1 Revision 1

2

3 Caseyite, a new mineral containing a variant of the flat-Al₁₃ polyoxometalate

- 4 cation
- Anthony R. Kampf¹*, Mark A. Cooper², John M. Hughes³, Barbara P. Nash⁴, Frank C.
- 7 Hawthorne², and Joe Marty⁵
- 8
- ⁹ ¹Mineral Sciences Department, Natural History Museum of Los Angeles County, Los Angeles,
- 10 CA 90007, U.S.A.

¹¹ ²Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2,

12 Canada

¹³ ³Department of Geology, University of Vermont, Burlington, VT 05405, U.S.A.

⁴Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, U.S.A.

- ⁵5199 E. Silver Oak Road, Salt Lake City, UT 84108, U.S.A.
- 16 *Corresponding author: akampf@nhm.org
- 17
- 18

ABSTRACT

19	Caseyite, $[(V^{5+}O_2)Al_{10-x}(OH)_{20-2x}(H_2O)_{18-2x}]_2[H_2V^{4+}V^{5+}_{9}O_{28}][V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[H_2V^{4+}V^{5+}V^{5+}_{9}O_{28}]_2[H_2V^{4+}V^{5+}$
20	$(60+8x+y+4z)H_2O$], where $x = 0 - 2.5$, $y = 0 - 2$, $z = 0 - 2$, is a new mineral (IMA 2019-002)
21	occurring in low-temperature, post-mining, secondary mineral assemblages at the Burro, Packrat
22	and West Sunday mines in the Uravan Mineral Belt of Colorado (USA). Crystals of caseyite are
23	yellow tapering needles or blades, with pale yellow streak, vitreous luster, brittle tenacity, curved
24	fracture, no cleavage, Mohs hardness between 2 and 3, and 2.151 g/cm ³ calculated density.
25	Caseyite is optically biaxial (+) with $\alpha = 1.659(3)$, $\beta = 1.670(3)$, $\gamma = 1.720(3)$ (white light), $2V =$
26	52.6(5)°, has strong $r < v$ dispersion, optical orientation $Z \approx \mathbf{a}$ (elongation of needles), and no

27	pleochroism. Electron-probe microanalysis provided the empirical formula
28	$[(V^{5+}O_2)Al_{8.94}(OH)_{17.88}(H_2O)_{15.88}]_2[H_2V^{4+}V^{5+}_{9}O_{28}][V^{5+}_{10}O_{28}]_2[(Na_{0.82}Ca_{0.35}K_{0.27})_{\Sigma 1.44}(SO_4)_{1.33}\cdot 70.$
29	24H ₂ O] (+0.94 H). Caseyite is monoclinic, $P2_1/n$, $a = 14.123(8)$, $b = 30.998(15)$, $c = 21.949(11)$
30	Å, $\beta = 97.961(8)^{\circ}$, $V = 9516(9)$ Å ³ , and $Z = 2$. The crystal structure ($R_1 = 0.0654$ for 9162 $I_0 >$
31	$2\sigma I$ reflections) contains both normal $[V_{10}O_{28}]^{6-}$ and doubly protonated mixed-valence
32	$[H_2V^{4+}_{1}V_9^{5+}O_{28}]^{5-}$ decavanadate isopolyanions, and a novel vanadoaluminate heteropolycation
33	("flat-Al ₁₀ V \square_2 "), ideally [(V ⁵⁺ O ₂)Al ₁₀ (OH) ₂₀ (H ₂ O) ₁₈] ¹¹⁺ , closely related to the technologically
34	important flat-Al ₁₃ polyoxocation.
35	
36	Keywords: caseyite; new mineral; polyoxometalate; crystal structure; Packrat mine; Burro mine;
37	West Sunday mine; Colorado
38	
39	INTRODUCTION
40	Millions of synthetic compounds have been prepared in the laboratory, but only about
41	5,500 minerals have been characterized to date. Nature is much more parsimonious owing to its
42	more limited combinations of physical conditions and abundant chemical constituents than are
	more minice combinations of physical conditions and abandant encimear constituents than are
43	available in a laboratory. However, natural environments sometimes surprise us by duplicating
43 44	available in a laboratory. However, natural environments sometimes surprise us by duplicating unusual synthetic phases or by creating entirely new phases unknown from laboratory synthesis.
43 44 45	available in a laboratory. However, natural environments sometimes surprise us by duplicating unusual synthetic phases or by creating entirely new phases unknown from laboratory synthesis. Polyoxometalate anions and, more rarely, polyoxometalate cations have been the subject
 43 44 45 46 	available in a laboratory. However, natural environments sometimes surprise us by duplicating unusual synthetic phases or by creating entirely new phases unknown from laboratory synthesis. Polyoxometalate anions and, more rarely, polyoxometalate cations have been the subject of numerous synthesis studies in recent years, largely because of their potential technological
 43 44 45 46 47 	available in a laboratory. However, natural environments sometimes surprise us by duplicating unusual synthetic phases or by creating entirely new phases unknown from laboratory synthesis. Polyoxometalate anions and, more rarely, polyoxometalate cations have been the subject of numerous synthesis studies in recent years, largely because of their potential technological uses. Low-temperature, near-surface environments, particularly those containing highly charged
 43 44 45 46 47 48 	available in a laboratory. However, natural environments sometimes surprise us by duplicating unusual synthetic phases or by creating entirely new phases unknown from laboratory synthesis. Polyoxometalate anions and, more rarely, polyoxometalate cations have been the subject of numerous synthesis studies in recent years, largely because of their potential technological uses. Low-temperature, near-surface environments, particularly those containing highly charged metal cations, also have the potential to form polyoxometalate ions, some of which have been
 43 44 45 46 47 48 49 	available in a laboratory. However, natural environments sometimes surprise us by duplicating unusual synthetic phases or by creating entirely new phases unknown from laboratory synthesis. Polyoxometalate anions and, more rarely, polyoxometalate cations have been the subject of numerous synthesis studies in recent years, largely because of their potential technological uses. Low-temperature, near-surface environments, particularly those containing highly charged metal cations, also have the potential to form polyoxometalate ions, some of which have been proposed to exist in solution as precursors of more extended structural components (chains,

sheets, and frameworks) in mineral structures. Only rarely are polyoxometalate ions found as
isolated units in minerals.

52 Deposits in the Uravan Mineral Belt of Colorado and Utah have been a rich source of 53 uranium and vanadium ores for more than a century. They have also been a rich source of post-54 mining secondary vanadium minerals that typically form in mine tunnels. Among the numerous 55 secondary minerals that have been discovered within the Uravan deposits are various phases 56 containing polyoxometalate anions. The most common among these are minerals containing the decavanadate $[V_{10}O_{28}]^{6-}$ isopolyanion, and its protonated and mixed-valence variants (Kampf et 57 58 al. 2018). Sherwoodite, from the Peanut mine in Montrose County, Colorado (Thompson et al. 1958) was the first mineral confirmed to contain a heteropolyanion, the $(AIV^{4+,5+}_{14}O_{40})^{n-}$ 59 60 vanadoaluminate anion (Evans and Konnert 1978), which is structurally similar to the 61 decayanadate anion. In recent years, new minerals containing variants of the Keggin heteropolyanion (Kondinski and Parac-Vogt 2018) have also been discovered in mines in the 62 63 Uravan Mineral Belt. These include kegginite, Pb₃Ca₃[AsV₁₂O₄₀(VO)] ·20H₂O, from the Packrat 64 mine (Mesa County, Colorado) containing a mono-capped Keggin *\varepsilon*-isomer (Kampf et al. 2017), and bicapite, KNa₂Mg₂(H₂PV⁵⁺₁₄O₄₂)·25H₂O, from the Pickett Corral mine (Montrose County, 65 Colorado) containing a bi-capped Keggin α-isomer (Kampf et al. 2019). The Packrat mine has 66 also yielded several new minerals containing a novel $[As^{3+}V^{4+,5+}_{12}As^{5+}_{6}O_{51}]^{n-}$ heteropolyanion 67 68 (Kampf et al. 2016).

69 Caseyite, the new mineral species described here, is the most remarkable polyoxometalate 70 mineral yet discovered. Besides containing both normal $[V_{10}O_{28}]^{6-}$ and doubly protonated mixed-71 valence $[H_2V^{4+}_1V_9^{5+}O_{28}]^{5-}$ decavanadate isopolyanions, it contains a novel vanadoaluminate 72 heteropolycation, ideally $[(V^{5+}O_2)Al_{10}(OH)_{20}(H_2O)_{18}]^{11+}$. This new heteropolycation is a variant

73	of the "flat-Al ₁₃ " polyoxometalate cation $[Al_{13}(OH)_{24}(H_2O)_{24}]^{15+}$ first reported by Seichter et al.
74	(1998). Although the flat-Al ₁₃ cluster has not yet been discovered in Nature, it has been discussed
75	as a potentially important aluminum hydroxide cluster in natural systems (Casey 2006).
76	Moreover, metal variants of the flat-Al ₁₃ cluster, <i>e.g.</i> Al ₇ In ₆ , offer new methods of preparation
77	and enhanced performance in large-area electronics and such devices as flat-panel displays, solar
78	cells, and LEDs (Kamunde-Devonish et al. 2014). We may write the caseyite vanadoaluminate
79	cluster as $Al_{10}V\square_2$ (\square = vacancy) as a metal-vacancy substituted variant of the Al_{13} cluster ("flat-
80	$Al_{10}V\square_2$ "), suggesting new families of Al_{13} -type clusters involving both metals of different
81	valence and vacancies at initial peripheral Al sites with properties that are susceptible to delicate
82	tuning via modification of redox conditions and composition during synthesis.
83	The name "caseyite" honors American geochemist William H. Casey (born 1955),
84	Distinguished Professor in the departments of Chemistry and Earth & Planetary Sciences at the
85	University of California, Davis. Dr. Casey received his Ph.D. degree in mineralogy and
86	geochemistry from The Pennsylvania State University in 1986. After graduating, he worked as a
87	research geochemist at Sandia National Laboratories in Albuquerque, New Mexico, for several
88	years, before joining the faculty of the University of California at Davis in 1991. Dr. Casey was
89	awarded the Stumm Medal for 2010 from the European Association of Geochemistry for
90	scientific innovation and the Clair C. Patterson Award for 2016 from the Geochemical Society
91	for his contributions to geochemical science. He has published more than 250 scientific papers on
92	subjects relating to aqueous solution chemistry of natural waters, mineral surface chemistry, and
93	reaction kinetics. Much of Dr. Casey's research, and that of his research group at UC Davis, has
94	focused on the interaction of inorganic clusters with water. This research has included studies on
95	aluminate polyoxometalates. The flat-Al ₁₃ polycation, with which the caseyite vanadoaluminate

96	polycation is related, is discussed in his 2006 survey paper on large aqueous aluminum hydroxide
97	molecules. Prof. Casey has given permission for the mineral to be named in his honor.
98	The holotype and two cotypes from the Packrat mine, one cotype from the West Sunday
99	mine and two cotypes from the Burro mine are deposited in the collections of the Natural History
100	Museum of Los Angeles County, Los Angeles, California, USA; catalogue numbers 73526,
101	73527, 73528, 73529, 73530, and 73531, respectively.
102	
103	OCCURRENCE
104	Caseyite was first collected in 2009 underground at the West Sunday mine, Slick Rock
105	district, San Miguel County, Colorado, USA (38° 04'48.03"N, 108° 49' 18.07"W). Better crystals
106	were found in 2011 in the main tunnel level of the Packrat mine, near Gateway, Mesa County,
107	Colorado, USA (38°38'51.28"N 109°02'49.77"W). In 2014, samples of the mineral were collected
108	in the lower adit of the Burro mine in the Slick Rock district (38°2'42"N 108°53'23"W). The
109	largest and best crystals are on the specimen collected in 2011 at the Packrat. The description of
110	the species is principally based on crystals from this specimen, which is designated as the
111	holotype. All three mines are considered type localities for the mineral.
112	The Burro and West Sunday mines are near the southern end of the Uravan Mineral Belt,
113	whereas the Packrat mine is near the northern end, about 65 km NNW of the West Sunday mine
114	and about 70 km NNW of the Burro mine. In the Uravan Mineral Belt, uranium and vanadium
115	minerals occur together in bedded or roll-front deposits in the sandstone of the Salt Wash
116	member of the Jurassic Morrison Formation (Carter and Gualtieri 1965; Shawe 2011). The
117	mineral is rare; however, considering that it was found in mines near opposite ends of the Uravan
118	Mineral Belt, it may be relatively widespread. Although we have not confirmed the presence of

caseyite at any other mines, we have observed similar yellow Al- and V-rich secondary phases at
other mines in the area: the Centennial mine, Uravan district, San Miguel County, Colorado and
the Blue Cap, Black Hat, Pandora, and Vanadium Queen mines, La Sal district, San Juan County,
Utah.

