The structures of two sodium uranyl compounds relevant to
- 408 nuclear waste disposal. Journal of Nuclear Materials, 299, 219–226.
- 409 Li, Y., Cahill, C.L., and Burns, P.C. (2001) Synthesis, Structural Characterization, and
- 410 Topological Rearrangement of a Novel Open Framework U–O Material:
- 411 $(NH_4)_3(H_2O)_2\{[(UO_2)_{10}O_{10}(OH)][(UO_4)(H_2O)_2]\}$. Chemistry of Materials, 13, 4026–4031.

- 412 Li, H., Langer, E.M., Kegler, P., Modolo, G., and Alekseev, E.V. (2018) Formation of Open
- 413 Framework Uranium Germanates: The Influence of Mixed Molten Flux and Charge Density
- 414 Dependence in U-Silicate and U-Germanate Families. Inorganic Chemistry, 57,
- 415 11201–11216.
- 416 Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H…O hydrogen bond
- 417 lengths in minerals. Monatshefte für Chemie, 130, 1047–1059.
- 418 Locock, A.J., and Burns, P.C. (2003) Structures and synthesis of framework Rb and Cs uranyl
- 419 arsenates and their relationships with their phosphate analogues. Journal of Solid State
- 420 Chemistry, 175, 372–379.
- 421 Lussier, A.J., Lopez, R.A.K., and Burns, P.C. (2016) A revised and expanded structure hierarchy
- 422 of natural and synthetic hexavalent uranium compounds. Canadian Mineralogist, 54, 177–
- 423 283.
- 424 Maher, K., Bargar, J.R., and Brown, G. E., Jr. (2013) Environmental speciation of actinides.
- 425 Inorganic Chemistry, 52, 3510–3532.
- 426 Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting
- 427 mineral species for further study. Canadian Mineralogist, 45, 1307-1324.
- 428 Obbade, S., Dion, C., Saadi, M., and Abraham, F. (2004) Synthesis, crystal structure and
- 429 electrical characterization of $Cs_4((UO_2)_2(V_2O_7)O_2)$, a uranyl divanadate with chains of corner-
- 430 sharing uranyl square bipyramids. Journal of Solid State Chemistry, 177, 1567–1574.
- 431 Olds, T.A., Plášil, J., Kampf, A.R., Škoda, R., Burns, P.C., Čejka, J., Bourgoin, V., and
- 432 Boulliard, J.-C. (2017) Gauthierite, KPb[(UO₂)₇O₅(OH)₇]·8H₂O, a new uranyl-oxide
- 433 hydroxy-hydrate mineral from Shinkolobwe with a novel uranyl-anion sheet-topology.
- European Journal of Mineralogy, 29, 129–141.

- 435 Olds, T., Plášil, J., Kampf, A.R., Spano, T., Haynes, P., Carlson, S.M., Burns, P.C., Simonetti,
- 436 A., and Mills, O.P. (2018) Leesite, $K(H_2O)_2[(UO_2)_4O_2(OH)_5] \cdot 3H_2O$, a new K-bearing
- 437 schoepite-family mineral from the Jomac mine, San Juan County, Utah, U.S.A. American
- 438 Mineralogist, 103, 143–150.
- 439 Ondruš, P., Veselovský, F., Gabašová, A., Hloušek, J., Šrein, V., Vavřín, I., Skála, R., Sejkora, J.,
- 440 and Drábek, M. (2003) Primary minerals of the Jáchymov ore district. Journal of the Czech
- 441 Geological Society, 48, 19–147.
- 442 Pagoaga, M.K., Appleman, D.E., and Stewart, J.M. (1987) Crystal structures and crystal
- 443 chemistry of the uranyl-oxide hydrates becquerelite, billietite, and protasite. American
- 444 Mineralogist, 72, 1230–1238.
- 445 Petříček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic Computing System Jana 2006:
- 446 general features. Zeitschrift für Kristallographie, 229, 345–352.
- 447 Plášil, J. (2014) Oxidation-hydration weathering of uraninite: the current state-of-knowledge,
- 448 Journal of Geosciences, 59, 89–114.
- 449 Plášil, J. (2017a) Crystal structure of richetite revisited: Crystallographic evidence for the
- 450 presence of pentavalent uranium. American Mineralogist, 102, 1171–1175.
- 451 Plášil, J. (2017b) A novel sheet topology in the structure of kamitugaite,
- 452 $PbAl[(UO_2)_5(PO_4)_{2.38}(AsO_4)_{0.62}O_2(OH)_2](H_2O)_{11.5}$. Journal of Geosciences, 62, 253–260.
- 453 Plášil, J. (2018a) Uranyl-oxide hydroxy-hydrate minerals: their structural complexity and
- 454 evolution trends. European Journal of Mineralogy, 30, 237–251.
- 455 Plášil, J. (2018b) The crystal structure of uranyl-oxide mineral schoepite, [(UO₂)₄O(OH)₆](H₂O)₆,
- 456 revisited. Journal of Geosciences, 63, 65–73.

