1 Revision 1

- 2
- 3 New insights into the evolution of MVT hydrothermal system: A case study of
- 4 the Wusihe Pb-Zn deposit (South China), using quartz in situ trace elements
- 5 and sulfides in situ S-Pb isotopes
- 6
- 7 KAI LUO^{1,2,4}, JIA-XI ZHOU^{1,3,4,*}, ZHI-LONG HUANG¹, JOHN CAULFIELD⁴,
- 8 JIAN-XIN ZHAO⁴, YUE-XING FENG⁴, HEGEN OUYANG^{4,5}
- 9
- 10¹ State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry,
- 11 Chinese Academy of Sciences, Guiyang 550081, China
- 12 ² University of Chinese Academy of Sciences, Beijing 100049, China
- 13 ³ School of Resource Environment and Earth Sciences, Yunnan University,
- 14 Kunming 650500, China
- 15 ⁴ School of Earth and Environmental Sciences, The University of Queensland,
- 16 Brisbane QLD 4072, Australia
- ⁵ Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral
- 18 Resources, Chinese Academy of Geological Sciences, Beijing, 100037, China
- 19
- 20
- 21 *Corresponding author, JIA-XI ZHOU, E-mail, zhoujiaxi@ynu.edu.cn

22	ABSTRACT
23	Unraveling the evolution of MVT hydrothermal system is crucial for
24	understanding ore genesis and exploration. In this paper, we take the Wusihe
25	Pb-Zn deposit in the western Yangtze Block (South China) as a case study,
26	using detailed ore deposit geology, quartz in situ trace elements and sulfides in
27	situ S-Pb isotopes, to propose a new integrated model for the evolution of MVT
28	hydrothermal system. Four hydrothermal stages were identified in the Wusihe
29	ore district: (I) lamellar pyrite-sphalerite; (II) disseminated, stock-work and
30	brecciated sphalerite-galena; (III) massive galena, and (IV) veined
31	calcite-bitumen. Within the most representative stage (stage-II), AI
32	concentrations increase from 8.46-354 ppm (mean 134 ppm) of Q1 to
33	171-3049 ppm (mean 1062 ppm) of Q2, and then decrease to 3.18-149 ppm
34	(mean 25.4 ppm) of Q3. This trend indicates the role of acid-producing
35	processes that resulted from sulfide precipitation, and acid consumption by
36	carbonate buffering. The occurrence of authigenic non-altered K-feldspar
37	provides further evidence that the ore-forming fluids were weakly acidic with
38	pH values of > ~5.5. Moreover, new bulk δ^{34} S values of sulfides (+1.8-+14.3‰)
39	are overall lower than those previously reported (+7.1-+20.9‰), implying that
40	in addition to thermochemical sulfate reduction (TSR), bacterial sulfate
41	reduction (BSR) may also play an important role in the formation of S^{2-} . In situ
42	δ^{34} S values show a larger range (-4.3-+26.6‰), and significantly, varies within 2

43	single grains (up to +12.3‰), suggesting mixing of two isotopically distinct S^{2-}
44	end-members produced by TSR and BSR. The diagenetic and hydrothermal
45	early phase (stage-I) sulfides were formed within a nearly closed system of
46	BSR, whereas the formation of late phase (stages-II and -III) sulfides was
47	caused by the input of hydrothermal fluids that promoted TSR. New galena in
48	situ Pb isotopic ratios (²⁰⁶ Pb/ ²⁰⁴ Pb = 18.02-18.19, ²⁰⁷ Pb/ ²⁰⁴ Pb = 15.66-15.69
49	and ${}^{208}Pb/{}^{204}Pb = 38.14-38.39$) suggest that the sources of mineralizing metals
50	in the Wusihe deposit are mainly Proterozoic basement rocks. Hence, a
51	multi-process model (i.e. basin-mountain coupling, fluid mixing, local sulfate
52	reduction, in situ acid-producing and involvement of black shales and
53	carbonate sequences) was responsible for the formation of the Wusihe deposit,
54	whilst S ²⁻ was produced by both TSR and BSR, providing new insights into the
55	evolution of MVT hydrothermal system.

56 Keywords: Quartz in situ trace elements; Sulfides in situ S-Pb isotopes;

57 MVT hydrothermal system evolution; Wusihe Pb-Zn deposit, South China

58	INTRODUCTION
59	Mississippi Valley-type (MVT) deposits are named after classic districts
60	located in the drainage basin of the Mississippi River in the central United
61	States (Guilbert and Park 1986). These deposits can form by mixing of basinal
62	fluids of contrasting reduced sulfur and metal content, driven by gravity or
63	tectonic stress from an adjacent orogenic belt (e.g. Durham 1966; Appold and
64	Garven 1999; Bradley and Leach 2003). Despite a broad consensus on this
65	model for MVT ore genesis, there are a number of questions that remain
66	unanswered (e.g. Leach et al. 2005, 2010; Huston et al. 2006). One such
67	question is how to establish a complete evolution of an MVT hydrothermal
68	system involving the original sulfur/metal source(s), detailed constraints on
69	acid-producing processes, and precipitation models. The other is how to
70	explain the absence of deposits in many basins that otherwise have very
71	similar geological histories as well-endowed basins (Wilkinson 2013), namely
72	what role the ore-forming environments (i.e. tectonic setting, wall rock
73	sequences) played during Pb-Zn mineralization.
74	The Upper Yangtze Pb-Zn metallogenic province covers an area of 170,000
75	km ² and contains approx. 400 carbonate-hosted epigenetic Pb-Zn deposits
76	totaling ~26 Mt of metal reserves (Fig. 1; e.g. Liu 1999; Zhou et al. 2014a,

- 2018a). The Wusihe Pb-Zn deposit is the largest in the northwest part of the
- 78 province (~5.4Mt grading 8.6% wt. Zn and 2.0 wt. % Pb) (Xiong et al. 2018).

79	This deposit is hosted in siliceous and evaporitic carbonate sequences of the
80	late Ediacaran Dengying Formation, which are unconformably overlain by the
81	early Cambrian Qiongzhusi Formation black shales (Shao and Li 1996; Xiong
82	et al. 2018; Zhu et al. 2018). Despite the Wusihe deposit resembling MVT
83	deposits in the central United States (Table S1; e.g. Wu et al. 2013; Xiong et al.
84	2018), it shows many distinctive geological and geochemical features that
85	warrant further investigation (Table S1). Firstly, the Wusihe ore district is
86	characterized by a ~50km length of ore-bearing strata (Lin 2005; Li 2007),
87	which are clearly distinct from those of classical MVT deposits; Secondly, large
88	amounts of bitumen and authigenic non-altered K-feldspar have been noted in
89	association with the Pb-Zn mineralization; And lastly, the ore structures within
90	this single deposit are very complex, including lamellar, stock-work, brecciated,
91	veined, disseminated and massive ore types (Sverjensky 1981; Gibbins 1983).
92	Given these features, it has been proposed that the Wusihe deposit may
93	have formed in a unique tectonic environment (Leach et al. 2005), which
94	represents an ideal locality to investigate the interplay amongst these factors
95	and the evolution of MVT hydrothermal system. Accordingly, to better
96	understand how these aspects influenced Pb-Zn mineralization, we undertook
97	a detailed research program to trace the ore formation processes.
98	Sulfur (S) and lead (Pb) isotopes are powerful indices that can be used to
99	trace the sources of fluids and mechanism of sulfide precipitation (e.g. Ohmoto

100	1986; Wilkinson et al. 2005). High spatial resolution in situ S and Pb isotopic
101	measurements can provide vital information about the fluid origin and the
102	nature of mineralization processes, constraints that cannot be resolved using
103	conventional bulk analytical methods (Peevler et al. 2003; Kucha 2010; Xue et
104	al. 2015; Zhou et al. 2018b). Furthermore, aluminum (Al) concentrations in
105	quartz can be an effective proxy for the pH of ore-forming fluids, because they
106	are strongly affected by Al solubility (Rusk et al. 2008; Chen et al. 2011).
107	Using Scanning Electron Microscope Cathodoluminesence (SEM-CL),
108	Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS)
109	quartz in situ element analysis, bulk and Nano Secondary Ion Mass
110	Spectrometry (NanoSIMS) sulfide in situ S isotope analysis, and femtosecond
111	LA-Multi-collector ICPMS (LA-MC-ICPMS) galena in situ Pb isotope analysis,
112	this study aims to: i) evaluate the ore-forming tectonic settings and wall rock
113	sequences; ii) trace the nature of ore-forming fluids and sulfide precipitation
114	mechanisms; iii) investigate the evolution of the Wusihe MVT hydrothermal
115	system. The outcomes will contribute to a better understanding of the
116	formation of carbonate-hosted epigenetic Pb-Zn deposits surrounding the
117	Yangtze Block, and similar deposits globally.

- 118
- 119 **REGIONAL GEOLOGY**
- 120 The South China Block is made up of the Yangtze Block to the northwest 6

121	and the Cathaysia Block to the southeast. The Yangtze and Cathaysia blocks
122	were amalgamated along the Jiangnan Orogenic belt at around 820-850 Ma
123	(Fig. 1; e.g. Zhou et al. 2009; Wang et al. 2010; Zhao et al. 2011; Zhao 2015;
124	Wu et al. 2018). The collision of the South China Block with the North China
125	Craton to the north and the Indochina Block to the south occurred during the
126	Triassic (e.g. Hou et al. 2003; Li et al. 2014; Mi et al. 2015).
127	The Yangtze Block consists of Mesoproterozoic basement (Fig. 1b) overlain
128	by Neoproterozoic to Cenozoic cover sequences (Zhou et al. 2002, 2006;
129	Zhao et al. 2010). Mesoproterozoic folded basement rocks include the ~1.7 Ga
130	Dongchuan and ~1.1 Ga Kunyang Groups and equivalents that mainly consist
131	of greywackes, slates and other carbonaceous to siliceous sedimentary rocks
132	surrounding the Yangtze Block (Wang et al. 2012). These rocks are
133	unconformably overlain by shallow marine Paleozoic and Early Mesozoic
134	cover sequences. Jurassic to Cenozoic strata are composed exclusively of
135	continental sequences.
136	There are numerous MVT Pb-Zn districts surrounding the margin of the
137	Yangtze Block, which are tectonically linked to basin deformation in response
138	to orogenic activity (Fig. 1b; Wang et al. 2014). Along the identified
139	basin-mountain margins of the Yangtze Block, the early Paleozoic

141 et al. 2006; Jiang et al. 2010; Wang et al. 2010) hosts the ca. 486 Ma Mayuan

140

7

Qinling-Dabie basin-mountain system in the north (e.g. Lu et al. 2003; Zhang

142	and ca. 434-406 Ma Shennongjia Pb-Zn deposits (Fig. 1b; e.g. Wang et al.
143	2008). The Jiangnan Orogenic Belt was active ca. 411-412Ma on the
144	southeast margin of the Yangtze Block (Fig. 1b; e.g. Chu et al. 2012), which
145	consists of the Qiandong-Xiangxi-E'xi basin-mountain system, and hosts the
146	ca. 412 Ma Huayuan Pb-Zn district (Fig. 1b; e.g. Duan et al. 2014). Within the
147	western margin of the Yangtze Block, the composite tectonic setting, i.e. the
148	Xiaojiang thrust-fold, the Longmenshan intracontinental Orogenic Belt and
149	Chuxiong foreland basins, hosts the Upper Yangtze Pb-Zn metallogenic
150	province (Fig. 1b; Liu and Lin 1999; Zhou et al. 2013a, 2018a; Huang et al.
151	2010; Hu et al. 2017). This province contains ca. 362-411Ma (e.g. Wu 2013;
152	Zhang et al. 2014; Xiong et al. 2018) and ca. 192-226Ma (e.g. Zhou et al.
153	2013b, 2015, 2018a and references therein) Pb-Zn deposits hosted in late
154	Ediacaran to late Permian carbonate rocks (Zhou et al. 2018b). These two age
155	clusters correspond to the orogenic events by collision compression and
156	post-collisional extension during late Caledonian-early Variscan (Devonian)
157	and late Indosinian-early Yanshanian (Triassic-Jurassic), respectively (e.g. Li
158	et al. 2006; Shu 2006).

159

160

DEPOSIT GEOLOGY

Pb-Zn deposits within the Wusihe district in the north of the Upper Yangtze
Pb-Zn metallogenic province include the Heiqu-Xuequ, Hetaoping, Niuxinshan

167	Strata
166	deposits, Wusihe is the largest.
165	Dadu River Valley with a length of over 50km (Fig. 2a). Among these Pb-Zn
164	carbonate sequences. These deposits form a large metallogenic belt along the
163	and Wusihe deposits, all of which are hosted in late Ediacaran-early Cambrian

168 Exposed strata in the Wusihe district include Mesoproterozoic metamorphic 169 basement and Neoproterozoic cover. The Mesoproterozoic metamorphic 170 basement (namely the Ebian Formation) consists primarily of phyllite and is 171 unconformably overlain by Neoproterozoic strata comprising three formations: 172 Suxiong, Guanyinya, and Dengying. The Suxiong Formation represents a 173 volcanic sequence containing pyroclastic deposits, tuff, and rhyolite. The 174 Suxiong Formation is overlain by the Guanyinya Formation which is composed 175 of shale, limestone, and dolomite. The Neoproterozoic Dengying Formation is 176 the most important ore-hosting unit and consists of thickly-bedded cherty 177 dolostone, with minor shales and thin (<1 m) phosphorite beds. The Lower 178 Cambrian Qiongzusi Formation consists mainly of organic-rich black shales, 179 and is a significant source of hydrocarbons (Fig. 2c; Huang et al. 2012).

