	Revision 1 of Ms. 7205 Page 1
1	
2	
3	Heirs of the revolution:
4	
5	X-ray diffraction and the birth of the
6	
7	Mineralogical Society of America
8	
9	Dedicated to J Alexander Speer on his retirement as Executive Director of MSA
10	in thanks for his many years of selfless service
11	
12	
13	Peter J. Heaney*
14	
15	Dept. of Geosciences
16	Penn State University
17	University Park, PA 16802
18	
19	
20	*Email: <u>pjheaney@psu.edu</u>
21	
22	Keywords: Mineralogical Society of America; Mineralogy; Crystallography;
23	X-ray diffraction; History of Science

24	Abstract
25	The founding of the Mineralogical Society of America (MSA) in 1919 followed
26	so closely on the heels of the discovery of X-ray diffraction (XRD) in 1912 that one
27	might hypothesize a causal link. Was MSA born out of this scientific revolution? The
28	formation of our Society conventionally is attributed to the desire for a professional
29	journal and the need to emerge from the shadow of the Geological Society of
30	America, but these issues were not new in 1919. This review argues that MSA's
31	birth can be understood by an exploration of two historical strains: 1) Although
32	modern notions of atomism traditionally are associated with the emergence of the
33	kinetic theory of gases in the late 19^{th} century, mineralogists had invoked ordered
34	atomic spheres as the fundamental metaphor for crystalline structures over a
35	century earlier, leading directly to WL Bragg's discovery of the atomic design in
36	halite; and 2) In contrast to the broader chemistry community, mineralogists were
37	uniquely poised to embrace X-ray diffraction and the revolution in crystallography
38	that attended it. This revelation gave rise to a sense of distinct identity.
39	An examination of MSA's early records unambiguously reveals that US
40	mineralogists were closely attuned to the crystallographic insurgency as it took
41	place across the Atlantic. In particular, Edgar T. Wherry, one of the organizers of the
42	American Mineralogist and of the Society, actively disseminated information about
43	the new discoveries to his colleagues in the United States. Other founders of MSA
44	similarly championed the insurgent character of the new crystallography, and they
45	argued that the discoveries differentiated mineralogy from other styles of geological
46	investigation, thereby warranting the establishment of a specialized professional

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7205

Revision 1 of Ms. 7205

- 47 society. The continuing force of the revolution is revealed in a counter-reaction a
- 48 century later, as mineralogists have renewed their focus on phases at the boundary
- 49 between crystals and glasses, leading to reconsiderations of the meaning of
- 50 crystallinity.
- 51

52	INTRODUCTION
53	The six founders of the Mineralogical Society of America were born into a
54	world without atoms (Fig. 1). In December 1919, when MSA held its first meeting,
55	they ranged in age from 34 years (Edgar T. Wherry) to 53 (Alexander H. Phillips).
56	Thus, they all had received their scientific training in the classical 19th-century sub-
57	disciplines of mineralogy: Geometric Crystallography; Physical and Chemical
58	Properties of Minerals; Mineral Classification; and Descriptive Mineralogy. During
59	the 1890s, when most of the founders were working towards their graduate
60	degrees, the ultimate structure of crystalline materials was highly controversial, and
61	most mineralogy textbooks of the time adopted a wait-and-see agnosticism
62	concerning the physical reality of atoms.
63	Emblematic of the shift of US mineralogy away from European dominance,
64	half the founders received formal instruction in Europe and half learned their
65	mineralogy domestically. Edward H. Kraus, the first president and principal
66	architect of MSA, studied for his Ph.D. with Paul Groth in Munich from 1899 to 1901,
67	eventually assuming a mineralogy professorship at the University of Michigan (Hunt
68	1955). Frank R. Van Horn pursued a Ph.D. at the University of Heidelberg with
69	Victor Goldschmidt 1 from 1893 to 1897 and then became a professor at the Case
70	School of Applied Science (Kraus 1934). The Canadian Thomas L. Walker received
71	his Ph.D. in 1896 from the mineralogist Ferdinand Zirkel at the University of Leipzig,

¹ More specifically, Victor Mordechai Goldschmidt (1853-1933), who specialized in morphological crystallography and is distinguished from Victor Moritz Goldschmidt (1888-1947), who is considered the father of modern geochemistry.

72	and he then crossed paths with Van Horn as a postdoctoral associate with
73	Goldschmidt in Heidelberg (Parsons 1943).
74	The three remaining MSA founders were schooled primarily in the United
75	States. Alexander Phillips, born in next-door Lawrenceville, New Jersey, was a
76	Princetonian from his undergraduate A.B. to his graduate Sc.D. degree to his 49
77	years of college instruction at his alma mater (Buddington 1937). Herbert Whitlock,
78	curator at the American Museum of Natural History, studied with the famed
79	mineralogist Alfred Moses at Columbia University but prided himself on achieving
80	what he did without a doctorate (Pough 1949). The polymath Edgar Wherry
81	received his Ph.D. with Amos Peaslee Brown at the University of Pennsylvania in
82	1909, but he did spend one summer, in 1910, under the tutorship of Victor
83	Goldschmidt to deepen his knowledge of morphological crystallography (Hooker
84	and Montgomery 1975).
85	To the degree that six middle-aged, white American men of European
86	descent with a shared love of minerals can be considered eclectic, the founders
87	brought a mix of expertise to the table in 1919. In addition to his duties as
88	mineralogist, Van Horn acted as the athletic director at Case from 1900 to 1926, and
89	he oversaw the development of a high-level football program that toppled Ohio
90	State and Purdue (Grabowski 1992). Alexander Phillips's administrative skills as
91	chair of the organizing committee for MSA in 1919 were enriched by his tenure as
92	mayor of Princeton Township from 1911 to 1916 (Buddington 1937). Before
93	assuming his posts as professor at the University of Toronto and the first director of
94	the Royal Ontario Museum of Mineralogy, TL Walker was the assistant

95	superintendent of the Geological Survey of India from 1897 to 1901. His duties
96	included an arduous scientific expedition through the Himalayan Mountains from
97	India into Tibet. As a youth, ET Wherry collected plants before he discovered
98	minerals, and by the time he helped found MSA, he was working in the US
99	Department of Agriculture, eventually becoming a professor of botany at the
100	University of Pennsylvania in 1930.
101	Despite their different educational backgrounds and life experiences, as
102	American mineralogists advocating for the establishment of a new professional
103	society in 1919, these men were bound by a transformation within the previous
104	decade that had dramatically redrawn their intellectual landscapes. Whereas
105	nobody knew the fundamental structure of a mineral before 1912, by the end of that
106	decade, researchers across the Atlantic had established the paradigms for
107	crystallinity that still are taught in introductory mineralogy classes today.
108	To what extent was the founding of the Mineralogical Society of America a
109	response to the X-ray diffraction revolution? How did American mineralogists
110	perceive the relationship between atomic theory and crystallinity before the
111	revolution? Were they aware of the upheaval in European physics as they worked
112	to create MSA in the decade before its birth, and did they anticipate the vast impact
113	those discoveries would exert on the mineral sciences? How has the response of the
114	US mineralogical community to the XRD revolution evolved over the last century?
115	The synchronicity between the establishment of MSA and the transformation of
116	solid-state physics reasonably suggests some kind of linkage. On the other hand,
117	temporal correlation does not necessarily imply causation.

118	This celebratory article for the centennial anniversary of MSA explores the
119	intellectual framework that guided the six founders and their colleagues in the
120	invention of MSA. For the Society's fiftieth anniversary, George Phair of the United
121	States Geological Survey authored articles on the birth of The American Mineralogist
122	in 1916 and the society itself in 1919 (Phair 1969a,b). Whereas Phair skillfully
123	describes <i>how</i> MSA came into being, one can question whether he adequately
124	captures <i>why</i> the Society and its journal succeeded when prior efforts had failed.
125	Phair repeats the founders' argument that professional mineralogists desired a
126	dedicated periodical amidst a growing incompatibility with the Geological Society of
127	America (GSA), founded in 1888.
128	As will be argued below, this rationale must represent only a partial
129	explanation. The American Journal of Science (AJS) had served as an engine for
130	mineralogical research since its inception by Benjamin Silliman in 1818; in 1916
131	alone, 22 articles of a strictly mineralogical nature appeared in AJS. On the other
132	hand, several efforts to jumpstart purely mineralogical journals came to naught in
133	the late 19^{th} and early 20^{th} centuries. Thus, before 1916, mineralogists could not
134	sustain a journal of their own, but they could access a magazine that was prestigious
135	and communal with other branches of geology. From 1916 onwards, The American
136	Mineralogist inaugurated a journey that continues today under the auspices of a
137	thriving professional society founded three years later.
138	Something changed during that decade. Whereas MSA lore paints the
139	founders as reluctant exiles from an insufficiently convivial coalition of geologists,
140	this article asserts that MSA emerged as a separatist movement grounded in a new

141	sense of self-identity. Their feeling of distinctness originated in the redefinition of
142	minerals after the X-ray diffraction revolution. This interpretation will be assessed
143	through two theses: 1) MSA's founders descended from a long lineage in
144	mineralogical philosophy that nurtured notions of atomicity – specifically, of
145	crystals as ordered assemblages of hard spheres. Consequently, mineralogists were
146	primed to accept the implications of X-ray crystallography in the face of persistent
147	skepticism from gas and solution chemists; and 2) The empirical justification of the
148	metaphors that mineralogists used to describe crystalline materials provided the
149	impetus for US mineralogists to distinguish themselves from other kinds of Earth
150	scientists and create a scientific society that has flourished for 100 years.
151	
152	BEFORE THE REVOLUTION: MINERALOGISTS AND OUR CONCEPTIONS OF ATOMS
102	
153	
	Unit Cells and Atomic Spheres
153	
153 154	Unit Cells and Atomic Spheres
153 154 155	Unit Cells and Atomic Spheres In a retrospective of the X-ray diffraction revolution, Max Perutz, student of
153 154 155 156	Unit Cells and Atomic Spheres In a retrospective of the X-ray diffraction revolution, Max Perutz, student of William Lawrence Bragg and winner of the Nobel Prize for solving the structures of
153 154 155 156 157	Unit Cells and Atomic Spheres In a retrospective of the X-ray diffraction revolution, Max Perutz, student of William Lawrence Bragg and winner of the Nobel Prize for solving the structures of hemoglobin and myoglobin, reviewed his mentor's accomplishments in the light of
153 154 155 156 157 158	Unit Cells and Atomic Spheres In a retrospective of the X-ray diffraction revolution, Max Perutz, student of William Lawrence Bragg and winner of the Nobel Prize for solving the structures of hemoglobin and myoglobin, reviewed his mentor's accomplishments in the light of Thomas Kuhn's theories of scientific revolutions (Perutz 1990; Kuhn 1996). He
153 154 155 156 157 158 159	Unit Cells and Atomic Spheres In a retrospective of the X-ray diffraction revolution, Max Perutz, student of William Lawrence Bragg and winner of the Nobel Prize for solving the structures of hemoglobin and myoglobin, reviewed his mentor's accomplishments in the light of Thomas Kuhn's theories of scientific revolutions (Perutz 1990; Kuhn 1996). He asserts that "the perusal of old textbooks of chemistry and mineralogy has

163	It is a significant overstatement, as Perutz failed to recognize that WL Bragg –
164	for all his undoubted genius – was the direct beneficiary of over a century of
165	mineralogical forays into the ultimate structure of crystals. Intimations of the
166	repetitive unit cells that embody the translational symmetry inherent to all crystals
167	are found in the geometrical crystallography of the French abbé and mineralogist,
168	Renée-Juste Haüy, who argued that mineral cleavage is controlled by molécules
169	intégrantes that act as the fundamental building blocks of crystals (Fig. 2). Haüy
170	(1784; 1801) posited an extravagantly large variety of geometric forms for his
171	integrant molecules – including octahedra, tetrahedra, hexagonal prisms, rhombic
172	dodecahedra, and hexagonal bipyramids, but his disciples corrected and refined his
173	speculations (Kubbinga 2012). Over the mid-1800s, Christian Samuel Weiss, Moritz
174	L. Frankenheim and Johann F.C. Hessel in Germany, Auguste Bravais in France, and
175	Alex V. Gadolin in Russia developed our more modern conceptions of space lattices
176	generated by parallelepipeds with constrained morphological symmetries (Weiss
177	1814; Frankenheim 1826; Hessel 1830; Bravais 1851; Gadolin 1867).
178	Similarly, the notion that matter ultimately is constructed from the assembly
179	of spherical particles has a deep history in the mineral sciences (Lalena 2006).
180	Johannes Kepler is credited as the first Western natural philosopher to propose that
181	the dense packing of small spherical particles underlies the structure of snowflakes
182	(Fig. 3A; Kepler 1611; Lima-de-Faria 1990); he famously conjectured that the 26%
183	void space within a cubic closest-packed array is the lowest value possible for an
184	assemblage of spheres. (This conjecture was not mathematically verified until the
185	proof by Thomas Hales in 2005.) Robert Hooke (1665) argued in Micrographia

186	<i>Restaurata</i> that quartz crystals are composed of spheroids (Fig. 3B), and in his
187	Traité de la Lumière (1690), the wave mechanic Christian Huygens depicted a
188	rhombohedral cleavage fragment from calcite as constructed from packed spheres
189	(Fig. 3C). William Wollaston, the British natural philosopher who refined the
190	reflecting goniometer, revived these ideas in his Bakerian Lecture to the Royal
191	Society in 1813, noting that the tetrahedra, octahedra and cubes that composed
192	Haüy's molécules intégrantes in turn could be constructed from the packing of
193	smaller spheres (Fig. 4). To generate the rhombohedral distortions required for
194	carbonate minerals, Wollaston flattened his spheres into ellipsoids (Wollaston
195	1813).
196	Contemporaneously, John Dalton – the "Father of Atomic Theory" – adopted a
197	physical model for atoms in which a spherical hard nucleus was enveloped by
198	repelling shells of "caloric" – the term for a hypothetical fluid responsible for heat
199	flow in substances. It was a somatic model earlier promoted by the Irish chemist
200	Bryan Higgins (Grossman 2017), but Dalton (1808) was the first to place atomism
201	on a quantitative footing by weighing common compounds and measuring ratios of
202	elemental masses. Dalton's insights included a recognition that individual elements
203	contain atoms of uniform size and mass, and his analyses revealed that these
204	different elements combine in simple integral ratios to make compounds (Fig. 5).
205	This work was greatly extended by the Swedish chemist and mineralogist
206	Jöns Jacob Berzelius. Berzelius innovated analytical techniques in chemistry and
207	measured the weights of thousands of compounds in support of Dalton's ideas
208	(Melhado 1981; Melhado and Frdngsmyr 2003). Berzelius developed the system by

Page	11
I USC	T T

209	which we notate elemental symbols, and he created the molecular formula: H_2O ,
210	SiO ₂ , and CaCO ₃ , for example, though he used superscripts (H ² O) rather than
211	subscripts; one finds this superscript notation persisting in late nineteenth-century
212	mineralogy texts (Dana and Brush 1869). Berzelius intuited that compounds are
213	unions of electropositive and electronegative elements, and he was first to propose
214	a mineral classification system that embraced this principle (Berzelius 1814, 1824;
215	Heaney 2016).
216	
217	The Message in Isomorphs, Polymorphs, and Pseudomorphs
218	The chemical permutations of similarly shaped minerals provided further
219	support for theories of atomism (Geiger 2016). Wollaston used his state-of-the-art
220	reflecting goniometer to show that the rhombohedral angles for "carbonate of lime"
221	(calcite), "bitter-spar" (magnesite), and "iron-spar" (siderite) are within 2° of each
222	other (Wollaston 1812). Though he is rarely credited with the discovery of
223	isomorphism (Morrow 1969), Wollaston inferred the existence of solid solution
224	based on the mixing of atoms in this system:
225 226 227 228	"It is very evident, from the numerous analyses that have been made of iron- spar by other chemists, how extremely variable they are in their composition, and consequently how probable it is, that the greater part of them are to be regarded as mixtures."
229	And he predicted that the carbonate isomorphs should extend to an as-yet-unknown
230	manganese variety – rhodochrosite, christened by the German mineralogist Johann
231	Hausmann the following year (Hausmann 1813).

232	Comparisons of synthetic potassium phosphate and arsenate crystals led to a
233	more sophisticated treatment (and naming) of isomorphism by the mineralogical
234	chemist Eilhard Mitscherlich (1819; 1821), who also saw in isomorphism a
235	confirmation of Dalton's notions of atomism (Melhado 1980; Moore 1990).
236	Mitscherlich (1822) further discovered the converse property of polymorphism, and
237	parallel to Wollaston's (1813) thesis, he viewed polymorphism as evidence that
238	discrete particles can assemble in different ways to generate different structures.
239	Importantly, minerals that had the same chemical composition but different crystal
240	structures defied Haüy's conflation of the primary "chemical molecule" of a mineral
241	with its physical integrant molecule.
242	Another mineral "-morphism" – pseudomorphism – also seemed explicable
243	only through a corpuscular theory of matter. The replacement of one mineral by
244	another with the retention of the original habit was telling testimony that elements
245	were composed of small, discrete particles that could interchange within crystals. In
246	his survey of mineral pseudomorphs, Dana (1845) (who used "atom" and "molecule"
247	interchangeably as was the custom of the time) argues that
248 249 250 251 252 253	"There appears to be something in the chemical forces excited among the molecules, by the process of solution, when very slow and gradual, which leads the molecules of any body that may be passing at the time from a liquid state, to take the place successively of each molecule that is removed; and thus it is that the original form to the minutest stria, is so exactly assumed by the substituting mineral."
254	Consequently, pseudomorphism – a phenomenon once viewed as compelling
255	evidence for alchemical transmutation – could now be explained by "the received
256	principles of chemical science" of the mid-nineteenth century (Dana 1845).