- 457 Plášil, J. (2019) Hydrogen bonding in lead uranyl-oxide mineral sayrite. Zeitschrift für
- 458 Kristallographie, DOI: 10.1515/zkri-2019-0035.
- 459 Plášil, J., Škoda, R., Čejka, J., Bourgoin, V., and Boulliard, J.-C. (2016) Crystal structure of the
- 460 uranyl-oxide mineral rameauite. European Journal of Mineralogy, 28, 959–967.
- 461 Plášil, J., Kampf, A.R., Škoda, R., and Čejka, J. (2018) Nollmotzite, $Mg[U^{V}(U^{VI}O_{2})_{2}O_{4}F_{3}]$ ·4H₂O,
- the first natural uranium oxide containing fluorine. Acta Crystallographica B, 74, 362–369.
- 463 Pouchou, J.-L., and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified
- 464 microvolumes applying the model "PAP." In K.F.J. Heinrich and D.E. Newbury, Eds.,
- 465 Electron Probe Quantitation, pp. 31–75. Plenum Press.
- 466 Rigaku (2019). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire,
- 467 UK.
- 468 Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic
- distances in halides and chalcogenides. Acta Crystallographica A, 32, 751–767.
- 470 Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71,
- 471 3-8.
- 472 Walenta, K., and Theye, T. (2012) Heisenbergite, a new uranium mineral from the uranium
- 473 deposit of Menzenschwand in the Southern Black Forest, Germany. Neues. Jahrbuch für
- 474 Mineralogie Abhandlungen, 189/2, 117–123.
- 475 Walker, T.L. (1923) Schoepite, a new mineral from Kasolo, Belgian Congo. American
- 476 Mineralogist, 8, 67–69.
- 477 Weller, M.T., Light, M.E., and Gelbrich, T. (2000) Structure of uranium(VI) oxide dihydrate,
- 478 $UO_3 \cdot 2H_2O$; synthetic meta-schoepite $[(UO_2)_4O(OH)_6] \cdot _5H2O$. Acta Crystallographica B, 6,
- 479 577–583.

- 480 Wylie, E.M., and Burns, P.C. (2012) Crystal structures of six new uranyl selenate and selenite
- 481 compounds and their relationship with uranyl mineral structures. Canadian Mineralogist, 50,
- 482 147–157.
- 483 Wronkiewicz, D.J., Bates, J.K., Wolf, S.F., and Buck, E.C. (1996) Ten-year results from
- 484 unsaturated drip tests with UO_2 at 90°C: implications for the corrosion of spent nuclear fuel.
- 485 Journal of Nuclear Materials, 238, 78–95.
- 486 Zhang, Y., Čejka, J., Lumpkin, G.R., Tran, T.T., Aharonovich, I., Karatchevtseva, I., Price, J.R.,
- 487 Scales, N., and Lu, K. (2016) Hydrothermal synthesis, structures and properties of two uranyl
- 488 oxide-hydroxyl hydrate pahses with Co(II) or Ni(II) ions. New Journal of Chemistry, 40,
- 489 5357–5363.
- 490 Zhang, Y., Aughterson, R., Karatchevtseva, I., Kong, L., Trong Tran, T., Čejka, J., Aharonovich,
- 491 I., and Lumpkin, G.R. (2018) Uranyl-oxide hydrate phases with heavy lanthanide ions:
- 492 $[Ln(UO_2)_2O_3(OH)] \cdot 0.5H_2O$ (Ln = Tb, Dy, Ho and Yb). New Journal of Chemistry, 42,
- 493 12267–13184.
- 494 Zhang, Y., Aughterson, R., Zhang, Z., Wei, T., Lu, K., Čejka, J., and Karatchevtseva, I. (2019)
- 495 Syntheses, Crystal Structures and Spectroscopic Studies of Uranyl-Oxide Hydrate Phases
- 496 with La(III)/Nd(III) Ions. Inorganic Chemistry, 58, 10812–10821.