180 Tectonics

Faults and folds are well developed in the Wusihe mining district. The principal faults are the NW-trending Matuo fault and the NE-trending Wangmaoshan fault. The main fold present is the Wanlicun syncline (Fig. 2a).

184 This tectonic framework produces secondary fault fracture zones and 185 interlayered fault zones, which control the spatial distribution of the stratiform 186 ore bodies.

187 Ore bodies

188 Ore bodies in the Wusihe deposit have variable thicknesses from 0.20-2.97 189 m, with a mean of 0.93 m. They are simple in shape, layered, extensively 190 lentoid, and dominantly occur parallel to wall rock bedding. Ore bodies contain 191 0.02-14.02 wt. % Pb (average 3.05 wt. %), and 0.58-37.60 wt. % Zn (average 192 12.4 wt. %), and can be divided into two groups: lower and upper. The lower 193 group of ore bodies is layered, and hosted in gray siliceous dolostones. This 194 group mainly contains sphalerite, characterized by lamellar ores with a minor 195 disseminated component. The upper group of ore bodies is hosted in 196 black-gray layered carbonaceous dolostone and minor black shales. The 197 upper group occurs as layered, lens shapes, up to 14m above the lower 198 boundary of the Qiongzhusi Formation black shale. They are 6.3-16.3m in 199 thickness (mean 12.3m), showing stock-work and disseminated ores in 200 interlayered crushed zones, dissolution collapse structures and brecciated 201 ores concentrated along fault planes.

202 Mineralogy

At Wusihe, ores are dominantly sulfides, with lesser amounts of oxides.

204 Mineral assemblages are comprised of both ore minerals including pyrite,

205	sphalerite and galena, along with gangue minerals including quartz, dolomite,
206	calcite, bitumen and potassium feldspar (Figs. 3-5). Minerals display mainly
207	granular and colloform textures. Field observations identified six different
208	modes of occurrence of the Pb-Zn sulfide ores in the Wusihe deposit, including
209	lamellar, disseminated, stock-work, brecciated, veined and massive (Fig. 3).
210	According to the mineral assemblages and crosscutting relationships shown
211	by the deposit, four stages of hydrothermal mineralization can be established
212	(Fig. 6): Stage I: pyrite-sphalerite (nodules and bands of lamellar ore); Stage II:
213	sphalerite-galena (disseminated, stockwork, brecciated ore); Stage III: galena
214	(massive ore) and Stage IV: bitumen-calcite. The disposition of the various
215	types of ores at Wusihe is shown schematically in Fig. 11b.
216	The lamellar ore typically consists of fine-grained sphalerite and pyrite
217	horizons (several mm to cm in thickness) in carbonaceous-, siliceous-
218	dolostone or black shales (Fig. 3a). This ore-type is characterized by rhythmic
219	sulfide bands, comprising yellow, brown and red colored sphalerite (60-70%),
220	pyrite (10–20%) and minor organic matter (<10%). Structurally these bands
221	run parallel to bedding and schistosity in the siliceous dolostone.
222	The disseminated ore is comprised of fine- to coarse-grained sphalerite and
223	pyrite (0.1mm-10mm). This type of ore often appears to be red-brown/light
224	brown intergrown with light-yellow concentric rings (Fig. 3b-f). Quartz can be

225 divided into three generations: the first generation (Q1) occurs as euhedral

226	hexagon grains (Fig. 5b). The second generation (Q2) is commonly subhedral
227	coexisting with sulfides (Fig. 5c, d). The third generation (Q3) occurred as
228	veinlets crosscutting sulfides or along the margins of dolomite (Fig. 5e, f).
229	The stock-work ore is composed of sphalerite and galena where sphalerite
230	dominates (60-70%), followed by galena (10-20%), calcite (5-10%), quartz
231	(1-3%) and occasional pyrite (Fig. 3g, h). Calcite is mainly dispersed as either
232	blocks or short veins with a small number of occurrences along the margins of
233	sphalerite veins (Fig. 4d, k). Quartz is dominantly distributed along the margins
234	of sphalerite veins, and includes large amounts of irregular bitumen (Fig. 4k).
235	The brecciated ore consists of sphalerite and irregular galena aggregates
236	(Fig. 3i, j). They form the cement matrix to early deformation lamellar ores
237	hosted in the siliceous dolostone. These sphalerites are predominantly yellow
238	in color, ellipsoidal in shape, and form parallel strips with a dominant grain size
239	of 0.5-1.2 mm. In some cases, the sphalerite occurs as single and
240	multi-colored concentric rings (Fig. 4e, f, g). Galena grains are almost square,
241	dispersed in sphalerite grains and locally rims the sphalerite. Quartz grains are
242	clear and coarse (0.02-0.1cm) (Fig. 4c, d).
243	The massive ore is the highest-grade ore-type in the Wusihe deposit. It
244	occurs as massive lodes and ore shoots 0.5 to 3 m in width. Galena is
245	well-formed and the dominant ore mineral (60-70%) followed by sphalerite
246	(20-30%) and pyrite (10%) (Fig. 3k, I).

247	The late bitumen-carrying calcite occurs mainly as veins (Figs. 3c and 4d, k,
248	I). The calcite veins contain small amounts of sphalerite and bitumen and
249	partially cut early quartz veins (Fig. 3c). Quartz occurs as granular, partially
250	fibrillar, or comb-like structures (Figs. 4c and 5e, f). Quartz grains are typically
251	0.05-0.2mm, occasionally reaching 0.5mm.

252 Alteration

253 Hydrothermal alteration at Wusihe primarily consists of silicification, 254 pyritization and carbonatization. Alteration is mainly found in fault zones, and 255 less commonly in the rocks hosting stratiform ore bodies. Silicification is the 256 most pervasive alteration type in the Wusihe deposit. It mainly occurs as clear 257 veinlets and lenses in the carbonates that are characterized by high 258 permeability. Quartz occurs in vugs as subhedral-euhedral grains. The interior 259 of quartz veinlets contains sphalerite and galena. Pyritization mainly occurs as 260 irregular aggregates of fine-grained pyrite in the banded dolostone hosting 261 lamellar ores, or disseminated pyrite intergrown with silicification or veinlets in 262 carbonate breccias. Late, relatively weak carbonatization, is preserved as rare 263 veinlets, and shows no genetic relationship with sulfides.

264

265 SAMPLING AND ANALYTICAL METHODS

266 This study employs surface geological mapping, drill core logging, 267 petrographic observations, and geochemical and isotopic analyses. We

268 analyzed twenty-four single sulfide grains (0.4-1mm in size) separated from
269 the ores and thirteen representative thin sections of the main mineralization
270 stages. Twenty-four single sulfide grains were selected for bulk sulfur isotope
271 analysis, using a Finnigan MAT-253 mass spectrometer at the State Key
272 Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese
273 Academy of Sciences (SKLODG-IGCAS). The precision calculated from
274 replicated analysis of unknown samples was better than 0.2‰ (2 σ). Five thin
275 sections were imaged for SEM-CL, using JSM7800F SEM equipped with a
276 Mono CL4 detector at the SKLODG-IGCAS. Two thin sections were selected
277 for LA-ICPMS in situ trace element analysis of quartz from the most
278 representative mineralization stage (stage-II). Analyses were conducted at the
279 SKLODG-IGCAS, using an Agilent 7900 ICP-MS equipped with a GeoLasPro
280 193 nm ArF excimer laser. The uncertainties on Li, Na, Mg, Al, K, Ti and Ge
281 measurements are less than 6%. Four thin sections were selected for
282 NanoSIMS in situ analysis of S isotopes in pyrite and sphalerite. They were
283 acquired on a CAMECA NanoSIMS 50 L at the Key Laboratory of Earth and
284 Planetary Physics, Institute of Geology and Geophysics, CAS. The analytical
285 precision calculated from replicated analysis of unknown samples is better
286 than 0.2‰ (1s). Four thin sections were analyzed using a femtosecond
287 LA-MC-ICPMS setup for in situ analysis of Pb isotopes in galena. The
288 analyses were measured using a Nu II MC-ICP-MS (Nu Instruments, Wrexham

289	UK) combined with a 193 nm RESOlution M-50 femtosecond (fs) laser ablation
290	system (ASI) at the State Key Laboratory of Continental Dynamics, Northwest
291	University, China. Repeated analyses of NIST SRM 610 glass standard
292	yielded highly reliable and reproducible results during the entire analytical
293	session with mean 206 Pb/ 204 Pb, 207 Pb/ 204 Pb and 208 Pb/ 204 Pb ratios of 17.052 ±
294	0.003, 15.515 \pm 0.003 and 36.980 \pm 0.007 (1SD, n=183), respectively. Detailed
295	analytical methods for in situ quartz trace element analysis, bulk S and in situ
296	S-Pb isotopes are included in Appendix-1.
297	
298	RESULTS
299	Stage-II is the most representative phase. Al concentrations increase from
300	8.46-354 ppm (mean 134 ppm; n=8) in Q1 to 171-3049 ppm (mean 1062ppm;
301	n=38) in Q2, and then decrease to 3.18-149 ppm (mean 25.4 ppm; n= 24)
302	(Table 2). Clear linear correlations are observed among Li, Na and K vs. Al
303	contents in quartz (Fig. 7a-c). The results of bulk sulfur isotope measurements
304	are summarized in Table 1 and are shown in Figs. 8a and 9b. Bulk $\delta^{34}S$ values
305	range from +1.8‰ to +14.3‰ (n=24). The overall range of in situ $\delta^{34}S$ values
306	at the micro-scale in pyrite and sphalerite grains is from -4.3‰ to +26.6‰,
307	which is larger than the range of bulk sulfides (+1.8-+14.2‰; Figs. 8b and 9a, c)
308	and include some of the lowest (negative) values ever reported. The in situ
309	δ^{34} S values of diagenetic pyrite vary from +23.4‰ to +24.4‰ (n=4), those of

310	stage-I sulfides range from +16.5‰ to +26.6‰ (n=12), and stage-II and -III
311	range from +0.1-+11.8‰ (n=8) and -4.3-+12.3‰ (n=14), respectively. Galena
312	in situ Pb isotopic ratios are presented in Table 4 and are shown in Fig. 11a-c.
313	Galena grains have the following in situ Pb isotopic ratios: ²⁰⁶ Pb/ ²⁰⁴ Pb =
314	18.02-18.19, 207 Pb/ 204 Pb = 15.66-15.69 and 208 Pb/ 204 Pb = 38.14-38.39, with µ
315	$(^{238}U/^{204}Pb)$ values of 9.63-9.67 (n=36). Full details of in situ trace element
316	data, bulk S, and in situ S and Pb isotopes are included in Appendix-2.
317	
318	DISCUSSION
319	Acid-producing processes
320	The dark-grey Q1 quartz occurs as euhedral-subhedral grains, enclosed by
321	Q2, which is characterized by euhedral oscillatory growth zones showing
322	variable CL intensity. Q3 dark anhedral quartz veins cut the former two
323	generations of quartz. These complex CL textures are considered to reflect the
324	wide range of physical and chemical conditions under which hydrothermal
325	quartz forms (Götze and Möckel 2012).
326	In quartz, compensated substitution (Al ³⁺ +H ⁺ /Li ⁺ /Na ⁺ /K ⁺ \rightarrow Si ⁴⁺) is one of the
327	key substitution modes governing the incorporation of structural trace
328	elements (Mackey 1963; Götze et al. 2001, 2004). Of the trace elements in
329	quartz from the Wusihe deposit, Li, K, Na generally increase from Q1 to Q2,
330	and then decrease in Q3 veins through time. Reasonable linear correlations

331	between AI and these monovalent cations provide evidence for a component
332	of coupled substitution in quartz where AI^{3+} and Li^+ , K^+ , or Na^+ substitute for
333	Si^{4+} (Fig. 7a-c). This suggests that the observed CL intensity variations may
334	represent variations in the concentrations of AI and associated monovalent
335	cations. Therefore, compensated substitution appears to be an important
336	mechanism for the incorporation of AI into the quartz lattice in the Wusihe
337	deposit.
338	Factors influencing AI concentrations in low-temperature hydrothermal
339	quartz include temperature, growth rate, and aqueous AI concentration which
340	is strongly influenced by AI solubility and pH in hydrothermal systems (Perny et
341	al. 1992; Rusk et al. 2008; Götze and Möckel 2012). Sharp contrasts in Al
342	concentration from zone to zone in single quartz grains from the Wusihe
343	deposit, where no evidence for a temperature change exists, suggest that Al
344	zoning in quartz does not result from temperature fluctuations. Crystal growth
345	rate can also be ruled out, because in most samples, even where Al
346	concentrations change by two orders of magnitude, no change in quartz
347	morphology is observed (Rusk et al. 2008). Hence, Al concentrations in
348	hydrothermal quartz from the Wusihe deposit likely reflect AI solubility and pH
349	changes.