123 At all three type localities, casevite occurs on sandstone, which is often coated with or 124 impregnated by montroseite, corvusite, and/or asphaltum. At all three localities, but particularly 125 at the Packrat and Burro mines, other, vet-uncharacterized, vellow-to-orange, Al- and V-rich 126 secondary phases occur with casevite. Gypsum is usually found in close association with casevite 127 at all three mines, although its abundance in each association seems to be correlated with the SO_4 128 content of casevite; SO₄-free casevite is generally associated with little or no gypsum (see 129 below). Other minerals found in close association with casevite are barite (West Sunday mine), 130 huemulite (Packrat mine), and postite (Burro mine). 131 Casevite forms by oxidation of montroseite-corvusite assemblages in a moist 132 environment. Under ambient temperatures and generally oxidizing near-surface conditions, water 133 reacts with pyrite and other sulfides to form aqueous solutions of relatively low pH. The 134 secondary vanadate phases that form depend upon prevailing Eh-pH conditions and the presence of other cations (e.g., Na⁺, K⁺, Ca²⁺, Mg²⁺, Mn²⁺, Pb²⁺, Al³⁺). The formation of casevite clearly 135 requires the presence of high concentrations of Al^{3+} in solution. 136

- 137
- 138

PHYSICAL AND OPTICAL PROPERTIES

139 Crystals of caseyite (Figs. 1, 2, and 3) are yellow tapering needles or blades, elongated on 140 [100], up to 0.25 mm in length. The streak is pale yellow, the luster is vitreous, and the mineral is 141 non-fluorescent in long- and short-wave ultraviolet light. The crystals are brittle, with curved

142	fracture, no cleavage, and Mohs hardness estimated to be between 2 and 3. The calculated density
143	is 2.151 g/cm ³ based on the empirical formula using the single-crystal cell parameters. At room
144	temperature, the mineral is insoluble in H ₂ O, but is easily soluble in dilute HCl. Crystals are
145	susceptible to dehydration at low relative humidity.
146	Caseyite is optically biaxial (+) with indices of refraction determined in white light: α =
147	1.659(3), $\beta = 1.670(3)$, $\gamma = 1.720(3)$. The 2V based upon extinction data analyzed with
148	EXCALIBR (Gunter et al. 2004) is 52.6(5)° and that calculated from the indices of refraction is
149	51.5°. The dispersion is strong, $r < v$, the partially determined optical orientation is $Z \approx \mathbf{a}$
150	(elongation of needles), and there is no pleochroism. The Gladstone-Dale compatibility 1 –
151	(K_p/K_c) is 0.008 for the empirical formula, in the range of superior compatibility (Mandarino
152	2007).
153	
154	CHEMICAL ANALYSIS
155	Analyses (7 points on 2 crystals from the holotype specimen) were performed at the
156	University of Utah on a Cameca SX-50 electron microprobe with four wavelength dispersive
157	spectrometers and using Probe for EPMA software. Analytical conditions were 15 kV
158	accelerating voltage, 10 nA beam current, and a beam diameter of 3 μ m. Raw X-ray intensities
159	were corrected for matrix effects with a $\phi \rho(z)$ algorithm (Pouchou and Pichoir 1991). Substantial
160	dehydration of the very water-rich crystals occurs when they are subject to an ultimate vacuum of
161	$2x10^{-5}$ torr for approximately 5 minutes during vacuum deposition of the conductive carbon coat.
162	The H ₂ O loss results in higher concentrations for the remaining constituents than are to be
163	expected for the fully hydrated phase. There was also moderate damage from the electron beam,

165	determination of H ₂ O, it has been calculated based on the structure determination. For this
166	purpose, we assume that all V sites are fully occupied only by V [32 atoms per formula unit
167	(apfu)] and all O sites are fully occupied by O or a large cation: Na, K, and/or Ca (234 apfu).
168	Note that the latter criterion is based on the fact that no O sites in the structure are too close
169	together to be fully occupied and observations suggest that the structure crystal partly dehydrated
170	prior to data collection. The analyzed constituents were normalized to provide a total of 100%
171	when combined with the calculated H_2O . The chemical data are reported in Table 1.
172	The structurally formatted empirical formula based on 234 O+Na+K+Ca and 32 V apfu is
173	$[(V^{5+}O_2)Al_{8.94}(OH)_{17.88}(H_2O)_{15.88}]_2$
174	$[H_2V^{4+}V^{5+}_{9}O_{28}][V^{5+}_{10}O_{28}]_2[(Na_{0.82}Ca_{0.35}K_{0.27})_{\Sigma 1.44}(SO_4)_{1.33}\cdot 70.24H_2O] (+0.94 \text{ H}). The simplified$
175	formula is $[(V^{5+}O_2)Al_{10-x}(OH)_{20-2x}(H_2O)_{18-2x}]_2[H_2V^{4+}V^{5+}_9O_{28}][V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_9O_{28}][V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_9O_{28}][V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_9O_{28}][V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_9O_{28}][V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_9O_{28}][V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_9O_{28}][V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_9O_{28}][V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_9O_{28}][V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_9O_{28}]_2[H_2V^{4+}V^{5+}_9O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V^{5+}_9O_{28}]_2[H_2V$
176	$(60+8x+y+4z)H_2O]$, where $x = 0 - 2.5$, $y = 0 - 2$, $z = 0 - 2$. As noted below, interstitial cations
177	and anions are considered nonessential in caseyite; therefore, the ideal formula (for which $x =$
178	2.5, $y = 2$, and $z = 2$) is: $[(V^{5+}O_2)Al_{7.5}(OH)_{15}(H_2O)_{13}]_2[H_2V^{4+}V^{5+}_9O_{28}][V^{5+}_{10}O_{28}]_2 \cdot 90H_2O$. The
179	factors that were considered in the derivation of these formulas are discussed below.
180	
181	X-RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATION
182	The X-ray powder diffraction (PXRD) pattern was recorded with a Rigaku R-Axis Rapid
183	II curved imaging plate microdiffractometer with monochromatized Mo $K\alpha$ radiation. A
184	Gandolfi-like motion on the ϕ and ω axes was used to randomize the sample. The pattern is
185	dominated by several strong peaks at low angles (d values > 8Å). The remainder of the pattern
186	consists only of very weak and indistinct peaks. Although the PXRD pattern is a good match with
187	the PXRD calculated from the structure, it is poorly suited for the measurement of most lines and

188	for the refinement of the cell parameters. Consequently, in Table 2, we have opted to report only
189	the PXRD calculated from the structure refined from the single-crystal X-ray diffraction data.
190	Single-crystal X-ray studies were undertaken on a Bruker D8 three-circle diffractometer
191	equipped with a rotating-anode generator (MoKa), multilayer optics, and an APEX-II detector.
192	Structure data were collected on a single crystal of caseyite from the holotype specimen. The
193	unit-cell dimensions were obtained by least-squares refinement of 3578 reflections with $I > 10\sigma I$.
194	Systematically absent reflections are consistent with the space group $P2_1/n$. Empirical absorption
195	corrections (SADABS) were applied and equivalent reflections were merged. The structure was
196	solved by direct methods using SHELXS-2013 and the structure was refined using SHELXL-
197	2016 (Sheldrick 2015). Most atoms in the structural units and some in the interstitial complex
198	were located in the initial structure solution. The remaining sites were located using difference
199	Fourier syntheses. The four peripheral Al sites in the vanadoaluminate unit (Al7, Al8, Al9, and
200	Al10) refined to less than full occupancies, as did the OW sites coordinated to Al10. Most of the
201	interstitial OW sites also refined to less than full occupancies. Positional disorder in the
202	interstitial SO ₄ group required the use of soft geometric restraints [S–O: 1.48(2); O–O: 2.40(2)]
203	and the occupancies of the atom sites in the SO ₄ group were refined together, resulting in
204	approximately half occupancy for the group. Data collection and refinement details are given in
205	Table 3, atom coordinates and displacement parameters in Table 4, cation-anion bond distances
206	in Table 5, hydrogen bonds in Table 6, and bond-valence analyses in Table 7.
207	
208	D ESCRIPTION AND DISCUSSION OF THE STRUCTURE

Hawthorne (1985) first introduced the concept of binary structural representation in which
a structure can be considered a combination of a strongly bonded structural unit (usually anionic)

211 and a weakly bonded interstitial complex; this concept was expanded upon by Schindler and 212 Hawthorne (2001). This approach is particularly effective in describing structures that contain a 213 polyoxometalate ion (the structural unit) surrounded by weakly bonded H₂O groups, with or 214 without other cations and/or anions (the interstitial complex). The structure of casevite (Figs. 4 215 and 5) is unusual in that it contains three different structural units. One is a normal $[V_{10}O_{28}]^{6-1}$ decayanadate isopolyanion, one is a doubly protonated mixed-valence $[H_2V^{4+}]V_9^{5+}O_{28}]^{5-}$ 216 217 decavanadate isopolyanion, and one is a novel vanadoaluminate heteropolycation, ideally $[(V^{5+}O_2)Al_{10}(OH)_{20}(H_2O)_{18}]^{11+}$ (Fig. 6a). Surrounding these structural units are numerous H₂O 218 219 sites and an SO₄ group. The structural units and the components in the interstitial complex are 220 linked to one another only by hydrogen bonds. 221 Decavanadate anionic structural units 222 There are two different decavanadate anions in the structure of casevite. The 223 decayanadate anion, including protonated and mixed-valence variants, is found in numerous other 224 Uravan-Mineral-Belt minerals. Decavanadate anion #1 [1 per formula unit (pfu)] includes atoms V1 through V5 and O5 through O18. Based on bond-valence parameters for V^{5+} , sites V1, V2, 225 226 V3, and V4 have bond-valence sums (BVS) close to 5 valence units (vu), whereas V5 has a very 227 low BVS of 4.68 vu. Based on our extensive studies of mixed-valence and protonated decavanadates (Cooper et al. 2019a, b), we have established the formula $V_p = 1.538(V_c) - 2.692$ 228 229 for calculating the aggregate valence of V (V_p) from the BVS (V_c) . This yields an aggregate valence of 4.5+ for the V5 site, corresponding to an occupancy of $V^{4+}_{0.5}V^{5+}_{0.5}$. It is worth noting 230 231 that mixed-valence decavanadates are generally green due to intervalence charge transfer (IVCT) between V^{4+} and V^{5+} ; however, the occupancy by V^{4+} at a single structural site in very large 232 233 structure apparently is insufficient to produce any perceptible green color. The O14 site in

- decavanadate anion #1 has a low BVS of 1.33 vu indicating that it is likely to be occupied by
- OH. O14 is only 2.795 Å from O19 in decavanadate anion #2, which is the likely receptor of a
- hydrogen bond from O14, especially considering that O19 otherwise has an incident BVS of 1.66
- 237 vu. As further support, there is a small electron-density residual (+0.36 e A⁻³) located 1.04 Å
- from O14 and 1.88 Å from O19. Therefore, decavanadate anion #1 is a doubly protonated mixed-
- valence decavanadate, $[H_2V^{4+}V^{5+}_9O_{28}]^{5-}$. Decavanadate anion #2 (2 pfu) includes atoms V6
- through V15 and O19 through O46. All V sites have incident BVS close to 5 vu, indicating that
- 241 all V is V^{5+} .
- 242 Vanadoaluminate cationic structural unit
- 243 The vanadoaluminate heteropolycation (flat-Al₁₀V \square_2), ideally

 $[(V^{5+}O_2)Al_{10}(OH)_{20}(H_2O)_{18}]^{11+}$ (Fig. 6a), is assembled from eleven octahedra, ten centered by All through Al10 and one centered by V16. All the Al sites have incident BVSs close to 3 vu and the V site has an incident BVS close to 5 vu. The EPMA provides significantly less than 10 Al apfu (8.94). The structure refinement also indicates less than 10 Al apfu (9.58), but much closer to the stoichiometric amount.