497 498 **FIGURE CAPTIONS** 499 Figure 1. Orange yellow aggregates of kroupaite on the surface of strongly altered uraninite. 500 Horizontal field of view is 2.5 mm (photo P. Škácha). 501 502 Figure 2. Crystal drawing of kroupaite in clinographic projection. 503 Figure 3a. Raman spectrum of kroupaite in the full-range ($4500-12 \text{ cm}^{-1}$, split at 2000 cm⁻¹). 504 Figure 3b). Band decomposition in the Raman spectrum of kroupaite for $v_1 (UO_2)^{2+}$ in the region 505 506 from 950 -700 cm^{-1} . 507 508 Figure 4. Crystal structure of kroupaite viewed down [001]. The uranyl-oxide hydroxide sheets 509 (in yellow) alternate with the interlayer containing water oxygen (red), potassium (lavender) and 510 lead (orange). Unit-cell edges are outlined by black-solid lines. 511 512 Figure 5. Comparative view of the anion sheet topologies and OH⁻ distributions for uranyl-oxide 513 hydroxide-hydrate minerals with the fourmarierite topology. Black circles highlight vertices containing OH⁻, and bare vertices represent O^{2-} ; orange spheres represent Pb²⁺, blue K⁺, and 514 green Na⁺ atoms, respectively. Figure adapted from Klingensmith et al. (2007). 515

516

517	Figure 6. Ternary compositional plot for chemical analyses of kroupaite and related minerals.
518	Analyses from additional set of kroupaite samples (labelled as JACH) are displayed to illustrate
519	chemical substitutional trends. $M^+ \leftrightarrow$ vacancy (with black dashed line): variability in composition
520	between leesite (end-member) and schoepite; $M^+ \leftrightarrow M^{2+}$ (black solid line): variability between
521	leesite (end-member) and fourmarierite; the grey arrow points towards the substitution
522	characteristic for intermediate series members and schoepite.
523	
524	Figure 7. Voronoi-Dirichlet polyhedra (VDP) for interlayer cations in selected structures with
525	corresponding VDP volumes (V_{VDP}): a) kroupaite, K1 atom (lavender); Pb1 atom (orange); b)
526	leesite; K1 atom (lavender); c) fourmarierite.
527	
528	Figure 8. The size of cation polyhedra in the interlayers of uranyl-oxide hydroxy-hydrate
529	structures: the volume (V_{VDP}) of Voronoi-Dirichlet polyhedra versus the ionic radius. Outliers are
530	labelled.
531	
532	Figure 9. Charge-density matches in uranyl-oxide hydrate structures. The black solid line
533	represents a linear fit to the data (equation and regression statistics given), and the dashed line
534	represent an ideal match; $a = -1$, $b = 0$.
535	

536

Constituent	Mean	Range	Stand. Dev.	Probe Standard	Normalised
Na ₂ O	0.08	0.00-0.20	0.08	albite	0.08
K ₂ O	2.14	1.99–2.32	0.10	sanidine	2.25
CaO	0.10	0.08-0.14	0.03	fluorapatite	0.10
PbO	1.84	1.64–2.46	0.31	vanadinite	1.93
CuO	0.41	0.00-0.72	0.28	lammerite	0.43
CoO	0.05	0.00-0.33	0.12	Co metal	0.05
Al_2O_3	0.02	0.00-0.12	0.04	sanidine	0.02
Bi ₂ O ₃	0.25	0.00-0.51	0.19	Bi metal	0.26
UO ₃	80.67	78.80-82.24	1.15	uranophane	84.64
SO_3	0.11	0.00-0.38	0.18	$SrSO_4$	0.12
H_2O^*	9.65				10.12
Total	95.23				100.00

Table 1. Analytical data for kroupaite (in wt. %), average of 6 analyses.

*calculated as determined from the structure.