At Wusihe, Al concentrations in Q2 can reach 3049 ppm, suggesting quartz
 precipitated from Al-enriched acidic ore-forming fluids (Rusk et al. 2008). The

352	sharp contrast in Al concentrations from early Al-depleted quartz, to late
353	dominant Al-rich quartz reflects acidification of neutral fluids led by sulfide
354	precipitation (Rusk et al. 2008; Chen et al. 2011). This process is consistent
355	with the reaction equation (1): $ZnCL_4^{2-}$ (aq) + H ₂ S (aq) = ZnS (s) + 2H ⁺ + 4Cl ⁻
356	(Crerar et al. 1985; Talluri 2000; Leach et al. 2005; Hammerli et al. 2015). In
357	Fig. 5j, k, the observed greyscale oscillatory zoning of Q2 may indicate that
358	acid release was continuously buffered by dissolving carbonate wall rocks by
359	the reaction equation (2): $CaCO_3(s) + 2H^+ = Ca^{2+} + H_2CO_3(aq)$. This reaction
360	could facilitate solution collapse, providing space for further sulfide
361	precipitation (Anderson and Macqueen 1982).
362	Furthermore, extensive SEM examination of authigenic K-feldspar (which
363	preceded sphalerite growth, Fig. 5d-f) in ore samples did not reveal any
364	evidence of alteration to sericite (muscovite) and kaolinite. Such alteration
365	would be expected if the ore fluids had pH values < ~5-5.5 at 200°C (The
366	homogenization temperature of fluid inclusions in sphalerite from the Wusihe
367	deposit: 120-260°C; Fig. S1; Jones 1993; Rusk et al. 2008; Xiong et al. 2016).
368	Therefore, this evidence suggests that the ore-forming fluids in the Wusihe
369	deposit were weakly acidic.

370 Source of sulfur

371 Bulk δ^{34} S values measured in this study span an overall smaller range 372 compared to those previously reported for the Wusihe deposit (δ^{34} S =

373	+7.1-+20.9‰; Lin 2005; Li 2007; Xiong et al. 2018; Zhu et al. 2018). On the
374	one hand, in agreement with previous research outcomes (Xiong et al. 2018;
375	Zhu et al. 2018), the ³⁴ S-enriched sulfides in this study ($\delta^{34}S = +5.8$ -+14.3‰)
376	are indicative of products of marine evaporite minerals ($\delta^{34}S_{sulfate}$ =
377	+30.4‰-+35.3‰; Zhou et al. 2015, 2017; Kong et al. 2017; Yuan et al. 2017)
378	by thermochemical sulfate reduction (TSR). The majority of fluid inclusions
379	from the Wusihe deposit contain H_2S and CH_4 released by the thermal
380	degradation of organic matter (Xiong et al. 2016). Accordingly, subordinate
381	contributions of thermal degradation of organic matter (TDO) in sedimentary
382	rocks cannot be excluded (e.g. HR_aCH_2 -S-H = R_bCH_2 + H_2S ; R_x represents a
383	large organic molecule) (Fig. 9a; Ohmoto 1972; Leventhal 1990). Conversely,
384	the presence of lower $\delta^{34}S$ values ($\delta^{34}S < 5\%$) in this study suggests that the
385	sulfur in the Wusihe deposit may be derived from additional reservoirs (Fig. 9a).
386	Possibilities include i) H_2S from the basement granitic rocks or pyroclastic
387	rocks (δ^{34} S=-5-+5‰; Ohmoto and Rye 1979), and ii) H ₂ S formed by bacterial
388	sulfate reduction (BSR) (Fig. 9a; Jorgensen et al. 1992).
389	The presence of ³² S-enriched sulfides may reflect fluids moving through
390	underlying Mesoproterozoic igneous basement or the Neoproterozoic Suxiong
391	Formation igneous rocks. However, there is almost no evidence for leaching
392	(e.g. field observations, C-O isotopes and REE patterns) of these igneous

rocks within the Wusihe district (e.g. Zheng 2012; Xiong et al. 2018; Zhu et al.

- 394 2018). Hence, igneous rocks are unlikely to contribute sulfur to the ore-forming395 fluid.
- Open-system BSR can produce ³²S-enriched H₂S with a wide range of isotope fractionation (40-60‰) (Fig. 9a; Basuki et al. 2008). The biogenic H₂S mixed with H₂S produced by TSR may be the source of the lower δ^{34} S obtained in this study. The organic-enriched Qiongzhusi Fm. (black shales) could potentially serve as a reducing agent (e.g. $4R_x$ -CH₃ + $3SO_4^{2-}$ + H⁺ = $4R_x$ -COOH + $4H_2O$ + $3H_2S$) (Leventhal 1990; Machel et al. 1995; Zhang et al.
- 402 2010; Wu 2013).

403 Variation of S isotopes

404 An increasing number of studies have shown that microscale variations in 405 sulfur isotopic ratios obtained by in situ analysis of sulfur-bearing minerals can 406 provide constraints on mineralizing process that cannot be resolved from bulk 407 δ^{34} S values alone (Peevler et al. 2003; Xue et al. 2015). This is because 408 traditional sampling techniques such as micro-drilling or mineral separation 409 used to obtain sulfur isotopic compositions greatly exceed the observed scale 410 of textual variation (µm) in pyrite and sphalerite (Xiong et al. 2018; Zhu et al. 411 2018).

412 Micro-scale analysis shows that the variation of δ^{34} S within a thin section is 413 small (+0.5‰: +23.9-+24.4‰) in diagenetic samples, e.g. WSH-07, suggesting 414 that diagenetic pyrite formed with no significant sulfur isotopic fractionation. 20

415	Considerable micro-scale variation exists among different grains in the
416	lamellar pyrite (variation = +8.6%: range = +18.0-+26.6%) and even within
417	single sphalerite grains in the massive ore (+12.3‰: +0.0-+12.3‰) (Fig. 10k, I)
418	To better understand the large variation of $\delta^{34}S$ values at the single grain scale
419	within the Wusihe deposit, the parameters affecting sulfur isotope signatures
420	need to be evaluated.

421 Factors affecting the sulfur isotope signature of hydrothermal sulfide 422 minerals include: T, pH, and fO_2 of the fluids as well as the $\delta^{34}S$ composition of 423 the H₂S responsible for precipitating sulfide phases. As mentioned previously, 424 fluid inclusion homogenization temperatures in the Wusihe deposit span a 425 considerable range (120-260°C; Xiong et al. 2016), indicating appreciable 426 temperature fluctuation during the course of sulfide precipitation. Temperature, 427 however, is unlikely to have been a significant factor in producing the observed 428 δ^{34} S variations, because sulfur isotopic fractionation between H₂S and 429 ZnS/FeS_2 is insignificant and virtually independent of temperature (Fig. S2). 430 Furthermore, there is almost no evidence that pyrite and barite co-exist in the 431 Wusihe deposit, even though the Ba content of fluid inclusions obtained by 432 LA-ICPMS are high spanning a range of 281-924 ppm (Li et al. unpublished 433 data). Calculations presented by Ohmoto (1972) suggest that outside the 434 pyrite-barite field, changes in pH and fO2 would produce only very small 435 variations in sulfide δ^{34} S (Fig. S3) Thus, the observed variations in δ^{34} S

436	appear to have been controlled predominantly by the $\delta^{34}S$ composition of H ₂ S
437	during sulfide deposition.

438 The δ^{34} S of stage-I pyrite is close to that of diagenetic pyrite and higher than 439 that of stages-II and -III grains, suggesting that stage-I pyrite formed through 440 nearly close-system BSR with no significant fractionation (Fig. 9a). Micro-scale 441 variations in sulfur isotopes show an increasing trend of δ^{34} S values from core 442 to rim in stage-II and -III pyrite and sphalerite (Figs. 9c and 10k, I), suggesting 443 more ³²S-riched H₂S produced by BSR was incorporated during early 444 formation. BSR can only take place at temperatures of <~110°C (Jorgensen et 445 al. 1992). However, prior to the arrival of hydrothermal fluids, the ambient 446 temperatures during the transition from the late Ediacaran to early Cambrian, 447 were likely <110°C (Xue et al. 2015). Accordingly, the formation of a local H₂S 448 reservoir prior to the arrival of ore-forming fluids cannot be ruled out. As the 449 temperature of the mineralizing fluids were episodically raised to more than 450 120°C (inferred from fluid inclusion data; e.g. Xiong et al. 2016), the site of 451 mineralization would inhibit BSR and promote TSR. Hence, the mixing of 452 different proportions of H₂S reduced by BSR and TSR are capable of 453 producing the observed range of S isotope values.

454 Source of metals

As shown on Fig. 11a, our new homogeneous Pb isotope data plot above
the upper crust evolution line, suggesting a homogeneous or well-mixed metal

457	source originating in the upper crust. Secondly, the coarse-grained massive
458	galena aggregates have distinct Pb isotopic compositions relative to the
459	fine-grained brecciated and banded sulfide ores (Fig. 11b, c). Considering that
460	the U and Th contents of galena are negligible, Pb isotopic ratios of galena
461	formed at different paragenetic stages likely reflect the composition of
462	hydrothermal fluids (Zhou et al. 2018b). The data suggest that the two stages
463	of ore-forming fluids had distinct Pb isotopic compositions (Fig. 11b, $$ c) . Highly
464	radiogenic Pb from wall rock sequences (e.g. late Ediacaran sedimentary
465	rocks) are inferred to have provided a greater contribution during stage-II
466	mineralization than stage-III.
467	Fig. 11d shows the in situ Pb isotopic results from this study, along with
468	previous in situ data from the Upper Yangtze Pb-Zn metallogenic province for
469	comparison (Bao et al. 2017; Tan et al. 2017; Zhou et al. 2018a, b, c; Luo et al.

470 2019). The data show that in situ Pb isotopic compositions vary between 471 deposits, and that variations correlate directly with the age of the host rock. 472 Galena in situ Pb isotope ratios become increasingly radiogenic from Pb-Zn 473 deposits hosted in Cambrian strata (e.g. the Nayongzhi and Maliping deposits), 474 to those Pb-Zn deposits hosted in Upper Ediacaran strata (e.g. the Wusihe 475 and Yinchanggou deposits), and further still for Pb-Zn deposits in 476 Carboniferous-Permian strata in this province (e.g. the Maozhachang, 477 Liangyan and Huize deposits). This pattern might have resulted from: i) the

478	variable accumulation of radiogenic Pb due to variations in parental U and Th
479	concentrations, ii) heterogeneity of the Pb isotopic signature of basement
480	rocks, iii) the evolution (e.g. migration, precipitation) of a single source material
481	(e.g. basement source rocks), or iv) the interaction of separate and isotopically
482	distinct Pb sources (e.g. Moyers 2015; Potra et al. 2018). The first scenario
483	can be excluded because trace element LA-ICPMS data show that there is no
484	significant difference in the U and Th contents of galena among these deposits
485	(Ye Lin et al. 2011 and unpublished data). The slopes may imply that the
486	Maliping, Wusihe and Yinchanggou deposits are separate from the Nayongzhi,
487	Huize, Liangyan, Maozhachang and Fule deposits, the two groups defining
488	separate age clusters, supported by radiogenic dating results (dashed lines in
489	Fig. 11d; Wu 2013; Zhang et al. 2014; Xiong et al. 2018; Zhou et al. 2013b,
490	2015, 2018a and references therein). This pattern could potentially result from
491	the evolution of a single source material. However, the fluid driving mechanism
492	in this province during mineralization was considered to be local non-aquifer
493	tectonically-driven fluid expulsion from orogenic belts (Han et al. 2007), which
494	is different to that of the Mississippi Valley, or eastern Australia where
495	topographically-driven gravitational fluid flow occurred via long-distance /
496	large-scale migration along sandstone aquifers (Appold and Garven 1999;
497	Huston et al. 2017). Our new Pb isotope data plot on the upper margin of the
498	broad field of basement rocks, whilst Devonian to Permian carbonate rocks

499	extend to significantly more radiogenic compositions (Fig. 11a, d). Hence, in
500	addition Pb isotope variations related to the age of the host rocks, part of the
501	observed scatter may reflect the isotopic heterogeneity of the basement.
502	However, a local mixture of less radiogenic Pb (low ²⁰⁷ Pb/ ²⁰⁴ Pb) from
503	basement rocks and more radiogenic Pb (high ²⁰⁷ Pb/ ²⁰⁴ Pb) originating from
504	carbonate wall rocks cannot be ruled out.