249 The central part of the flat-Al₁₀V \square_2 heteropolycation consists of a brucite-type-layer 250 grouping of seven edge-sharing octahedra (Al1 to Al6 and V16). This central unit is topologically 251 identical to Anderson-type heteropolyoxometalates (Öhman 1989) with one very important 252 distinction: the hetero cation in an Anderson-type cluster occupies the center octahedron of the 253 cluster, whereas the V ion in the casevite vanadoaluminate cluster is in a peripheral octahedron. 254 The other four Al-centered octahedra in the casevite vanadoaluminate heteropolycation 255 (Al7 to Al10) double-link to vertices of Al-centered octahedra around the girdle of the central 256 unit (Fig. 6a). These four sites all refine to less than full occupancy with the Al10 site in

257 particular exhibiting a deficiency in Al. The 20 O sites that are shared between two or three 258 cation sites in the cluster have incident BVS values consistent with occupancy by OH groups, and 259 the 18 O sites that link to a single cation have incident BVS values consistent with occupancy by 260 H₂O. It should be noted that the deficient occupancies at the peripheral Al sites, Al7 through 261 Allo, indicate that locally this polycation is missing one or more of the peripheral Al-centered 262 octahedra. In those cases, the OH sites to which those Al cations would have been coordinated 263 are instead occupied by H₂O and those H₂O sites to which those Al cations would have been 264 coordinated remain H₂O sites, but are instead part of the interstitial complex rather than being 265 part of the polycation. The compositional "flexibility" of the vanadoaluminate heteropolycation is 266 formulated as $[(V^{5+}O_2)Al_{10-x}(OH)_{20-2x}(H_2O)_{18-2x}]^{(11-x)+}$. The $[(V^{5+}O_2)Al_{10}(OH)_{20}(H_2O)_{18}]^{11+}$ vanadoaluminate heteropolycation is remarkably 267 similar to the $[Al_{13}(OH)_{24}(H_2O)_{24}]^{15+}$ polycation (Fig. 6b) first reported by Seichter et al. (1998) 268 in synthetic $[Al_{13}(OH)_{24}(H_2O)_{24}]Cl_{15}$ · 13H₂O. The $[Al_{13}(OH)_{24}(H_2O)_{24}]^{15+}$ polycation, now 269 270 referred to as the "flat-Al₁₃" polycation, belongs to a family of large aqueous aluminum 271 hydroxide clusters whose occurrence in aqueous solution is important in environmental chemistry (Casey 2006). In the $[(V^{5+}O_2)Al_{10}(OH)_{20}(H_2O)_{18}]^{11+}$ vanadoaluminate heteropolycation, one of 272 273 the Al sites in the girdle of the brucite-like central unit of the flat-Al₁₃ cluster is replaced by V^{5+}

274 (V16) and, in conjunction with that change, the two peripheral octahedra that corner link with

275 that girdle Al site in flat-Al₁₃ are eliminated from the cluster.

276 (Na, K, Ca)- H_2O - SO_4 interstitial complex

The interstitial complex includes one SO_4 group (S and O1 to O4) and 31 H₂O groups (OW19 to OW49). With the occupancies of the S and O1 to O4 sites refined jointly, the structure refinement indicated the SO_4 group to be slightly more than half-occupied. The occupancies of

280	many of the interstitial OW sites refined to less than full; however, only three sites had	d refined				
281	occupancies less than 0.5. The majority of these sites have relatively high displacement					
282	parameters indicative of disorder. The large cations Na^+ , K^+ , and Ca^{2+} are incompatible with any					
283	sites in the structural units, so it is assumed that they occur in the interstitial complex at one or					
284	more of the interstitial O sites; however, there are no specific sites to which they can be	De				
285	unambiguously assigned. Our EDS survey of crystals from the Packrat, Burro, and West Sunday					
286	mines indicated the interstitial cation and SO4 contents to be quite variable, some crystals having					
287	no interstitial cations and/or SO ₄ . Consequently, we do not consider the large cations ((Na, K, and				
288	Ca) and SO ₄ to be essential constituents of the interstitial complex. However, these co	nstituents				
289	must be included in the simplified formula because they can be important to the charg	e balance.				
290	Formula and charge-balance considerations					
291	Devising a simplified formula for caseyite requires the consideration of severa	l factors:				
292	1. The small amounts of Na, K, and Ca, up to a total of about two apfu, provide addit	tional				
293	positive charge. Assuming an upper limit of two (Na+K+Ca) apfu, the additional of	charge can				
294	vary from 0 to 4+.					
295	2. Although the structure refinement shows the interstitial SO ₄ group to be approxim	ately half-				
296	occupied (1.02 SO ₄ pfu) and EPMA provided 1.33 SO ₄ pfu, full occupancy of the	SO ₄ -group				
297	sites appears possible. Therefore, the SO ₄ content can vary from 0 to 2, and the ch	arge that is				
298	contributed by the SO ₄ can vary from 0 to $4-$. It is also worth noting that a SO ₄ group of $4-$.	oup				
299	vacancy is likely to involve a concomitant introduction of additional H ₂ O into this	region of				
300	the structure.					
301	3. The EPMA provided significantly less than 10 Al apfu (8.94). The structure refine	ment also				

302 indicated less than 10 Al apfu (9.58), but much closer to the ideal stoichiometric amount. The

303	EDS survey al	lso suggested	that an Al	deficiency	is inheren	t in the case	evite structure.	If the
	2	00		2			2	

304 interstitial complex contributes no charge (i.e. is devoid of large cations and SO₄), a

- 305 deficiency of 2.5 Al in the vanadoaluminate heteropolycation is required to charge-balance
- 306 the formula, which would then be $[(V^{5+}O_2)Al_{7.5}(OH)_{15}(H_2O)_{13}]_2$
- 307 $[H_2V^{4+}V^{5+}{}_9O_{28}][V^{5+}{}_{10}O_{28}]_2 \cdot 90H_2O$, which can be regarded as the ideal formula.
- 308 4. The susceptibility of caseyite crystals to dehydration and the effect that such dehydration has
- 309 on the mineral's composition must also be considered. Indeed, our structure studies on two
- 310 less hydrated crystals suggest that all crystals are likely to have suffered partial dehydration in
- 311 air prior to structure analyses. It is noteworthy that all of the O sites in the interstitial complex
- are far enough apart that they could be fully occupied by H_2O groups in a fully hydrated
- 313 structure, although some shifting in the interstitial sites would likely be required.
- 314 The foregoing considerations are the basis for our proposing the simplified formula

315
$$[(V^{5+}O_2)Al_{10-x}(OH)_{20-2x}(H_2O)_{18-2x}]_2[H_2V^{4+}V^{5+}_{9}O_{28}][V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[V^{5+}_{10}O_{28}]_2[(Na,K,Ca)_{2-y}(SO_4)_{2-z}]_2[H_2V^{4+}V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}]_2[H_2V^{5+}_{9}O_{28}$$

316
$$(60+8x+y+4z)H_2O$$
], where $x = 0 - 2.5$, $y = 0 - 2$, $z = 0 - 2$.

- 317
- 318

IMPLICATIONS

Aluminum is the third most abundant element (after oxygen and silicon) in the Earth's crust. Although Al generally has very low solubility in surface waters, its role in environmental systems is of major importance (Sposito 1996). It is particularly important to understand the role of aluminum in rock weathering, water and soil chemistry, and toxicity. In water, Al³⁺ hydrolyzes, yielding a variety of molecular species, including polycations. Natural aqueous Al nanoclusters are particularly difficult to isolate and study; they have complex structures that change readily with changing conditions, especially pH and solution chemistry (Bennett et al.

326	2017; Wang et al. 2011). Although Al nanoclusters are likely precursors of aluminum-hydroxide
327	minerals, the nanoclusters themselves generally have not been found as isolated entities in
328	minerals. However, a noteworthy example of an α -Al ₁₃ Keggin cluster forms part of the
329	framework structure of zunyite (Louisnathan and Gibbs 1972; Baur and Ohta1982).
330	Although the flat-Al ₁₃ cluster has not been confirmed to occur in Nature, it has been
331	discussed as a potentially important aluminum-hydroxide cluster in natural systems (Casey 2006)
332	because of its structural similarity to aluminum-hydroxide soil minerals. It is one of several
333	aqueous Al nanoclusters whose interactions with other ions have been investigated in this regard
334	(Bennett et al. 2017). The discovery of the natural flat- $Al_{10}V\Box_2$ variant of the flat- Al_{13} cluster
335	lends greater credence to research suggesting that the flat-Al ₁₃ cluster is an important aqueous
336	ionic species in natural systems.
337	The flat-Al ₁₃ cluster has also proven to have significant utility in technological
338	applications, in particular as a precursor for deposition of Al ₂ O ₃ thin films from aqueous solution
339	(Fulton et al. 2017). Thin films thereby produced are characterized by low-refractive index and
340	very smooth surfaces, making them extremely useful for optical applications, e.g. anti-reflective
341	coatings, cell-phone screens, etc. (Perkins et al. 2017). The Al ₇ In ₆ flat cluster also has significant
342	potential industrial application as a new route to enhanced performance in large-area electronics
343	and energy devices such as flat-panel displays, solar cells, and LEDs. The occurrence of the
344	case yite flat-Al ₁₀ V \square_2 vanadoaluminate cluster suggests that new families of Al ₁₃ -type clusters
345	involving both metals of different valence and vacancies at initial peripheral Al sites with
346	properties that are susceptible to delicate tuning via modification of redox conditions and
347	composition during synthesis.
348	A question that needs to be explored is why the flat-Al ₁₀ V \square_2 heteropolycation occurs in a

349 structure also containing decavanadate polyanions. The answer certainly involves the role of 350 hydrogen bonding in linking the structural units. The surface of the flat-Al₁₀V \Box_2 351 heteropolycation is draped in H, and the surfaces of the two different decayanadate anions 352 (except for the protonated peripheral O sites) are ripe for hydrogen-bond receivership. All three 353 structural units are "bulky" and complex; they presumably can only assemble in limited 354 geometrical ways to achieve satisfactory hydrogen-bond coupling to one another (*i.e.* free energy 355 tendency away from disorder). It seems crystallographically reasonable to expect ordered Al-356 nanoclusters to be more likely to occur among larger highly charged polyanions in general. The V⁵⁺ ion in the girdle of the central part of the casevite flat-Al₁₀V \square_2 heteropolycation 357 358 obviously results in the loss of two of the six peripheral Al-centered octahedra in the flat- Al_{13} 359 cluster. In place of the two Al octahedra, with their peripheral H₂O vertices, are the two vanadyl O atoms of the V⁵⁺ octahedron. Two vanadyl O-atoms at the periphery serve to create a 'relaxed 360 361 node', whereby the entire surface is no longer similarly "H-active" (providing H atoms for 362 hydrogen bonding); rather, the vanadyl O-atoms are hydrogen-bond acceptors. This offers a 363 point-of-contact dichotomy at one end of the polyoxocation that may ameliorate hydrogen-bond 364 connections with nearest neighbours. In effect, the resulting surface is no longer 'all-key', and 365 now has 'lock & key' behavior. 366 Based on the different configurations of the peripheral structural elements of the flat-Al₁₃ 367 and flat-Al₁₀V \square_2 heteropolycations, we can expect them to exhibit quite different reactivities and

368 to aggregate in significantly different ways, both in Nature and in the laboratory. Although

transmetalation of the flat-Al₁₃ polycation has been reported and is useful for technological

- 370 reasons (Kamunde-Devonish et al. 2014), the caseyite structure shows that heterovalent
- 371 substituents are possible, and can involve fewer than the full number of Al octahedra in the Al₁₃

372	cluster. Indeed, the range of possible valence of vanadium: V^{3+} , V^{4+} , and V^{5+} , together with the
373	fact that all these ions can occur in octahedral coordination by O^{2-} suggests that a range of V-
374	substituted Al ₁₃ clusters may be possible with properties tuned by conditions of synthesis.
375	
376	ACKNOWLEDGEMENTS
377	Reviewers xxx and yyy are thanked for constructive comments, which improved the manuscript.
378	This study was funded, in part, by the John Jago Trelawney Endowment to the Mineral Sciences
379	Department of the Natural History Museum of Los Angeles County.
380	
381	References
382	Baur, W.H., and Ohta, T. (1982) The Si_5O_{16} pentamer in zunyite refined and empirical relations
383	for individual silicon-oxygen bonds. Acta Crystallographica, B38, 390-401.
384	Bennett, J.W., Bjorklund, J.L., Forbes, T.Z., and Mason, S.E. (2017) Systematic study of
385	aluminum nanoclusters and anion adsorbates. Inorganic Chemistry, 56, 13014–13028.
386	Brown, I.D., and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic
387	analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244-247.
388	Carter, W.D., and Gualtieri, J.L. (1965) Geology and uranium-vanadium deposits of the La Sal
389	quadrangle, San Juan County, Utah, and Montrose County, Colorado. United States
390	Geological Survey Professional Paper, 508.
391	Casey, W.H. (2006) Large aqueous aluminum hydroxide molecules. Chemical Reviews, 106, 1-
392	16.
393	Cooper, M.A., Hawthorne, F.C., Kampf, A.R., and Hughes, J.M. (2019a) Determination of
394	$V^{4+}: V^{5+}$ ratios in the $[V_{10}O_{28}]$ decavanadate polyanion. Canadian Mineralogist, 56, 235–244.