Iobs	$d_{\rm obs}$		$d_{\rm calc}$	I_{calc}	hkl	Iobs	$d_{\rm obs}$		$d_{\rm calc}$	I_{calc}	hkl
100	7.407		7.4101	100	200			1	2.0493	8	064
			6.4972	2	021	21	2 03/8	2	2.0372	11	624
			4.4916	3	311	21	1 2.0540		2.0226	5	640
		(3.7050	21	400			Δ	2.0166	5	208
59	3.602	3	3.6025	35	024	11	1.9777		1.9752	10	264
		(3.5240	16	040	Λ	1 8526	ş	1.8525	3	800
78	3 771	ş	3.2399	53	224	-	1.0520	X	1.8241	4	408
10	3.224	l	3.1824	23	240	10	1 708/	5	1.8012	4	048
			2.8581	2	511	10	1.7704	X	1.7933	7	464
	2.572	572	2.7655	3	243	7	1 7474	1 7474	1.7503	5	248
16			2.5828	15	424		1./4/4	K	1.7142	3	280
10		l	2.5534	7	440		(1	1.6475	5	824
			2.4700	4	600	7	1 6471	Į	1.6397	2	840
			2.3266	2	061	/	1.04/1		1.6388	3	283
			2.1660	2	146			Δ	1.6358	2	267
6	2 0886	Ş	2.0957	4	008	6	1.6238		1.6199	4	448
0	2.0000	l	2.0775	2	711			{	1.5980	2	608
						5	1.5864		1.5929	2	2 2 10
								A	1.5772	3	664

Table 2. Powder X-ray dat	a(d in Å)	for krou	paite.
---------------------------	-----------	----------	--------

U1–O2	1.805(10)	U2–O11	1.789(11)	U3–O4	1.765(10)
U1-07	1.799(11)	U2–O14	1.799(12)	U3–O8	1.800(10)
U1–O1 ⁱ	2.231(9)	U2–O1	2.222(8)	U3–O6	2.413(9)
U1-06	2.693(10)	U2–O10 ⁱⁱⁱ	2.548(9)	U3–O9	2.451(9)
U1–O10 ⁱⁱ	2.460(8)	U2–O12 ⁱⁱⁱ	2.428(10)	U3–O11	2.533(9)
U1-013	2.254(8)	U2–O18 ⁱⁱ	2.312(9)	U3–O12	2.224(9)
U1–O22	2.434(9)	U2–O22	2.445(9)	U3–O16	2.313(9)
$< U1 - O_{Ur} >$	1.80	$<\!\!U\!2\!\!-\!\!O_{U\!r}\!\!>$	1.79	$<\!U\!3\!-\!O_{Ur}\!>$	1.78
$< Ul - O_{eq} >$	2.41	$<\!U\!2\!-\!O_{eq}\!>$	2.39	$<\!U\!3\!-\!O_{eq}\!>$	2.39
U4–O3	1.791(12)	Pb1–O4 ⁱⁱⁱ	2.971(11)	K1–O4 ^{vii}	3.201(18)
U4–O5	1.797(10)	$Pb1-O5^{v}$	2.804(11)	K1–O6 ^{vii}	2.902(18)
U401	2.252(8)	$Pb1-O7^{v}$	3.025(11)	K1–O8 ^{xi}	3.201(18)
$U4-O6^{iv}$	2.410(9)	Pb1–O7 ^{iv}	3.102(11)	K1–O15	2.86(2)
U4011	2.471(10)	$Pb1-O8^{v}$	2.803(11)	K1–O16 ^{xi}	3.28(2)
U4–O12	2.253(9)	Pb1O10	2.732(11)	K1–O17	2.86(2)
U4–O19	2.538(9)	Pb1014	2.462(14)	K1–O18	2.69(3)
$< U4 - O_{Ur} >$	1.79	Pb1–O14 ^{vi}	3.036(14)	<k1–o></k1–o>	3.00
$<\!U\!4\!-\!O_{eq}\!>$	2.39	Pb1–O18 ^{vii}	3.006(16)		
		< <i>Pb1–O</i> >	2.88		

Table 3. Selected interatomic distances (Å)) for l	kroupaite.
---	---------	------------

Symmetry codes: (i) -x+3/2, y-1/2, z; (ii) -x+3/2, -y+1, z-1/2; (iii) x, -y+3/2, z-1/2; (iv) -x+3/2, y+1/2, z; (v) x-1/2, -y+3/2, -z+1; (vi) -x+1, -y+2, -z+1; (vii) -x+1, -y+1, -z+1; (viii) -x+1, y+1/2, -z+3/2; (ix) x, -y+3/2, z+1/2; (x) x+1/2, -y+3/2, -z+1; (xi) x+1/2, y, -z+3/2; (xii) -x+3/2, -y+1, z+1/2.