- 505
- 506

IMPLICATIONS

507 **Ore-forming environments**

508 It is generally accepted that most major low-temperature hydrothermal 509 deposits formed during large-scale contractional events during nearby 510 orogenic activity (e.g. Hu et al. 2017; Leach et al. 2010). These deposits 511 include hydrothermal Hg, Carlin-type Au deposits (e.g. Hu et al. 2017) and the 512 MVT Pb-Zn deposits featured in this study (Fig. 1; e.g. Zhang 2008; Duan et al. 513 2014; Xiong et al. 2018; Zhou et al. 2018b). When continental margins in 514 mountain belts are buried beneath thrust sheets, hydrothermal fluids expelled 515 from marginal sediments migrate into the foreland basin and continental 516 interior. These fluids are involved in faulting, migration of hydrocarbons and 517 metals, metamorphism, paleomagnetism, and final ore concentration (Oliver 518 1986; Appold and Nunn 2005). This environment is consistent with that along 519 the margins of the Yangtze Block (Fig. 1b; e.g. Li et al. 2002; Hu et al. 2017), 25

520	where numerous previous studies suggest that the formation of
521	low-temperature hydrothermal deposits, occurred in various basin-mountain
522	systems (Fig. 1b), coincided with collision compression and post-collisional
523	extension related to the late Caledonian and the late Indochina orogenies (e.g.
524	Xiong et al. 2018; Zhou et al. 2018b).

525 In addition to tectonic setting, wall rock sequences appear to be more 526 important in concentrating ores than previously thought. Pb-Zn deposits 527 surrounding the Yangtze Block are primarily hosted in carbonate rocks of the 528 late Ediacaran-early Cambrian and the early Devonian-early Permian (Huang 529 2004; Zhou et al. 2018b). Among these two sequences, the late Ediacaran 530 Dengying Formation is the dominant host of Pb-Zn orebodies. This is likely 531 because: 1) the Dengying Formation comprises thickly-bedded siliceous, 532 evaporitic dolostones with high porosity, interlayered with numerous 533 H₂S-bearing hydrocarbon reservoirs (Shao and Li 1996; Wu et al. 2013; Lin 534 2014); 2) extensive pre-existing karst cavities and interlayered faulted zones 535 present in this sequence provided the necessary space for the formation of 536 high-grade ores (Lin 2014); and 3) the immediately overlying organic-rich 537 marine black shales of the early Cambrian Qiongzhusi Formation are thermally 538 mature and contain up to 22.3% total organic carbon (TOC), most of which 539 yields type-I kerogen (Zou et al. 2010). The shales provided an important 540 source of oil and hydrocarbons, supported by the large volume of solid 26

541	bitumen degraded via pyrolysis which characterizes the Wusihe district (e.g.
542	Zhang et al. 2010; Zheng 2012; Luo et al. 2019). Hence, this constitutes an
543	aquitard plus a key geochemical reduction barrier for migrating fluids (e.g.).
544	This arrangement is in agreement with the occurrence of the ~50 km long
545	ore-hosting belt located in the Wusihe district.

546 **The precipitation mechanism for sulfide minerals**

547 There are three identified precipitation mechanisms for sulfides in MVT 548 deposits, including: 1) the reduced sulfur mechanism; 2) the local sulfate 549 reduction mechanism; and 3) the metal and reduced sulfur-mixing mechanism 550 (Leach et al. 2005 and references therein). At Wusihe, the reduced sulfur 551 mechanism can be excluded because the pH of the predicted mineralizing 552 solution was likely too high (>~5.5) (as suggested by the presence of 553 authigenic K-feldspar), and hence the reduced sulfur and metals were 554 probably not delivered via a single fluid (Sverjensky 1984; Emsbo 2000). The 555 presence of extensive fine-grained and colloform textured sphalerite of stage-I 556 indicate a fluid-mixing mechanism in the Wusihe deposit (Fig. 3; Corbella et al. 557 2004; Zhang et al. 2009). The local sulfate reduction mechanism could 558 dominantly lead to stage-II and -III sulfide precipitation, with typically large, 559 well-formed sulfides reflecting slow H₂S generation, and organic matter 560 derived from ore-hosting wall rocks (Anderson et al. 2015; Xiong et al. 2016).

561 Evolution of the hydrothermal system

562	Through an integrated approach, this paper proposes a new working model
563	to explain the Pb-Zn mineralization in the Wusihe district (Fig. 12a). Within the
564	western margin of the Yangtze Block, hot and weakly acidic brines (e.g. $H_2S_{(aq)}$
565	+ $O_{2 (aq)} = SO_4^{2-} + 2H^+$; Corbella and Ayoma 2003), driven by the late
566	Caledonian orogeny (411 \pm 10Ma; sphalerite Rb-Sr; Xiong et al. 2018),
567	extracted metals primarily from the basement rocks, potentially followed by a
568	limited contribution from local carbonate wall rocks (as suggested by Pb
569	isotopes, this study), to form metal-bearing chloride in ore-forming fluids.
570	These fluids migrated along the Ganluo-Xiaojiang fault zone into
571	unconformities and interlayered fault zones associated with the Wanlicun
572	syncline in the Wusihe district (e.g. Han et al. 2007). This is supported by the
573	presence of authigenic K-feldspar in the Wusihe deposit which required the
574	flux of multiple pore volumes of fluid through the rocks, reflecting fluid
575	migration events during orogenic activity. The fluids interacted with the
576	$^{34}\text{S}\text{-enriched}$ pre-existing H_2S generated in situ, largely through close-system
577	BSR (<~110°C) at the deposition site during the first stage of mineralization
578	(stage-I), forming the lower group of the deposition site. Due to variable
579	mineral compositions, porosity and permeability of the wall rocks, these ore
580	fluids selectively replaced some of the parallel organic-bearing fissure layers in
581	the wall rocks, forming lamellar ores with clear boundaries between sulfide

582 layers.

583 Meanwhile, a ³²S-enriched H₂S reservoir generated by open-system BSR 584 formed before the arrival of the high-T ore-forming fluid within the upper group 585 of the deposition site (stages-II and -III). The organic-rich Qiongzhusi 586 Formation may have served as a reducing agent. When the fluids ascended, 587 the mineralization system yielded ³⁴S-enriched H₂S because the high 588 temperature of the fluids inhibited BSR and promoted TSR. Proximal to faults, 589 fluids containing Pb-Zn chloride complexes rapidly mixed with the H₂S 590 reservoir and cooled to form hydrothermal collapse breccia fragments, 591 fine-grained stock-work and brecciated ores. The relatively Pb-enriched fluids 592 formed massive ore. The sulfide precipitation processes outlined above 593 correspond to an acid-producing chemical reaction (as suggested by Al 594 concentrations). This reaction enhanced the acidity of fluids, resulting in further 595 dissolution of surrounding wall rock carbonates, thereby providing additional 596 space for further sulfide precipitation during ore-forming processes.

- 597
- 598

ACKNOWLEDGEMENTS

599 This research was financially supported by National Natural Science 600 Foundation of China (41872095 and 41430315), the National Key R&D 601 Program of China (2017YFC0602502), and the Research Start-up Project for 602 Introduced Talent of Yunnan University (YJRC4201804) and the Cultivation 29

603	Project for Excellent Youth of National Natural Science Foundation of Yunnan
604	University (2018YDJQ009) to JX. Zhou. We thank Dr. Wei Zhou, Gang Xia
605	(The University of Queensland, Australia), Dr. En-Tao Liu (China University of
606	Geosciences, Wuhan, China), Prof. Tai-Yi Luo and Dr. Jun Chen, Zhen-li Li
607	(Institute of Geochemistry, Chinese Academy of Sciences, China) for fruitful
608	discussions. Comments and suggestions from Prof. Fang-Zhen Teng
609	(Associate Editor), Prof. Martin Appold, David Huston and the anonymous
610	reviewer greatly improved the quality of the paper.

611	REFERENCES CITED
612	Anderson, G., Macqueen, R. (1982) Ore deposit models-6. Mississippi
613	Valley-type lead-zinc deposits. Geoscience Canada 9 (2).
614	Anderson, G. (2015) Kerogen as a source of sulfur in MVT deposits. Economic
615	Geology, 110, 837-840.
616	Appold, M., Nunn, J.A. (2005) Hydrology of the Western Arkoma basin and
617	Ozark platform during the Ouachita orogeny: Implications for
618	Mississippi Valley-type ore formation in the Tri-State Zn-Pb district. 5,
619	308-325.
620	Appold, M., Garven, G. (1999) The hydrology of ore formation in the Southeast
621	Missouri district: Numerical models of topography-driven fluid flow
622	during the Ouachita Orogeny. Economic Geology and the Bulletin of the
623	Society of Economic Geologists, 94, 913-935.
624	Bao, Z., Li, Q., and Wang, C.Y. (2017) Metal source of giant Huize Zn-Pb
625	deposit in SW China: New constraints from in situ Pb isotopic
626	compositions of galena. Ore Geology Reviews, 91, 824-836.
627	Basuki, N.I., Taylor, B.E., Spooner, E.T.C. (2008) Sulfur Isotope Evidence for
628	Thermochemical Reduction of Dissolved Sulfate in Mississippi
629	Valley-Type Zinc-Lead Mineralization, Bongara Area, Northern Peru.
630	Economic Geology, 103, 783-799.
631	Beck, W.R. (1949) Crystallographic inversions of the aluminum

orthophosphate polymorphs and their relation to those of silica. Journal

633	of the American Ceramic Society, 32, 147-151.
634	Chen, X.D., Chen ZY, Cheng YB, Ye HS, Wang H (2011) Distribution and
635	Application of Trace Elements in Hydrothermal Quartz: Understanding
636	and prospecting. Geological Review, 57, 707-717. (in Chinese with
637	English abstract)
638	Chu, Y., Lin, W., Faure, M., Wang, Q.C., Ji, W.B. (2012) Phanerozoic
639	tectonothermal events of the Xuefengshan Belt, central South China:
640	Implications from U-Pb age and Lu-Hf determinations of granites. Lithos,
641	150, 243-255.
642	Corbella, M., Ayora, C. (2003) Role of fluid mixing in deep dissolution of
643	carbonates. Geologica Acta, 1, 305.
644	Corbella, M., Ayora, C., Cardellach, E. (2004) Hydrothermal mixing, carbonate
645	dissolution and sulfide precipitation in Mississippi Valley-type deposits.
646	Mineralium Deposita, 39, 344-357.
647	Crerar, D., Wood, S., Brantley, S., Bocarsly, A. (1985) Chemical controls on
648	solubility of ore-forming minerals in hydrothermal solutions. The
649	Canadian Mineralogist, 23, 333-352.
650	Duan, Q.F. (2014) The research of metallogenic regularity of stritabound
651	zinc-lead deposits from Sinian-Cambrian in western Hunan and western
652	Hubei. (in Chinese with English abstract) 32

653	Duan, Q.F., Cao, L., Zeng, J.K., Zhou, Y., Tang, C.Y., Li, K. (2014) Rb-Sr
654	Dating of Sphalerites from Shizishan Pb-Zn Deposit in Huayuan Ore
655	Concentration Area, Western Hunan, and Its Geological Significance.
656	Earth Science, 39, 977-986 and 999.
657	Durham, K.C. (1966) Role of juvenile solutions, connate waters and evaporitic
658	brines in the genesis of lead zinc-fluorine-barium deposits: Transactions,
659	Institution of Mining and Metallurgy, sec. B, v. 75, p. B226-229.
660	Emsbo, P. (2000) Gold in sedex deposits. Reviews in Economic Geology, v. 13,
661	p. 427–438.
662	Gibbins, W.A. (1983) Mississippi Valley type lead-zinc districts of northern
663	Canada, In P roceedings, International Conference on Mississippi
664	Valley Type Lead-Zinc Deposits, University of Missouri-Rolla, pp.
665	403-414.
666	Gotze, J., Plotze, M., Habermann, D. (2001) Origin, spectral characteristics
667	and practical applications of the cathodolumimescence (CL) of quartz -
668	a review. Mineralogy and Petrology, 71, 225-250.
669	Götze, J., Plötze, M., Graupner, T., Hallbauer, D.K., Bray, C.J. (2004) Trace
670	element incorporation into quartz: A combined study by ICP-MS,
671	electron spin resonance, cathodoluminescence, capillary ion analysis,
672	and gas chromatography. Geochimica et Cosmochimica Acta, 68,
673	3741-3759.