257 From the first (1837) to the fourth edition of the System (1854), Dana 258 devoted several pages to a consideration of the particles from which minerals are 259 constructed. In his treatment, he elected to "adopt, in part, Wollaston's theory of 260 spherical and spheroidal molecules...[which] by their aggregations, must produce 261 the same forms as proceed from the aggregation of Abbé Hauy's polyhedral 262 molecules" (Dana 1837, pp. 53). In that first edition of his *System of Mineralogy*, 263 James Dwight Dana (pp. 69) makes clear his expectation that mineralogists would 264 lead the way to an understanding of the ultimate nature of matter: 265 "[W]e may be encouraged to hope that ere long this entrance to one of the 266 innermost recesses of the works of nature will be thrown open, and that the 267 qualities of atoms, or molecules, their forms and peculiarities, will soon be 268 fully understood. Its connection with the science of chemistry, and other 269 physical sciences, render it deserving of very minute experimental research." 270 Dana's intuition regarding the integral role of mineralogy in solving the first crystal 271 structures would be realized through a quirky and largely self-taught genius, 272 William Barlow, an amateur geologist and President of the English Mineralogical 273 Society from 1915 to 1918 (Fig. 6). 274 275 A Prototype for Ionic Solids: The Work of Barlow and Pope 276 William Barlow's income came through an inherited family business, and by 277 his early thirties he had no need of a formal profession, freeing him to muse on 278 problems of three-dimensional crystallography. His long-time collaborator Pope

- 279 (1935) remarks: "It was never easy to follow his train of thought because he
- 280 invented his own ways of attaining results; thus, he rarely used the classical

Page 14

281	methods of spherical trigonometry in crystallographic calculations, but devised
282	special ones of his own for each case which arose." Independent of the techniques
283	employed by mathematicians Arthur Moritz Schönflies and Evgraf Federov, Barlow
284	elucidated space group theory, though he received less credit at the time because he
285	published a few years after they did and his approaches were sometimes inscrutable
286	(Barlow 1894; Pope 1935; Senechal 1990).
287	While he was working through the 230 space groups, Barlow simultaneously
288	was pondering the question of how spherical atomic particles might arrange
289	themselves to generate crystals. In 1883 he proposed a variety of packing schemes
290	for spherical atoms, including body-centered cubes and cubic- and hexagonal-
291	closest packed arrays, supplementing his sketches with accurate wooden models of
292	his own crafting (Fig. 7; Gibson 1941). He erred in assuming that electropositive
293	and electronegative atoms would have the same radii, leading him to propose, for
294	example, that halite occurs with a cesium chloride structure. Nevertheless, this
295	early work was striking for its attempt to marry the physical behavior of a crystal
296	with its internal atomic structure. Barlow (1883) argues, for example, that quartz
297	"has the property of circular polarisation, from which it has been proved that its
298	molecules must have a <i>spiral</i> arrangement" that could be either right- or left-
299	handed. Further, he modeled calcite by considering its chemical composition in
300	conjunction with its uniaxial optical behavior.
301	Although Barlow's (1883) stacking of like-sized atoms in repetitive unit cells
302	got many details of crystal structures wrong, in 1898 he extended his ideas to

303 consider mixtures of different-sized atoms and produced a visualization (Fig. 8) that

304	would accurately presage WL Bragg's structure solution for NaCl in 1913. The link
305	between Barlow's penetrating insight and Bragg's subsequent "discovery" was
306	William Jackson Pope (Barlow and Pope 1906, 1907). Pope was Professor of
307	Chemistry at the School of Technology in Manchester when their partnership
308	started, and following publication of his work with Barlow, he fortuitously was
309	appointed Professor of Chemistry at Cambridge in 1908, placing Pope in direct
310	contact with WL Bragg, who entered Trinity College, Cambridge in 1909 and was a
311	first-year research student at Cambridge in 1912. Barlow and Pope (1906),
312	borrowing from theories of "atomic dynamism" dating from Boscovich (1758),
313	assumed that crystals represent equilibrium assemblages of balanced forces, with
314	each spherical atom acting as a center of both attraction and repulsion, both
315	governed by an inverse distance law by analogy with gravity.
316	Barlow and Pope (1907) surmise that the native elements are structured by
317	simple cubic or hexagonal closest packings of equal spheres; the novel powder X-ray
318	diffraction work by the American A.W. Hull would confirm that many (but not all) of
319	their assigned structures were correct (Hull 1922). The closest-packed models for
320	alkali halides are less accurate and would have benefited from a knowledge of
321	Pauling's Rules, whose formulation was still two decades away (Pauling 1929). But
322	in his reminiscences, WL Bragg (1962) nevertheless credited Pope and Barlow for
323	directing his initial X-ray diffraction trials to halite and sylvite:
324	"[W]hen my first studies of Laue's diffraction patterns led me to postulate
325	that zinc sulphide was based on a face-centred cubic lattice, Pope saw in it a
326	justification of his theory and urged me to experiment with sodium chloride
327	and potassium chloride crystals which he got for me from Steeg and Reuter
328	[a crystal optics firm] in Germany."

329	Equally significant, Barlow and Pope (1906, 1907) would provide Bragg with an
330	atomic template for deconstructing his diffraction patterns. Bragg's deference to
331	these early crystal theorists permitted him to eschew the conventional wisdom
332	upheld by virtually every contemporary chemist – that the crystals of alkali halides
333	must reflect diatomic pairings of alkali metals with halogen elements. Instead,
334	Barlow and Pope set the stage for Bragg's bold decision to model the first crystal
335	structure solved – that of halite – as cubic closest packed layers of spherical ions
336	without a hint of molecularity.
337	
338	ATOMIC DOUBTS BEFORE THE REVOLUTION
339	
340	A Periodic Table Without Atoms?
341	Ironically, while wet chemical assays, blowpipe tests, and elemental
342	spectroscopy achieved high levels of rigor in the latter half of the nineteenth
343	century, many chemists retreated from a categorical acceptance of physical atomism
344	(Brock and Knight 1965). Mendeleev's conception of the Periodic Table provides an
345	example. A suite of scientists in the 1860s argued that elements could be tabulated
346	on the basis of atomic weight: John Newlands in England, Julius Lothar Meyer in
347	Germany, and most famously, Dmitri Mendeleev in Russia (Kean 2011). Mendeleev
348	(Fig. 8A) asserted that chemical behavior was modulated as elemental masses
349	increase, and, based on the cyclic reactivity of elemental series, the Periodic Table
350	was born. The regularity was sufficiently remarkable that Mendeleev famously left
351	vacancies where undiscovered elements should reside. Indeed, in his original table,

Mendeleev knew that he should leave two spaces between zinc and arsenic (van

352

	r
353	Melsen 1960).
354	The Periodic Table did not prove atomism, but it was highly suggestive that
355	the elemental series was composed by sequential additions of discrete particles.
356	Nevertheless, unlike Julius Meyer (Kaji 2002), Mendeleev's views of atomism were
357	complex and equivocal (Niaz et al. 2004; Gordin 2019). On the one hand, Mendeleev
358	(1879) writes, "By replacing the expression of <i>atomic weight</i> by that of <i>elementary</i>
359	weight, I think we should, in the case of elements, avoid the conception of atoms."
360	Conversely, Mendeleev (1891) argues that "The law of combining weights is
361	formulated with great ease, and is an immediate consequence of the atomic theory.
362	Without it, it is even difficult to understand." Nevertheless, Mendeleev persistently
363	rejected the notion that atoms themselves could be divisible, and he was a vocal
364	antagonist to JJ Thomson in his identification of electrons as sub-atomic particles
365	(Kargon 1965).
366	Mendeleev's ambivalence was steeped in a Positivist philosophy that
367	demanded a strictly empirical approach towards the apprehension of natural
368	processes and prevailed for much of the nineteenth century (Niaz et al. 2004). The
369	German acoustical physicist Ernst Mach (Fig. 8B) famously expressed his skepticism
370	of atomic theory in the context of logical positivism by averring that scientists must
371	differentiate between reality and those metaphors that fruitfully predict what our
372	senses perceive (Mach 1883, translated in Mach 1919; Brush 1968):
373 374 375	"The atomic theory plays a part in physics similar to that of certain auxiliary concepts in mathematics; it is a mathematical <i>model</i> for facilitating the mental reproduction of facts. Although we represent vibrations by the

376 377	harmonic formula, no one will fancy that vibrations <i>in themselves</i> have anything to do with the circular functions."
378	Mach conceded that atomic theory had a provisional usefulness, but only as a
379	heuristic idea that would be discarded as soon as a better theory appeared
380	(Blackmore 1972), and Mach's opposition to the atomic theory became a hallmark of
381	his epistemological purity (Pojman 2011): "If belief in the reality of atoms is so
382	important to you, I cut myself off from the physicist's mode of thinking, I do not wish
383	to be a true physicist, I renounce all scientific respect – in short: I decline with
384	thanks the communion of the faithful."
385	Mach was not alone in his skepticism at the turn from the 19^{th} to the 20^{th}
386	century. Whereas some thermodynamicists like Ludwig Boltzmann rooted their
387	interpretations of energy flow in statistical models that demanded the existence of
388	moving atomic particles (Lindley 2015), prominent contemporaries were skeptical,
389	including Lord Kelvin, Wilhelm Ostwald, Josiah Willard Gibbs, and Pierre Duhem
390	(Fleck 1963; Chalmers 2014). Beyond the absence of direct sensory confirmation
391	for the reality of atoms, these thermodynamicists perceived a continuity in energetic
392	processes that seemed incongruent with the actions of discrete corpuscles. They
393	also were challenged in developing mathematical formulations for energy fluxes in
394	systems of atoms separated by vacuum. Ostwald, as co-editor of the influential
395	Zeitschrift für Physikalische Chemie and author of a widely admired textbook on
396	physical chemistry, strongly influenced this anti-atomic school. In his 1904 Faraday
397	lecture to the Chemical Society of London, he argued (Ostwald 1904):
398 399	"It is possible to deduce from the principles of chemical dynamics all the stoichiometrical laws: the law of constant proportions, the law of multiple

Page 19

- 400 proportions and the law of combining weights... Chemical dynamics has,
 401 therefore, made the atomic hypothesis unnecessary..."
- 402 Josiah Gibbs concurred in his introduction to *Statistical Mechanics* (Gibbs 1902):
- 403 "Certainly, one is building on an insecure foundation, who rests his work on
- 404 hypotheses concerning the constitution of matter," citing the lack of agreement
- 405 between theory and experiment for the number of degrees of freedom exhibited by
- 406 a diatomic gas molecule.
- 407

408 **The Structure of Matter in Mineralogy Texts**

409 Mineralogists of the time mirrored this unsettled state. Dana's *System* 410 retreated from its earlier progressive role in championing atomic theory and skirted 411 the subject in later editions. Whereas Dana's System promoted atomism from the 412 first (1837) to the fourth edition (1854), JD Dana omitted all discussion of the 413 ultimate constituency of matter in the fifth edition of the *System* (1869) and beyond. 414 Ironically, the fifth edition is considerably more explicit than the fourth in its 415 appropriation of atomic theory to describe mineral chemistry. It includes a table of 416 atomic weights in alphabetical order, and it discusses mineral formulas with respect 417 to atomic ratios and masses much more comprehensively than did prior editions. 418 As inorganic chemistry became rigorously quantitative in the second half of 419 the nineteenth century, ID Dana may have decided that conjectures concerning the 420 shapes and arrangements of atomic particles were too speculative and unscientific. 421 Richard Harrison Solly, the demonstrator in mineralogy at Cambridge, explicitly 422 expresses this sentiment in his manual (Solly 1894):

Page 20

423 424 425 426 427 428	"There is still complete ignorance as to which of the possible geometrical structures suggested by Bravais, Groth, Sohncke and Liveing, can and does really exist. We can say that a system of atoms grouped in a certain manner, will have certain symmetry but we do not know whether they can remain in equilibrium and subsist. To solve this problem we must possess an increased knowledge of molecular forces."
429	In his influential mineralogy textbook, the German mineralogist Paul Groth (1906)
430	treats atoms as objects of theoretical utility. He approvingly cites Sohncke's (1888)
431	interpretation of a crystal as "a finite number of interpenetrating regular point
432	systems, which all possess like and like-directed coincidence movements," such that
433	each point "may equally well be supposed to be occupied by similar <i>atoms</i> , as by
434	molecules."
435	Groth anticipates the lack of molecularity in ionic solids: "It is evident,
436	however, that in such a structure 'molecules,' in the sense in which we speak of
437	gaseous molecules, are altogether wanting, and it is a matter of choice what is to be
438	called the unit of crystal structure or the crystal molecule." In parallel, many
439	mineralogy textbook writers wrestled with the question of whether chemical
440	formulas are imprinted somehow within a crystal structure. MSA founder
441	Alexander Phillips of Princeton, for example, asserts (Phillips 1912): "There is no
442	method of demonstrating whether the solid or crystalline molecule and the chemical
443	molecule are identical. Since a number of atoms combine to form a chemical unit, it
444	is also probable that a number of chemical units combine to form a crystalline unit
445	or molecule."
446	In his mineralogy textbook, Henry Miers, mineralogy professor at Oxford and

447 Fellow of the Royal Society, described the same state of confusion. Interestingly,

448	Miers offers the following pragmatic assessment of crystals that escaped many of
449	the thermodynamicists of the time (Miers 1902):
450 451 452 453 454	"It is reasonable to suppose that the particles of which a crystal consists are placed side by side in some regular arrangement, like the men in a battalion of soldiers; whereas in an amorphous substance they have no regular order. Without some such hypothesis it is impossible to understand how the properties of a crystal vary regularly with the direction."
455	It is important to note that Miers uses the term "particles" rather than "atoms" in
456	this context, because he liberally employs the word "atom" elsewhere when he is
457	dealing with chemical rather than physical units. Similar efforts to adopt atomic
458	theory but to elide any speculations regarding the physical nature of atoms also are
459	apparent in the pre-revolutionary mineralogy texts of Moses and Parsons (1900),
460	WS Bayley (1910), and ES Dana (1912).
461	
462	1909-1919: THE CRYSTAL REVOLUTION
463	
464	The Atom as a Physical Entity
465	The existence of atoms was resolved rapidly and decisively in the decade
466	before the birth of MSA. At the beginning of this decade, an image of the physical
467	structure of atoms was taking form through the cathode ray tube studies of JJ
468	Thomson, who developed a "plum pudding" model for the atom, in which negatively
469	charged electrons are embedded within a positively charged matrix, like raisins
470	within dough (Thomson 1904). In 1911, Ernst Rutherford dispensed with this
471	metaphor on the basis of his high-angle scattering experiments, arguing
472	persuasively that backscattering of $\alpha\text{-}$ and $\beta\text{-}particles$ by gold foil could be explained

Page 22

473 only by a concentration of positive charge in a small, central nucleus (Rutherford474 1911).

475 The next year, 1912, the momentous X-ray diffraction experiments of Max 476 von Laue resulted in the integration of crystallinity with atomic theory. Max Laue 477 (Fig. 10), a Privatdozent in physics at the Ludwig Maximilian University of Munich, 478 was stimulated by a discussion of Paul Ewald's doctoral dissertation to consider the 479 scattering of X-ray radiation by an ordered lattice of polarizable atoms (Laue 1962). 480 With Arnold Sommerfeld's half-hearted permission, two assistants – Walther 481 Friedrich, who had finished a doctoral thesis with Röntgen and was serving as an 482 assistant to Sommerfeld, and Paul Knipping, a doctoral student with Sommerfeld – 483 were set to the task of demonstrating X-ray diffraction by a crystal of copper sulfate 484 (Friedrich et al. 1912; 1913). The revelations that we associate with this discovery 485 today were not instantly evident (Fig. 11). Laue originally hypothesized that 486 secondary fluorescent X-rays generated from within a crystal would diffract from 487 the crystalline lattice, so Friedrich initially placed photographic plates to the sides of 488 the copper sulfate crystal, and even *between* the incident X-ray beam and the crystal, 489 before actually observing scattered X-rays when a plate was placed *behind* the 490 crystal (Forman 1969; Eckert 2011). Equally misguided, William Henry Bragg 491 initially interpreted Laue's diffractions as a focusing of X-ray corpuscles along 492 "avenues" between the crystal's atoms (Bragg WH 1912). 493 WH Bragg's perspicacious son, William Lawrence Bragg, bested his father by 494 inferring a wave-like nature for X-rays from von Laue's data (Fig. 12A), and he

outdid von Laue by recognizing that white X-radiation was selectively reflected from