- 395 Cooper, M.A., Hawthorne, F.C., Kampf, A.R., and Hughes, J.M. (2019b) Identifying protonated
- decavandate polyanions. Canadian Mineralogist, 56, 245–253.
- 397 Evans, Jr., H.T., and Konnert, J.A. (1978) The crystal chemistry of sherwoodite, a calcium 14-
- 398 vanadoaluminate heteropoly complex. American Mineralogist, 63, 863–868.
- 399 Ferraris, G., and Ivaldi, G. (1988) Bond valence vs. bond length in O...O hydrogen bonds. Acta
- 400 Crystallographica, B44, 341–344.
- 401 Fulton, B.L., Perkins, C.K., Mansergh, R.H., Jenkins, M.A., Gouliouk, V., Jackson Jr, M.N.,
- 402 Ramos, J.C., Rogovoy, N.M., Gutierrez-Higgins, M.T., Boettcher, S.W., and Conley Jr, J.F.
- 403 (2017) Minerals to materials: Bulk synthesis of aqueous aluminum clusters and their use as
- 404 precursors for metal oxide thin films. Chemistry of Materials, 29, 7760–7765.
- 405 Gagné, O.C., and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters
- 406 for ion pairs involving oxygen. Acta Crystallographica, B71, 562–578.
- 407 Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C., and Weaver, R. (2004) Results
- 408 from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a
- 409 spindle stage. The Microscope, 52, 23–39.
- 410 Hawthorne (1985) Towards a structural classification of minerals: the ${}^{vi}M^{iv}T_2 Ø_n$ minerals.
- 411 American Mineralogist, 70, 455–473.
- 412 Kampf, A.R., Hughes, J.M., Nash, B.P., and Marty, J. (2016) Vanarsite, packratite, morrisonite,
- 413 and gatewayite: four new minerals containing the $[As^{3+}V^{4+,5+}]_{12}As^{5+}_{6}O_{51}$ heteropolyanion, a
- 414 novel polyoxometalate cluster. Canadian Mineralogist, 54, 145–162.
- 415 Kampf, A.R., Hughes, J.M., Nash, B.P., and Marty, J. (2017) Kegginite,
- 416 $Pb_3Ca_3[AsV_{12}O_{40}(VO)] \cdot 20H_2O$, a new mineral with an ε -isomer of the Keggin anion.
- 417 American Mineralogist, 102, 461–465.

- 418 Kampf, A.R., Nash, B.P., Adams, P.M., Marty, J., and Hughes, J.M. (2018) Ammoniolasalite,
- 419 $(NH_4)_2Mg_2(H_2O)_{20}][V_{10}O_{28}]$, a new decavanadate species from the Burro mine, Slick Rock
- 420 district, Colorado. Canadian Mineralogist, 56, 859–869.
- 421 Kampf, A.R., Hughes, J.M., Nash, B.P. and Marty, J. (2019) Bicapite,
- 422 KNa₂Mg₂(H₂PV⁵⁺₁₄O₄₂)·25H₂O, a new mineral with a bicapped Keggin anion from the
- 423 Pickett Corral mine, Montrose County, Colorado, USA. American Mineralogist 103,
- 424 (submitted for publication)
- 425 Kamunde-Devonish, M.K., Jackson Jr, M.N., Mensinger, Z.L., Zakharov, L.N., and Johnson,
- 426 D.W. (2014) Transmetalation of aqueous inorganic clusters: a useful route to the synthesis of
- 427 heterometallic aluminum and indium hydroxo–aquo clusters. Inorganic Chemistry, 53, 7101–
- 428 7105.
- 429 Kondinski, A., and Parac-Vogt, T.N. (2018) Keggin Structure, Quō Vādis?. Frontiers in
- 430 *Chemistry*, 6, Article 346.
- 431 Louisnathan, S.J., and Gibbs, G.V. (1972) Aluminum-silicon distribution in zunyite. American
 432 Mineralogist, 57, 1089-1108.
- 433 Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting
- 434 mineral species for further study. Canadian Mineralogist 45, 1307–1324.
- 435 Öhman, L.-O. (1989) quilibrium and structural studies of silicon (IV) and aluminum (III) in
- 436 aqueous solution. 21. A potentiometric and 27 Al NMR study of the system H⁺-Al³⁺-MoO₄²⁻
- 437 . Inorganic Chemistry, 28, 3629–3632.
- 438 Perkins, C.K., Mansergh, R.H., Ramos, J.C., Nanayakkara, C.E., Park, D.H., Goberna-Ferrón, S.,
- 439 Fullmer, L.B., Arens, J.T., Gutierrez-Higgins, M.T., Jones, Y.R., and Lopez, J.I. (2017) Low-
- 440 index, smooth Al₂O₃ films by aqueous solution process. Optical Materials Express 7, 273–

441 280.

- 442 Pouchou, J.-L., and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified
- 443 microvolumes applying the model "PAP." In: Heinrich, K.F.J. and Newbury, D.E. (eds)
- Electron Probe Quantitation. Plenum Press, New York, pp. 31–75.
- 445 Schindler, M., and Hawthorne, F.C. (2001) A bond-valence approach to the structure, chemistry,
- and paragenesis of hydroxyl-hydrated oxysalt minerals. I. Theory. Canadian Mineralogist, 39,
- 447 1225-1242.
- 448 Seichter, W., Moegel, H.J., Brand, P., and Salah, D. (1998) Crystal structure and formation of the
- 449 aluminum hydroxide chloride $[Al_{13}(OH)_{24}(H_2O)_{24}]Cl_{15} \cdot 13H_2O$. European Journal of
- 450 Inorganic Chemistry, 1998, 795–797.
- 451 Shawe, D.R. (2011) Uranium-vanadium deposits of the Slick Rock district, Colorado. United
- 452 States Geological Survey Professional Paper, 576-F.
- 453 Sheldrick, G.M. (2015) Crystal structure refinement with SHELX. Acta Crystallographica C71,
- 454 3–8.
- 455 Sposito, G. (1996) The Environmental Chemistry of Aluminum, 2nd ed.; CRC Press LLC: Boca
 456 Raton, FL.
- 457 Thompson, M.E., Roach, C.H., and Meyrowitz, R. (1958) Sherwoodite, a mixed vanadium(IV)-
- 458 vanadium(V) mineral from the Colorado Plateau. American Mineralogist, 43, 749–755.
- 459 Wang, W., Wentz, K.M., Hayes, S.E., Johnson, D.W., and Keszler, D. (2011) Synthesis of the
- 460 hydroxide cluster $[Al_{13}(\mu_3-OH)_6(\mu-OH)_{18}(H_2O)_{24}]^{15+}$ from an aqueous solution. Inorganic
- 461 Chemistry, 50, 4683–4685.
- 462
- 463

464	FIGURE CAPTIONS
465	
466	Figure 1. Caseyite needles with gypsum and orange-yellow balls of another potentially new Al-
467	V-S-O-bearing mineral; holotype specimen (#73526) from the Packrat mine; FOV 0.68 mm
468	across.
469	
470	Figure 2. Caseyite needles on cotype specimen (#73529) from the West Sunday mine; FOV 0.68
471	mm across.
472	
473	Figure 3. Caseyite blades on cotype specimen (#73530) from the Burro mine; FOV 0.84 mm
474	across.
475	
476	Figure 4. Crystal structure of caseyite viewed along [100]. The interstitial H ₂ O groups are white
477	spheres. The doubly protonated decavanadate anion (#1) includes the V1-V5 octahedra. The
478	normal decavanadate anion (#2) includes the V6-V15 octahedra. The unit cell is shown by dashed
479	lines.
480	
481	Figure 5. Crystal structure of caseyite viewed along [001]. The interstitial H ₂ O groups are white
482	spheres. The doubly protonated decavanadate anion (#1) includes the V1-V5 octahedra. The
483	normal decavanadate anion (#2) includes the V6-V15 octahedra. The unit cell is shown by dashed
484	lines.

- 486 Figure 6. (a) The $[(V^{5+}O_2)Al_{10}(OH)_{20}(H_2O)_{18}]^{11+}$ vanadoaluminate heteropolycation in caseyite.
- 487 (b) The $[Al_{13}(OH)_{24}(H_2O)_{24}]^{15+}$ "flat-Al₁₃" polycation (Seichter *et al.*, 1998).

489	Table	1. Analytical	data in	wt% for	caseyite.
		-1			-1

Constituent	Mean	Range	S.D.	Norm.	Standard
Na ₂ O	0.52	0.15-0.87	0.29	0.41	albite
K ₂ O	0.27	0.23-0.34	0.04	0.21	sanidine
CaO	0.41	0.36-0.49	0.04	0.32	diopside
Al_2O_3	18.74	17.71-19.28	0.69	14.78	sanidine
V_2O_5	(59.87)	59.33-61.08	0.58		V metal
VO_2^*	1.71			1.35	
V_2O_5*	58.00			45.73	
SO ₃	2.19	2.14-2.21	0.03	1.73	celestine
$H_2O^{\$}$				35.47	
Total				100.00	

* Allotted in accord with the structure. [§] Based on the structure.