674	Götze, J., Möckel, R. (2012) Quartz: Deposits, mineralogy and analytics.
675	Springer Science & Business Media.
676	Guilbert, John M. and Charles F. Park. (1986) The Geology of Ore Deposits, W.
677	H. Freeman, pp 889–907.
678	Hammerli, J., Spandler, C., Oliver, N.H., Sossi, P., Dipple, G.M. (2015) Zn and
679	Pb mobility during metamorphism of sedimentary rocks and potential
680	implications for some base metal deposits. Mineralium Deposita, 50,
681	657-664.
682	Han, R.S., Liu, C.Q., Huang, Z.L., Chen, J., Ma, D.Y., Lei, L., Ma, G.S. (2007)
683	Geological features and origin of the Huize carbonate-hosted
684	Zn-Pb-(Ag) District, Yunnan, South China. Ore Geology Reviews, 31,
685	360-383.
686	Hou, Z.Q., Wang, S.X., Du, A.D., Qu, X.M., Sun, W.D. (2003) Re-Os dating of
687	sulfides from the volcanogenic massive sulfide deposit at Gacun,
688	southwestem China. Resource Geology, 53, 305-310.
689	Hu, R.Z., Fu, S.L., Huang, Y., Zhou, M.F., Fu, S.H., Zhao, C.H., Wang, Y.J., Bi,
690	X.W., Xiao, J.F. (2017) The giant South China Mesozoic
691	low-temperature metallogenic domain: Reviews and a new geodynamic
692	model. Journal of Asian Earth Sciences, 137, 9-34.
693	Huang, Z.L., Chen, J., Han, R.S., Li, W.B., Liu, C.Q., Zhang, Z.L., Ma, D.Y.,
694	Gao, D.R., Yang, H.L. (2004) Geochemistry and Ore-formation of the

34

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

695	Huize Giant Lead-zinc Deposit, Yunnan, Province, China: Discussion
696	on the Relationship Between Emeishan Flood Basalts and Lead-zinc
697	Mineralization, pp.1–154. Geological Publishing House, Beijing (in
698	Chinese).
699	Huang, J.L., Zou, C.N., Li, J.Z., Dong, D.Z., Wang, S., Wang, S.Q., Cheng,
700	K.M. (2012) Shale gas generation and potential of the Lower Cambrian
701	Qiongzhusi Formation in the Southern Sichuan Basin, China. Petroleum
702	Exploration and Development 39, 75-81.
703	Huston, D., Champion, D., Morrison, G., Maas, R., Thome, J.P., Carr, G.,
704	Beams, S., Bottrill, R., Chang, Z., Dhnaram, C., Downes, P., Forster, D.,
705	Gemmell, B., Lisitsin, V., McNeil, A., and Vicary, M. (2017) Spatial
706	variations in lead isotopes, Tasman Element, eastern Australia.
707	Huston, D.L., Stevens, B., Southgate, P.N., Muhling, P., Wyborn, L. (2006)
708	Australian Zn-Pb-Ag ore-forming systems: a review and analysis.
709	Economic Geology, 101, 1117-1157.
710	Huttenlocher, H.F. (1935) Crystal structure of aluminium orthophosphate
711	AIPO4. Zeitschrift Fur Kristallographie, 90, 508-516.
712	Jiang, Y.H., Jin, G.D., Liao, S.Y., Zhou, Q., Zhao, P. (2010) Geochemical and
713	Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids
714	from the Qinling orogen, central China: Implications for a continental arc
715	to continent–continent collision. Lithos, 117, 183-197.

716	Jones, H.D. (1993) Geochemical and sulfur isotopic investigations into the
717	origins of Mississippi Valley-type mineralization in the southern
718	Appalachians and nearby areas (Doctoral dissertation).
719	Jorgensen, B.B., Isaksen, M.F., Jannasch, H.W. (1992) Bacterial sulfate
720	reduction above 100°C in deep-sea hydrothermal vent sediments.
721	Science, 258, 1756-1757.
722	Kajiwara, Y., Krouse, H. (1971) Sulfur isotope partitioning in metallic sulfide
723	systems. Canadian Journal of Earth Sciences, 8, 1397-1408.
724	Kong, Z.G., Wu, Y., Liang, T., Zhang, F., Meng, X.Y., Lu, L. (2017) Sources of
725	ore-forming material for Pb-Zn deposits in the Sichuan-Yunnan-
726	Guizhou triangle area: Multiple constraints from C-H-O-S-Pb-Sr
727	isotopic compositions. Geological Journal, 53, 159-177.
728	Kucha, H. (2010) Microbial Sphalerite Formation in Carbonate-Hosted Zn-Pb
729	Ores, Bleiberg, Austria: Micro- to Nanotextural and Sulfur Isotope
730	Evidence. Economic Geology, 105, 1005-1023.
731	Lan, T.G., Hu, R.Z., Bi, X.W., Mao, G.J., Wen, B.J., Liu, L., Chen, Y.H. (2018)
732	Metasomatized asthenospheric mantle contributing to the generation of
733	Cu-Mo deposits within an intracontinental setting: a case study of the \sim
734	128 Ma Wangjiazhuang Cu-Mo deposit, eastern North China Craton.
735	Journal of Asian Earth Sciences, 160, 460-489.

736 Leach, D.L., Sangster, D.F., Kelley, K.D., Large, Ross. R., Garven, G., Allen, 36
737	C.R. (2005) Sediment-hosted Pb-Zn Deposits: a global perspective.
738	Economic Geology, 100, 561-608.
739	Leach, D.L., Bradley, D.C., Huston, D., Pisarevsky, S.A., Taylor, R.D., Gardoll,
740	S.J. (2010) Sediment-hosted lead-zinc deposits in Earth history.
741	Economic Geology, 105, 593-625.
742	Leventhal, J.S., 1990. Organic matter and thermochemical sulfate reduction in
743	the Viburnum Trend, Southeast Missouri. Economic Geology, 85,
744	622-632.
745	Li, X.H., Li, Z.X., Li, W.X., Wang, Y. (2006) Initiation of the Indosinian Orogeny
746	in South China: evidence for a Permian magmatic arc on Hainan Island.
747	The Journal of geology, 114, 341-353.
748	Li, Y., He, D., Li, D., Lu, R., Fan, C., Sun, Y., Huang, H. (2018) Sedimentary
749	provenance constraints on the Jurassic to Cretaceous paleogeography
750	of Sichuan Basin, SW China. Gondwana Research, 60, 15-33.
751	Li, T.Z. (2007) The genesis and metallogenic model oflead-zinc deposits in the
752	middle part of Dadu River Valley. MSc thesis, Chengdu Institute of
753	Technology, Chengdu, China, pp. 1-55. (in Chinese with English
754	abstract)
755	Lin, F.C. (2005) Geological and geochemical characteristics and genesis
756	ofsupper-large-scale Sedex-type stratiform lead-zinc deposits in the
757	Dadu River Valley on the western margin of the Yangtze Craton. Acta 37

758	Geologica Sinica, 79, 540-556. (in Chinese with English abstract)
759	Liu, H.C., Lin, W.D. (1999) Study on the Pb–Zn–Ag ore deposits in northeast
760	Yunnan, Yunnan, China. Yunnan University Press, Kunming, pp. 1-468
761	(in Chinese)
762	Liu, Y.S., Hu, Z.C., Gao, S., Günther, D., Xu, J., Gao, C.G., Chen, H.H. (2008)
763	In situ analysis of major and trace elements of anhydrous minerals by
764	LA-ICP-MS without applying an internal standard. Chemical Geology,
765	257, 34-43.
766	Lu, S., Li, H., Chen, Z., Hao, G., Zhou, H., Guo, J., Niu, G., Xiang, Z. (2003)
767	Meso-Neoproterozoic geological evolution in the Qinling orogeny and
768	its response to the supercontinental events of Rodinia. Geological
769	Publish House, Beijing: 1-194.
770	Li, J.W., Vasconcelos, P., Zhou, M.F., Deng, X.D., Cohen, B., Bi, S.J., Zhao,
771	X.F., Selby, D. (2014) Longevity of magmatic-hydrothermal systems in
772	the Daye Cu–Fe–Au District, eastern China with implications for mineral
773	exploration. Ore Geology Reviews, 57, 375-392.
774	Lin, X.X. (2014) Study on dolomite and metallogenic regularity of lead-zinc
775	deposits within the Sinian Dengying Formation in Hanyuan region,
776	Sichuan Province, China. (In Chinese with English abstract)
777	Luo, K., Zhou, J.X., Huang, Z.L., Wang, X.C., Wilde, S.A., Zhou, W., and Tian,
778	L. (2019) New insights into the origin of early Cambrian

779	carbonate-hosted Pb-Zn deposits in South China: A case study of the
780	Maliping Pb-Zn deposit. Gondwana Research, 70, 88-103.
781	Machel, H.G., Krouse, H.R., Sassen, R., 1995. Products and distinguishing
782	criteria of bacterial and thermochemical sulfate reduction. Appllied
783	Geochemistry, 10, 373–389.
784	Mackey, J.H. (1963) EPR Study of Impurity-Related Color Centers in
785	Germanium-Doped Quartz. Journal of Chemical Physics, 39, 74-83.
786	Maschmeyer, D., Lehmann, G. (1983) A trapped-hole center causing rose
787	coloration of natural quartz. Zeitschrift Fur Kristallographie, 163,
788	181-196.
789	Mi, M., Chen, Y.J., Yang, Y.F., Wang, P., Li, F.L., Wan, S.Q., Xu, Y.L. (2015)
790	Geochronology and geochemistry of the giant Qian'echong Mo deposit,
791	Dabie Shan, eastern China: Implications for ore genesis and tectonic
792	setting. Gondwana Research, 27, 1217-1235.
793	Moyers, A. (2015) Source Constraints of Ore Metals In Mississippi Valley-Type
794	Deposits in Central and Eastern Tennessee Using Pb Isotopes.
795	Dissertations & Theses - Gradworks.
796	Ohmoto, H. (1972) Systematics of Sulfur and Carbon Isotopes in Hydrothermal
797	Ore Deposits. Economic Geology, 67, 551-578.
798	Ohmoto, H., Rye, R. (1979) Isotopes of sulfur and carbon. Geochemistry of
799	hydrothermal ore deposits. 509-567.

800	Ohmoto, H. (1986) Stable isotope geochemistry of ore-deposits. Reviews in
801	Mineralogy, 16, 491-559.
802	Oliver, J. (1986). Fluids expelled tectonically from orogenic belts: Their role in
803	hydrocarbon migration and other geologic phenomena. Geology, 14,
804	99-102.
805	Paradis, S., Hannigan, P., Dewing, K. (2007) Mississipi valley-type lead-zinc
806	deposits (MVT). Mineral deposits of Canada, Geological Survey of
807	Canada. 1-15.
808	Peevler, J., Fayek, M., Misra, K.C., Riciputi, L.R. (2003) Sulfur isotope
809	microanalysis of sphalerite by SIMS: constraints on the genesis of
810	Mississippi valley-type mineralization, from the Mascot-Jefferson City
811	district, East Tennessee. Journal of Geochemical Exploration, 80,
812	277-296.
813	Perny, B., Eberhardt, P., Ramseyer, K., Mullis, J., Pankrath, R. (1992)
814	Microdistribution of Al, Li, and Na in α quartz: possible causes and
815	correlation with short-lived cathodoluminescence. Am Mineral.
816	American Mineralogist, 77, 534-544.
817	Potra, A., Garmon, W.T., Samuelsen, J.R., Wulff, A., Pollock, E.D. (2018) Lead
818	isotope trends and metal sources in the Mississippi Valley-type districts
819	from the mid-continent United States. Journal of Geochemical
820	Exploration, 192, 174-186.

821	Roger, F., Malavieille, J., Leloup, P.H., Calassou, S., Xu, Z. (2004) Timing of
822	granite emplacement and cooling in the Songpan–Garzê Fold Belt
823	(eastern Tibetan Plateau) with tectonic implications. Journal of Asian
824	Earth Sciences, 22, 465-481.
825	Rusk, B.G., Lowers, H.A., Reed, M.H. (2008) Trace elements in hydrothermal
826	quartz: Relationships to cathodoluminescent textures and insights into
827	vein formation. Geology, 36, 547-550.
828	Rye, R., Czamanske, G. (1969) Experimental determination of
829	sphalerite-galena sulfur isotope fractionation and application to ores at
830	Providencia, Mexico Geological Society of America Abstract, pp.
831	195-196.
832	Sakai, H. (1969) Sulfur isotopes and the Pine Point lead-zinc mineralization.
833	Economic Geology, 64, 718-730.
834	Shao, S.C., Li, C.Y. (1996). Metallogenetic rules of the strata-bound Pb-Zn
835	deposit in Dengying Formation of the west margin of Yangtze massif
836	and its possibility of ore-forming super-large ore deposit. Yunnan
837	Geology. (In Chinese with English abstract)
838	Shu, L.S. (2006) Predevonian tectonic evolution of south China: from
839	Cathaysian Block to Caledonian period folded orogenic belt. Geological
840	Journal of China Universities, 12, 418-431.
841	Song, Y.C., Yang, T.N., Zhang, H.R., Liu, Y.C., Hao, H.D., Li, Z. (2015) The 41