495

Page 23

496	"sets of parallel planes on which the atom centres may be arranged" (Bragg WL
497	1912). He followed with a presentation to the Cambridge Philosophical Society
498	(November 1912) and paper (January 1913) that accounted for Laue's diffraction of
499	zincblende (sphalerite) according to his famous law: $n\lambda = 2d \cos \theta$ (when θ is
500	measured from the normal to the plane, by analogy to Snell's law) (Fig. 12B; Bragg
501	WL 1913a; Perutz 1990). Only 22 years old at the time, WL Bragg thereupon
502	published the first crystal structure, of the halite crystal loaned to him by Pope
503	(Bragg WL 1913b), and père et fils followed with the structure of diamond (Bragg
504	WH and Bragg WL 1913). Within another year, WL Bragg single-authored solutions
505	to the structures of fluorite, sphalerite, pyrite, calcite and dolomite (Bragg WL
506	1914).
507	At this same time, the nature of those atomic scatterers came into sharper
507 508	At this same time, the nature of those atomic scatterers came into sharper focus thanks to a lifelong friend of WL Bragg and a student of Rutherford, Niels Böhr
	-
508	focus thanks to a lifelong friend of WL Bragg and a student of Rutherford, Niels Böhr
508 509	focus thanks to a lifelong friend of WL Bragg and a student of Rutherford, Niels Böhr (Fig. 13). Rutherford was puzzled by his own model for the atom, because classical
508 509 510	focus thanks to a lifelong friend of WL Bragg and a student of Rutherford, Niels Böhr (Fig. 13). Rutherford was puzzled by his own model for the atom, because classical mechanics predicted that negatively charged electrons orbiting a positively charged
508 509 510 511	focus thanks to a lifelong friend of WL Bragg and a student of Rutherford, Niels Böhr (Fig. 13). Rutherford was puzzled by his own model for the atom, because classical mechanics predicted that negatively charged electrons orbiting a positively charged nucleus would degenerate as the electrons lose energy and spin into the core. Niels
508 509 510 511 512	focus thanks to a lifelong friend of WL Bragg and a student of Rutherford, Niels Böhr (Fig. 13). Rutherford was puzzled by his own model for the atom, because classical mechanics predicted that negatively charged electrons orbiting a positively charged nucleus would degenerate as the electrons lose energy and spin into the core. Niels Böhr solved this paradox by unifying the quantum theory of Max Planck with
508 509 510 511 512 513	focus thanks to a lifelong friend of WL Bragg and a student of Rutherford, Niels Böhr (Fig. 13). Rutherford was puzzled by his own model for the atom, because classical mechanics predicted that negatively charged electrons orbiting a positively charged nucleus would degenerate as the electrons lose energy and spin into the core. Niels Böhr solved this paradox by unifying the quantum theory of Max Planck with elemental emission spectra collected over the previous half century. He proposed
508 509 510 511 512 513 514	focus thanks to a lifelong friend of WL Bragg and a student of Rutherford, Niels Böhr (Fig. 13). Rutherford was puzzled by his own model for the atom, because classical mechanics predicted that negatively charged electrons orbiting a positively charged nucleus would degenerate as the electrons lose energy and spin into the core. Niels Böhr solved this paradox by unifying the quantum theory of Max Planck with elemental emission spectra collected over the previous half century. He proposed that electrons encircle the positively charged nucleus of the atom in inherently

518 Moseley. Killed in World War I only 2 years later at the battle of Gallipoli, Moseley

519	systematically explored the relationship between the frequency of an element's
520	characteristic K_{α} X-ray and the nuclear charge of the element. His observation that
521	the frequency varies as the square of the charge provided a rigorous method for
522	identifying elements, and it quantitatively distinguished between atomic number
523	and atomic mass (Moseley 1913; Assmus 1995; Aulthier 2013).
524	The mathematical forms for describing diffraction came next (reviewed in
525	James et al. 1948). WL Bragg was more physicist than mineralogist, and to his later
526	chagrin he developed his own notation for the X-ray "reflecting planes" that
527	betrayed his ignorance of the Miller indices devised in 1825 by Cambridge
528	mineralogy professor William Whewell (Hunter 2004). The reciprocal nature
529	inherent in the Miller plane notation fortuitously presaged the inverse relationship
530	between real space and diffraction space. In 1912, Laue offered a "geometrical
531	theory" of the diffraction process that mathematically captured the scattering of X-
532	rays by a three-dimensional grating (Laue 1912). Paul Ewald (Fig. 14A), who
533	studied the scattering of visible light by periodic arrays of oscillating dipoles for his
534	Ph.D., quickly absorbed its implications and unified Laue's physics with X-ray
535	diffraction phenomena to develop a new mathematical formalism: the reciprocal
536	lattice, such that $\vec{a} \cdot \vec{a^*} = 1$ where $\vec{a^*}$ is normal to \vec{b} and \vec{c} , etc. Using this new
537	reciprocal space basis, he further expressed the conditions for diffraction through
538	the construction of the "Ausbreitungskugel", literally, the "scattering sphere", but
539	what we now call the "Ewald sphere" (Fig. 14B; Ewald 1913; Aulthier 2004).
540	Additional contributions to the interpretation of X-ray diffraction patterns
541	were immediately forthcoming (Buerger 1990). Laue was surprised that left- and

542	right-handed quartz crystals apparently gave rise to the same diffraction pattern,
543	and Georges Friedel explained this observation by noting that the diffraction
544	process inherently adds a center of symmetry, which today we know as Friedel's
545	law (Friedel 1913). Peter Debye, another Sommerfeld student, deduced a correction
546	for the decrease in X-ray diffraction intensity caused by thermal agitation of atoms
547	(Debye 1913), and CG Darwin, grandson of the famed evolutionary biologist,
548	developed additional correction factors for the effects of polarization and for
549	increasing diffraction order <i>n</i> , later to be known as the Lorentz correction factor
550	(Darwin 1914).
551	Two years later, in 1916, Peter Debye and Paul Scherrer developed a camera
552	specifically for diffraction from powders, a technique that would flourish among
553	Earth scientists for mineral identification (Debye and Scherrer 1916). Albert
554	Wallace Hull, the US physicist employed with General Electric, heard a guest lecture
555	by WH Bragg in 1915 and invented a different powder diffraction geometry that has
556	found renewed importance in the modern age of digital imaging plates (Hull 1917a).
557	Hull used it to determine the crystal structure of α -iron (Hull 1917b), which had
558	eluded the Braggs, and eventually published the structures of over 25 native
559	elements (Hull, 1922, 1946; Aulthier 2013).
560	
561	Ionic and covalent chemical bonding models appear
562	The modern metaphors we use to understand the bonding of atoms in

- 563 crystals also emerged in the decade before MSA's founding. The chemical duality
- implicit in our picture of crystals as marriages of electropositive and electronegative

565	elements appeared in the work of Berzelius and Faraday in the early 1800s
566	(Berzelius 1814; Melhado 1981). A century after Berzelius's ground-breaking work,
567	Erwin Madelung (1909) examined the energetic implications of crystals as arrays of
568	positively charged metal ions electrostatically attracted to negatively charged non-
569	metallic ions. ² He intuited that attraction was limited by repulsions arising from
570	electronic shells surrounding atomic nuclei, and this model did remarkably well in
571	predicting the energies of formation for alkali halides (Wooster 1990).
572	In contrast to this model for an ionic solid, Gilbert Lewis – a professor of
573	chemistry at UC-Berkeley – realized that in nonpolar molecules the electrons
574	between atoms are shared rather than exchanged, and in 1916 he wrote the
575	template for covalent bonding (Lewis 1916), complete with the dot notation that we
576	still employ to describe valence electrons (Fig. 15). Lewis published major works in
577	many areas, coining the terms "fugacity" (Lewis 1908) and "photon" (Lewis 1926),
578	and he perhaps is most famous for his theory of acids and bases. In his prescient
579	1916 paper, Lewis interpreted covalent bonding as a mechanism to complete the
580	outer electron shell. Building on Lewis's work (and winning a Nobel prize instead of
581	Lewis), Irving Langmuir introduced the term "covalence" to describe the sharing of
582	electrons between atoms in the year of MSA's birth (Langmuir 1919).
583	

 $^{^2}$ The word "ion" derives from the Greek for ω , meaning "I go", based on Faraday's observations of their migration toward electrically charged poles (Van Melsen 1960).

Page 27

584 VIEWING THE X-RAY REVOLUTION FROM THE OTHER SIDE OF THE ATLANTIC 585 586 Edgar Wherry: America's Evangelist for the XRD Revolution 587 Thus, in the space of a single decade our modern understanding of crystal 588 chemistry was born. By 1919, minerals could be visualized as ordered arrays of 589 atoms with positively charged cores enveloped by quantized electron orbitals that 590 swap or share electrons to fill valence shells and lower the energy state of the 591 atomic collective. To assess whether the impact of this sweeping transformation 592 ignited the origin of MSA, one must answer two questions: What did American 593 mineralogists know about the XRD revolution, and when did they know it? If the 594 work of von Laue and the Braggs eluded the founding members, then demonstrating 595 a connection between the birth of MSA and the XRD revolution is short-circuited at 596 the outset. 597 But the evidence is clear that the founding members *did* know about the 598 exciting developments in Britain and Germany, and they recognized their relevance 599 to mineralogy, thanks largely to the efforts of founding member Edgar T. Wherry, 600 who served as an assistant professor of mineralogy at Lehigh University from 1908 601 to 1913 and then as an assistant curator of mineralogy at the Smithsonian 602 Institution until 1917 (Hooker and Montgomery 1975). Over his career, Wherry 603 was a prolific author of papers at the intersection of mineralogy and botany, and 604 arguably his most significant scientific contribution was the recognition that 605 bentonite clays are of an igneous rather than sedimentary origin (Wherry 1917a);

606 this insight kick-started the application of bentonite beds for precise stratigraphic

607	correlation, and it also has marked bentonites as records of global volcanic events
608	(Kolata et al. 1996; Christidis and Huff 2009).
609	In 1916, Wherry was recruited by 19-year-old Samuel Gordon, assistant
610	curator of the Academy of Natural Sciences in Philadelphia, and H.W. Trudell, a
611	member of the Philadelphia Mineralogical Society, to launch the American
612	Mineralogist (Fig. 16; Phair 1969a). W.G. Levison, secretary to the New York
613	Mineralogical Club, for a short time served as the inaugural Editor-in-Chief, but he
614	withdrew at the close of 1918 when it became clear that Wherry was running the
615	show. The first six issues that year (July through December) were devoted largely to
616	descriptive mineralogy. Wherry warned in a letter to Gordon that "Perhaps the
617	greater part of our readership will be amateurs, and if we put in too much
618	unintelligible high-brow dope they will not renew their subscriptions." (Quoted in
619	Phair 1969a)
620	Nevertheless, Wherry and his co-editors found ways to highlight discoveries
621	in X-ray diffraction. The first mention of the Braggs appears in the March 1917
622	edition of American Mineralogist through a review of Irving Langmuir's paper on the
623	fundamental properties of solids (Wherry 1917b):
624	"The work of the Braggs and others on the study of crystal structure with the
625	X-ray is reviewed, and the structures are described which have been found to
626	exist in the minerals halite, sylvite, diamond, sphalerite, fluorite, pyrite,
627	hauerite, calcite, dolomite, rhodochrosite, siderite, magnetite, spinel, copper,
628	silver, gold, lead, sulfur, quartz, zircon, rutile, and cassiterite. The inevitable
629	conclusion is admitted – that in these substances, which belong to the class

- 630 of 'polar compounds,' the whole crystal must be regarded as a single
- 631 molecule."

632	The June 1918 volume was dedicated to the 175^{th} anniversary of the birth of René
633	Juste Haüy, and with this issue "The American Mineralogist came of age," in the
634	estimation of Phair (1969a), earning the journal international esteem and attracting
635	a spike in subscriptions and advertisements. The multi-lingual Wherry (1918)
636	summarized articles from German and even Japanese journals that otherwise were
637	inaccessible to the readership for his "Abstracts of the Crystallographic Literature,"
638	a section that highlighted 33 recent articles of mineralogical relevance. Twenty-one
639	of these explicitly dealt with the X-ray diffraction of crystals, and Wherry continued
640	abstracting XRD-based articles in multiple issues in 1919.
641	Moreover, Wherry proselytized for the new crystallography through lectures
642	to the major mineral clubs. In the "Notes and News" section of the May 1917 issue
643	of the American Mineralogist, Levison conveys the sophistication of Wherry's
644	presentation to the New York Mineralogical Society (Levison 1917):
645	"Dr. Wherry's paper consisted of a historical sketch and detailed review of
646	the revelations resulting originally from the suggestion by Dr. Laue of Zurich,
647	of employing a crystal as a "space diffraction grating" for X-rays, the
648	successful realization of the idea by Messrs. Friedrich and Knipping in 1912,
649	and its subsequent more elaborate and effective development by Messrs.
650	W.H. and W.L. Bragg, whereby great progress has been attained on the one
651	hand in our knowledge of the nature of X-rays, and on the other of the
652	architecture of crystals, or the disposition within them of the various
653	elementary atoms of which they are constructed.
654	"Dr. Wherry's review was illustrated with blackboard formulas, adjustable
655	models of the atomic structure of crystals, and a series of lantern slides
656	showing the X-Ray Spectrometer and the evidence it has afforded of crystal
657	structure by both the photographic and ionization methods, taken largely
658	from the recent treatise on the subject by W.H. and W.L. Bragg."

Page 30

In a following note, Samuel Gordon records that Wherry gave the same talk for the

660 Philadelphia Mineralogical Society (Gordon 1917); likely, he did so for other East

661 Coast mineralogy clubs as well.

662

663 **First Depictions of Crystal Structures in** *The American Mineralogist*

664 Wherry's (1918) "Abstracts" include the first atomic drawings of mineral 665 structures published in *The American Mineralogist*. In a preface intended so that 666 "space-lattices may be intelligible" to the reader, Wherry himself illustrates five 667 structure types: 1) Double face-centered cubic or diamond; 2) Simple cubic; 3) 668 Body-centered cubic; 4) Face-centered cubic; and 5) Combinations of different 669 lattices (Fig. 17). To our modern eyes, these depictions err in basic ways. For 670 example, halite and galena are classified as simple cubes rather than as face-671 centered cubes, and hexagonal symmetries have no representation. 672 In addition, the concept of a spherical atom had not survived the Atlantic 673 crossing intact. In Wherry's diagrams, "the heavy dots represent the positions of 674 centers of gravity of atoms [italics added]." The "shape of each atom," as drawn by 675 Wherry, belonged to one of several polyhedra, "which may perhaps be regarded as 676 the 'integral molecules' sought by Haüy." Indeed, whether the point scatterers 677 described by the Braggs represented individual atoms or molecular clusters was a 678 point of heated debate through the 1920s (Miers 1918; Rogers 1921; Armstrong 679 1927). In addition to perceptions that the Bragg structures violated contemporary 680 valence theory (Pfeiffer 1917; Smits and Scheffer 1917), scientists subscribed to 681 Newton's dictum that nature abhors a vacuum. Unlike spheres, polyhedra can fill all

682	available space when closest packed. Moreover, chemical reactions of the common
683	elements proceeded in such a way as to fill the outermost shells with 8 electrons. A
684	cube has 8 corners. Could that be coincidence? And so one finds that the US
685	chemists Gilbert Lewis (1916) and Irving Langmuir (1919) promote atoms with
686	"cubical" rather than spherical symmetry (Fig. 18). It is evident that Wherry
687	likewise had not yet absorbed Bragg's reconciliation of Barlow and Pope's closest-
688	packed atomic spheres with the translational symmetry of the Bravais lattices.
689	Although he was arguably its most ardent advocate, Wherry was not the only
690	American mineralogist who recognized the impact of the X-ray diffraction
691	revolution. In the fifth edition to their <i>Elements of Mineralogy, Crystallography, and</i>
692	Blow-Pipe Analysis, Moses and Parsons (1916) already were referencing the 1915
693	text by the Braggs on X-rays and Crystal Structure. E.H. Kraus, the first president of
694	MSA, saluted their achievements in the preface to his textbook Mineralogy: An
695	Introduction to the Study of Minerals and Crystals (Kraus and Hunt 1920):
696 697 698 699 700	"Many of the important laws in physics, especially those relating to the properties of light, have been studied principally on crystallized minerals. The Nobel prizes in physics for 1914 and 1915 were awarded to Laue and the Braggs (father and son) for epoch-making investigations upon the structure of crystallized minerals by means of the x-ray."
701	Similarly, on the West Coast, Austin Flint Rogers, professor of mineralogy at
702	Stanford, concludes in his Introduction to the Study of Minerals and Rocks (1921)
703	that
704 705 706 707	"The X-ray analysis of crystals combined with a mathematical study of the possible arrangements of points in space has furnished us with a means of determining the stereochemistry of the solid or crystalline state and has thus thrown new light on the structure of matter. This work also promises to be of

Page 32

708 709	value in settling many doubtful questions concerning crystals. It has truly opened up one of the most interesting fields in the whole realm of science."
710	Rogers also offers the most sophisticated discussion of space groups and X-ray
711	diffraction in a mineralogy text to that date, devoting 13 pages (pp. 133-146) to the
712	topic.
713	
714	DID MSA NEED THE XRD REVOLUTION TO INVENT ITSELF?
715	The historical record reveals without ambiguity that the founding members
716	of MSA were aware of the import of X-ray diffraction to the mineral sciences before
717	the society was founded. Would they have created MSA in 1919 had von Laue and
718	the Braggs conducted their experiments a decade later? The evidence for a cause-
719	and-effect relationship between the XRD revolution and the birth of MSA is real but
720	indirect. Naysayers might cite two arguments to dissociate these events:
721	1) Contemporary accounts of the motivation for forming MSA placed strongest
722	emphasis on the need for a specialized journal; and 2) MSA was following rather
723	than leading international trends in the professionalization of mineralogy. Of
724	greater significance, however, are two supporting arguments: 1) As illustrated in
725	the preceding discussion, mineralogists were even better prepared than many
726	chemists to accept the lack of molecularity inherent in the Bragg model for ionic
727	crystals; and 2) As will be explored in the next sections, the XRD revolution offered a
728	redefinition of mineralogy that encouraged a new sense of separateness from
729	geologists.