9												
	Icalc	$d_{ m calc}$	hkl	$I_{\rm calc}$ $d_{\rm calc}$	hkl	<i>I</i> _{calc}	d_{calc}	hkl	Icalc	$d_{ m calc}$	hkl	
	92	17.798	011	1 5.145	-1 5 2	1	3.185	412	1	2.412	3 11 0	
	100	15.499	020	1 5.117	-223	3	3.177	264	1	2.405	068	
	26	12.749	110	1 5.032	-124	1	3.174	-433	2	2.395	267	
	33	12.620	021	1 4.801	-233	1	3.136	-265	1	2.391	-3 11 2	
	3	11.085	101	1 4.711	053	1	3.132	-184	1	2.320	4 10 0	
	16	10.869	002	1 4.694	-301	2	3.126	-246	1	2.312	-4 10 2	
	2	10.437	111	1 4.641	-311	2	3.110	146	1	2.263	-3 12 1	
	3	10.384	120	1 4.610	310	1	3.090	290	1	2.255	-2 13 1	
	7	10.257	012	2 4.492	-321	1	3.083	-424	2	2.253	-368	
	11	9.332	031	1 4.449	044	1	3.066	-364	1	2.232	3 12 1	
	14	9.016	121	1 4.420	-224	1	3.034	216	1	2.230	-2 13 2	
	43	8.899	022	3 4.390	311	2	3.026	1 10 0	1	2.193	-288	
	5	8.840	-1 1 2	1 4.274	-331	1	2.991	-137	1	2.167	-269	
	10	8.311	130	1 4.177	-171	1	2.980	380	1	2.150	-547	
	1	7.799	112	1 4.155	260	3	2.978	156	1	2.137	-662	
	6	7.750	040	1 4.145	-261	1	2.967	175	1	2.132	348	
	1	7.558	131	1 4.139	-332	1	2.947	-336	1	2.130	613	
	3	7.489	032	1 4.108	144	1	2.938	-1 10 2	1	2.123	3 13 0	
	3	7.300	041	2 4.075	331	1	2.924	236	1	2.088	-5 10 1	
	1	7.150	122	1 4.007	035	1	2.849	-266	1	2.083	-2 4 10	
	2	7.056	013	2 3.996	214	1	2.834	2 10 0	1	2.081	476	
	3	6.993	$2\ 0\ 0$	1 3.990	-135	1	2.819	-435	1	2.054	-567	
	2	6.822	210	2 3.815	081	1	2.813	-511	1	2.048	5 10 1	
	1	6.776	-211	1 3.780	-314	1	2.795	-247	1	2.025	-379	
	5	6.598	-1 4 1	2 3.734	-271	1	2.781	-2 10 2	1	2.012	-3 4 10	
	3	6.375	220	2 3.728	135	1	2.770	390	1	2.006	467	
	1	6.351	141	1 3.703	-181	1	2.717	511	1	1.985	5 11 0	
	1	6.337	-221	1 3.572	-182	1	2.705	2 10 2	1	1.960	5 11 1	
	1	6.271	211	1 3.553	145	1	2.698	-523	1	1.945	-568	
	2	6.251	-1 2 3	1 3.536	-126	1	2.686	521	2	1.898	487	
	2	6.098	103	1 3.528	026	1	2.673	-337	1	1.876	-559	
	3	5.983	113	1 3.475	410	1	2.661	157	1	1.846	-588	
	1	5.933	033	1 3.450	-412	1	2.637	531	1	1.840	5 12 2	
	1	5.919	221	1 3.388	-422	1	2.626	266	1	1.803	0 14 7	
	3	5.792	230	1 3.360	155	1	2.541	3 10 1	1	1.798	-579	
	3	5.586	142	1 3.329	-2 5 5	2	2.527	-357	1	1.739	498	
	1	5.456	212	1 3.322	-191	1	2.511	276	1	1.630	7 11 0	
	2	5.373	-232	1 3.315	281	1	2.484	-456	1	1.589	-7 12 1	
	1	5.252	133	1 3.312	430	1	2.445	-258	1	1.539	-7 13 2	
	1	5.219	222	2 3.289	191	1	2.430	-437	1	1.462	-1015	

494 Table 2. Calculated powder X-ray diffraction data (*d* in Å) for caseyite.
495

/		
0	Diffractometer	Bruker D8 three-circle; multilayer optics; APEX-II CCD
1	X-ray radiation / source	MoK α ($\lambda = 0.71073$ Å) / rotating anode
2	Temperature	293(2) K
3	Refined cell content	$Al_{19.16}V_{32}S_{1.02}O_{215.11}$
4	Space group	$P2_{1}/n$
5	Unit cell dimensions	a = 14.123(8) Å
5		b = 30.998(15) Å
		c = 21.949(11) Å
		$\beta = 97.961(8)^{\circ}$
	V	9516(9) Å ³
	Ζ	2
	Absorption coefficient	1.730 mm^{-1}
	F(000)	5444
	Crystal size	$120 \times 5 \times 5 \ \mu m$
	θ range	2.09 to 23.64°
	Index ranges	$-15 \le h \le 15, -34 \le k \le 34, -24 \le l \le 24$
	Reflections integrated	183070
	Reflections collected/unique	$56066/14231; R_{int} = 0.098$
	Reflections with $I > 2\sigma I$	9162
	Completeness to $\theta = 25.02^{\circ}$	99.4%
	Refinement method	Full-matrix least-squares on F^2
	Parameter/restraints	1154/10
	GoF	1.025
	Final R indices $[I > 3\sigma I]$	$R_1 = 0.0654, wR_2 = 0.1673$
	<i>R</i> indices (all data)	$R_1 = 0.1102, wR_2 = 0.1932$
	Extinction coefficient	0.00052(8)
	Largest diff. peak/hole	$+1.43/-0.59 \text{ e A}^{-3}$
	$*R_{int} = \Sigma F_0^2 - F_0^2 (mean) / \Sigma [F]$	$\sum_{n=1}^{2} G_{0}F = S = \{\sum [w(F_{0}^{2} - F_{0}^{2})^{2}]/(n-p)\}^{1/2}, R_{1} = \sum F_{0} - F_{0} /\sum F_{0} , wR_{2}\}$
	$= \{ \sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}$	$V_{1}^{1/2}$: $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ where a is 0.0901, b is 54.2021
	and P is $[2F_c^2 + Max(F_c^2, 0)]$	/3

498 Table 3. Data collection and structure refinement details for caseyite.499

555						
536		x/a	y/b	z/c	$U_{ m eq}$	Occupancy
537	V1	0.55617(11)	0.54019(5)	0.03969(7)	0.0286(4)	1
538	V2	0.55449(11)	0.44708(5)	0.09567(7)	0.0331(4)	1
539	V3	0.36501(12)	0.59068(5)	0.02391(7)	0.0357(4)	1
540	V4	0.36858(11)	0.49818(5)	0.07894(7)	0.0312(4)	1
541	V5	0.26195(11)	0.51661(5)	0.94767(8)	0.0375(4)	1
542	V6	0.79315(10)	0.23654(5)	0.23658(6)	0.0257(3)	1
543	V7	0.81269(10)	0.32342(5)	0.32366(7)	0.0287(4)	1
544	V8	0.61516(10)	0.21279(5)	0.29562(7)	0.0301(4)	1
545	V9	0.63145(10)	0.29526(5)	0.37400(7)	0.0326(4)	1
546	V10	0.97098(10)	0.26618(5)	0.18300(7)	0.0329(4)	1
547	V11	0.98922(11)	0.34747(5)	0.26533(8)	0.0360(4)	1
548	V12	0.80120(10)	0.32953(5)	0.17840(7)	0.0332(4)	1
549	V13	0.62361(10)	0.30312(5)	0.23257(7)	0.0268(4)	1
550	V14	0.80250(10)	0.23104(5)	0.38121(7)	0.0309(4)	1
551	V15	0.98233(10)	0.25677(5)	0.32637(7)	0.0298(4)	1
552	V16	0.31130(11)	0.26997(6)	0.43438(7)	0.0358(4)	1
553	Al1	0.30286(17)	0.27887(8)	0.28649(11)	0.0252(6)	1
554	A12	0.31824(17)	0.35997(9)	0.36242(12)	0.0303(6)	1
555	A13	0.30960(18)	0.36565(9)	0.22386(11)	0.0281(6)	1
556	Al4	0.29720(17)	0.28602(8)	0.14827(11)	0.0251(6)	1
557	A15	0.28494(17)	0.19978(8)	0.20493(11)	0.0269(6)	1
558	Al6	0.29279(18)	0.19092(9)	0.34056(12)	0.0297(6)	1
559	Al7	0.1438(2)	0.12036(10)	0.25032(13)	0.0345(12)	0.939(12)
560	A18	0.4065(2)	0.20425(9)	0.08109(12)	0.0280(11)	0.930(12)
561	A19	0.18127(18)	0.37486(9)	0.08129(12)	0.0285(11)	0.974(11)
562	Al10	0.4427(3)	0.44105(16)	0.3079(2)	0.053(2)	0.735(13)
563	S	0.1896(5)	0.0331(2)	0.0592(3)	0.069(2)	0.509(8)
564	01	0.1760(16)	0.0354(7)	0.1222(6)	0.122(8)	0.509(8)
565	O2	0.2893(14)	0.0223(11)	0.0539(16)	0.30(3)	0.509(8)
566	O3	0.125(2)	0.0006(7)	0.0270(12)	0.233(17)	0.509(8)
567	O4	0.1677(13)	0.0751(5)	0.0277(8)	0.093(6)	0.509(8)
568	O5	0.3444(5)	0.4776(2)	0.1422(3)	0.0413(16)	1
569	O6	0.5238(5)	0.4257(2)	0.1563(3)	0.0429(17)	1
570	O7	0.1554(5)	0.5078(2)	-0.0856(3)	0.0550(19)	1
571	08	0.3436(5)	0.6377(2)	0.0484(3)	0.0493(18)	1
572	09	0.2592(4)	0.49158(19)	0.0281(3)	0.0336(14)	1
573	O10	0.2553(4)	0.57302(19)	-0.0179(3)	0.0362(15)	1
574	011	0.3524(4)	0.55635(19)	0.0927(3)	0.0343(15)	1
575	012	0.6752(4)	0.46054(19)	0.1175(3)	0.0345(15)	1
576	013	0.5121(4)	0.58757(19)	0.0580(3)	0.0382(15)	1
577	O14	0.5827(4)	0.39518(19)	0.0522(3)	0.0346(15)	1
578	O15	0.6732(4)	0.53962(18)	0.0706(3)	0.0329(14)	1
579	O16	0.5755(4)	0.55302(18)	-0.0430(3)	0.0290(14)	1

Table 4. Atom coordinates, displacement parameters ($Å^2$), and site occupancies for caseyite.

580	017	0.5103(4)	0.50622(18)	0.1027(3)	0.0301(14)	1
581	O18	0.4191(4)	0.52460(17)	-0.0067(3)	0.0276(13)	1
582	019	0.7365(4)	0.3557(2)	0.1251(3)	0.0434(17)	1
583	O20	0.0450(4)	0.2302(2)	0.3798(3)	0.0404(16)	1
584	O21	0.5617(4)	0.3294(2)	0.1785(3)	0.0353(15)	1
585	O22	0.5450(4)	0.1722(2)	0.2839(3)	0.0394(16)	1
586	O23	0.5751(4)	0.3158(2)	0.4251(3)	0.0451(17)	1
587	O24	0.0598(4)	0.3879(2)	0.2765(3)	0.0459(17)	1
588	O25	0.8685(4)	0.2039(2)	0.4329(3)	0.0458(18)	1
589	O26	0.0277(4)	0.2447(2)	0.1326(3)	0.0440(17)	1
590	O27	0.7384(4)	0.3386(2)	0.3737(3)	0.0341(15)	1
591	O28	0.5764(4)	0.32282(19)	0.3021(3)	0.0322(14)	1
592	O29	0.8663(4)	0.22221(19)	0.1859(3)	0.0315(14)	1
593	O30	0.0436(4)	0.3085(2)	0.3275(3)	0.0339(15)	1
594	031	0.8949(4)	0.36868(19)	0.2069(3)	0.0385(16)	1
595	032	0.7105(4)	0.19156(19)	0.3533(3)	0.0338(15)	1
596	033	0.5606(4)	0.25144(18)	0.2326(2)	0.0267(13)	1
597	034	0.0421(4)	0.3155(2)	0.2063(3)	0.0355(15)	1
598	035	0.0283(4)	0.23774(19)	0.2558(3)	0.0314(14)	1
599	036	0.7064(4)	0 19866(19)	0.2346(3)	0.0309(14)	1
600	037	0.7253(4)	0.2626(2)	0.4244(3)	0.0351(15)	1
601	038	0.5640(4)	0.24553(19)	0.3527(3)	0.0307(14)	1
602	039	0.8978(4)	0.36131(19)	0.3262(3)	0.0351(15)	1
603	O40	0.8789(4)	0 2981(2)	0.1354(3)	0.0356(15)	1
604	041	0.8858(4)	0.2901(2) 0.28194(19)	0.3747(3)	0.0299(14)	1
605	042	0 7199(4)	0 27808(19)	0.1855(2)	0.0279(13)	1
606	043	0.7348(4)	0.34336(18)	0.2506(3)	0.0290(14)	1
607	044	0 8708(4)	0 21698(18)	0.3096(3)	0.0284(13)	1
608	045	0.7234(4)	0.26850(18)	0.3041(2)	0.0251(13)	1
609	046	0.8815(4)	0 29146(19)	0.2564(3)	0.0294(14)	1
610	047	0.3950(5)	0 2489(2)	0.4834(3)	0.0455(17)	1
611	048	0.2311(5)	0.2880(2)	0.4748(3)	0.0517(19)	1
612	OH1	0.3797(4)	0.32845(18)	0.2951(2)	0.0273(13)	1
613	OH2	0.2407(4)	0.30506(18)	0.2921(2) 0.3474(2)	0.0276(13)	1
614	OH3	0.2708(4)	0.24503(18)	0.3495(2)	0.0270(13)	1
615	OH4	0.2252(4)	0.22927(18)	0.2745(2)	0.0267(13)	1
616	OH5	0.2252(1) 0.2357(4)	0.22927(10) 0.31046(17)	0.2195(2)	0.0239(13)	1
617	OH6	0.2557(1) 0.3631(4)	0.25394(17)	0.2221(2)	0.0239(13)	1
618	OH7	0.3031(1) 0.4128(5)	0.2000(17)	0.2221(2) 0.3683(3)	0.0210(19) 0.0513(18)	1
619	OH8	0.1120(3) 0.3800(4)	0.3244(2)	0.3003(3) 0.4235(3)	0.0310(10) 0.0331(14)	1
620	OH9	0.2538(4)	0.3211(2) 0.38461(19)	0.1235(3) 0.2905(3)	0.0323(14)	1
621	OH10	0.2000(1) 0.4013(4)	0.50101(19) 0.40693(19)	0.2903(3) 0.2391(3)	0.0323(11) 0.0341(15)	1
622	OH11	0.1019(1) 0.2229(4)	0 38957(19)	0.1633(3)	0.0347(15)	1
623	OH12	0.2227(4) 0.3692(4)	0 33496(18)	0.1633(3)	0.0255(13)	1
624	OH13	0.3072(4)	0.23733(18)	0.1002(2) 0.1473(2)	0.0233(13) 0.0287(14)	1
625	OH14	0.2224(4) 0.3792(4)	0.25755(10) 0.26100(10)	0.1473(2) 0.0997(2)	0.0287(14)	1
040		0.5774(7)	0.20107(17)	0.0777(4)	0.0207(17)	1