842	Chaqupacha Mississippi Valley-type Pb–Zn deposit, central Tibet: Ore
843	formation in a fold and thrust belt of the India–Asia continental collision
844	zone. Ore Geology Reviews, 70, 533-545.
845	Sverjensky, D.A. (1981) The origin of a Mississippi Valley-type deposit in the
846	Viburnum Trend, Southeast Missouri. Economic Geology, 76,
847	1848-1872.
848	Sverjensky, D.A. (1984) Oil field brines as ore-forming solutions. Economic
849	Geology, 79, 23-37.
850	Talluri. (2000) Fluid Chemistry and Depositional Mechanism of the Epigenetic,
851	Discordant Ores of the Proterozoic, Carbonate-Hosted, Zawarmala
852	Pb-Zn Deposit, Udaipur District, India. Economic Geology, 95,
853	1505-1525.
854	Tan, S.C., Zhou, J.X., Li, B., Zhao, J.X. (2017) In situ Pb and bulk Sr isotope
855	analysis of the Yinchanggou Pb-Zn deposit in Sichuan Province (SW
856	China): Constraints on the origin and evolution of hydrothermal fluids.
857	Ore Geology Reviews, 91, 432-443.
858	Wallis, S., Tsujimori, T., Aoya, M., Kawakami, T., Terada, K., Suzuki, K., Hyodo,
859	H. (2003) Cenozoic and Mesozoic metamorphism in the Longmenshan
860	orogen: Implications for geodynamic models of eastern Tibet. Geology,
861	31, 745-748.
862	Wang, C.M., Deng, J., Carranza, E.J.M., Lai, X.R. (2014) Nature, diversity and

863	temporal-spatial distributions of sediment-hosted Pb-Zn deposits in
864	China. Ore Geology Reviews, 56, 327-351.
865	Wang, L.J., Yu, J.H., Griffin, W.L., O'Reilly, S.Y. (2012) Early crustal evolution
866	in the western Yangtze Block: Evidence from U–Pb and Lu–Hf isotopes
867	on detrital zircons from sedimentary rocks. Precambrian Research
868	222-223, 368-385.
869	Wang, X., Xue, C., Li, Z., Li, Q., Yang, R. (2008) Geological and geochemical
870	characteristics of Mayuan Pb-Zn ore deposit on northern margin of
871	Yangtze landmass. Mineral Deposits - Bejing, 27, 37.
872	Wang, Y.J., Zhang, F.F., Fan, W.M., Zhang, G.W., Chen, S.Y., Cawood, P.A.,
873	Zhang, A.M. (2010) Tectonic setting of the South China Block in the
874	early Paleozoic: Resolving intracontinental and ocean closure models
875	from detrital zircon U-Pb geochronology. Tectonics, 29.
876	Wilkinson, J. (2013) Sediment-Hosted Zinc-Lead Mineralization: Processes
877	and Perspectives. Processes and Perspectives, Treatise on
878	Geochemistry, Elsevier, H Holland, K Turekian (ed), Amsterdam,
879	Netherlands, pp. 219-249. Doi:10.1016/B978-0-08-095975-7.01109-8.
880	Wilkinson, J.J., Eyre, S.L., Boyce, A.J. (2005) Ore-forming processes in
881	Irish-type carbonate-hosted Zn-Pb deposits: Evidence from mineralogy,
882	chemistry, and isotopic composition of sulfides at the Lisheen mine.
883	Economic Geology, 100, 63-86.

884	Wu, T., Xiao, L., Wilde, S.A., Ma, C.Q., Zhou, J.X. (2017) A mixed source for
885	the Late Triassic Garzê-Daocheng granitic belt and its implications for
886	the tectonic evolution of the Yidun arc belt, eastern Tibetan Plateau.
887	Lithos, 288, 214-230.
888	Wu, T., Zhou, J.X., Wang, X.C., Li, W.X., Wilde, S.A., Sun, H.R., Wang, J.S., Li,
889	Z. (2018). Identification of ca. 850 Ma high-temperature strongly
890	peraluminous granitoids in southeastern Guizhou Province, South
891	China: A result of early extension along the southern margin of the
892	Yangtze Block. Precambrian Research, 308, 18-34.
893	Wu, Y. (2013). The age and ore-forming process of MVT deposits in the
894	boundary area of Sichuan -Yunnan-Guizhou provinces, Southwest
895	China. A dissertation submitted to China University of Geosciences.
896	Beijing (In Chinese with English abstract)
897	Wu, Y., Zhang, C.Q., Mao, J.W., Ouyang, H.G., Sun, J. (2013) The genetic
898	relationship between hydrocarbon systems and Mississippi Valley-type
899	Zn-Pb deposits along the SW margin of Sichuan Basin, China.
900	International Geology Review, 55, 941-957.
901	Xiong, S.F., Yao, S.Z., Gong, Y.J., Tang, M.T., Zeng, G.P., Wang, W. (2016)
902	Ore-forming fluid and thermochemical sulfate reduction in the Wusihe
903	lead-zinc deposit, Sichuan Province, China. Earth Science 41, 105–120.
904	(in Chinese with English abstract)

905	Xiong, S.F., Gong, Y.J., Jiang, S.Y., Zhang, X.J., Li, Q., Zeng, G.P. (2018) Ore
906	genesis of the Wusihe carbonate-hosted Zn-Pb deposit in the Dadu
907	River Valley district, Yangtze Block, SW China: evidence from ore
908	geology, S-Pb isotopes, and sphalerite Rb-Sr dating. Mineralium
909	Deposita, 1-13.
910	Xue, C., Chi, G., Fayek, M. (2015) Micro-textures and in situ sulfur isotopic
911	analysis of spheroidal and zonal sulfides in the giant Jinding Zn-Pb
912	deposit, Yunnan, China: Implications for biogenic processes. Journal of
913	Asian Earth Sciences, 103, 288-304.
914	Ye, L., Cook, N. J., Ciobanu, C. L., Yuping, L., Qian, Z., Tiegeng, L. (2011)
915	Trace and minor elements in sphalerite from base metal deposits in
916	south china: a LA-ICPMS study. Ore Geology Reviews, 39, 188-217.
917	Yuan, S.D., Ellis, G.S., Chou, I.M., Burruss, R.C. (2017) Experimental
918	investigation on thermochemical sulfate reduction in the presence of
919	1-pentanethiol at 200 and 250° C: Implications for in situ TSR
920	processes occurring in some MVT deposits. Ore Geology Reviews, 91,
921	57-65.
922	Zartman, R.E., Doe, B.R. (1981) Plumbotectonics - the model. Tectonophysics,
923	75, 135-162.
924	Zhang, C.Q. (2008) The genetic model of Mississippi Valley-type deposits in
925	the boundary area of Sichuan, Yunnan and Guizhou Province, China.

926	PhD thesis, Chinese Academy of Geological Sciences, Beijing (in
927	Chinese with English abstract).
928	Zhang, C.Q., Li, X.B., Yu, J.J., Mao, J.W., Chen, F.K., Li, H.M. (2008) Rb-Sr
929	dating of single sphalerites from the Daliangzi Pb–Zn deposit, Sichuan,
930	and its geological significances. Geological Review, 54, 145-151 (in
931	Chinese with English abstract).
932	Zhang, C.Q., Yu, J.J., Mao, J.W., Yu, H., Li, H.M. (2010) Research on the
933	Biomarker from Chipu Pb-Zn Deposit, Sichuan. Acta Sedimentologica
934	Sinica, 28, 832-844. (In Chinese with English abstract).
935	Zhang, C.Q., Wu, Y., Wang, D.H., Chen, Y.C. (2014) Brief introducition on
936	metallogeny of Pb-Zn deposits in China. Acta Geologica Sinica, 88,
937	2252-2268. (In Chinese with English abstract).
938	Zhang, C.Q., Yu, J.J., Mao, J.W., Rui, Z.Y. (2009) Advances in the study of
939	Mississippi Valley-type deposits. Mineral deposits, 28, 195-210. (In
940	Chinese with English abstract).
941	Zhang, G.W., Guo, A.L., Wang, Y.J., Li, S.Z., Dong, Y.P., Liu, S.F., He, D.F.,
942	Cheng, S.Y., Lu, R.K., Yao, A.P. (2013) Tectonics of South China
943	continent and its implications. Science China Earth Sciences, 56,
944	1804-1828.
945	Zhang, S.B., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Gao, S., Wu, F.Y. (2006) Zircon

946 U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic 46

947	event in South China. Precambrian Research, 151, 265-288.
948	Zhang, Y.X., Wu, Y., Tian, G., Shen, L., Zhou, Y.M., Dong, W.W., Zeng, R.,
949	Yang, X.C., Zhang, C.Q. (2014) Mineralization Age and the Source of
950	Ore-forming Material at Lehong Pb-Zn Deposit, Yunnan Province:
951	Constraints from Rb-Sr and S Isotopes System. Acta Mineralogica
952	Sinica, 34, 305-311.
953	Zhao, G.C. (2015) Jiangnan Orogen in South China: Developing from
954	divergent double subduction. Gondwana Research, 27, 1173-1180.
955	Zhao, J.H., Zhou, M.F., Yan, D.P., Zheng, J.P., Li, J.W. (2011) Reappraisal of
956	the ages of Neoproterozoic strata in South China: No connection with
957	the Grenvillian orogeny. Geology, 39, 299-302.
958	Zhao, X.F., Zhou, M.F., Li, J.W., Sun, M., Gao, J.F., Sun, W.H., Yang, J.H.
959	(2010) Late Paleoproterozoic to early Mesoproterozoic Dongchuan
960	Group in Yunnan, SW China: Implications for tectonic evolution of the
961	Yangtze Block. Precambrian Research, 182, 57-69.
962	Zhou, J.C., Wang, X.L., Qiu, J.S. (2009) Geochronology of Neoproterozoic
963	mafic rocks and sandstones from northeastern Guizhou, South China:
964	Coeval arc magmatism and sedimentation. Precambrian Research, 170,
965	27-42.
966	Zhou, J.X., Bai, J.H., Huang, Z.L., Zhu, D., Yan, Z.F., Lv, Z.C. (2015) Geology,
967	isotope geochemistry and geochronology of the Jinshachang 47

968	carbonate-hosted Pb-Zn deposit, southwest China. Journal of Asian
969	Earth Sciences, 98, 272-284.
970	Zheng, X.Z. (2012) Geological features and genesis of Wusihe Pb-Zn deposit,
971	Sichuan. MSc Thesis, Chang'an University, Xi'an, China, p. 66 (in
972	Chinese with English abstract).
973	Zhou, J.X., Luo, K., Wang, X.C., Wilde, S.A., Wu, T., Huang, Z.L., Cui, Y.L.,
974	Zhao, J.X. (2018a) Ore genesis of the Fule Pb-Zn deposit and its
975	relationship with the Emeishan Large Igneous Province: Evidence from
976	mineralogy, bulk C-O-S and in situ S-Pb isotopes. Gondwana Research,
977	54, 161-179.
978	Zhou, J.X., Huang, Z.L., Yan, Z.F. (2013a) The origin of the Maozu
979	carbonate-hosted Pb-Zn deposit, southwest China: Constrained by
980	C-O-S-Pb isotopic compositions and Sm-Nd isotopic age. Journal of
981	Asian Earth Sciences, 73, 39-47.
982	Zhou, J.X., Huang, Z.L., Zhou, M., Li, X., Jin, Z.G. (2013b) Constraints of
983	C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of
984	the Tianqiao carbonate-hosted Pb-Zn deposit, SW China. Ore Geology
985	Reviews, 53, 77-92.
986	Zhou, J.X., Xiang, Z.Z., Zhou, M.F., Feng, Y.X., Luo, K., Huang, Z.L., Wu, T.
987	(2018c) The giant Upper Yangtze Pb-Zn province in SW China:
988	Reviews, new advances and a new genetic model. Journal of Asian

989	Earth Sciences, 154, 280-315.
990	Zhou, J.X., Wang, X.C., Wilde, S.A., Luo, K., Huang, Z.L., Wu, T., Jin, Z.G.
991	(2018b) New insights into the metallogeny of MVT Zn-Pb deposits: A
992	case study from the Nayongzhi in South China, using field data, fluid
993	compositions, and in situ S-Pb isotopes. American Mineralogist, 103,
994	91-108.
995	Zhou, M.F., Ma, Y.X., Yan, D.P., Xia, X.P., Zhao, J.H., Sun, M. (2006) The
996	Yanbian terrane (Southern Sichuan Province, SW China): A
997	neoproterozoic are assemblage in the western margin of the Yangtze
998	block. Precambrian Research, 144, 19-38.
999	Zhou, M.F., Yan, D.P., Kennedy, A.K., Li, Y.Q., Ding, J. (2002) SHRIMP U-Pb
1000	zircon geochronological and geochemical evidence for Neoproterozoic
1001	arc-magmatism along the western margin of the Yangtze Block, South
1002	China. Earth and Planetary Science Letters, 196, 51-67.
1003	Zhu, C.W., Liao, S.L., Wang, W., Zhang, Y.X., Yang, T., Fan, H.F., Wen, H.J.
1004	(2018) Variations in Zn and S isotope chemistry of sedimentary

sphalerite, Wusihe Zn-Pb deposit, Sichuan Province, China. OreGeology Reviews, 95, 639-648.

1007 Zou, C.N., Dong, D.Z., Wang, S.J., Li, J.Z., Li, X.J., Wang, Y.M., Li, D.H.,

1008 Cheng, K.M. (2010) Geological characteristics and resource potential of

1009 shale gas in China. Petroleum exploration and development, 37, 49 This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7021

American Mineralogist

1010 641-653.