	U1	U2	U3	U4	Pb1#	K1#	ΣBV_{anions}	Assignment
01	0.68	0.69		0.65			2.01	0
O2	1.66						1.66	0
O3				1.71			1.71	0
O4			1.81		0.12	0.06	1.99	0
O5				1.69	0.17		1.87	0
O6	0.25		0.46	0.46		0.12	1.29	ОН
O7	1.69				0.19		1.88	0
O8			1.68		0.17	0.06	1.91	0
09	0.42	0.35	0.42				1.19	OH
O10		1.72			0.21		1.93	0
011		0.45	0.36	0.41			1.21	OH
O12	0.64		0.69	0.65			1.98	0
O13		1.69					1.69	0
O14					0.48		0.48	H_2O
O15						0.13	0.13	H_2O
O16		0.57	0.57			0.05	1.18	OH
O17						0.13	0.13	H_2O
O18					0.11	0.20	0.31	H_2O
O19	0.44	0.43		0.35			1.22	OH
$\Sigma BV_{cations}$	5.78	5.89	5.99	5.92	1.46	0.73		

Table 4. The bond-valence analysis for krouapite.*

*All values are in valence units (vu); # – site with a reduced occupancy; $\sum BV$ – sum of the bond-valences; bond-valence parameters were taken from Gagné & Hawthorne (2015) and from Burns et al. (1997).

Table 5. Crystal-chemical characteristics for metal cations and their coordination environment in structures of selected minerals and compounds.

Structure	Atom	CN	Ionic radius (Å)	$V_{\rm VDP}$ (Å ³)
Kroupaite (this work)	Κ	9	1.55	23.331
	Pb	9	1.35	19.0646
Leesite (Olds et al. 2018)	Κ	9	1.55	19.6591
Fourmarierite (Li and Burns 2000a)	Pb1	7	1.23	16.2588
	Pb2	9	1.35	18.3776
Gauthierite (Olds et al. 2017)	Pb1	9	1.35	15.432
	Pb2	10	1.4	19.095
	Pb3	10	1.4	22.429
	Pb4	11	1.45	18.342
	K1	12	1.64	22.905
	K2	10	1.59	27.398
	K3	10	1.59	22.451
Na-metaschoepite (Klingensmith et al. 2007)	Na	5	1	9.987
CsUOH (Hill and Burns 1999)	Cs	10	1.81	29.668
CsUSi (Huang et al. 2003)	Cs	10	1.81	27.183
	Cs	9	1.78	28.804
	Cs	10	1.81	25.721
	Cs		1.88	30.621
Wölsendorite (Burns 1999)	Pb1	8	1.29	17.758
	Pb2	11	1.45	17.354
	Pb3	11	1.45	16.974
	Pb4	9	1.35	16.971
	Pb5	11	1.45	17.055
	Pb6	11	1.45	18.604
	Pb7	7	1.23	14.645
	Pb8	10	1.4	22.77
Vandendriesscheite (Burns 1997)	Pb1	9	1.35	15.863
	Pb2	10	1.4	18.035
Sr-curite (Burns and Hill 2000a)	Sr1	10	1.36	16.146
	Sr2	11	1.4	15.927
Sr-becquerelite (Burns and Li 2002)	Sr1	11	1.4	17.338
	Sr2	11	1.4	14.875
Agrinierite (Cahill and Burns 2000)	Ca/Sr	9	1.31	13.501
Spriggite (Brugger et al. 2004)	Pb1	11	1.45	14.439
	Pb2	8	1.29	16.073
	Pb3	10	1.4	16.973
	Pb4	10	1.4	17.377
	Pb5	9	1.35	16.805
	Pb6	9	1.35	16.909
	Pb7	8	1.29	13.25