730

Page 33

731 A Need to Detach from GSA

- At the end of his term as the inaugural president of MSA in 1920, University
- of Michigan mineralogist Edward Kraus offered a review of the long- and short-
- range factors that led to MSA's formation. Of the latter, he points to a recent
- specialization in US mineralogy that could no longer be accommodated by the
- 736 Geological Society of America. The first two decades of the twentieth century was a
- time of enormous investment in domestic science and in higher education, and
- mineralogy was a major beneficiary (Kraus 1921):
- "During this period, the development of science was indeed marvelous. This
 statement applies to no science more than it does to mineralogy, by which
 term we obviously include what may be readily interpreted as the broader
 field, namely crystallography. Moreover, it was during the war that the
 prominent position of the United States in the production of minerals and
 mineral products, and the vastness of our mineral resources, were brought
- 745 most forcibly to the attention of the general public."
- As increasing numbers of scientists self-identified as mineralogists, they found GSA
- 747 conferences less congenial and editors of GSA journals less receptive to their
- 748 articles. Kraus (1921) notes that mineralogists "soon felt that aside from the social
- aspect of the meetings, the society offered them but little in their own field."
- An attempt to form MSA was essayed in 1913. Alexander Winchell³,
- professor of mineralogy at the University of Wisconsin, circulated a letter in January
- of that year among ~20 mineralogists to address the possibility of organizing the
- 753 "National Association of Mineralogists and Petrologists." The response to the

³ Alexander Newton Winchell (1874-1958) is not to be confused with Alexander Winchell (1824-1891), a co-founder of GSA and a controversial professor of geology and paleontology at the University of Michigan for his racist attitudes towards evolution

754	proposed separation from GSA was lukewarm, telling evidence that the mineralogy
755	community at this late date still was unprepared to stand on its own. Instead, the
756	community decided to explore an alternative to divorce. In an effort at
757	accommodation, GSA offered to provide sectional mineralogy-based meetings, but
758	over the next three years they never materialized (Phair 1969b).
759	The true seeds of change began with a meeting of the six founders in
760	December 1916 at the annual GSA conference in Albany, New York to discuss the
761	establishment of a new mineralogical society. Winchell eventually would serve as
762	president of MSA in 1932, but he was not a part of this renewed effort. Instead,
763	Messrs. Kraus, Phillips, Van Horn, Walker, Wherry, and Whitlock circulated a letter
764	(Fig. 19) in 1917 to 51 mineralogists in the US and Canada to argue that "the
765	founding of a Mineralogical Society would do much to stimulate greater interest in
766	the subject and also give wider recognition to the work being done in this field in
767	America." Consequently, "the time has come when an organization which might be
768	called 'The Mineralogical Society of America' should be formed at as early a date as
769	possible."
770	This exploratory letter emphasizes the need for a specialized journal as the
771	primary driving force for establishing MSA (Phair 1969b):
772	"[P]erhaps the greatest benefit to be derived would be the founding by the
773	society of a journal to be devoted exclusively to the publishing of
774	mineralogical papers. As is well known, there is great need for a dignified
775	medium of publication for the increasing volume of mineralogical
776	investigations which are being carried on in America."
//0	investigations which are being carried on in America.

777	It was not a new complaint. Mineralogy journals had come and gone in the United
778	States for over a century. In fact, The American Mineralogical Journal, started by
779	New York City physician Archibald Bruce (who identified the eponymous Mg
780	hydroxide mineral), was "the first specialized American scientific periodical",
781	running from 1810 to 1814 (Bruce 1968; Greene and Burke, 1978).
782	In his presidential address, Kraus (1921) provides a detailed overview of the
783	rise and fall of American mineral societies and the often transient journals that
784	attended their limited existence. Typically, these magazines were published by
785	mineral enthusiasts with careers outside the field, and their journalistic
786	experiments ended when the individuals fell ill, passed away, or found themselves in
787	financial embarrassment. In this regard, the long-lived success of Benjamin
788	Silliman's American Journal of Science was truly an aberration (Brown 2014). The
789	Yale mineralogist founded AJS in 1818, and AJS is the oldest continually published
790	scientific journal in the US. Even in 1916, AJS was receptive to articles that were
791	narrowly mineralogical. One finds papers on the variable compositions and optical
792	behaviors of natural melanochalcite (Hunt and Kraus 1916), bornite (Allen 1916),
793	and hydro-zincite (Ford and Bradley 1916b), as well as reports of new minerals and
794	crystal growth processes (Phillips 1916; Ford and Bradley 1916a; Taber 1916).
795	Indeed, some of the first X-ray crystallography papers on minerals published by an
796	American scientist appeared in AJS rather than the American Mineralogist (e.g.,
797	Wyckoff 1920; 1921; 1925). On the other hand, entire monthly issues sometimes
798	were bereft of mineralogy, devoting space instead to articles on paleontology,
799	sedimentology, volcanology, atmospheric sciences, and experimental chemistry.

800	Of pressing concern to the founders, efforts to establish strictly mineralogical
801	magazines repeatedly sputtered. The Young Mineralogist and Antiquarian (1994-
802	1885) yielded to the Mineralogists' Monthly (1885-1892), which joined forces with
803	Goldthwaite's Minerals (1892-1894) to be reborn as The Mineral Collector, which
804	ceased publication in March 1909. The Collector had successfully straddled the
805	amateur and professional communities for 15 years, but its publisher, Arthur
806	Chamberlain, a printer, discontinued it for health reasons. The very first article in
807	the first issue of American Mineralogist pays tribute to Chamberlain's efforts (Bates
808	1916). Moreover, with the onset of World War I, German outlets such as Zeitschrift
809	für Kristallographie, Mineralogie und Petrographie interrupted publication for many
810	years and were anyway unreceptive to American contributors.
811	It was the death of <i>The Mineral Collector</i> that drove Samuel Gordon, assistant
811 812	It was the death of <i>The Mineral Collector</i> that drove Samuel Gordon, assistant curator at the Academy of Natural Sciences in Philadelphia, to initiate a new journal
812	curator at the Academy of Natural Sciences in Philadelphia, to initiate a new journal
812 813	curator at the Academy of Natural Sciences in Philadelphia, to initiate a new journal with support from the Philadelphia Mineralogical Society, the New York
812 813 814	curator at the Academy of Natural Sciences in Philadelphia, to initiate a new journal with support from the Philadelphia Mineralogical Society, the New York Mineralogical Club, and the now-defunct Mineral Collector's Association (Phair
812813814815	curator at the Academy of Natural Sciences in Philadelphia, to initiate a new journal with support from the Philadelphia Mineralogical Society, the New York Mineralogical Club, and the now-defunct Mineral Collector's Association (Phair 1969a). Gordon had no academic degrees in mineralogy but received training
812813814815816	curator at the Academy of Natural Sciences in Philadelphia, to initiate a new journal with support from the Philadelphia Mineralogical Society, the New York Mineralogical Club, and the now-defunct Mineral Collector's Association (Phair 1969a). Gordon had no academic degrees in mineralogy but received training through Edgar Wherry, and Phair (1969a) identifies Gordon rather than Wherry as
 812 813 814 815 816 817 	curator at the Academy of Natural Sciences in Philadelphia, to initiate a new journal with support from the Philadelphia Mineralogical Society, the New York Mineralogical Club, and the now-defunct Mineral Collector's Association (Phair 1969a). Gordon had no academic degrees in mineralogy but received training through Edgar Wherry, and Phair (1969a) identifies Gordon rather than Wherry as the guiding force in putting together a staff and, against considerable financial and
 812 813 814 815 816 817 818 	curator at the Academy of Natural Sciences in Philadelphia, to initiate a new journal with support from the Philadelphia Mineralogical Society, the New York Mineralogical Club, and the now-defunct Mineral Collector's Association (Phair 1969a). Gordon had no academic degrees in mineralogy but received training through Edgar Wherry, and Phair (1969a) identifies Gordon rather than Wherry as the guiding force in putting together a staff and, against considerable financial and logistical odds, creating the <i>American Mineralogist</i> (or more precisely, <u>The American</u>

822	As Kraus and colleagues looked to build a professional society, their respect
823	for the fledgling journal suggested that, given the costs and the challenges in
824	recruiting a subscriber base, adopting The American Mineralogist made more sense
825	than developing a competing journal. The staff of the magazine were receptive, and
826	Whitlock (1920) announced in a message to Science the intent to "enlarge the
827	American Mineralogist to include research papers and abstracts, but at the same
828	time to retain the valuable features of this publication which has become recognized
829	as of permanent interest to such collectors and amateurs who are eligible for
830	membership but not fellowship." "Fellows," in this prospectus for MSA, were
831	differentiated from "members" by "having produced some published results of
832	research in mineralogy, crystallography, or the allied sciences."
833	This early alliance with the amateur community was a necessary concession
833 834	This early alliance with the amateur community was a necessary concession for the staff of the <i>American Mineralogist</i> , but the efforts to appeal to the collecting
834	for the staff of the American Mineralogist, but the efforts to appeal to the collecting
834 835	for the staff of the <i>American Mineralogist</i> , but the efforts to appeal to the collecting community faded quickly as articles became more technical and the content more
834 835 836	for the staff of the <i>American Mineralogist</i> , but the efforts to appeal to the collecting community faded quickly as articles became more technical and the content more arcane. In 1926, sensing that the professional community had usurped their
834 835 836 837	for the staff of the <i>American Mineralogist</i> , but the efforts to appeal to the collecting community faded quickly as articles became more technical and the content more arcane. In 1926, sensing that the professional community had usurped their publication and a new journal was needed, Peter Zodak – an engineering inspector
834 835 836 837 838	for the staff of the <i>American Mineralogist</i> , but the efforts to appeal to the collecting community faded quickly as articles became more technical and the content more arcane. In 1926, sensing that the professional community had usurped their publication and a new journal was needed, Peter Zodak – an engineering inspector for the Westchester County (NY) Park Commission – founded <i>Rocks and Minerals</i> to
834 835 836 837 838 839	for the staff of the <i>American Mineralogist</i> , but the efforts to appeal to the collecting community faded quickly as articles became more technical and the content more arcane. In 1926, sensing that the professional community had usurped their publication and a new journal was needed, Peter Zodak – an engineering inspector for the Westchester County (NY) Park Commission – founded <i>Rocks and Minerals</i> to service the collectors (Montgomery 1951). <i>Rocks and Minerals</i> has been joined by
834 835 836 837 838 839 840	for the staff of the <i>American Mineralogist</i> , but the efforts to appeal to the collecting community faded quickly as articles became more technical and the content more arcane. In 1926, sensing that the professional community had usurped their publication and a new journal was needed, Peter Zodak – an engineering inspector for the Westchester County (NY) Park Commission – founded <i>Rocks and Minerals</i> to service the collectors (Montgomery 1951). <i>Rocks and Minerals</i> has been joined by <i>Lapidary Journal</i> (1947), the <i>Mineralogical Record</i> (1970), and other bulletins

Page 38

844	define the boundaries of their science.	But it also estranged MSA from those
-----	---	--------------------------------------

- 845 enthusiasts who had sustained mineralogy over the previous century.
- 846

847 Following Well-Trodden Paths to a New Mineral Society

- 848 The emergence of the *American Mineralogist* was different from the genesis
- of journals that originate in response to a paradigmatic discovery that inspires
- 850 proponents of the new vision to split from traditionalists. In our lifetimes,
- 851 innovations involving fractal geometry, nanoscience, astrobiology, and microbial
- geochemistry offer examples of this latter pathway, and a host of new journals
- dedicated to these subjects have appeared since 1990.

854 In contrast, the creation of the American Mineralogist – and the society that 855 supported it – was not disciplinarily groundbreaking. At least five countries can 856 boast continuously functioning mineralogical societies that are older than MSA: The 857 Russian Mineralogical Society (1817), which recently celebrated its *bi*centennial; the 858 Mineralogical Society of Great Britain and Ireland (1876); the French Society of 859 Mineralogy and Crystallography (1878); the Austrian Mineralogical Society (1901); 860 and the German Mineralogical Society (1908). Moreover, many of these associations 861 sponsored the publication of journals: Zapiski RMO (Proceedings of the Russian 862 *Mineralogical Society* since 1830); the Mineralogical Society's *Mineralogical* 863 *Magazine* (1876); and one can include the *European Journal of Mineralogy*, which in 864 1989 merged long-running mineralogical bulletins from France, Germany, Spain,

and Italy.

866	Even within the US, many specialized mineralogical societies had formed and
867	disappeared in the century before the formation of MSA. The history of these
868	evanescent groups is explored in Kraus (1921) and Greene and Burke (1978) ⁴ , but
869	three mineral collecting clubs that predate MSA are with us still: the New York
870	Mineralogical Club (1886); the Philadelphia Mineralogical Society (1892); and the
871	Newark (New Jersey) Mineralogical Society (1915). At the turn of the 19^{th} century,
872	these three clubs served the needs of both professors and amateur collectors. They
873	held regular meetings with invited lecturers, and they published newsletters and
874	booklets to which professionals contributed.
875	
876	The Connection between the XRD Revolution and the MSA
877	What convinced US mineralogists that the time had come to establish a
878	society organized and administered not by enthusiastic amateurs but by professors
879	of major universities? In his first presidential address, Kraus (1921) explicitly
880	acknowledges the X-ray diffraction revolution as sharing credit for the explosive
881	growth of the field, noting that mineralogy
882 883	"is no longer merely a descriptive science but by virtue of the development of many quantitative methods and especially as the result of the epoch-making

⁴ The first mineralogical society in the US was founded in 1797 by Samuel Latham Mitchell, a professor at the College of Physicians and Surgeons in New York City. Named "The American Mineralogical Society" to promote "the investigation of the mineral and fossil bodies which compose the fabric of the Globe; and, more especially, for the natural and chemical history of the minerals and fossils of the United States," its aim was "to arm every hand with a hammer, and every eye with a microscope" (Greene and Burke 1978). The AMS vanished in 1801.

Page 40

884discoveries in the field of crystal structure *it is now an exact science of*885*fundamental importance.*" [Italics added]

Although American mineralogists were not yet actively engaged in X-ray diffraction
experiments, they recognized in the work of European physicists a seed that now
distinguished them from the more qualitative "geologists".

889 In this regard, the proposal for a new society did not go far enough for 890 Frederick E. Wright of the Carnegie Geophysical Laboratory and for Prof. A.C. Gill of 891 Cornell University. As detailed in Phair (1969b), Wright and Gill believed that 892 crystallography was the *only* trait that differentiated MSA from GSA, and Wright 893 insisted on an organizational name change to "The Crystallographic Society of 894 America." Gill concurred that "the crystallographic part was highly desirable" and 895 argued that "we need a *mineralogical* society as much as a cat needs three tails." 896 Wright was a highly accomplished optical mineralogist, and he argued in a letter to 897 Kraus (Phair 1969b): "Crystallography is a much broader subject than mineralogy 898 and if we look upon crystallography as the science which has to deal with matter in 899 the crystal state then crystallography is on a par with physics and chemistry." 900 The need to mollify Wright and Gill induced Kraus and Wherry to propose a

901 compromise title: The Crystallographical and Mineralogical Society of America.

902 This name appeared in the preliminary constitution and in a November 1919

announcement of the new society in *Science* (Fig. 20; Kraus et al. 1919). Wright's

904 efforts did not survive the organizational meeting in December 1919 because, Phair

905	(1969b) speculates, the name was too cumbersome. But they elected Wright as
906	Councilor in an act of appeasement, and he eventually served as President in 1941. ⁵
907	The emergence of the new crystallography from the realm of physics rather
908	than mineralogy was a double-edged sword for MSA's founders. On the one hand,
909	the idea that mineralogy is more closely affiliated with physics than geology offered
910	a quantitative rigor that justified a separation from GSA and the creation of a new
911	society. Indeed, one can argue that history repeated itself in the 1970s with the
912	emergence of "mineral physics" and the inauguration in 1977 of Physics and
913	Chemistry of Minerals to accommodate articles in high-pressure crystallography that
914	were not being accepted by the American Mineralogist (Charles Prewitt, pers.
915	comm.) On the other hand, the instrumental techniques to produce and detect X-
916	rays needed to be learned, and Ewald's invention of reciprocal space demanded a
917	sophisticated training in the mathematics of the scattering process.
918	Consequently, the first mineral structures to be solved in the US were the
919	work of physical chemists rather than mineralogists. Charles L. Burdick was a
920	graduate student at the Massachusetts Institute of Technology with Arthur A. Noyes,
921	soon afterward one of the founding fathers of Caltech. In 1914, Burdick snared a
922	compartment on the last German ocean liner to leave from New York for Hamburg
923	to pursue his Ph.D. research in Basel and Berlin. In early 1916, Burdick received a
924	letter from Noyes urging him to spend his final months in Europe with WH Bragg in
	⁵ A Crystallographic Society of America with MSA representation was organized in 1939, suspended during the Second World War, and reinstated in 1946 (Notes and

^{1939,} suspended during the Second World War, and reinstated in 1946 (Notes and News, 1946). It merged with the American Society for X-Ray and Electron Diffraction in 1949 to create the American Crystallographic Association, which continues to thrive.

925	London because of Noyes's "strong belief in the importance of x-ray atomic
926	structure analysis for the future of theoretical chemistry, and his wish to get
927	something of the kind started at MIT (Burdick 1958)." Burdick returned to MIT,
928	built a Bragg X-ray spectrometer, then followed Noyes to Caltech and built another
929	spectrometer that was "probably the best of its day" (Burdick 1958). This
930	instrument enabled Burdick to collect high-quality data on a natural chalcopyrite
931	crystal from French Creek, PA, and he therewith published the first structure
932	determination of a mineral originating in the US (Burdick and Ellis 1917a,b).
933	Ralph Wyckoff received his doctorate in physics at Cornell under the tutelage
934	of Shoji Nishikawa, who himself had been trained in space group theory by Torahiko
935	Terada, "one of the few to work in Germany during the 1890s when the theory was
936	being created" (Wyckoff 1962). After Wyckoff received his degree in 1919, he
937	moved to the Carnegie Geophysical Laboratory "to begin there an application of X-
938	ray diffraction to minerals (Wyckoff 1962)," though he also studied artificial crystals
939	as well. Wyckoff revisited the structure of calcite and published XRD analyses of
940	rhodochrosite, magnesite, and siderite (Wyckoff 1920). Soon after, he published the
941	first structure for alabandite (MnS; Wyckoff 1921) and re-examined structures for
942	dolomite (Wyckoff and Merwin 1924) and cristobalite (Wyckoff 1925). Wyckoff
943	also collaborated with Herbert Merwin and Henry Washington of the Geophysical
944	Lab to standardize pyroxene terminology. Using a suite of minerals loaned by
945	William F. Foshag at the Smithsonian, they were first to observe that "all of the
946	different kinds of minerals usually grouped amongst the pyroxenes have the

Page 43

947	structure of either	diopside, enstatite,	wollastonite,	or rhodonite.	(Wyckoff et al.
-----	---------------------	----------------------	---------------	---------------	-----------------

948 1925)."