626	OH15	0.2124(4)	0.31649(18)	0.0927(2)	0.0274(13)	1
627	OH16	0.3617(4)	0.1802(2)	0.1495(3)	0.0345(15)	1
628	OH17	0.1901(4)	0.15924(19)	0.1978(3)	0.0342(15)	1
629	OH18	0.3499(4)	0.17288(19)	0.2737(3)	0.0314(14)	1
630	OH19	0.2396(4)	0.2184(2)	0.4026(3)	0.0333(15)	1
631	OH20	0.1963(4)	0.1497(2)	0.3229(3)	0.0377(15)	1
632	OW1	0.2381(5)	0.3841(2)	0.4107(3)	0.0469(17)	1
633	OW2	0.3783(4)	0.1597(2)	0.3968(3)	0.0401(16)	1
634	OW3	0.0876(5)	0.0794(2)	0.2990(3)	0.056(2)	1
635	OW4	0.2523(5)	0.0834(2)	0.2507(4)	0.060(2)	1
636	OW5	0.0245(5)	0.1509(2)	0.2462(3)	0.0488(18)	1
637	OW6	0.0861(6)	0.0876(3)	0.1807(3)	0.065(2)	1
638	OW7	0.2867(5)	0.1965(2)	0.0303(3)	0.0491(18)	1
639	OW8	0.5348(4)	0.2085(2)	0.1233(3)	0.0451(17)	1
640	OW9	0.4401(6)	0.1467(2)	0.0569(3)	0.057(2)	1
641	OW10	0.4603(5)	0.2242(2)	0.0083(3)	0.0479(18)	1
642	OW11	0.2990(4)	0.3853(2)	0.0511(3)	0.0375(15)	1
643	OW12	0.1460(4)	0.4331(2)	0.0632(3)	0.0399(16)	1
644	OW13	0.1215(4)	0.3621(2)	-0.0023(3)	0.0393(16)	1
645	OW14	0.0518(4)	0.3660(2)	0.1018(3)	0.0385(16)	1
646	OW15	0.3305(10)	0.4699(4)	0.3032(6)	0.087(6)	0.71(3)
647	OW16	0.4965(9)	0.4777(4)	0.3715(6)	0.071(6)	0.67(2)
648	OW17	0.4825(9)	0.4830(4)	0.2507(6)	0.085(6)	0.75(3)
649	OW18	0.5742(7)	0.4143(3)	0.3113(5)	0.082(5)	0.92(3)
650	OW19	0.9453(5)	0.1681(2)	0.5404(3)	0.0485(18)	1
651	OW20	0.8794(5)	0.3516(2)	0.0237(3)	0.0511(18)	1
652	OW21	0.0880(5)	0.2780(2)	-0.0034(3)	0.0542(19)	1
653	OW22	0.1906(5)	0.3910(2)	-0.1018(3)	0.0565(19)	1
654	OW23	0.9075(6)	0.1299(3)	0.3293(4)	0.073(2)	1
655	OW24	0.1355(8)	0.1542(3)	0.0706(5)	0.095(3)	1
656	OW25	0.1518(8)	0.4661(4)	0.2078(5)	0.107(3)	1
657	OW26	0.4861(10)	0.0917(4)	0.3761(6)	0.135(4)	1
658	OW27	0.5527(8)	0.1621(4)	-0.0499(5)	0.107(5)	0.99(3)
659	OW28	0.7159(7)	0.4330(3)	0.2444(5)	0.083(5)	0.93(3)
660	OW29	0.3935(10)	0.0936(4)	0.1806(6)	0.123(7)	0.95(3)
661	OW30	0.3277(8)	0.0437(4)	0.3573(5)	0.092(5)	0.87(3)
662	OW31	0.9737(9)	0.4541(4)	0.0040(5)	0.094(6)	0.86(3)
663	OW32	0.3214(10)	0.1042(4)	-0.0328(6)	0.085(6)	0.73(3)
664	OW33	0.9480(11)	0.4556(5)	0.1911(7)	0.124(7)	0.85(3)
665	OW34	0.6300(14)	0.2746(6)	0.0429(9)	0.171(11)	0.88(4)
666	OW35	0.9384(13)	0.1696(6)	0.0631(8)	0.150(10)	0.82(3)
667	OW36	0.2017(15)	0.3111(6)	0.5872(9)	0.135(11)	0.65(3)
668	OW37	0.5893(16)	0.5354(7)	0.2221(10)	0.189(13)	0.85(4)
669	OW38	0.1423(16)	0.4546(7)	0.3766(10)	0.123(11)	0.56(3)
670	OW39	0.4719(16)	0.4192(7)	0.4848(10)	0.161(12)	0.73(4)
671	OW40	0.9023(18)	0.0949(8)	0.1304(11)	0.162(14)	0.64(4)

672	OW41	0.6749(1	8) 0.5053(8) 0.	4017(11)	0.097((12) 0	.41(3)
673	OW42	0.598(2)	0.1009(9) 0.	0902(13)	0.174(17) 0	0.58(4)
674	OW43	0.261(2)	0.3837(9) 0.	5304(13)	0.159(16) 0	0.51(4)
675	OW44	0.961(3)	0.4424(14) 0.	403(2)	0.22(3) 0	.47(4)
676	OW45	0.751(3)	0.1039	13) 0.	2245(17)	0.31(3) 0	0.74(5)
677	OW46	0.759(4)	0.0416	18) 0.	281(3)	0.34(4	Ó 0	0.56(6)
678	OW47	0.961(8)	0.486(3) 0.	298(5)	0.35(8) 0	0.32(6)
679	OW48	0.816(4)	0.4773(16) 0.	331(2)	0.29(4	$\dot{0}$ 0	0.56(5)
680	OW49	0.570(4)	0.0670	19) 0.	238(3)	0.60(3) 1	
681		U^{11}	U^{22}	U^{33}	Ű	23	U^{13}	U^{12}
682	V1	0.0250(8)	0.0285(8)	0.0339(9	9) -0.00	21(7)	0.0094(7)	-0.0031(6)
683	V2	0.0262(9)	0.0363(9)	0.0388(9	0.00	88(7)	0.0113(7)	0.0045(7)
684	V3	0.0400(10)	0.0313(9)	0.0384(9	0.00	20(7)	0.0148(8)	0.0085(7)
685	V4	0.0268(9)	0.0332(9)	0.0359(9	0.00	24(7)	0.0127(7)	0.0019(7)
686	V5	0.0216(8)	0.0474(10)	0.0436(1	0.00	82(8)	0.0052(7)	0.0019(7)
687	V6	0.0139(7)	0.0378(9)	0.0255(8	3) 0.00	10(6)	0.0035(6)	0.0008(6)
688	V7	0.0141(8)	0.0406(9)	0.0315(8	3) -0.00	17(7)	0.0038(6)	0.0006(6)
689	V8	0.0146(8)	0.0443(9)	0.0311(8	s) 0.00	59(7)	0.0026(6)	-0.0016(7)
690	V9	0.0137(8)	0.0562(10)	0.0285(8	3) -0.00	22(7)	0.0052(6)	0.0013(7)
691	V10	0.0162(8)	0.0493(10)	0.0346(9	0.00	61(7)	0.0085(7)	0.0024(7)
692	V11	0.0150(8)	0.0463(10)	0.0476(1	0) 0.00	45(8)	0.0076(7)	-0.0022(7)
693	V12	0.0150(8)	0.0483(10)	0.0368(9	0.01	50(7)	0.0056(7)	0.0032(7)
694	V13	0.0111(7)	0.0406(9)	0.0289(8	3) 0.00	41(7)	0.0032(6)	0.0014(6)
695	V14	0.0142(8)	0.0524(10)	0.0258(8	3) 0.00	67(7)	0.0017(6)	0.0020(7)
696	V15	0.0120(7)	0.0461(9)	0.0313(8	(3) 0.00	46(7)	0.0027(6)	0.0020(7)
697	V16	0.0231(9)	0.0575(11)	0.0276(8	(3) 0.00	40(7)	0.0062(7)	-0.0001(8)
698	A11	0.0111(12)	0.0408(15)	0.0240(1	(3) 0.00	43(11)	0.0030(10)	-0.0002(11)
699	A12	0.0114(13)	0.0428(16)	0.0368(1	(5) 0.00	93(12)	0.0038(11)	-0.0007(11)
700	A13	0.0149(13)	0.0439(16)	0.0260(1	(4) -0.00	08(12)	0.00000(11)	0.0001(11)
701	A14	0.0150(13)	0.0372(15)	0.0233(1	(3) 0.00	24(11)	0.0037(11)	-0.0003(11)
702	A15	0.0149(13)	0.0398(15)	0.0257(1	(4) 0.00	63(11)	0.0009(11)	-0.0004(11)
703	Al6	0.0181(14)	0.0467(16)	0.0252(1	(4) 0.00	48(12)	0.0061(11)	-0.0046(12)
704	A17	0.0265(19)	0.041(2)	0.0347(1	(9) 0.00	82(13)	0.0003(13)	-0.0059(13)
705	A18	0.0202(19) 0.0247(18)	0.0396(19)	0.0196(1	7) -0.00	06(12)	0.00000(12)	0.0029(13)
706	A19	0.0217(10)	0.0359(18)	0.0307(1	(7) 0.00	39(12)	0.0023(12)	-0.0017(12)
707	A110	0.0100(10)	0.066(3)	0.038(3)	-0.00	5(2)	0.0025(12)	-0.027(2)
708	S	0.099(6)	0.060(2)	0.050(3) 0.052(4)	0.00	8(3)	0.002(2)	-0.002(4)
709	05	0.038(4)	0.001(1) 0.048(4)	0.002(1) 0.042(4)	0.01	1(3)	0.020(1)	0.002(1)
710	06	0.038(1) 0.043(4)	0.047(4)	0.043(4)	0.01	6(3)	0.021(3)	0.007(3)
711	07	0.013(1) 0.033(4)	0.063(5)	0.019(1) 0.068(5)	0.00	7(4)	0.021(3) 0.003(4)	-0.003(4)
712	08	0.055(1) 0.062(5)	0.005(3) 0.036(4)	0.000(3) 0.054(4)	-0.00	1(3)	0.003(1) 0.024(4)	0.003(1) 0.012(3)
713	09	0.002(3)	0.038(4)	0.021(1) 0.043(4)	0.00	7(3)	0.02((1))	0.000(3)
714	010	0.020(0)	0.036(4)	0.044(4)	0.00	5(3)	0.013(3)	0.003(3)
715	011	0.035(4)	0.034(3)	0.035(3)	0.00	2(3)	0.009(3)	0.003(3)
716	012	0.025(3)	0.039(4)	0.033(3)	0.00	3(3)	0.009(3)	0.003(3)
717	013	0.025(3)	0.038(4)	0.043(4)	-0.00	5(3)	0.011(3)	-0.005(3)
/	515				0.00	-(-)		0.000(0)