Rameauite (Plášil et al. 2016)	K1	12	1.64	20.283
	K2	12	1.64	19.433
	Ca	10	1.23	13.658
Richetite (Plášil 2017a)	Pb1	10	1.4	18.172
	Pb2	10	1.4	16.689
	Pb3	11	1.45	16.76
	Pb4	11	1.45	16.811
	Pb5	10	1.4	15.754
	Fe/Mg	6	0.74	8.867
	Pb6	10	1.4	16.253
	Pb7	9	1.35	16.763
	Pb8	11	1.45	16.9
KUOH (Burns and Hill 2000b)	K1	8	1.51	21.516
	K2	11	1.61	21.165
	K3	9	1.55	19.698
	K4	10	1.59	22.164
	K5	10	1.59	18.619
	K6	11	1.61	19.045
	K7	11	1.61	20.121
	K8	12	1.64	19.871
	K9	11	1.61	20.287
	K10	10	1.59	21.009
Becquerelite (Burns and Li 2002)	Ca	8	1.12	13.066
Billietite (Finch et al. 2006)	Ba	10	1.52	18.199
Compreignacite (Burns 1998)	Κ	7	1.46	11.198
Curite (Ghazisaeed et al. 2019)	Pb1	9	1.35	13.015
× , , , , , , , , , , , , , , , , , , ,	Pb2	10	1.4	16.142
Masuyite (Burns and Hanchar 1999)	Pb1	10	1.4	16.135
, , , , , , , , , , , , , , , , , , ,	Pb2	12	1.49	16.577
Protasite (Pagoaga et al. 1987)	Ba	10	1.52	17.171
Savrite (Plášil 2019)	Pb	9	1.35	16.682
Wyartite (Burns and Finch 1999)	Ca	7	1.06	17.746
Nollmotzite (Plášil et al. 2018)	Mg	6	0.72	8.657
PbUOH (Li and Burns 2000b)	Pb	8	1.29	14.733
K ₂ CoUOH (Zhang et al. 2016)	Co	6	0.75	8.772
	K1	12	1.64	19.417
	K2	10	1.59	19.729
K ₂ NiUOH (Zhang et al. 2016)	Ni	6	0.69	8.464
	K1	12	1.64	19.484
	K2	10	1.59	19.719
CsUOH (Kubatko et al. 2006b)	Cs	12	1.88	24.082
CsUV (Obbade et al. 2004)	Cs2	12	1.88	26.135
	Cs1	12	1.88	27.807
	Cs3	12	1.88	27.284

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2020-7311
Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7311

CsUMo (Krivovichev and Burns 2001)	Cs2	12	1.88	28.63
	Cs1	12	1.88	24.171
CsCoUSe (Wylie and Burns 2012)	Cs	9	1.78	15.689
CsAsU (Locock and Burns 2003)	Cs2	12	1.88	32.097
	Cs1	12	1.88	31.874
CsUFO (Dao 1972)	Cs1	11	1.85	26.894
	Cs2	10	1.81	26.166

 $\overline{\text{CN} - \text{coordination number}}; V_{\text{VDP}} - \text{volume of the corresponding Voronoi-Dirichlet polyhedron.}$

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
DOI: https://doi.org/10.2138/am-2020-7311

T 11 (01 1)		1 . / 1	1 1 1 110	TT
I able 6 (haroe_densifies a	of structural units a	and interlayer com	nleves in selected LIC	HC
Tuble 0. Charge delisities	or siructurar annes a	ind internayer com	pickes in science 00	110