949	Wyckoff's eight years at the Geophysical Laboratory saw a prolific output of
950	natural and artificial crystal structure refinements as well as several treatises on
951	space group theory and general structure analysis. In 1927, however, he moved
952	away from geology to apply X-ray diffraction techniques to biological systems at the
953	Rockefeller Institute in New York. In a speech given to the Institute of Physics in
954	London nearly 30 years later, Wyckoff (1954) reflected that "[f]or the first 25 years
955	following the discovery of X-ray diffraction, there were very few in the United States
956	carrying out research in the subject." He attributes the lag to several factors, of
957	which one was the recalcitrance of mineralogists:
958 959 960	"Our subject [i.e., crystallography] in America suffered severely from not finding general acceptance as part of one branch of university science. With us, crystallography has never been more than an occasional course given to
961 962	students of mineralogy, and our mineralogists were singularly slow in realizing the value of X-ray methods."

963 That is not a very generous characterization of the mineralogical community, nor is

964 it very accurate.

The record clearly shows that MSA members were highly attuned to the wall of separation between physicists and mineralogists, and they were unhappy about it. The Canadian MSA founder TL Walker (1923) laments, "Owing possibly to their familiarity with the necessary technique and the possession of the laboratory equipment, most of the work in this field [X-ray diffraction] up to the present time has been carried on by physicists rather than by mineralogists." In an assessment of

971	modern analytical techniques, Wyckoff's collaborator, H.S. Washington, explicitly
972	lauds his achievements (Washington 1925):
973 974 975 976 977 978	"Study of minerals along such lines is still in its infancy, but such examples as have come under my notice lead to the conviction that X-ray methods, especially when employed in conjunction with some of those longer known, are not only the most recent but among the most powerful methods of arriving at an understanding of what minerals, as well as artificial crystals, really are, how they are constituted, and how they are related."
979	Arthur S. Eakle (1926), professor of mineralogy at the University of California-
980	Berkeley and MSA president in 1925, argued that mineralogical education needed to
981	be updated to include the new approaches in X-ray crystallography:
982 983 984 985 986 987 988 988	"The physicist with his superior electrical and instrumental knowledge has devised instruments for important x-ray investigation of crystal structure and mineral composition, and has substantiated the "space-lattice" theory of internal molecular, or atomic, structure of crystals, and has been enabled to make important additions to our knowledge of crystal symmetry. <i>We must</i> <i>look to our crystallographers and mineralogists to carry on in this work since it</i> <i>manifestly comes within their province; but there must be more of them to keep</i> <i>pace with our modern methods of investigation.</i> " [Italics added]
990	These are not the musings of a community that was "singularly slow" in
991	appreciating the value of X-ray diffraction.
992	Instead, they reflect the reality that X-ray crystallography is a skill attained
993	through apprenticeship with expert practitioners. Burdick trained with the Braggs,
994	and Wyckoff was mentored by Nishikawa. And if mineralogists were ignorant of
995	physics, it is equally true that physicists were ignorant of mineralogy. The founders
996	of X-ray diffraction, von Laue and WL Bragg, admitted as much. In a posthumously
997	translated autobiographical remembrance, von Laue (1962) stated:

998	"Now, I had never studied mineralogy. During my first stay in Gottingen I had
999	made a halfhearted attempt to attend a mineralogy course but had given up
1000	very soon. From books I then learned the rudiments of crystallography, that
1001	is to say, crystal classes, that was all. The exam was administered by the geologist, Prof. Konen, and I still remember how his amusement grew and
1002	
1003	grew in the face of my entirely obvious ignorance until he finally broke off
1004	the interview."
1005	In accepting the Roebling Medal from MSA in 1948, WL Bragg likewise expressed his
1006	surprise in receiving the recognition (Bragg 1949):
1007	"I am glad that you do not expect the recipient of the medal to pass a simple
1008	examination in mineralogy before he can accept his prize, for I am sure I
1009	would fail in that test. It is not merely a matter of knowing the subject, it is a
1010	deeper and more fundamental difference in outlook which divides the
1011	physicist from the mineralogist
1012	"An exact scientist endeavours to simplify and generalize problems so that
1013	comparatively unequivocal decisions can be made. Followers of descriptive
1014	sciences such as mineralogy and petrology can never approach their problem
1015	from a one-sided standpoint, but must consider how products of nature came
1016	to be"
1017	To a much greater degree than is true today, in the early decades of the twentieth
1018	century, the separate branches of the physical sciences were isolated, and crossing
1019	boundaries would take time.
1020	But not too much time. C.H. Stockwell, of the University of Wisconsin and
1021	then the Canadian Geological Survey, published the first XRD article in The American
1022	Mineralogist in 1927, on unit-cell parameters obtained from powder diffraction
1023	patterns of the garnet group (Stockwell 1927). The next year, John W. Gruner of the
1024	University of Minnesota published a technical article on the oscillation method for
1025	X-ray diffraction of crystals (Gruner 1928). Significant contributions to
1026	crystallography were developed by US scientists who made minerals a major part of

1027	their research: Linus Pauling, who won Nobel prizes in chemistry and peace; Martin
1028	Buerger, inventor of the precession camera; and JDH Donnay, who revealed
1029	relations between crystal form and atomic structure, among others. By the late
1030	1930s, The American Mineralogist offered about a half-dozen articles on X-ray
1031	crystallography of minerals each year. By the late 1940s, that increased to two
1032	dozen per year, and a decade later there are too many to count. These trends also
1033	are documented in Barton's (2019) data analysis of the ascension of X-ray
1034	diffraction in the discovery of new minerals from the 1930s to the 1970s.
1035	
1036	Implications
1037	Reverberations of the XRD Revolution Today
1038	The force with which mineralogists applied X-ray diffraction to extract the
1039	crystal structures of materials inspired an equal and opposite response as new
1040	techniques challenged our concepts of atomic order. Not surprisingly, incongruities
1041	between the classical model of crystallinity as conceived by the Braggs and the
1042	structural shortcomings exhibited by natural materials were recognized early. MSA
1043	founder Edgar T. Wherry, who first realized that bentonite is altered volcanic ash,
1044	was stymied by its classification. Are clays with intensive stacking disorder to be
1045	described as crystalline? Wherry (1925) argued that bentonite could be regarded as
1046	a "one-dimensional colloid." The semi-random intergrowths characteristic of illite-
1047	smectite mixtures continues to inspire new formalisms for the taxonomy of
1048	intermediate order (Moore and Reynolds 1997).

1049	The advent of high-resolution transmission electron microscopy shifted the
1050	focus from averaged atomic structures as deduced using X-rays to particular atomic
1051	configurations as resolved in micrographs. With this curtain drawn, the universality
1052	of nanoscale defects in natural materials became evident (Wenk 1976; Nieto and
1053	Livi 2013), and they came in myriad styles: layer-, chain- and tunnel-width disorder
1054	(Veblen and Buseck 1979; Turner and Buseck 1979; Veblen 1983); commensurate
1055	and incommensurate layer modulations (Drits 1987; Guggenheim and Eggleton
1056	1988); temperature- and strain-induced microtwins (Van Tendeloo et al. 1976;
1057	Goltrant et al. 1991); assorted line dislocations and ordered point defects (McLaren
1058	1991); fine-scale exsolution lamellae (Brown and Parsons 1984), and more. The
1059	observations of these microstructures posed a profound question regarding
1060	crystallinity: After how many unit-cells of repetitive stacking disorder, or
1061	superperiodic tunnel structures, or exsolution intergrowths, does the defect itself
1062	constitute a new mineral (Fig. 21)?
1063	These issues have grown even more pertinent in light of the most recent
1064	explorations of nanomaterials. As reviewed in the American Mineralogist Centennial
1065	article by Caraballo et al. (2015), in the last 25 years we have grown increasingly
1066	aware that the geochemistry of near-surface environments is controlled largely by
1067	nanophases (Fig. 22). The small dimensions of these particles yield high surface
1068	areas that can change their thermodynamic stabilities relative to the bulk
1069	(Navrotsky 2004), and the increased reactivity of the surfaces dramatically
1070	enhances their abilities to sorb and transport dissolved species or to promote redox
1071	or other chemical reactions (Hochella et al. 2008). These particles can grow through

1072	epitaxial attachment to form larger particles, requiring the introduction of states of
1073	intermediate crystallinity, sometimes termed mesocrystals (Cölfen and Antonietti
1074	2005). Characterizing the formation and evolution of these nanoparticles is at the
1075	heart of some of the most exciting science today, and it requires techniques that are
1076	themselves at the boundary between diffraction and spectroscopy, such as pair
1077	distribution function (PDF) analysis and synchrotron-based extended X-ray
1078	absorption spectroscopy (EXAFS) (O'Day et al. 1994; Michel et al. 2007).
1079	One hundred years ago, MSA materialized from a revolution that seemed
1080	finally to have resolved a most fundamental problem for Earth scientists: What do
1081	we mean when we say that a mineral is "crystalline"? A cutting edge of mineralogy
1082	today and for the foreseeable future is the exploration of the hypnagogic state for
1083	minerals: crystals that fall within that twilight zone between rigid order and atomic
1084	turmoil. Ironically, then, as MSA celebrates its centennial, we find ourselves
1085	revisiting the very problem whose solution inspired the Society's birth.
1086	
1087	Acknowledgments
1088	The author acknowledges support from National Science Foundation Grant
1089	
	EAR1552211. Early drafts of this paper were greatly improved by stimulating
1090	EAR1552211. Early drafts of this paper were greatly improved by stimulating discussions with and helpful comments by Charlie Burnham and Jeffrey Post. I also
1090 1091	
	discussions with and helpful comments by Charlie Burnham and Jeffrey Post. I also

1094	References
1095	Allen, E.T. (1916) The composition of natural bornite. American Journal of Science,
1096	245, 409-413.
1097	Armstrong, H.E. (1927) Poor common salt! Nature, 120, 478.
1098	Assmus, A. (1995) Early history of X-rays. Beam Line, 25, 10-24.
1099	Aulthier, A. (2004) Dynamical theory of X-ray diffraction. Oxford University Press,
1100	Oxford.
1101	Aulthier, A. (2013) Early Days of X-ray Crystallography. Oxford University Press,
1102	Oxford.
1103	Barlow, W. (1883) Probable nature of the internal symmetry of crystals. Nature, 29,
1104	186-188 and 205-207.
1105	Barlow, W. (1894) Über die Geometrischen Eigenschaften homogener starrer
1106	Strukturen und ihre Anwendung auf Krystalle. Zeitschrift für
1107	Krystallographie und Minerologie, 23, 1–63.
1108	Barlow, W. and Pope, W.J. (1906) A development of the atomic theory which
1109	correlates chemical and crystalline structure and leads to a demonstration of
1110	the nature of valency. Journal of the Chemical Society, Transactions, 89,
1111	1675-1744.
1112	Barlow, W. and Pope, W.J. (1907) The relation between the crystalline form and the
1113	chemical constitution of simple inorganic substances. Journal of the
1114	Chemical Society, Transactions, 91, 1150-1177.
1115	Barton, I. (2019) Trends in the discovery of new minerals over the last century.
1116	American Mineralogist, 104, 641-651.

Page 50

- 1117 Bates, A.C. (1916) Arthur Chamberlain and his magazines. American Mineralogist, 1,
- 1118 1-2.
- Bayley, W.S. (1910) Elementary Crystallography. McGraw-Hill Book Company, NewYork.
- 1121 Berzelius, J.J. (1814) Attempt to Establish a Pure Scientific System of Mineralogy by
- 1122 the Application of the Electro-Chemical Theory and the Chemical

1123 Proportions. Translated by John Black. C. Baldwin, London.

- 1124 Berzelius, J.J. (1824) Om de förändringar i det chemiska Mineralsystemet, som blifva
- 1125 en nödvändig följd af isomorpha kroppars egenskap att ersätta hvarandra i
- 1126 obestämda förhållanden. Konglig Vetenskaps-Academiens Handlingar, 112-
- 1127 142
- 1128 Blackmore, J.T. (1972) Ernst Mach: His Work, Life, and Influence. University of
- 1129 California Press, Berkeley.
- 1130 Bohr, N. (1913) I. On the constitution of atoms and molecules. The London,
- Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26, 1-25.
- 1133 Boscovich, R.G. (1758) Philosophiae naturalis theoria redacta ad unicam legem
- 1134 virium in natura existentium. Prostat Viennae Austriae, Officina Libraria1135 Kaliwodiana.
- 1136 Bragg, W. H. (1912) X-rays and crystals. Nature, 90, 219.
- 1137 Bragg, W.H. and Bragg, W.L. (1913) The structure of the diamond. Proceedings of
- 1138 the Royal Society of London. Series A, 89, 277-291.

Page 51

- 1139 Bragg, W.H. and Bragg, W.L. (1915) X-rays and Crystal Structure. G. Bell and Sons,
- London.
- 1141 Bragg, W. L. (1912) The specular reflection of X-rays. Nature, 90, 410.
- 1142 Bragg, W.L. (1913a) The diffraction of short electromagnetic waves by a crystal.
- 1143 Proceedings of the Cambridge Philosophical Society. 17, 43-57.
- 1144 Bragg, W.L. (1913b) The structure of some crystals as indicated by their diffraction
- of X-rays. Proceedings of the Royal Society of London Series A, 89, 248-277.
- 1146 Bragg, W.L. (1914) The analysis of crystals by the X-ray spectrometer. Proceedings
- 1147 of the Royal Society of London Series A, 90, 468-489.
- 1148 Bragg, W.L. (1949) Acceptance of the Roebling Medal of the Mineralogical Society of
- 1149 America. American Mineralogist, 34, 238-241.
- 1150 Bragg, W.L. (1962) Personal reminiscences. In Ewald, P.P., Ed. Fifty Years of X-ray
- 1151 Diffraction. International Union of Crystallography, Glasgow. pp. 531-539.
- 1152 Bravais, A. (1851) Etudes cristallographiques. Journal de l'Ecole Polytechnique, 20,
- 1153 101-276.
- 1154 Brock, W.H. and Knight, D.M. (1965) The atomic debates: "Memorable and

1155 interesting evenings in the life of the Chemical Society. Isis, 56, 5-25.

- 1156 Brown, C. M. (2014). Benjamin Silliman: A life in the young republic. Princeton
- 1157 University Press, Princeton, N.J.
- 1158 Brown, W. L. and Parsons, I. (1984) The nature of potassium feldspar, exsolution
- 1159 microtextures and development of dislocations as a function of composition
- in perthitic alkali feldspars. Contributions to Mineralogy and Petrology, 86,
- 1161 335-341.

- 1162 Bruce, A. (1968) The American Mineralogical Journal. Contributions to the History
- 1163 of Geology, vol. 1. Hafner Publishing, New York.
- 1164 Brush, S.G. (1968) Mach and atomism. Synthese, 18, 192-215.
- 1165 Buddington, A.F. (1937) Memorial of Alexander Hamilton Phillips. American
- 1166 Mineralogist, 22, 1094-1098.
- 1167 Buerger, M.J. (1990) Brief history of structure determination. In Lima-de-Faria, Ed.,
- 1168 Historical Atlas of Crystallography, Kluwer Academic Publishers, Dordrecht,
- 1169 pp. 109-123.
- Burdick, C.L. (1958) The genesis and beginnings of X-ray crystallography at Caltech.
 Physics Today, 11, 20.
- 1172 Burdick, C.L. and Ellis, J.H. (1917a) The crystal structure of chalcopyrite determined
- 1173 by X-rays. Journal of the American Chemical Society, 39, 2518-2525.
- 1174 Burdick, C.L. and Ellis, J.H. (1917b) The crystal structure of chalcopyrite determined
- 1175 by X-rays. Proceedings of the National Academy of Sciences, 3, 644-649.
- 1176 Caraballo, M.A., Michel, F.M. and Hochella Jr, M.F. (2015). The rapid expansion of
- 1177 environmental mineralogy in unconventional ways: Beyond the accepted
- definition of a mineral, the latest technology, and using nature as our guide.
- 1179 American Mineralogist, 100, 14-25.
- 1180 Chalmers, A. (2014) Atomism from the 17th to the 20th Century. In Zalta, E.N., Ed.,
- 1181 The Stanford Encyclopedia of Philosophy, URL
- 1182 https://plato.stanford.edu/archives/win2014/entries/atomism-modern/>.
- 1183 Christidis, G.E., and Huff, W.D. (2009). Geological aspects and genesis of bentonites.
- 1184 Elements, 5, 93-98.