1011 Figure captions

1012 FIGURE 1. (a) Tectonic map of South China. The green dashed box (top left)
1013 indicates area shown in (b) (modified from Zhou et al. 2018b). Abbreviations
1014 NCC=North China Craton, QDOB = Qinling-Dabie Orogenic Belt, YB=Yangtze
1015 Block, JOB=Jiangnan Orogenic Belt, CB=Cathaysian Block, SGFB=Songpan
1016 Ganzê Fold Belt, YA=Yidun Arc, SOB=Sanjiang Orogenic Belt. (b) Simplified
1017 tectonic map of the Yangtze block and adjacent orogenic belts with
1018 metamorphic complexes, showing distribution of MVT deposits surrounding
1019 the Yangtze Block (modified from Zhang et al. 2013; Li et al. 2018). The figure
1020 also shows I, the Lower Yangtze northern margin; II, the Tongbai-Dabie
1021 southern margin; III, Wudang-Dabashan; IV, Hannan-Micang multi-phased
1022 composite basin-mountain foreland deformation systems; V, the Longmenshar
1023 intracontinental orogen foreland; VI, the Chuxiong foreland basin, and VII, the
1024 Qiandong-Xiangxi-E'xi orogen foreland. The black dashed box (bottom left)
1025 indicates the location of the Upper Yangtze Pb-Zn metallogenic province.

1026

FIGURE 2. (a) Geological map of the Wusihe district, showing the sampling
area. (b) Cross-section through the Wusihe district, based on drill core logging
and geological mapping (modified after Lin (2005)). (c) Schematic stratigraphic
column of the Wusihe deposit (modified from Lin (2005)). Legend colors are
consistent with Figure 2a. Abbreviations: P=Phosphate, Si=Siliceous.

1032

- FIGURE 3. Hand specimen photographs showing different types of ores in the
 Wusihe deposit: (a) lamellar ores. (b-f) disseminated ores. (g-h) stockwork
 ores. (i-j) brecciated ores. (k-l) massive ores.
- 1036

1037 FIGURE 4. Photomicrographs in reflected light showing representative 1038 textures of mineral associations from different mineralization stages. (a) Late 1039 stage-III calcite (Cal-III) infilling vugs within Sp-II and Py-I. (b) Sp-II coexisting 1040 with Gn-II, replaced by late Py-III. (c) The late Q-IV veinlets with comb 1041 structure. (d) Brown-red Sp-II, Cal-II and Q-II infilling black shale. (e) Yellow 1042 colloform Sp-II enclosing a brown core. (f) Oscillatory zoned Sp-II showing 1043 periodic color variations. (g) Mosaic Sp-II crystals in siliceous dolostone. (h) 1044 Gn-III coexisting with Sp-III. (i) Gn-III enclosing sphalerite. (j) Late Q-IV and 1045 Cal-IV enclosing Gn-II, infilling Sp-II aggregates. (k) Stock-work ore, showing 1046 Sp-II coexisting with bitumen (Bit). (I) Late Cal-IV and Bit-IV infilling siliceous 1047 dolostone. Abbreviations: Cal=Calcite, Sp=Sphalerite, Py=Pyrite, Gn=Galena, 1048 Q=Quartz.

1049

FIGURE 5. Back scattered images. (a) Diagenetic pyrite (Py) dispersed in
siliceous dolostone. (b) Fine-grained euhedral-subhedral quartz (Q1) enclosed
by galena (Gn-III). (c, d) Coarse-grained euhedral quartz (Q2) coexisting with

1053	dolomite (Dol-II), Gn-II and sphalerite (Sp-II). (e) Late anhedral quartz (Q3)
1054	occurs in veinlets infilling fractures of Gn-II and Dol-II. (f) Q3 occurs in veinlets
1055	infilling fractures of Sp-II. (g) Py-III replaced the organic matter within the
1056	original structure. (h) Disseminated autogenetic K-feldspar (Kf) in dolostone
1057	enclosed by sphalerite ore. (i) The image of energy spectra of Kf at EDS spot 1
1058	(c), examined by Energy Dispersive Spectroscopy (EDS). (j-k) Photomosaic of
1059	a sphalerite-bearing quartz. SEM-CL image shows textual relationships of
1060	Q1-Q3 quartz crystals. Q1 is black euhedral-subhedral quartz. Q2 is later
1061	brighter quartz enclosing Q1. Q3 grew into open space, particularly along the
1062	margin of sphalerite (black mineral in upper left corner). Q3 cuts both Q1 and
1063	Q2. Red circles mark laser ablation spots of 40µm in diameter.
1064	

1065 FIGURE 6. Schematic summary of mineral paragenesis in the Wusihe deposit.

1066 Four stages of hydrothermal mineralization include stage I (pyrite-sphalerite),

1067 stage II (sphalerite-galena), stage III (galena) and stage IV (bitumen-calcite).

1068

FIGURE 7. Concentrations of Li, Na, K and Ge vs. Al (ppm) in quartz from the Wusihe deposit. Reasonable linear correlations on plots of Li, Na and K vs. Al (ppm) are shown by the quartz data, Li vs. Al ($R^2 = 0.7129$), Na vs. Al ($R^2 = 0.6550$) and K vs. Al ($R^2 = 0.3867$), suggesting that compensated substitution mode ($Al^{3+}+H^+/Li^+/Na^+/K^+\rightarrow Si^{4+}$) governing the incorporation of quartz trace 53

1074	elements at Wusihe. No clear linear correlation is observed on a plot of Ge vs.
1075	Al, indicating that single substitution mode (Ge ⁴⁺ \rightarrow Si ⁴⁺) can be ruled out
1076	(Huttenlocher 1935). Al concentrations initially show a general increase (blue
1077	arrow) from Q1 to Q2, and then to become more depleted (red arrow) in Q3.
1078	This trend suggests the variations of AI solubility in the hydrothermal fluid and
1079	indicates the role of acid-producing process resulted from sulfide precipitation,
1080	and acid consumption by carbonate buffering.
1081	
1082	FIGURE 8. Histogram showing sulfur isotope compositions of sulfide minerals.
1083	(a) Bulk sulfur isotopic results. (c) In situ sulfur isotopic compositions. In situ
1084	$\delta^{34}S$ values measured in this study span an overall larger range compared to
1085	bulk δ^{34} S values.
1086	
1087	FIGURE 9. (a) Distribution pattern of $\delta^{34}S$ values for H_2S and sulfide minerals
1088	when sulfate of $\delta^{34}S$ = 33.5‰ (average value of $\delta^{34}S$ values of marine barites
1089	within the Ediacaran strata in the Upper Yangtze Pb-Zn metallogenic province;
1090	e.g. Zhou et al. 2015, 2018c; Kong et al. 2017; Yuan et al. 2017) is reduced by
1091	various mechanisms (modified after Ohmoto and Rye 1979). Yellow shaded
1092	area represents in situ $\delta^{34}S$ sulfide values in the Wusihe deposit.
1093	TDO-Thermal degradation of organic matter. (b) Distribution of bulk $\delta^{34}\text{S}$
1094	values of different color and types of ores in the Wusihe deposit. (c) 54

1095 Distribution of in situ δ^{34} S values of different color and types of ores in the 1096 Wusihe deposit. Results clearly show that microscale δ^{34} S values increase 1097 from core to rim.

1098

1099 FIGURE 10. Photomicrographs of pyrite and sphalerite from the Wusihe 1100 deposit, also showing δ^{34} S values for spots analyzed by NanoSIMS. (a-d) 1101 Photomicrographs of samples: a) Pyrites occurring in the siliceous dolostones 1102 are characterized by fine-grained (<1mm) euhedral textures; b) Abundant 1103 fine-grained lamellar pyrite. Thicker organic-rich layers often contain more 1104 pyrite; c) Pyrite and sphalerite are characterized by fine-grained (<1mm) 1105 subhedral to anhedral textures; d) Fine- to coarse-grained massive galena, 1106 sphalerite and pyrite aggregates. (e-h) Areas selected for in situ S isotope 1107 analysis show homogeneous trace element compositions (for example, ³⁴S, ⁷⁵As, ⁸⁰Se, ²⁰⁸Pb³²S); (i-I) Photomicrographs showing variation in δ^{34} S values 1108 1109 of sulfide grains from WSH-07, WSH-36, WSH-23 and WSH-20, respectively. 1110 Sample numbers correspond to those listed in Table 1. Abbreviations: 1111 Py=pyrite, Sp=sphalerite, OM=organic matter.

1112

FIGURE 11. (a) Comparison plot of Pb isotope ratios ²⁰⁷Pb/²⁰⁴Pb vs.
 ²⁰⁶Pb/²⁰⁴Pb among the Wusihe deposit, late Ediacaran Dengying Fm.,
 dolostone, Devonian to Permian carbonate rocks, Proterozoic basement 55

1116	(Kunyang/Huili Group) and late Permian Emeishan basalts (Huang 2004).
1117	Data for Upper Continental Crust (U), Orogen Belt (O), Mantle (M) and Lower
1118	Continental Crust (L) are from Zartman and Doe (1981). (b, c) Plots of
1119	²⁰⁷ Pb/ ²⁰⁴ Pb vs. ²⁰⁶ Pb/ ²⁰⁴ Pb, ²⁰⁸ Pb/ ²⁰⁴ Pb vs. ²⁰⁶ Pb/ ²⁰⁴ Pb for galena formed
1120	during stage-II (disseminated, brecciated, stockwork) and -III (massive). (d)
1121	Comparison plot of ²⁰⁷ Pb/ ²⁰⁴ Pb vs. ²⁰⁶ Pb/ ²⁰⁴ Pb of in situ data among the
1122	Maliping (MLP), Nayongzhi (NYZ), Yinchanggou (YCG), Wusihe (WSH), and
1123	Huize (HZ), Fule (FL), (Liangyan) LY, Maozhachang (MZC) deposits (data from
1124	Bao et al. 2017; Tan et al. 2017; Zhou et al. 2018a, b, c and Luo et al. 2019).
1125	Letters in brackets represent corresponding sequences hosting the Pb-Zn
1126	deposits: E = Ediacaran, ϵ = Cambrian, D = Devonian, C = Carboniferous, P =
1127	Permian. Dashed lines represent ages. The data imply that ore formation ages
1128	clearly fall into two clusters: 1. Maliping, Wusihe and Yinchanggou (black lines)
1129	and 2. Nayongzhi, Huize, Liangyan, Maozhachang and Fule (white lines).
1130	
1131	FIGURE 12. (a) The ideal model for the evolution of the hydrothermal system
1132	in Wusihe, showing metal leaching, fluid mixing, local sulfate reduction and

in Wushie, showing metal leaching, huid mixing, local subate reduction and
involvement of black shales and carbonate sequences etc. and (b) Schematic
section showing the deposition of the ores in Wushe, showing the spatial
relationship between wall rock sequences and different stages of
mineralization (modified from Wang et al. 2015).

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7021

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7021

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7021

Figure 12

PD-Zn deposit								
Spot name	Generation	CL intensity	Li	Na	Al	К	Ti	Ge
WSH-17-08	Q1	Dark-grey	0.111	5.18	8.46	7.93	0.667	0.368
WSH-17-09	Q1	Dark-grey	0.137	1.59	10.9	5.68	0.461	-
WSH-17-10	Q1	Dark-grey	6.26	23.4	354	48.2	0.848	0.460
WSH-17-36	Q1	Dark-grey	0.153	3.00	25.1	29.0	0.672	0.870
WSH-17-37	Q1	Dark-grey	3.88	12.8	210	28.7	0.479	0.443
WSH-17-38	Q1	Dark-grey	4.79	20.1	234	87.2	9.05	1.20
WSH-17-39	Q1	Dark-grey	0.285	3.07	12.6	8.28	0.831	0.329
WSH-17-40	Q1	Dark-grey	5.67	24.5	122	26.0	1.15	0.870
WSH-1-2	Q2	Light	24.1	73.9	1897	102	1.50	3.23
WSH-1-3	Q2	Dark	20.2	71.7	1532	60.5	1.31	2.62
WSH-1-5	Q2	Dark	19.5	74.7	1563	75.9	0.967	3.69
WSH-1-6	Q2	Dark	14.6	117	1342	89.5	3.40	3.85
WSH-17-1-1	Q2	Light	93.2	92.9	3049	39.8	1.41	3.14
WSH-17-1-3	Q2	Light	48.8	15.3	912	5.04	0.533	1.21
WSH-17-1-4	Q2	Light	37.4	21.3	1012	-	0.385	1.43
WSH-17-1-7	Q2	Grey	31.4	58.3	1180	54.0	1.24	3.22
WSH-17-1-8	Q2	Grey	62.5	125	2529	288	12.3	3.59
WSH-17-2-1	Q2	Light	34.5	2.91	581	1.43	1.22	5.88
WSH-17-2-2	Q2	Light	17.3	22.3	402	17.1	0.349	2.52
WSH-17-2-3	Q2	Light	38.0	7.57	626	-	0.596	0.669
WSH-17-2-4	Q2	Light	33.9	28.7	760	10.4	1.05	-
WSH-17-2-5	Q2	Light	37.3	5.92	668	-	1.28	4.81
WSH-17-2-6	Q2	Light	28.9	6.44	586	3.24	0.816	3.51
WSH-17-2-7	Q2	Light	9.21	59.4	171	10.6	2.52	0.571
WSH-17-2-10	Q2	Light	67.6	118	1949	174	9.20	3.04
WSH-17-19	Q2	Light	37.1	3.83	588	-	1.41	5.99
WSH-17-20	Q2	Light	36.8	3.73	580	-	1.15	5.52
WSH-17-21	Q2	Light	37.0	3.10	582	-	1.51	5.97
WSH-17-22	Q2	Light	35.4	2.80	554	-	1.43	6.14
WSH-17-34	Q2	Light	26.6	48.5	1064	51.3	0.848	0.763
WSH-17-44	Q2	Light	38.8	4.01	635	-	1.23	5.27
WSH-17-45	Q2	Light	36.7	2.95	584	-	1.01	5.54
WSH-17-46	Q2	Light	36.8	2.07	585	-	0.741	5.05
WSH-17-47	Q2	Light	31.3	9.74	501	2.51	0.942	8.34
WSH-17-48	Q2	Light	37.9	1.78	564	-	0.641	0.445
WSH-17-49	Q2	Light	25.1	1.73	389	-	0.805	7.34
WSH-17-50	Q2	Light	38.6	3.62	624	-	1.07	8.65
WSH-17-11	Q2	Light	87.1	58.2	2190	22.5	1.15	1.87
WSH-17-06	Q2	Light	89.3	62.4	1876	63.6	1.70	4.11
WSH-17-07	Q2	Light	58.0	56.6	2002	28.5	0.949	1.17
WSH-1-1	Q2	Light	19.7	64.8	1566	79.1	1.43	3.48