Table 6. Charge-densities of structural units and	interlay	er comple	exes	in selected	UOHs.	
Structure	q	$q_{ m effective}$	Ζ	V	ρ_	$ ho^+$
Schoepite (Plášil 2018b)	0	-1.2	8	3528.22	0	-0.00272
Metaschoepite (Weller et al. 2000)	0	-1.2	8	3429.97	0	-0.0028
Kroupaite (this work)	-2	-4	4	3502.3	-0.00228	-0.00457
Leesite (Olds et al. 2018)	-1	-2	8	3522	-0.00227	-0.00454
Fourmarierite (Li and Burns 2000a)	-2	-2.8	8	3280	-0.00488	-0.00683
Na-metaschoepite (Klingensmith et al. 2007)	-1	-2	8	3452.96	-0.00232	-0.00463
Gauthierite (Olds et al. 2017)	-3	-4.4	8	5917.8	-0.00406	-0.00595
Vandendriesscheite (Burns 1997)	-3	-5.2	8	8490	-0.00283	-0.0049
Curite (Ghazisaeed et al. 2019)	-6	-7.2	2	1367.78	-0.00877	-0.01053
Sr-curite (Burns and Hill 2000a)	-5.64	-6.912	2	1341.5	-0.00841	-0.0103
CsUOH (Hill and Burns 1999)	-3	-5.6	3	3871.16	-0.00232	-0.00434
KUOH (Burns and Hill 2000b)	-5	-6.8	4	3549.5	-0.00563	-0.00766
Compreignacite (Burns 1998)	-2	-3.2	2	1299.3	-0.00308	-0.00493
Wölsendorfite (Burns 1999)	-14	-14.8	8	10982	-0.0102	-0.01078
Masuyite (Burns and Hanchar 1999)	-2	-2.4	2	599	-0.00668	-0.00801
Agrinierite (Cahill and Burns 2000)	-4	-4.8	8	4799.6	-0.00667	-0.008
PbUOH (Li and Burns 2000b)	-5	-7	4	3450	-0.0058	-0.00812
NaUOH (Li and Burns 2001)	-2	-2.4	4	967.33	-0.00827	-0.00992
NH ₄ UOH (Li et al. 2001)	-3	-4	4	3512	-0.00342	-0.00456
NaUOH (Burns and Deely 2002)	-1	-2	2	715.97	-0.00279	-0.00559
Sr-becquerelite (Burns and Li 2002)	-2.54	-2.832	1	298.4	-0.00851	-0.00949
Becquerelite (Burns and Li 2002)	-2	-3.2	4	2563.1	-0.00312	-0.00499
CaUOH (Glatz et al. 2002)	-2	-2.8	2	649.6	-0.00616	-0.00862
Uranosphaerite (Colmenero et al. 2019)	0	-0.2	4	453.6	0	-0.00176
Billietite (Finch et al. 2006)	-2	-3.2	4	2614.7	-0.00306	-0.0049
Rameauite (Plášil et al. 2016)	-4	-4.8	4	2437.7	-0.00656	-0.00788
Nollmotzite (Plášil et al. 2018)	-2	-2.6	2	676.98	-0.00591	-0.00768
Sayrite (Plášil 2019)	-4	-4.4	2	964.46	-0.00829	-0.00912
Spriggite (Brugger et al. 2004)	-6	-6.4	8	4616	-0.0104	-0.01109
Richetite (Plášil 2017a)	-11	-13.8	2	3600.68	-0.00611	-0.00767
Protasite (Pagoaga et al. 1987)	-2	-2.4	2	617.497	-0.00648	-0.00777
Vandenbrandeite (Rosenzweig and Ryan						
1977)	0	-0.8	2	254.929	0	-0.00628
K ₂ CoUOH (Zhang et al. 2016)	-3	-5.6	1	2509.2	-0.0012	-0.00223
K ₂ NiUOH (Zhang et al. 2016)	-3	-5.6	1	2500.3	-0.0012	-0.00224
La ₃ UOH (Zhang et al. 2019)	-9	-10	2	1124	-0.01601	-0.01779
Nd ₃ UOH (Zhang et al. 2019)	-9	-10	2	1097	-0.01641	-0.01823
U ^V UOH (Belai et al. 2008)	0	-1	4	1254	0	-0.00319
Ianthinite (Burns et al. 1997)	0	-2.4	4	2502.7	0	-0.00384

q – charge; $q_{\text{effective}}$ – effective charge (charge modified by the number and strength of H bonds); Z – formula units; V – unit-cell volume (Å³); ρ^- – charge-density of structural units (e Å⁻³); ρ^+ – charge-density of interlayer complex (e Å⁻³).

Table 7. Ranges in charge-densities for most common topological types of UOH structural units.

Topology	Charge density range $(e^{A^{-3}})$	Range in Lewis basicity (vu)
α -U ₃ O ₈	2.23×10^{-3} - 18.23 × 10 ⁻³	0.14-0.23
β -U ₃ O ₈	$3.84 \times 10^{-3} - 11.09 \times 10^{-3}$	0.12-0.24
fourmarierite	2.72×10^{-3} -6.83 $\times 10^{-3}$	0.11-0.23

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

of metaschoepite

metaschoepite

Fig. 8