1185	Cölfen, H. and Antonietti, M. (2005) M	lesocrystals: inorganic superstructures made
------	--	--

- by highly parallel crystallization and controlled alignment. Angewandte
- 1187 Chemie International Edition, 44, 5576-5591.
- 1188 Dalton, J. (1808) A New System of Chemical Philosophy. S. Russell, Manchester.
- 1189 Dana, E.S. (1912) A Textbook of Mineralogy. John Wiley and Sons, New York.
- 1190 Dana, J.D. (1837) A System of Mineralogy. Durrie & Peck and Herrick & Noyes, New
- 1191 Haven.
- 1192 Dana, J.D. (1845) Observations on pseudomorphism. American Journal of Science
- 1193 and Arts, 48, 81-92.
- 1194 Dana, J.D. (1854) A System of Mineralogy, 4th Ed. George. P. Putnman, New York.
- 1195 Dana, J.D. and Brush, G.J. (1869) A System of Mineralogy, 5th Ed. John Wiley and Son,
- New York.
- 1197 Darwin, C.G. (1914) The theory of X-ray reflexion. Philosophical Magazine, 27, 315-
- 1198 333 and 675-690.
- 1199 Debye, P. (1913) Über den Einfluss der Wärmebewegung auf die
- 1200 Interferenzerscheinungen bei Röntgenstrahlen, Verhandlungen der
- 1201 Deutschen Physikalischen Gesellschaft, 15, 678-689.
- 1202 Debye, P. and Scherrer, P. (1916) Interferenz an regellos orientierten Teilchen im
- 1203 Röntgenlicht. I. Physikalische Zeitschrift, 17, 277-283.
- 1204 Drits V.A. (1987) SAED and HREM Study of Order/Disorder and Structural
- 1205 Heterogeneity in Layer Minerals. In Drits, Ed. Electron Diffraction and High-
- 1206 Resolution Electron Microscopy of Mineral Structures. Springer, Berlin,
- 1207 Heidelberg, pp. 217-238.

1208	Eakle, A.S. (1926) Needed extension in mineralogic instruction. American
1209	Mineralogist, 11, 45-52.
1210	Eckert, M. (2012). Disputed discovery: the beginnings of X-ray diffraction in crystals
1211	in 1912 and its repercussions. Acta Crystallographica Section A: Foundations
1212	of Crystallography, 68(1), 30-39.
1213	Ewald, P.P. (1913) Zur Theorie der Interferenzen der Röntgenstrahlen in Kristallen.
1214	Physikalische Zeitschrift, 14, 465-472.
1215	Fleck, G.M. (1963) Atomism in late nineteenth-century physical chemistry. Journal of
1216	the History of Ideas, 24, 106-114.
1217	Ford, W.E. and Bradley, W.M. (1916a). Margarosanite, a new lead-calcium silicate
1218	from Franklin, New Jersey. American Journal of Science, 248, 159-162.
1219	Ford, W.E. and Bradley, W.M. (1916b) On hydro-zincite. American Journal of Science,
1220	247, 59-62.
1221	Forman, P. (1969). The discovery of the diffraction of X-rays by crystals; a critique of
1222	the myths. Archive for History of Exact Sciences, 6, 38-71.
1223	Frankenheim, M. L. (1826). Crystallonomische Aufsätze. ISI Enzyklopadische
1224	Zeitung Oken, 5, 497-515 and 542-565.
1225	Friedel, G. (1913) Sur les symmetries cristallines que peut reveler la diffraction des
1226	rayons Röntgen. Comptes Rendus de l'Académie des Sciences, 157, 1533-
1227	1536.
1228	Friedrich, W., Knipping, P. and von Laue, M.T. F. (1912) interferenz-Erscheinungen
1229	bei Röntgenstrahlen. Sitzungsberichte der Mathematischen-Physikalischen

1230	Klasse der Königlich Bayerischen Akademie der Wissenschaften zu München,
1231	303-322.
1232	Friedrich, W., Knipping, P., and Laue, M. (1913) Interferenzerscheinungen bei
1233	roentgenstrahlen. Annalen der Physik, 346, 971-988.
1234	Gadolin, A.V. (1867) Deduction of all crystallographic systems and their subdivisions
1235	by means of a single general principle. (In Russian) Annals of the Imperial St
1236	Petersburg Mineralogical Society Series 2, 4, 112-200.
1237	Geiger, C.A. (2016) A tale of two garnets: The role of solid solution in the
1238	development toward a modern mineralogy. American Mineralogist, 101,
1239	1735-1749.
1240	Gibbs, J.W. (1902) Elementary Principles in Statistical Mechanics Developed with
1241	Especial Reference to the Rational Foundation of Thermodynamics.
1242	Scribner's Sons, New York.
1243	Gibson, C.S. (1941) Sir William Jackson Pope 1870-1939. Obituary Notices of
1244	Fellows of the Royal Society, 3, 291-324.
1245	von Gliszczynski, S. and Stoicovici, E. (1938) Beitrag zum Melanophlogitproblem.
1246	Zeitschrift für Kristallographie-Crystalline Materials, 99, 238-250.
1247	Goltrant, O., Cordier, P. and Doukhan, J.C. (1991) Planar deformation features in
1248	shocked quartz; a transmission electron microscopy investigation. Earth and
1249	Planetary Science Letters, 106, 103-115.
1250	Gordin, M.D. (2019) A Well-Ordered Thing: Dmitrii Mendeleev and the Shadow of
1251	the Periodic Table. Princeton University Press, Princeton, NJ.
1252	Gordon, S.G. (1917) Proceedings of Societies. American Mineralogist, 2, 68.

1253	Grabowski, J.J. (1992) Sports in Cleveland: an illustrated history. Case Western
1254	Reserve University, Cleveland.
1255	Greene, J.C. and Burke, J. G. (1978). The science of minerals in the age of Jefferson.
1256	Transactions of the American Philosophical Society, 68, 1-113.
1257	Grossman, M.I. (2017) John Dalton and the origin of the atomic theory: reassessing
1258	the influence of Bryan Higgins. The British Journal for the History of Science,
1259	50, 657–676.
1260	Groth, P. (1906) An Introduction to Chemical Crystallography. John Wiley and Sons,
1261	New York.
1262	Gruner, J.W. (1928) The oscillation method of X-ray analysis of crystals. American
1263	Mineralogist, 3, 123-141.
1264	Guggenheim, S. and Eggleton, R.A. (1988) Crystal chemistry, classification, and
1265	identification of modulated layer silicates. Reviews in Mineralogy and
1266	Geochemistry, 19, 675-725.
1267	Hales, T. C. (2005). A proof of the Kepler conjecture. Annals of Mathematics, 1065-
1268	1185.
1269	Hausmann, J.F.L. (1813) Handbuch der Mineralogie. 3 volumes, Göttingen. Second
1270	edition. pp. 302.
1271	Haüy-RJ. (1784) Essai d'une Théorie sur la structure des Crystaux. Gogué and Née
1272	de la Rochelle, Paris.
1273	Haüy, R.J. (1801) Traité de Minéralogie. Council of Mines, Paris.
1274	Heaney, P. J. (2016). Time's arrow in the trees of life and minerals. American
1275	Mineralogist, 101(5), 1027-1035.

1276	Hessel, J.F.C. (1830) Krystall. In Gehler's Physikalisches Wörterbuch, 5, 1023-1360.
1277	Schwickert, Leipzig. Reprinted in W.F. Ostwald (1897). Klassiker der exacten
1278	Wissenschaften, 89, 41-124.
1279	Hochella, M.F., Lower, S.K., Maurice, P.A., Penn, R.L., Sahai, N., Sparks, D.L. and
1280	Twining, B.S. (2008) Nanominerals, mineral nanoparticles, and earth
1281	systems. Science, 319, 1631-1635.
1282	Hooke, R. (1665) Micrographia: or some physiological descriptions of minute bodies
1283	made by magnifying glasses with observations and inquiries made
1284	thereupon. Jo. Martyn and Ja. Allestry, Royal Society, London.
1285	Hooker, M. and Montgomery, A. (1975) Edgar Theodore Wherry. American
1286	Mineralogist, 60, 533-539.
1287	Hull, A. W. (1917a). A new method of X-ray crystal analysis. Physical Review, 10,
1288	661-697.
1289	Hull, A.W. (1917b) The crystal structure of iron. Physical Review, 9, 84-87.
1290	Hull, A.W. (1922) The crystal structures of the common elements. Journal of the
1291	Franklin Institute, 189-216.
1292	Hull, A.W. (1946) Thirty years of X-ray research at the General Electric Research
1293	Laboratory. American Journal of Physics, 14, 71-79.
1294	Hunt, W.F. (1955) Edward Henry Kraus. American Mineralogist, 40, 945-951.
1295	Hunt, W.F. and Kraus, E.H. (1916). Note on the variable composition of
1296	melanochalcite. American Journal of Science, 242, 211-214.
1297	Hunter, G.K. (2004). Light is a messenger: the life and science of William Lawrence

1298 Bragg. Oxford University Press.

- 1299 Huygens, C. (1690) Traité de la lumière. Pieter van der Aa, Leiden.
- 1300 Jackson, J. (2005) A World on Fire. Viking Press, New York.
- 1301 James, R.W. (1948). The Optical Principles of the Diffraction of X-rays. G. Bell and
- 1302 Sons, London.
- 1303 Johnson, S. (2008) The Invention of Air. Riverhead Books, New York.
- 1304 Kaji, M. (2002) D.I. Mendeleev's concept of the chemical elements and *The Principles*
- 1305 *of Chemistry*. Bulletin for the History of Chemistry, 27, 4-16.
- 1306 Kargon, R. (1965). Mendeleev's chemical ether, electrons, and the atomic theory.
- 1307 Journal of Chemical Education, 42, 388-389.
- 1308 Kean, S. (2011) The Disappearing Spoon. Little, Brown, and Company, New York.
- 1309 Kepler, J. (1611) Strena seu de nive sexangula. Gottfried Tampach, Franfurt.
- 1310 Kolata, D.R., Huff, W.D., and Bergstrom, S.M. (1996). Ordovician K-bentonites of
- 1311 eastern North America (Vol. 313). Geological Society of America.
- 1312 Kraus, E.H. (1919) Crystallographical and Mineralogical Society of America. Science,
- 1313 50, 497.
- 1314 Kraus, E.H. (1921) The future of mineralogy in America. American Mineralogist, 6,
- 1315 23-34.
- 1316 Kraus, E.H., and Hunt, W.F. (1920). Mineralogy: An Introduction to the Study of
- 1317 Minerals and Crystals. McGraw-Hill book Company, Inc., New York.
- 1318 Kraus, E.H. (1934) Memorial of Frank Robertson Van Horn. American Mineralogist,
- 1319 19, 101-105.
- 1320 Kubbinga, H. (2012) Crystallography from Haüy to Laue: Controversies on the
- 1321 molecular and atomistic nature of solids. Acta Crystallographica A, 68, 3-29.

1322	Kuhn, T. (1996) The Structure of Scientific Revolutions. University of Chicago Press,
1323	Chicago.
1324	Lalena, J.N. (2006) From quartz to quasicrystals: probing nature's geometric
1325	patterns in crystalline substances. Crystallography Reviews, 12, 125-180.
1326	Langmuir, I. (1919) The arrangement of electrons in atoms and molecules. Journal
1327	of the American Chemical Society, 41, 868–934.
1328	von Laue, M. (1912) Eine quantitative Prüfung der Theorie für die Interferenz-
1329	Erscheinungen bei Röntgenstrahlen. Verlag der Königlichen Bayerische
1330	Akademie der Wissenschaften, 363-373.
1331	von Laue, M. (1962) My development as a physicist: An autobiography. In Ewald,
1332	P.P., Ed. Fifty Years of X-ray Diffraction. International Union of
1333	Crystallography, Glasgow. pp. 278-307.
1334	Levison, W.G. (1917) Proceedings of Societies. American Mineralogist, 2, 67-68.
1335	Lewis, G.N. (1908). The osmotic pressure of concentrated solutions, and the laws of
1336	the perfect solution. Journal of the American Chemical Society, 30, 668–683.
1337	Lewis, G.N. (1916). The atom and the molecule. Journal of the American Chemical
1338	Society, 38, 762-785.
1339	Lewis, G.N. (1926). The conservation of photons. Nature, 118, 874–875.
1340	Lima-de-Faria, J. (1990) Time-maps of crystallography. In Lima-de-Faria, Ed.,
1341	Historical Atlas of Crystallography, Kluwer Academic Publishers, Dordrecht,
1342	pp. 5-42.
1343	Lindley, D. (2015) Boltzmann's Atom: The Great Debate that Launched a Revolution
1344	in Physics. The Free Press, New York.

1345	Mach, E. (1883) Die Mechanik ihrer Entwicklung. F.A. Brockhaus, Leipzig.
1346	Mach, E. (1919) The Science of Mechanics. Trans. McCormack, T.J. Open Court
1347	Publishing, Chicago.
1348	Madelung, E. (1909) Molekulare Eigenschwingungen. Nachrichten von der
1349	Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische
1350	Klasse, 100-106.
1351	McLaren, A.C. (1991) Transmission electron microscopy of minerals and rocks.
1352	Cambridge University Press, Cambridge.
1353	Melhado, E.M. (1980) Mitscherlich's discovery of isomorphism. Historical Studies in
1354	the Physical Sciences, 11, 87-123.
1355	Melhado, E.M. (1981) Jacob Berzelius: The Emergence of his Chemical System.
1356	University of Wisconsin Press, Madison. Cambridge University Press,
1357	Cambridge.
1358	Melhado, E.M. and Frdngsmyr, T., Eds. (2003) Enlightenment science in the romantic
1359	era: The chemistry of Berzelius and its cultural setting (Vol. 10). Cambridge
1360	University Press, Cambridge.
1361	Mendeleev, D. (1879). The periodic law of the chemical elements. The Chemical
1362	News, 40, No. 1042.
1363	Mendeleev, D. (1891) Principles of Chemistry, Vol 1. Translated by G. Kamensky,
1364	Longmans, Green & Co., London.
1365	Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R.,
1366	Schoonen, M.A., Phillips, B.L. and Parise, J.B. (2007) The structure of
1367	ferrihydrite, a nanocrystalline material. Science, 316, 1726-1729.

- 1368 Miers, H.A. (1902) Mineralogy: An Introduction to the Scientific Study of Minerals.
- 1369 MacMillan and Co., London.
- 1370 Miers, H.A. (1918) The old and the new mineralogy. Journal of the Chemical Society,
- 1371 Transactions, 113, 363-386.
- 1372 Mitscherlich, E. (1819) Über die Kristallisation der Salze, in denen das Metall der
- 1373 Basis mit zwei Proportionen Sauerstoff verbunden ist. Abhandlungen,
- 1374 Akademie der Wissenschaften, Berlin, pp. 427-437.
- 1375 Mitscherlich, E. (1821) Über das Verhältniss zwischen der chemischen
- 1376 Zusammensetzung und der Krystallform arseniksaurer und phosphorsaurer
- 1377 Salze. W. Engelmann, Leipzig.
- 1378 Mitscherlich, E. (1822) Sur la relation qui existe entre la forme crystalline et les
- 1379 proportions chimiques. I. Mémoire sur les arseniates et les phosphates.
- 1380 Annales des Chimie et des Physique 19, 350–419.
- 1381 Montgomery A. (1951) Peter Zodac and *Rocks and Minerals*. Rocks & Minerals, 26,
- 451-453.
- 1383 Moore, D.M. and Reynolds, R.C. Jr. (1997) X-ray diffraction and the identification and
- 1384 analysis of clay minerals. 2nd Ed. Oxford University Press, Oxford.
- 1385 Moore, P.B. (1990) Brief history of chemical crystallography. I. Inorganic
- 1386 compounds. In Lima-de-Faria, Ed., Historical Atlas of Crystallography, Kluwer
- 1387 Academic Publishers, Dordrecht, pp. 5-42.
- 1388 Morrow, S.I. (1969) One hundred and fifty years of isomorphism. Journal of
- 1389 Chemical Education, 46, 580-583.

1390	Moseley, H.G.J. (1913) The high-frequency spectra of the elements. Philosophical
1391	Magazine, 26, 1024-1034.
1392	Moses, A.J. and Parsons, C.L. (1900) Elements of Mineralogy, Crystallography and
1393	Blowpipe Analysis. 2 nd Ed. D. Van Nostrand Company, New York.
1394	Moses, A.J. and Parsons, C.L. (1916) Elements of Mineralogy, Crystallography and
1395	Blowpipe Analysis. 5 th Ed. D. Van Nostrand Company, New York.
1396	Navrotsky, A. (2004). Energetic clues to pathways to biomineralization: Precursors,
1397	clusters, and nanoparticles. Proceedings of the National Academy of Sciences,
1398	101, 12096-12101.
1399	Neumeier, G. A brief history of mineral magazines. Newsletter of the New York
1400	Mineralogical Club.
1401	http://www.newyorkmineralogicalclub.org/history/minutes/Introduction%
1402	20%20A%20Brief%20History%20of%20Mineral%20Magazines.pdf
1403	Niaz, M., Rodríguez, M.A., and Brito, A. (2004) An appraisal of Mendeleev's
1404	contribution to the development of the periodic table. Studies in the History
1405	and Philosophy of Science, 35, 271-282.
1406	Nieto, F. and Livi, K.J. (Eds.). (2013). Minerals at the Nanoscale (Vol. 14). The
1407	Mineralogical Society of Great Britain and Ireland.
1408	Notes and News (1946) The Crystallographic Society. American Mineralogist, 31, 84.
1409	O'Day, P.A., Rehr, J.J., Zabinsky, S.I. and Brown, G.J. (1994) Extended X-ray
1410	absorption fine structure (EXAFS) analysis of disorder and multiple-
1411	scattering in complex crystalline solids. Journal of the American Chemical
1412	Society, 116, 2938-2949.