718	O14	0.025(3)	0.034(3)	0.047(4)	-0.001(3)	0.012(3)	0.001(3)
719	015	0.023(3)	0.037(4)	0.038(4)	-0.001(3)	0.002(3)	-0.007(3)
720	016	0.021(3)	0.032(3)	0.036(3)	0.001(3)	0.010(3)	-0.002(3)
721	O17	0.028(3)	0.031(3)	0.033(3)	-0.004(3)	0.012(3)	-0.001(3)
722	O18	0.024(3)	0.024(3)	0.036(3)	-0.002(3)	0.010(3)	-0.002(3)
723	019	0.025(4)	0.057(4)	0.048(4)	0.024(3)	0.005(3)	0.008(3)
724	O20	0.015(3)	0.066(4)	0.039(4)	0.012(3)	0.001(3)	0.007(3)
725	O21	0.016(3)	0.049(4)	0.041(4)	0.013(3)	0.004(3)	0.003(3)
726	O22	0.022(3)	0.047(4)	0.048(4)	0.005(3)	0.003(3)	-0.007(3)
727	O23	0.025(4)	0.075(5)	0.036(4)	-0.005(3)	0.008(3)	0.009(3)
728	O24	0.018(3)	0.045(4)	0.073(5)	0.001(4)	0.002(3)	-0.004(3)
729	O25	0.021(3)	0.077(5)	0.038(4)	0.016(3)	0.002(3)	0.004(3)
730	O26	0.019(3)	0.068(5)	0.048(4)	0.003(3)	0.013(3)	0.009(3)
731	O27	0.015(3)	0.054(4)	0.033(3)	-0.007(3)	0.003(3)	0.006(3)
732	O28	0.016(3)	0.046(4)	0.034(3)	-0.002(3)	0.004(3)	0.001(3)
733	O29	0.016(3)	0.051(4)	0.028(3)	0.000(3)	0.004(3)	0.002(3)
734	O30	0.014(3)	0.050(4)	0.037(4)	0.002(3)	0.001(3)	0.001(3)
735	O31	0.021(3)	0.040(4)	0.055(4)	0.011(3)	0.006(3)	-0.001(3)
736	O32	0.017(3)	0.046(4)	0.038(4)	0.013(3)	0.001(3)	0.001(3)
737	O33	0.010(3)	0.041(3)	0.028(3)	0.003(3)	0.001(2)	-0.004(3)
738	O34	0.018(3)	0.049(4)	0.041(4)	0.006(3)	0.009(3)	-0.005(3)
739	O35	0.011(3)	0.043(4)	0.041(4)	0.002(3)	0.008(3)	0.001(3)
740	O36	0.019(3)	0.040(4)	0.034(3)	0.004(3)	0.004(3)	0.000(3)
741	O37	0.018(3)	0.065(4)	0.023(3)	0.003(3)	0.004(3)	0.006(3)
742	O38	0.010(3)	0.048(4)	0.035(3)	0.008(3)	0.004(3)	0.001(3)
743	O39	0.017(3)	0.041(4)	0.047(4)	-0.002(3)	0.005(3)	0.001(3)
744	O40	0.016(3)	0.058(4)	0.035(3)	0.014(3)	0.009(3)	0.006(3)
745	O41	0.010(3)	0.049(4)	0.029(3)	-0.001(3)	-0.001(2)	0.001(3)
746	O42	0.013(3)	0.047(4)	0.025(3)	0.004(3)	0.003(2)	0.001(3)
747	O43	0.012(3)	0.039(3)	0.036(3)	0.003(3)	0.000(3)	0.003(3)
748	O44	0.012(3)	0.043(4)	0.031(3)	0.007(3)	0.005(3)	0.001(3)
749	O45	0.013(3)	0.040(3)	0.022(3)	0.005(3)	0.001(2)	0.002(3)
750	O46	0.013(3)	0.042(4)	0.033(3)	0.004(3)	0.005(3)	0.003(3)
751	O47	0.034(4)	0.064(5)	0.036(4)	0.006(3)	-0.005(3)	0.002(3)
752	O48	0.037(4)	0.074(5)	0.048(4)	0.004(4)	0.020(3)	0.007(4)
753	OH1	0.018(3)	0.037(3)	0.027(3)	0.002(3)	0.002(3)	-0.002(3)
754	OH2	0.016(3)	0.042(4)	0.025(3)	0.002(3)	0.004(2)	0.001(3)
755	OH3	0.014(3)	0.044(3)	0.022(3)	0.005(3)	0.008(2)	0.002(3)
756	OH4	0.012(3)	0.038(3)	0.031(3)	0.008(3)	0.005(2)	-0.002(3)
757	OH5	0.013(3)	0.033(3)	0.026(3)	0.003(2)	0.006(2)	0.000(2)
758	OH6	0.015(3)	0.035(3)	0.025(3)	0.006(2)	0.006(2)	-0.001(2)
759	OH7	0.030(4)	0.059(5)	0.064(5)	-0.007(4)	0.002(3)	-0.011(3)
760	OH8	0.021(3)	0.050(4)	0.029(3)	-0.003(3)	0.006(3)	-0.002(3)
761	OH9	0.022(3)	0.043(4)	0.033(3)	0.002(3)	0.008(3)	0.006(3)
762	OH10	0.026(3)	0.043(4)	0.034(3)	-0.001(3)	0.004(3)	-0.007(3)
763	OH11	0.025(3)	0.042(4)	0.035(3)	0.006(3)	0.001(3)	0.001(3)

764	OH12	0.017(3)	0.036(3)	0.024(3)	-0.002(2)	0.005(2)	-0.001(3)
765	OH13	0.022(3)	0.035(3)	0.029(3)	0.009(3)	0.001(3)	-0.001(3)
766	OH14	0.021(3)	0.043(4)	0.024(3)	-0.001(3)	0.008(3)	0.003(3)
767	OH15	0.015(3)	0.038(3)	0.029(3)	0.007(3)	0.000(2)	0.001(3)
768	OH16	0.026(3)	0.046(4)	0.032(3)	0.002(3)	0.006(3)	0.005(3)
769	OH17	0.024(3)	0.042(4)	0.038(4)	0.012(3)	0.005(3)	-0.004(3)
770	OH18	0.017(3)	0.045(4)	0.031(3)	0.009(3)	0.000(3)	0.001(3)
771	OH19	0.020(3)	0.056(4)	0.024(3)	0.011(3)	0.006(3)	0.001(3)
772	OH20	0.024(3)	0.052(4)	0.037(4)	0.008(3)	0.004(3)	-0.008(3)
773	OW1	0.031(4)	0.064(5)	0.048(4)	-0.007(3)	0.013(3)	0.011(3)
774	OW2	0.031(4)	0.057(4)	0.033(4)	0.013(3)	0.005(3)	0.003(3)
775	OW3	0.053(5)	0.048(4)	0.068(5)	0.020(4)	0.009(4)	-0.014(4)
776	OW4	0.052(5)	0.060(5)	0.070(5)	0.012(4)	0.013(4)	0.010(4)
777	OW5	0.028(4)	0.062(5)	0.056(4)	0.013(4)	0.002(3)	-0.001(3)
778	OW6	0.073(6)	0.075(5)	0.043(4)	0.000(4)	-0.008(4)	-0.028(5)
779	OW7	0.045(4)	0.064(5)	0.035(4)	-0.002(3)	-0.007(3)	-0.005(4)
780	OW8	0.026(4)	0.071(5)	0.038(4)	0.001(3)	0.002(3)	0.008(3)
781	OW9	0.078(6)	0.050(4)	0.042(4)	-0.007(3)	0.011(4)	0.009(4)
782	OW10	0.052(5)	0.061(5)	0.033(4)	0.000(3)	0.014(3)	0.003(4)
783	OW11	0.031(4)	0.041(4)	0.041(4)	0.003(3)	0.011(3)	-0.005(3)
784	OW12	0.032(4)	0.040(4)	0.047(4)	0.008(3)	0.003(3)	-0.001(3)
785	OW13	0.028(4)	0.054(4)	0.034(4)	0.005(3)	0.001(3)	-0.002(3)
786	OW14	0.025(3)	0.049(4)	0.043(4)	0.011(3)	0.008(3)	-0.004(3)
787	OW15	0.098(12)	0.071(9)	0.091(11)	-0.035(7)	0.013(8)	-0.004(7)
788	OW16	0.077(10)	0.055(8)	0.081(10)	-0.026(6)	0.010(7)	-0.023(7)
789	OW17	0.095(11)	0.066(8)	0.092(10)	-0.020(7)	0.011(8)	-0.017(7)
790	OW18	0.064(7)	0.085(8)	0.099(9)	-0.009(6)	0.013(6)	-0.007(5)
F O 1							