Table 1. Selected trace elements in different generations (II-Q1 -Q3) of quartz from the Wusihe Pb-Zn denosit

WSH-17-1-5	Q2	Light	16.4	31.3	635	33.6	0.484	-
WSH-17-2-8	Q2	Light	25.6	78.4	959	109	0.525	1.51
WSH-17-2-9	Q2	Light	22.9	75.1	986	115	1.47	1.78
WSH-17-13	Q2	Light	13.1	56.3	581	74.5	1.18	1.05
WSH-17-14	Q2	Light	9.27	50.9	456	57.7	1.16	0.619
WSH-1-4	Q3	Dark	0.709	11.4	85.0	13.8	1.07	-
WSH-17-1-2	Q3	Dark	0.285	0.910	8.36	5.85	0.895	-
WSH-17-1-6	Q3	Dark	0.217	2.96	23.4	20.2	0.814	0.629
WSH-17-01	Q3	Dark	-	4.33	6.75	2.30	0.508	0.448
WSH-17-02	Q3	Dark	-	1.70	4.28	-	0.772	0.813
WSH-17-03	Q3	Dark	-	-	6.02	4.06	0.791	0.719
WSH-17-04	Q3	Dark	0.130	-	5.68	5.65	0.654	0.586
WSH-17-05	Q3	Dark	0.173	1.51	11.3	3.42	0.591	0.619
WSH-17-15	Q3	Dark	0.073	1.35	5.08	2.29	0.419	
WSH-17-16	Q3	Dark	0.130	15.7	10.8	4.97	0.492	-
WSH-17-17	Q3	Dark	0.136	3.30	22.3	25.1	0.597	0.799
WSH-17-18	Q3	Dark	0.207	7.92	20.7	11.0	0.701	0.673
WSH-17-23	Q3	Dark	-	10.5	3.18	3.84	0.720	0.379
WSH-17-24	Q3	Dark	0.072	1.63	16.6	13.7	0.384	0.624
WSH-17-25	Q3	Dark	0.107	2.54	9.11	2.33	0.609	0.361
WSH-17-26	Q3	Dark	0.208	9.20	28.7	18.0	0.783	0.729
WSH-17-28	Q3	Dark	-	1.29	7.05	5.01	0.532	0.864
WSH-17-29	Q3	Dark	0.096	-	6.94	3.80	0.653	-
WSH-17-30	Q3	Dark	0.319	-	12.7	3.16	0.545	0.358
WSH-17-32	Q3	Dark	-	0.774	3.85	3.29	0.628	0.483
WSH-17-33	Q3	Dark	0.224	12.6	23.4	15.0	0.670	0.848
WSH-17-41	Q3	Dark	0.265	3.31	13.0	9.10	0.405	0.624
WSH-17-42	Q3	Dark	0.391	9.38	25.6	14.2	0.868	-
WSH-17-43	Q3	Dark	6.35	9.02	149	10.6	0.705	-

Notes: - = below detection limit

Sample #	Mineral	Texture	Structure (stage) & color	δ ³⁴ S (‰)
WSH-27	Gn	Fine-grained	Brecciated (II)	+11.3
WSH-07	Gn	Coarse-grained	Disseminated (II)	+8.0
WSH-16	Gn	Fine-grained	Disseminated (II)	+3.4
WSH-23	Gn	Fine-grained	Disseminated (II)	+2.9
WSH-24	Gn	Coarse-grained	Disseminated (II)	+7.2
WSH-03	Gn	Coarse-grained	Massive (III)	+12.1
WSH-04	Gn	Coarse-grained	Massive (III)	+11.5
WSH-26	Gn	Fine-grained	Massive (III)	+1.8
WSH-22	Gn	Fine-grained	Stock-work (II)	+3.4
WSH-26	Ру	Fine-grained	Massive (III)	+8.6
WSH-28	Ру	Fine-grained	Massive (III)	+10.9
WSH-30	Ру	Coarse-grained	Massive (III)	+10.8
WSH-34	Ру	Coarse-grained	Massive (III)	+8.6
WSH-35	Ру	Coarse-grained	Massive (III)	+10.5
WSH-27	Sp	Fine-grained	Brecciated (II); Yellow	+14.3
WSH-16	Sp	Fine-grained	Disseminated (II); Brown-red	+9.0
WSH-23	Sp	Fine-grained	Disseminated (II); Brown	+10.8
WSH-24	Sp	Coarse-grained	Disseminated (II); Brown	+10.4
WSH-03	Sp	Coarse-grained	Massive (III); Brown-red	+14.0
WSH-26	Sp	Fine-grained	Massive (III); Brown-red	+8.5
WSH-28	Sp	Fine-grained	Massive (III); Brown-red	+12.7
WSH-34	Sp	Coarse-grained	Massive (III); Red	+9.4
WSH-35	Sp	Coarse-grained	Massive (III); Red	+12.5
WSH-22	Sp	Fine-grained	Stock-work (II) Brown	+5.8

Table 2. Bulk S isotopic composition of sulfides from the Wusihe Pb-Zn deposit

Gn - Galena; Py - Pyrite; Sp - Sphalerite

Sample No.; Ore	Mineral	Spot location	Analysis spot	δ ³⁴ S (%-)
structure (stage)	Winera	operiocation	7 marysis spor	0 0(////
WSH-07;			WSH-07-01	+24.4
Fine-grained,	Dv		WSH-07-02	+24.4
disseminated	Fy		WSH-07-03	+23.9
(Diagenetic)			WSH-07-04	+24.4
			WSH-36-01	+19.3
			WSH-36-02	+19.5
			WSH-36-03	+16.5
			WSH-36-04	+16.8
			WSH-36-05	+19.0
VVSH-36;	5		WSH-36-06	+19.1
Fine-grained	Ру		WSH-36-07	+18.0
iameilar (I)			WSH-36-08	+18.4
			WSH-36-09	+21.0
			WSH-36-10	+21.6
			WSH-36-11	+26.6
			WSH-36-12	+26.1
		Rim	WSH-23-01	+8.1
		Rim	WSH-23-02	+8.4
	Sp	Core	WSH-23-03	+0.1
WSH-23;		Core	WSH-23-04	+0.1
Fine-grained,		Rim	WSH-23-09	+11.3
disseminated (II)		Rim	WSH-23-10	+11.8
	Ру	Core	WSH-23-06	+7.5
		Core	WSH-23-05	+6.9
		Rim	WSH-20-01	+12.0
		Rim	WSH-20-02	+12.3
	_	Rim	WSH-20-03	+11.7
	Sp	Rim	WSH-20-04	+11.9
		Core	WSH-20-07	+0.0
		Core	WSH-20-08	+0.1
WSH-20;		Rim	WSH-20-09	+1.9
Coarse-grained,		Rim	WSH-20-10	+2.3
massive (III)		Rim	WSH-20-11	+3.0
		Rim	WSH-20-12	+3.7
	Ру	Core	WSH-20-13	+0.8
		Core	WSH-20-14	+1.8
		Core	WSH-20-15	-3.5
		Core	WSH-20-16	-4.3

Table 3. In situ S isotopic composition of sulfides from the Wusihe Pb-Zn deposit

Py - Pyrite; Sp - Sphalerite
This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7021

Table 4. In situ Pb isotopic ratios of galena from the Wusihe Pb-Zn deposit

Spot name	Ore structure (stage)	²⁰⁸ Pb/ ²⁰⁴ Pb	1s	²⁰⁷ Pb/ ²⁰⁴ Pb	1s	²⁰⁶ Pb/ ²⁰⁴ Pb	1s	Ref.
WSH-27-01		38.28	0.01	15.68	0.01	18.11	0.01	
WSH-27-02		38.31	0.01	15.69	0.01	18.13	0.01	
WSH-27-03		38.36	0.01	15.69	0.01	18.18	0.01	
WSH-27-04		38.39	0.01	15.68	0.01	18.19	0.01	
WSH-27-05	Brecciated (II)	38.31	0.01	15.69	0.01	18.12	0.01	_
WSH-27-06		38.32	0.01	15.69	0.01	18.13	0.01	
WSH-27-07		38.30	0.01	15.68	0.01	18.12	0.01	
WSH-27-08		38.31	0.01	15.68	0.01	18.13	0.01	
WSH-27-09		38.31	0.01	15.68	0.01	18.12	0.01	
WSH-37-01		38.30	0.01	15.68	0.01	18.13	0.01	
WSH-37-02		38.31	0.01	15.68	0.01	18.13	0.01	
WSH-37-03		38.34	0.01	15.68	0.01	18.14	0.01	This study
WSH-37-04		38.32	0.01	15.69	0.01	18.13	0.01	This study
WSH-37-05	Disseminated (II)	38.27	0.01	15.67	0.01	18.11	0.01	
WSH-37-06		38.32	0.01	15.68	0.01	18.13	0.01	
WSH-37-07		38.29	0.01	15.68	0.01	18.11	0.01	
WSH-37-08		38.38	0.01	15.69	0.01	18.17	0.01	
WSH-37-09		38.29	0.01	15.69	0.01	18.11	0.01	
WSH-40-01		38.31	0.01	15.68	0.01	18.14	0.01	
WSH-40-02		38.31	0.01	15.68	0.01	18.14	0.01	
WSH-40-03	Stock-work (II)	38.30	0.01	15.68	0.01	18.13	0.01	
WSH-40-04		38.28	0.01	15.68	0.01	18.11	0.01	
WSH-40-05		38.28	0.01	15.68	0.01	18.11	0.01	
WSH-40-06		38.30	0.01	15.69	0.01	18.12	0.01	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7021

WSH-40-07		38.30	0.01	15.68	0.01	18.14	0.01	
WSH-40-08		38.29	0.01	15.68	0.01	18.11	0.01	
WSH-40-09		38.28	0.01	15.68	0.01	18.11	0.01	
WSH-20-01		38.18	0.01	15.66	0.01	18.05	0.01	
WSH-20-02		38.19	0.01	15.66	0.01	18.05	0.01	
WSH-20-03		38.21	0.01	15.66	0.01	18.06	0.01	
WSH-20-04		38.14	0.01	15.66	0.01	18.02	0.01	
WSH-20-05	Massive (III)	38.26	0.01	15.67	0.01	18.09	0.01	
WSH-20-06		38.23	0.01	15.67	0.01	18.07	0.01	
WSH-20-07		38.19	0.01	15.67	0.01	18.04	0.01	
WSH-20-08		38.19	0.01	15.67	0.01	18.05	0.01	
WSH-20-09		38.17	0.01	15.67	0.01	18.03	0.01	
Maliping		37.95-38.10		15.67-15.69		17.86-17.97		Luo et al. 2019
Nayongzhi		37.92-37.97		15.65-15.67		17.83-17.84		Zhou et al. 2018b
Yinchanggou		38.51-38.63		15.69-15.71		18.17-18.24		Tan et al. 2017
Huize		38.91-39.08		15.74.15.81		18.49-18.53		Bao et al. 2017
Maozhachang		38.41-38.48		15.78-15.80		18.76-18.76		Zhou et al. 2018c
Liangyan		39.23-39.36		15.77-15.79		18.64-18.71		Zhou et al. 2018c
Fule		38.59-38.73		15.71-15.73		18.57-18.62		Zhou et al. 2018a