- 1413 Ostwald, W. (1904) Faraday Lecture: Elements and compounds. Journal of the
- 1414 Chemical Society, Transactions, 85, 506-522.
- 1415 Parsons, A.L. (1943) Memorial of Thomas Leonard Walker. American Mineralogist,
- 141628, 167-173.
- 1417 Pauling, L. (1929) The principles determining the structure of complex ionic
- 1418 crystals. Journal of the American Chemical Society, 51, 1010–1026.
- 1419 Perutz M.F. (1990) How W.L. Bragg invented X-ray analysis. Acta Crystallographica
- 1420 A, 46, 633-643.
- 1421 Pfeiffer, P. (1917) Crystals as molecular compounds. Zeitschrift für anorganische
- 1422 chemie. 97, 161-174.
- 1423 Phair, G. (1969a) The American Mineralogist: Its first four years. American
- 1424 Mineralogist, 54, 1233-1243.
- 1425 Phair, G. (1969b) The founding of the Mineralogical Society of America. American
- 1426 Mineralogist, 54, 1244-1255.
- 1427 Phillips, A.H. (1912) Mineralogy: An Introduction to the Theoretical and Practical
- 1428 Study of Minerals. MacMillan, New York.
- 1429 Phillips, A.H. (1916) New zinc phosphates from Salmo, B. C. American Journal of
- 1430Science, 249, 275-278.
- 1431 Pojman, P. (2011) Ernst Mach. In Zalta, E.N., Ed., The Stanford Encyclopedia of
- 1432 Philosophy. URL:
- 1433 https://plato.stanford.edu/archives/win2011/entries/ernst-mach/>.
- 1434 Pope, W.J. (1935) William Barlow 1845-1934. Obituary Notices of Fellows of the
- 1435 Royal Society, 1, 367-370.

1436	Pough, F.H. (1949) Memorial of Herbert Percy Whitlock. American Mineralogist, 34,
1437	261-266.
1438	Rhodes, R. (1986) The making of the atomic bomb. Simon and Schuster, New York.
1439	Rogers, A.F. (1921) Introduction to the Study of Minerals and Rocks. McGraw-Hill
1440	Book Co., New York.
1441	Rutherford, E. (1911) The Scattering of α and β Particles by Matter and the
1442	Structure of the Atom. Philosophical Magazine. 21, 669–688.
1443	Senechal, M. (1990) Brief history of geometrical crystallography. In Lima-de-Faria,
1444	Ed., Historical Atlas of Crystallography, Kluwer Academic Publishers,
1445	Dordrecht, pp. 43-59.
1446	Smits, A. and Scheffer, F.E.C. (1917) The interpretation of the "Roentgenograms" and
1447	Roentgen spectra of crystals. Proceedings of the Koninklijke Akademie van
1448	Wetenschappen te Amsterdam, 19, 432-338.
1449	Solly, R.H. (1894) An Elementary Introduction to Mineralogy. C.J. Clay and Sons,
1450	London.
1451	Sohncke, L. (1888). Erweiterung der Theorie der Krystallstructur. Zeitschrift für
1452	Kristallographie-Crystalline Materials, 14, 426-446.
1453	Stockwell, C.H. (1927) An X-ray study of the garnet group. American Mineralogist,
1454	12, 327-344.
1455	Taber, S. (1916) The growth of crystals under external pressure. American Journal
1456	of Science, 246, 532-556.
1457	Thomson, J.J. (1904). On the structure of the atom: an investigation of the stability
1458	and periods of oscillation of a number of corpuscles arranged at equal

1459	intervals around the circumference of a circle; with application of the results
1460	to the theory of atomic structure. Philosophical Magazine, 7, 237-265.
1461	Turner, S. and Buseck, P.R. (1979). Manganese oxide tunnel structures and their
1462	intergrowths. Science, 203, 456-458.
1463	Van Melsen, A.G. (1960) From atomos to atom: the history of the concept atom.
1464	Harper and Brothers, New York.
1465	Van Tendeloo, G., Van Landuyt, J. and Amelinckx, S. (1976). The $\alpha \rightarrow \beta$ phase
1466	transition in quartz and AlPO4 as studied by electron microscopy and
1467	diffraction. Physica Status Solidi (A), 33, 723-735.
1468	Veblen, D.R. (1983) Microstructures and mixed layering in intergrown wonesite,
1469	chlorite, talc, biotite, and kaolinite. American Mineralogist, 68, 566-580.
1470	Veblen, D.R. and Buseck, P.R. (1979) Chain-width order and disorder in
1471	biopyriboles. American Mineralogist, 64, 687-700.
1472	Walker, T.L. (1923) The development of mineralogical methods. American
1473	Mineralogist, 8, 41-46.
1474	Washington, H.S. (1925) The modern study of minerals. American Mineralogist, 10,
1475	45-52.
1476	Weiss, C.S. (1814) Uebersichliche Darstellung des verschie- denen naturlichen
1477	Abteilungen der Kristallisationssysteme. Abhandlungen der Koniglichen
1478	Akademie der Wissenschaften in Berlin, 289-344.
1479	Wenk, HR., Ed. (1976) Electron Microscopy in Mineralogy. Springer-Verlag, Berlin.
1480	Wherry, E.T. (1917a). Clay derived from volcanic dust in the Pierre in South Dakota.
1481	Journal of the Washington Academy of Sciences, 7, 576-583.

1482	Wherry, E.T. (1917b) Review of two recent papers on crystal structure. American
1483	Mineralogist, 2, 36-38
1484	Wherry, E.T. (1918) Abstracts of crystallographic literature. American Mineralogist,
1485	3, 137-147.
1486	Wherry, E.T. (1925) Bentonite as a one-dimensional colloid. American Mineralogist,
1487	10, 120-123.
1488	Whitlock, H.P. (1920) The Mineralogical Society of America. Science, 51, 219-220.
1489	Wollaston, W.H. (1812) On the primitive crystals of carbonate of lime, bitter-spar,
1490	and iron-spar. Philosophical Transactions of the Royal Society of London,
1491	102, 159-162.
1492	Wollaston, W.H. (1813) The Bakerian Lecture: On the elementary particles of certain
1493	crystals. Philosophical Transactions of the Royal Society of London, 103, 51-
1494	63.
1495	Wooster, W.A. (1990) Brief history of physical crystallography. In Lima-de-Faria, J.,
1496	Ed. Historical Atlas of Crystallography, Kluwer Academic Publishers,
1497	Dordrecht, pp. 61-75.
1498	Wyckoff, R.W.G. (1920). The crystal structures of some carbonates of the calcite
1499	group. American Journal of Science, 299, 317-360.
1500	Wyckoff, R.W.G. (1921). The crystal structure of alabandite (MnS). American Journal
1501	of Science, 11, 239-249.
1502	Wyckoff, R.W. (1925) Crystal structure of high temperature cristobalite. American
1503	Journal of Science, 54, 448-459.

Page 67

- 1504 Wyckoff, R.W.G. (1954) Some thoughts on the future of natural science, with
- 1505 illustrations from the growth of X-ray diffraction work in the United States.
- 1506 British Journal of Applied Physics, 5, 199-204.
- 1507 Wyckoff, R.W.G. (1962) Reminiscences. In Ewald, P.P., Ed. Fifty Years of X-ray
- 1508 Diffraction. International Union of Crystallography, Glasgow. pp. 691-694.
- 1509 Wyckoff, R.W.G. and Merwin, H.E. (1924) The crystal structure of dolomite.
- 1510 American Journal of Science, 48, 447-461.
- 1511 Wyckoff, R.W., Merwin, H.E., and Washington, H.S. (1925). X-ray diffraction
- 1512 measurements upon the pyroxenes. American Journal of Science, 59, 383-
- 1513 397.

1514

1515

	Revision 1 of Ms. 7205 Page 68
1516	Figure Captions
1517	
1518	Figure 1: The Six Founders of MSA. A) Edward H. Kraus (from MSA Centennial
1519	website); B) Alexander H. Phillips (from Am Min Obit); C) Frank R. Van Horn
1520	(From Am Min obit); D) Thomas L. Walker (from Am Min obit); F) Edgar T.
1521	Wherry (from MSA web page).
1522	
1523	Figure 2: A) René Just Haüy (engraving by Ambroise Tardieu) (open source from
1524	Wikipedia); B) Construction of pentagonal dodecahedron of pyrite by
1525	integrant molecules from Traité de Mineralogie (1801). (from Wikimedia
1526	commons)
1527	
1528	Figure 3: A) Closest packing of atoms in a snowflake from Keppler's Strena Seu de
1529	Nive Sexangula (1611) [from Google Books]; B) Drawings of quartz crystals
1530	and their component "globular bodies" from Hooke's Micrographia
1531	Restaurata (1665) [from Google Books]; C) Arrangement of spherical bodies
1532	to explain cleavage angles in calcite from Huygens Traité de la Lumière
1533	(1690) [from Google Books].
1534	
1535	Figure 4: William Wollaston's (1813) proposed construction of Haüy's polyhedral
1536	molécules intégrantes using spheres and ellipsoids. [Open access article]
1537	

Revision 1 of Ms. 7205 Page 69

1538	Figure 5: The "Father of Atomic Theory" John Dalton (1808) correlated chemical
1539	with physical atomicity. Part 1 in this figure represents the arrangement of
1540	"particles" in water, and Parts 2, 5, and 6 portray the geometrical constraints
1541	of particles in ice. [From open access article]
1542	
1543	Figure 6: A) William Barlow and B) William Jackson Pope [terms of https:// about
1544	jstor.org/terms]
1545	
1546	Figure 7: Schemes for closest packing of spheres in crystals from Barlow (1883).
1547	[From Nature Publishing Group]
1548	
1549	Figure 8: Barlow's (1898) model for cubic closest packed spheres with smaller
1550	spheres tangentially located within interstices. [From Zeitschrift für
1551	Kristallographie]
1552	
1553	Figure 9: A) Dmitri Mendeleev (1834-1907); B) Ernst Mach (1838-1916). [From
1554	Wikipedia]
1555	
1556	Figure 10: Photograph of Max von Laue (1879-1960) [from Wikipedia]
1557	
1558	Figure 11: A) First X-ray diffraction pattern of copper sulfate [from http://what-
1559	when-how.com/proteomics/history-and-future-of-x-ray-structure-

1560	determination-proteomics/]; B) First published X-ray diffraction pattern of
1561	sphalerite (Friedrich et al. 1913).
1562	
1563	Figure 12: A) William Lawrence Bragg (1890-1971) (left) and William Henry Bragg
1564	(1862-1942) (right) (Acc. 90-105 - Science Service, Records, 1920s-1970s,
1565	Smithsonian Institution Archives). [Reprinted according to fair use copyright
1566	laws]. B) Reflection of X-ray pencils from parallel planes within crystal to
1567	generate diffraction spots (Bragg 1913a).
1568	
1569	Figure 13: A) Ernest Rutherford (1831-1937); B) Niels Bohr (1885-1962) [From
1570	Wikipedia]
1571	
1572	Figure 14: A) Paul Ewald (1888-1985) [from JSTOR archives]; B) Representation of
1573	X-ray scattering sphere in reciprocal space from Ewald (1913) [From
1574	Physikalische Zeitschrifte from Hathitrust.org]
1575	
1576	Figure 15: Founders of The American Mineralogist: A) Samuel G. Gordon (1897-
1577	1952); B) Harry W. Trudell (1880-1964) [both from Mineralogical Record
1578	online archives]
1579	
1580	Figure 16: A) Gilbert N. Lewis (1875-1946) [from Wikipedia]; B) Dot notation for
1581	H_2O , HI, and I_2 from Lewis (1916) [from Journal of the American Chemical
1582	Society]

Page 71

1583	
1584	Figure 17: Wherry's (1918) representations of the structures of A) diamond and B)
1585	body-centered cubic structures such as a-Fe. Note his inferred physical
1586	shapes of the atoms required by the unit-cell geometries to the right. [From
1587	Wherry 1918 in Am Min]
1588	
1589	Figure 18: Lewis's sketches for the disposition of valence electrons around "cubical
1590	atoms," formalized in Lewis (1916). [From Wikipedia]
1591	
1592	Figure 19: The Founders' Letter circulated in 1917. [From MSA Centennial website]
1593	
1594	Figure 20: The announcement in the Nov. 28, 1919 issue of <i>Science</i> of the founding
1595	of the "Crystallographical and Mineralogical Society of America." [From
1596	Science magazine]
1597	
1598	Figure 21: Aperiodic fine (A) and coarse (B) slabs in mixed-layer chlorite ("C")-mica
1599	("M") intergrowths with c^* horizontal. Inset diffraction patterns show heavy
1600	streaking along 00 <i>l</i> due to the fine intergrowths. Diagram at bottom shows
1601	the structure of the nonconventional setting for the C (chlorite) and M (mica)
1602	slabs outlined in HRTEM images. Reprinted from Veblen (1983). [From Am
1603	Min article]

1604

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-7205

Revision 1 of Ms. 7205

Page 72

1605 Figure 24: Transmission electron microscope images of synthetic akaganeite (γ-

1606 FeOOH) nanoparticles. Published with permission of Kris Peterson.

Edward H. Kraus (1875-1973)

Frank R. Van Horn (1872-1933)

Edgar T. Wherry (1885-1982)

Alexander H. Phillips (1866-1937)

Thomas L. Walker (1867-1942)

Herbert P. Whitlock (1868-1948)

Figure 1: The six founders of MSA.

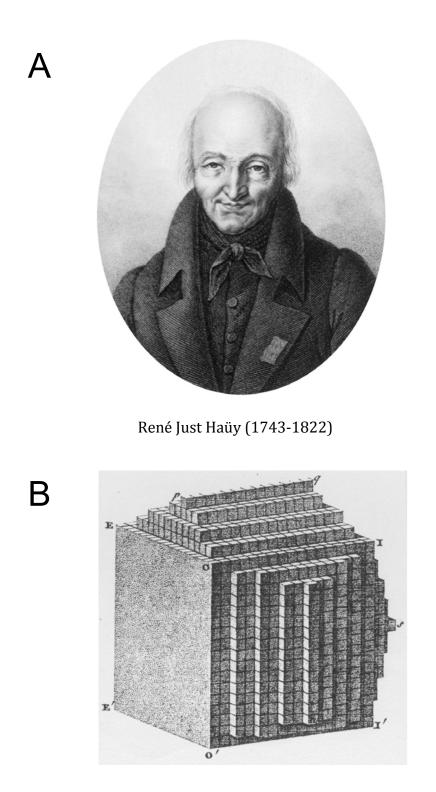


Figure 2: A) René Just Haüy (engraving by Ambroise Tardieu); B) Construction of pentagonal dodecahedron of pyrite by integrant molecules from *Traité de Mineralogie* (1801).

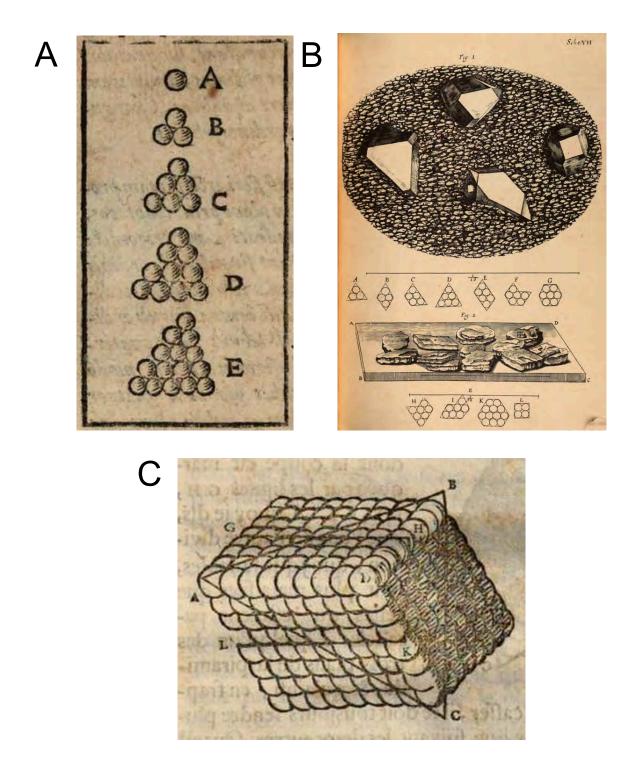


Figure 3: A) Closest packing of atoms in a snowflake from Kepler's *Strena Seu de Nive Sexangula* (1611); B) Drawings of quartz crystals and their component "globular bodies" from Hooke's *Micrographia Restaurata* (1665); C) Arrangement of spherical bodies to explain cleavage angles in calcite from Huygens *Traité de la Lumière* (1690).