793	Table 5. Selected bond distances (Å) for caseyite.
794	

705								
/95	V1–O13	1.666(6)	V8–O22	1.599(6)	V15–O20	1.596(6)	Al6–OH19	1.852(6)
796	-015	1.698(6)	-038	1.836(6)	-O30	1.822(6)	-OH18	1.856(6)
797	-016	1.914(6)	-032	1.837(6)	-035	1.857(6)	-OH20	1.869(6)
798	-017	1 9216	-033	1 9106	-044	1 994(6)	-OW2	1 873(7)
799	018	2.115(6)	036	2.031(6)	041	1.008(6)	0H3	2.001(6)
200	-010	2.113(0)	-030	2.031(0)	-041	1.990(0)	-0113	2.001(0)
000	-018	2.179(5)	-045	2.297(6)	-046	2.222(6)	-OH4	2.011(6)
801	<v1–o></v1–o>	1.916	<v8–o></v8–o>	1.918	<v15–o></v15–o>	1.915	<al60></al60>	1.910
802								
803	V206	1.600(6)	V9–O23	1.595(6)	V16-047	1.622(6)	Al7–OH17	1.850(6)
804	-012	1 756(6)	-038	1 838(6)	-048	1.632(7)	-OH20	1 894(7)
805	_014	1 940(6)	-028	1 867(6)	_OH19	1.967(6)	_OW3	1 903(7)
806	017	1.940(0) 1.040(6)	020	1.007(6)	0117	1.907(0)	OW4	1.003(7) 1.012(9)
800	-01/	1.949(0)	-037	1.897(0)	-0118	1.978(0)	-0 W4	1.913(0)
00/	-016	2.030(6)	-02/	2.022(6)	-OH3	2.282(5)	-OW6	1.920(8)
808	-018	2.218(6)	-045	2.299(5)	-OH2	2.302(6)	-OW5	1.924(7)
809	<v2–o></v2–o>	1.916	<v9–o></v9–o>	1.920	<v16–o></v16–o>	1.964	<a17–o></a17–o>	1.901
810								
811	V3–O8	1.597(6)	V10-O26	1.598(6)	Al1-OH1	1.876(6)	A18-OH14	1.861(6)
812	-010	1 775(6)	-040	1 8396	-OH2	1 8816	-OH16	1 865(6)
813	_011	1.876(6)	-034	1.860(6)	_OH4	1.886(6)	_OW7	1.000(0) 1.000(7)
81 <i>/</i>	-011	1.070(0) 1.067(6)	-034	1.000(0)	-0114	1 888(6)		1.909(7) 1.021(7)
014	-014	1.90/(0)	-033	1.904(6)	-OH3	1.888(0)	-OW8	1.921(7)
815	-013	2.110(7)	-029	2.018(6)	-OH5	1.906(6)	-OW9	1.938(7)
816	-018	2.318(5)	-046	2.317(6)	-OH6	1.911(6)	-OW10	1.962(7)
817	<v3–o></v3–o>	1.941	<v10–o></v10–o>	1.923	<al1-0></al1-0>	1.891	<a18–o></a18–o>	1.909
818								
819	V4-05	1.608(6)	V11-O24	1.598(6)	Al2–OW1	1.815(7)	A19-OH11	1.870(7)
820	-09	1 787(6)	-031	1 8376	-OH7	1.827(7)	-OH15	1 871(6)
821	-011	1 848(6)	-034	1.868(6)	_OH8	1.857(6)	_OW11	1 900(6)
822	016	1.040(0) 1.084(6)	030	1.000(0) 1.002(6)	0110	1.037(0) 1.972(6)	OW12	1.900(0) 1.001(7)
022 072	-010	1.964(0)	-030	1.903(0)	-0119	1.873(0)	-0w12	1.901(7) 1.052(7)
023	-01/	2.013(6)	-039	2.029(6)	-OH2	2.026(6)	-OW13	1.952(7)
824	-018	2.256(6)	-046	2.299(6)	-OH1	2.060(6)	-OW14	1.961(6)
825	<v4–o></v4–o>	1.916	<v11–o></v11–o>	1.922	<al2–o></al2–o>	1.910	<al9–o></al9–o>	1.909
826								
827	V5–O7	1.603(7)	V12019	1.602(6)	Al3-OH10	1.819(6)	Al10-OW15	1.810(15)
828	-O10	1.912(6)	-O40	1.826(6)	-OH11	1.835(6)	-OH10	1.871(7)
829	-012	1 920(6)	-031	1 840(6)	-OH12	1 842(6)	-OW16	1.877(12)
830	00	1.926(6) 1.035(6)	042	1.084(6)	0110	1.851(6)	OH7	1 013(8)
831	-07	1.935(0)	-042	1.904(0)	-0115	1.001(0)	-0117 OW17	1.913(0) 1.044(12)
021	-013	2.034(0)	-043	1.990(0)	-OH3	1.999(0)	-OW1/	1.944(13)
032	-018	2.318(6)	-046	2.252(6)	-OHI	2.081(6)	-OW18	2.026(11)
833	<v5–0></v5–0>	1.954	<v12–o></v12–o>	1.917	<a13-0></a13-0>	1.905	<a110-0></a110-0>	1.907
834								
835	V6–O29	1.680(6)	V13–O21	1.596(6)	Al4–OH13	1.841(6)	S01	1.425(13)
836	-O36	1.693(6)	-033	1.833(6)	-OH12	1.844(6)	-02	1.468(15)
837	-044	1.912(6)	-028	1.852(6)	-OH15	1.847(6)	-03	1.474(15)
838	-042	1 914(6)	-042	1 976(6)	-OH14	1 848(6)	-04	1 486(13)
830	046	2.120(6)	043	2.001(6)	0111	2.016(6)		1.163
840	-040	2.120(0) 2.122(6)	-045	2.001(0)	-0110	2.010(0)	<b-0></b-0>	1.405
040	-045	2.155(0)	-045	2.255(5)		2.057(0)		
041	<v6-0></v6-0>	1.909	<13-0>	1.915	<a14-0></a14-0>	1.906		
842								
843	V7–O39	1.676(6)	V14–O25	1.603(6)	Al5–OH17	1.827(6)		
844	-O27	1.687(6)	–O37	1.825(6)	-OH16	1.841(6)		
845	-041	1.912(6)	-032	1.828(6)	-OH13	1.850(6)		
846	-043	1.918(6)	-041	1.986(6)	-OH18	1.853(6)		
847	-046	2 123(6)	-044	2.002(6)	_OH6	2.016(6)		
848	_045	2.125(6)	045	2.002(0)	. 044	2.010(0)		
8/0	-04J	2.120(0)	-04J <v14 05<="" th=""><th>$\frac{2.223(3)}{1.011}$</th><th>-0114</th><th>2.050(0)</th><th></th><th></th></v14>	$\frac{2.223(3)}{1.011}$	-0114	2.050(0)		
047	< v /-U >	1.907	<v14-u></v14-u>	1.911	~AI3-0>	1.908		
850								

	O_D	O_A	d(Å)	v(vu)	O_D	O_A	d(Å)	v(vu)
	O14	019	2.795(9)	0.19 [§]	OW20	O10	3.004(9)	0.13
	OH1	O28	2.766(8)	0.20	OW20	O40	2.963(9)	0.14
3	OH2	O30	2.759(8)	0.20	OW21	O47	2.827(14)	0.17
)	OH3	O38	2.721(7)	0.22	OW22	015	2.903(15)	0.15
)	OH4	O35	2.767(8)	0.20	OW22	O32	2.771(14)	0.19
1	OH5	O34	2.714(8)	0.22	OW23	013	2.890(11)	0.16
2	OH6	O33	2.768(7)	0.20	OW23	O44	2.771(10)	0.19
3	OH8	O23	2.763(8)	0.20	OW24	O4	2.688(19)	0.23
4	OH9	O24	2.715(8)	0.22	OW27	O30	2.825(16)	0.17
5	OH10	06	2.739(8)	0.21	OW27	O48	2.942(17)	0.14
6	OH12	O21	2.703(8)	0.22	OW28	012	2.893(11)	0.15
57	OH13	O26	2.733(8)	0.21	OW28	O43	2.792(11)	0.19
58	OH18	O22	2.732(8)	0.21	OW32	O4	2.85(2)	0.17
59	OH19	O20	2.750(8)	0.20	OW32	O27	2.839(17)	0.17
'0	OH20	08	2.979(9)	0.13	OW33	O7	2.803(16)	0.17
1	OW3	011	2.514(9)	0.36	OW33	O31	2.830(16)	0.18
2	OW5	O35	2.700(9)	0.23	OW34	O48	2.94(2)	0.14
3	OW6	01	2.52(2)	0.35	OW35	O47	3.087(19)	0.12
'4	OW7	O37	2.684(9)	0.23	OW36	O29	3.12(2)	0.11
5	OW8	O33	2.723(9)	0.22	OW36	O48	2.65(2)	0.26
6	OW10	O41	2.981(9)	0.13	OW37	O17	2.85(2)	0.17
7	OW11	016	2.630(8)	0.27	OW38	O2	2.69(4)	0.23
8	OW12	09	2.602(8)	0.29	OW39	O3	2.86(3)	0.16
9	OW14	O34	2.797(8)	0.18	OW39	O4	2.80(3)	0.18
0	OW15	01	2.62(2)	0.28	OW41	O3	2.94(4)	0.14
1	OW17	05	2.866(14)	0.16	OW44	O39	3.09(4)	0.12
2	OW18	O28	2.843(12)	0.17	OW45	O36	3.02(4)	0.13
3	OW19	O25	2.695(9)	0.23				

Table 6. Possible hydrogen bonds $(O_D \cdots O_A)$, bond distances (d), and bond strengths* (v) for caseyite. Possible hydrogen bonds to OH and H₂O groups are not included.

Table 7. Bond-valence analyses for the structural components in caseyite. Values are expressed in 887

888 valence units.*

889

890 Sulfate group

3	0	1	
	S	H bonds	sum
01	1.69	0.35, 0.27	2.31
02	1.52	0.23	1.75
03	1.49	0.16, 0.14	1.79
04	1.45	0.23, 0.18, 0.17	2.03
sum	6.15		

- Note that the O sites are partially disordered, requiring soft restraints on the distances. This probably accounts for the anomalously high and low BVS values for O1, O2, and O3. 891
- 892 893

Decavanadate anion #1 894

	V1	V2	V3	V4	V5	H bonds	sum
05				1.69		0.16	1.85
06		1.73				0.21	1.94
07					1.72	0.18	1.90
08			1.75			0.13	1.88
09				1.04	0.70	0.29	2.03
010			1.08		0.74	0.13	1.95
011			0.82	0.89		0.36	2.07
012		1.14			0.73	0.15	2.02
013	1.45		0.44			0.16	2.05
014		0.69	0.64				1.33
015	1.33				0.54	0.15	2.02
016	0.74	0.54		0.61		0.27	2.16
017	0.73	0.67		0.57		0.17	2.14
018	0.43, 0.36	0.33	0.25	0.29	0.25		1.91
sum	5.04	5.10	4.98	5.09	4.68		

Note that O14 is considered an OH.

398 Decavanadate anion #2

2000					r	r	r	1		1		r
	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	H bonds	sum
019							1.66				0.19	1.85
O20										1.69	0.20	1.89
O21								1.69			0.23	1.92
O22			1.74								0.21	1.95
O23				1.75							0.20	1.95
O24						1.68					0.22	1.90
O25									1.66		0.23	1.89
O26					1.74						0.21	1.95
O27		1.37		0.55							0.17	2.09
O28				0.84				0.87			0.20, 0.17	2.08
O29	1.39				0.56						0.11	2.06
O30						0.76				0.94	0.20, 0.17	2.07
O31						0.91	0.90				0.17	1.98
O32			0.91						0.93		0.19	2.03
O33			0.75					0.92			0.20, 0.22	2.09
O34					0.86	0.84					0.22, 0.18	2.10
O35					0.76					0.86	0.20, 0.23	2.05
O36	1.35		0.54								0.13	2.02
O37				0.78					0.94		0.23	1.95
O38			0.91	0.78							0.22	1.91
O39		1.41				0.55					0.12	2.08
O40					0.91		0.93				0.14	1.98
O41		0.74							0.62	0.60	0.13	2.09
O42	0.74						0.62	0.63				1.99
043		0.73					0.60	0.59			0.19	2.11
044	0.74								0.59	0.60	0.19	2.12
045	0.41	0.42	0.26	0.26				0.33	0.34			2.02
046	0.42	0.42			0.25	0.28	0.31			0.34		2.02
sum	5.05	5.09	5.12	4.96	5.08	5.02	5.02	5.03	5.08	5.03		

, ciricica	3716	A 11	A 10	A 12	A 1.4	A 1/7	A 1 C	A 177	A 10	A 10	4110	TT 1 1	1
0.47	V16	All	Al2	Al3	Al4	AlS	Al6	Al/	Alð	Al9	AII0	H bonds	sum
04/	1.63											0.17, 0.12	1.92
048	1.59	0.54	0.04	0.00								0.14, 0.14, 0.26	2.13
OHI		0.54	0.34	0.32									1.20
OH2	0.26	0.53	0.37										1.16
OH3	0.27	0.52					0.39						1.18
OH4		0.52				0.34	0.38						1.24
OH5		0.50		0.39	0.36								1.25
OH6		0.49			0.38	0.38							1.25
OH7			0.61								0.49		1.10
OH8	0.62		0.56										1.18
OH9			0.54	0.57									1.12
OH10				0.62							0.54		1.16
OH11				0.60						0.55			1.15
OH12				0.59	0.58								1.17
OH13					0.59	0.57							1.16
OH14					0.58				0.56				1.14
OH15					0.58					0.54			1.12
OH16						0.59			0.55				1.14
OH17						0.61		0.57					1.18
OH18						0.57	0.57						1.14
OH19	0.64						0.57						1.21
OH20							0.55	0.51					1.06
OW1			0.63				0.00	0.01					0.63
OW2			0.05				0 54						0.54
OW3							0.01	0.50					0.50
OW4								0.20					0.20
OW5								0.48					0.48
OW6								0.48					0.48
OW7								0.10	0.49				0.49
OW8									0.48				0.48
OW9									0.10				0.10
OW10									0.40				0.40
OW10									0.+5	0.51			0.45
OW11										0.51			0.51
OW12										0.30			0.30
OW13 OW14										0.44			0.44
OW14 OW15										0.43	0.64		0.43
OW15											0.64		0.64
OW16											0.54		0.54
											0.45		0.45
0W18	F 01	0.10	0.05	0.00	0.07	0.00	a	0.00	0.07	0.07	0.37		0.37
sum	5.01	3.10	3.05	3.09	3.07	3.06	3.00	3.03	2.97	2.97	3.03		

901 Vanadoaluminate cation

* All bond strengths are based on full occupancies by the indicated cations and anions. The bond strengths due to a possible H atom shared between O14 and O19 are not included. V⁵⁺-O bond-valence parameters are from Brown and Altermatt (1985). Al³⁺-O and S⁶⁺-O bond-valence parameters are from Gagné & Hawthorne (2015). Hydrogen-bond strengths (also listed in Table S4) are based on O–O bond lengths as

906 provided by Ferraris and Ivaldi (1988).