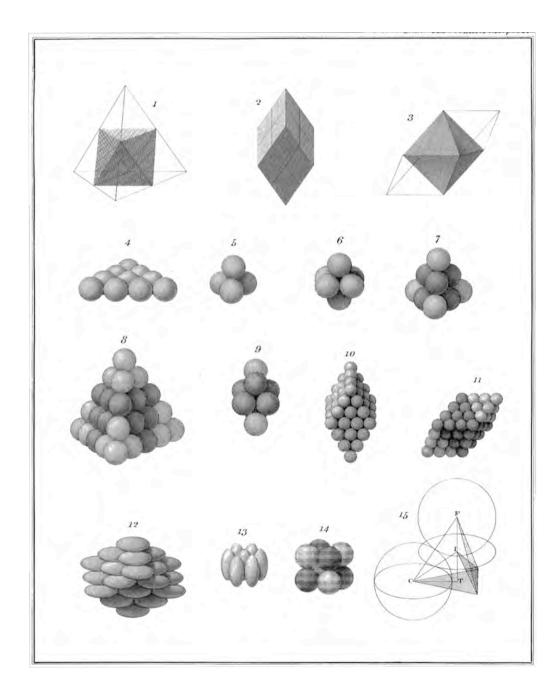


Figure 4: William Wollaston's (1813) proposed construction of Haüy's polyhedral *molécules intégrantes* using spheres and ellipsoids. [Open access]

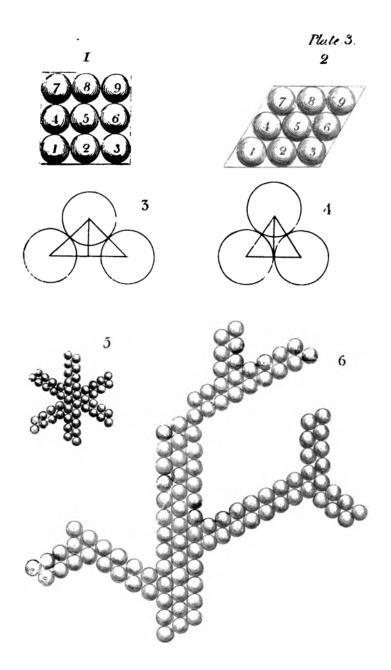
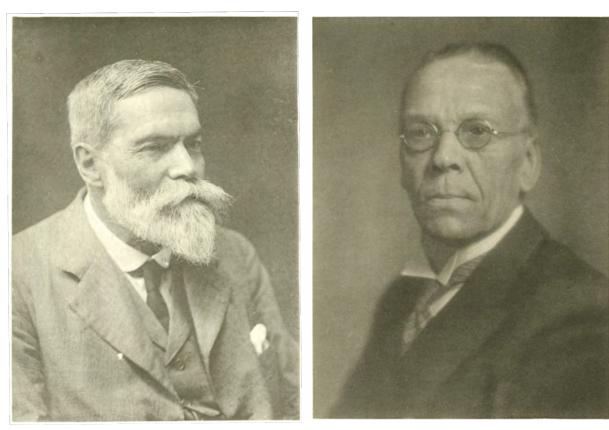



Figure 5: The "Father of Atomic Theory" John Dalton (1808) correlated chemical with physical atomicity. Part 1 in this figure represents the arrangement of "particles" in water, and Parts 2, 5, and 6 portray the geometrical constraints of particles in ice.

William Barlow (1845-1934)

William Jackson Pope (1870-1939)

Figure 6: William Barlow and William Jackson Pope

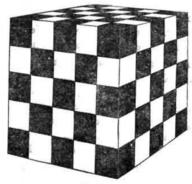


FIG. I.

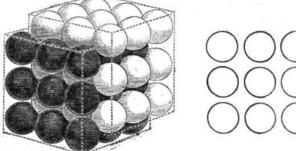
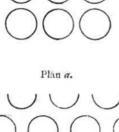
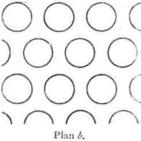




FIG. 2.

FIG. 3.

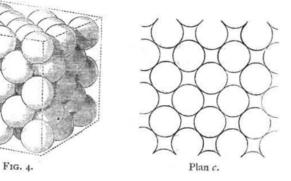


Figure 7: Schemes for closest packing of spheres in crystals from Barlow (1883).

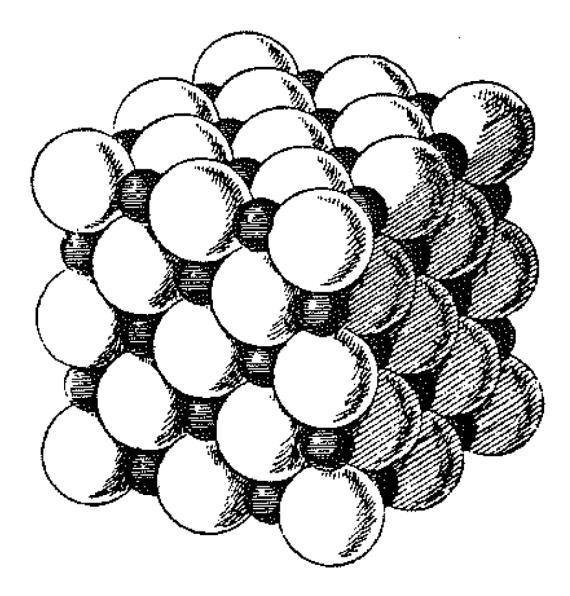


Figure 8: Barlow's (1898) model for cubic closest packed spheres with smaller spheres tangentially located within interstices.

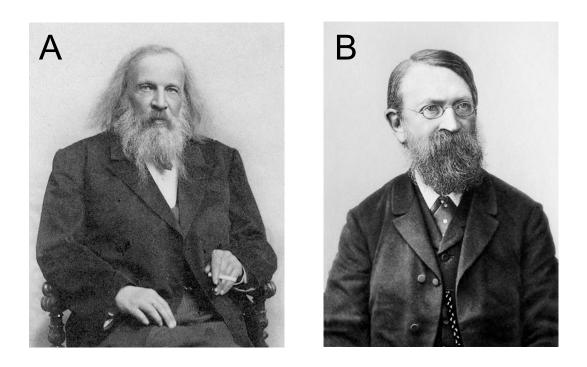


Figure 9: A) Dmitri Mendeleev (1834-1907); B) Ernst Mach (1838-1916).



Figure 10: Max von Laue (1879-1960)

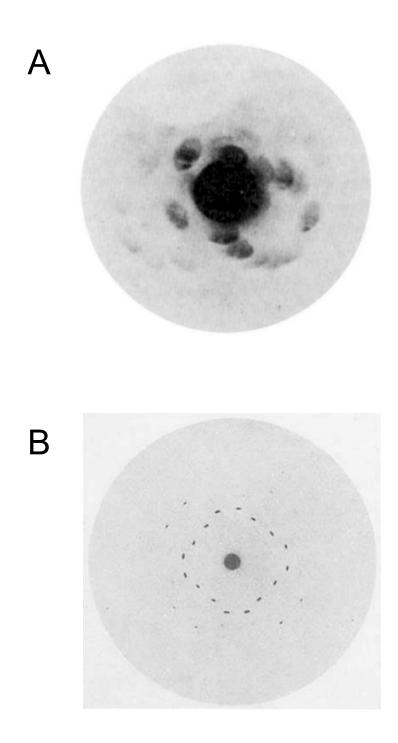
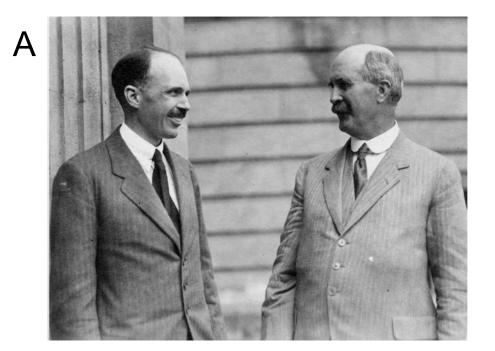



Figure 11: A) First X-ray diffraction pattern of copper sulfate; B) First X-ray diffraction pattern of sphalerite (Friedrich et al. 1913).

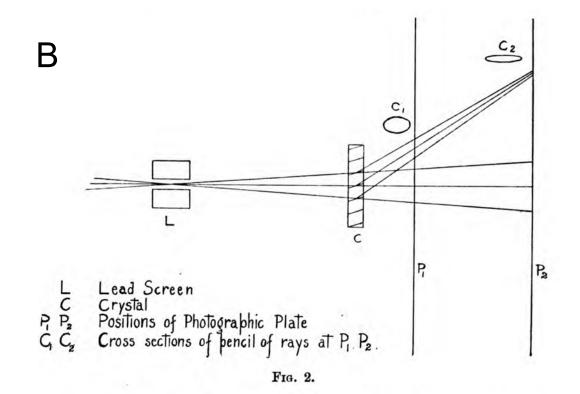


Figure 12: A) William Lawrence Bragg (1890-1971) (left) and William Henry Bragg (1862-1942) (right) (Acc. 90-105 - Science Service, Records, 1920s-1970s, Smithsonian Institution Archives). B) Reflection of X-ray pencils from parallel planes within crystal to generate diffraction spots (Bragg 1913a).

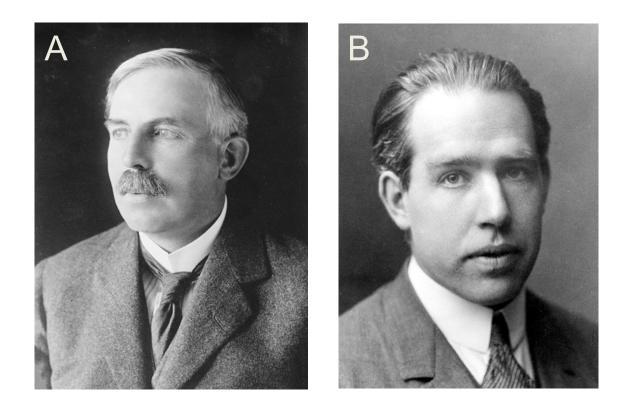


Figure 13: A) Ernest Rutherford (1831-1937); B) Niels Bohr (1885-1962)

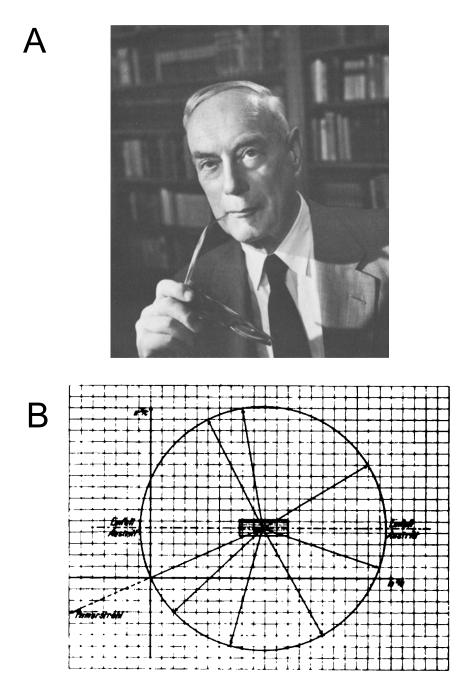
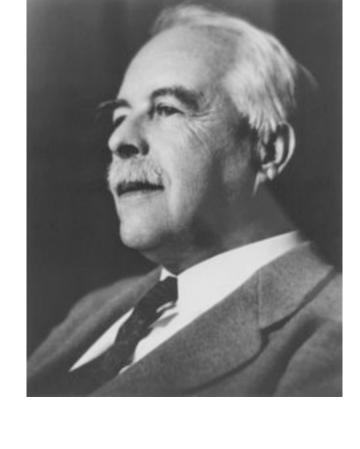



Figure 14: A) Paul Ewald (1888-1985); B) Representation of X-ray scattering sphere in reciprocal space from Ewald (1913)

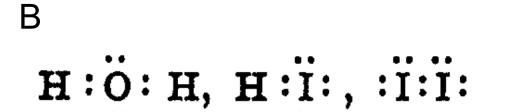


Figure 15: A) Gilbert N. Lewis (1875-1946); B) Dot notation for H₂O, HI, and I₂ from Lewis (1916).

Figure 16: Founders of *The American Mineralogist*: A) Samuel G. Gordon (1897-1952); B) Harry W. Trudell (1880-1964)

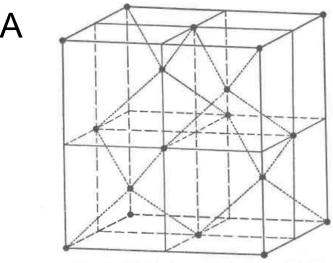


FIG. 1. Eight-atom cell of diamond lattice; valence of atoms 4, in directions shown by dotted lines.

B

FIG. 2. Shape of each atom³ (when all are alike).

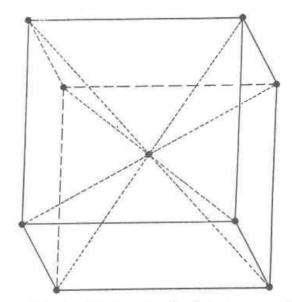


FIG. 5. Two-atom cell of body-centered cubic lattice; valence of atoms 8, in directions shown by dotted lines.

FIG. 6. Shape of each atom (when all are alike).

Figure 17: Wherry's (1918) representations of the structures of A) diamond and B)

body-centered cubic structures such as α -Fe. Note his inferred physical

shapes of the atoms required by the unit-cell geometries to the right.

inside the storm thus Probly some to C 0 Nace

Figure 18: Lewis's sketches for the disposition of valence electrons around "cubical atoms," formalized in Lewis (1916).

Ann Arbor, Mich., February 5, 1917.

For several years past, some of those attending the annual meetings of the Geological Society of America have discussed the advisability of organizing a separate society composed of persons whose interests lie more especially in the field of Mineralogy. The feeling has been growing that the founding of a Mineralogical Society would do much to stimulate greater interest in the subject and also give wider recognition to the work being done in this field in America. Accordingly, the undersigned, who were in attendance upon the meetings of the Geological Society of America, at Albany, in December, 1916, discussed this question very thoroughly, and it was agreed that the time has come when an organization which might be called "The Mineralogical Society of America" should be formed at as early a date as possible.

While many of the advantages resulting from such an organization are apparent to all interested, the undersigned felt that perhaps the greatest benefit to be derived would be the founding by the society of a journal to be devoted exclusively to the publishing of mineralogical papers. As is well known, there is great need for a dignified medium of publication for the increasing volume of mineralogical investigations which are being carried on in America. Naturally such a publication must be started on a modest basis, and appear perhaps at first as a quarterly. Members of the society would of course receive the Journal free of charge.

With respect to organization and means of publication, mineralogists in America are far behind their colleagues in Europe, but we feel confident that you will respond promptly and favorably to our appeal to unite with us as a charter member in perfecting the organization of this society, the standards of which are to be on a par with those of the Geological Society of America. In order to insure the publication of a journal, which would naturally have a somewhat limited circulation, it was thought advisable that the annual dues be placed at \$10.00.

This letter is being addressed to a selected list of mineralogists in the United States and Canada, and if a sufficient number of favorable replies is received, it is planned to complete the organization sometime during the current year.

Professor Edward H. Kraus, Ann Arbor, Michigan, has been designated to conduct the correspondence looking toward the organization of the society. He will be glad to hear from you at your earliest convenience.

Very sincerely yours,

Edward H. Kraus, Alexander H. Phillips, Frank R. Van Horn, THOMAS L. WALKER, Edgar T. Wherry, Herbert P. Whitlock.

Figure 19: The Founders' Letter circulated in 1917. [From MSA Centennial website]

CRYSTALLOGRAPHICAL AND MINERALOGICAL SOCIETY OF AMERICA

For several years the formation of a Crystallographical and Mineralogical Society of America has been contemplated, but the final steps leading to organization were postponed until after the close of the war. Those most concerned in the undertaking have recently been canvassed, and it is now expected that the society will be definitely organized during the meetings of the Geological Society of America in Boston, December 29 and 31.

Figure 20: The announcement in the Nov. 28, 1919 issue of *Science* of the founding

of the "Crystallographical and Mineralogical Society of America."

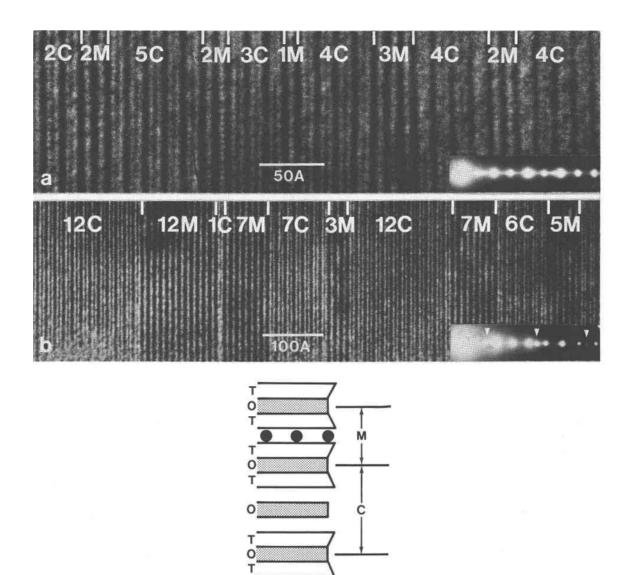


Figure 21: Fine (A) and coarse (B) slabs in mixed-layer chlorite ("C")-mica ("M") intergrowths with *c** horizontal. Inset diffraction patterns show heavy streaking along 00*l* due to the fine intergrowths. Diagram at bottom shows the structure of the nonconventional C (chlorite) and M (mica) slabs. Reprinted from Veblen (1983).

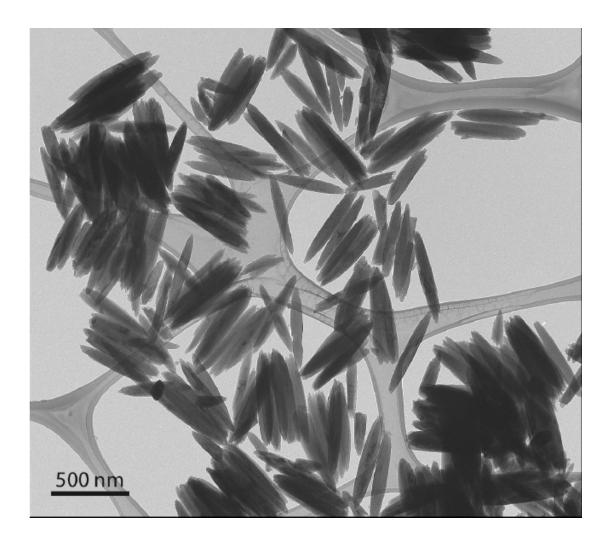


Figure 22: Transmission electron microscope images of synthetic akaganeite (γ-FeOOH) nanoparticles. Published with permission of Kris Peterson.