Submission to the “American Mineralogist”

(An invited contribution to the Special Collection “Microporous materials: Crystal-chemistry, properties, and utilizations” – Associated Editors: G. Diego Gatta, Paolo Lotti)

Computer modeling of apparently straight bond angles: the intriguing case of all-silica ferrierite

Federica Trudua, Gloria Tabacchib, Ettore Foisb,*

aSUPSI Lugano, Dipartimento Tecnologie Innovative, Via Cantonale 2c, Manno, CH-6928 Switzerland
bDipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, and INSTM Insubria Research Unit, Via Valleggio 9, I-22100 Como, Italy.

Corresponding author: Ettore Fois, ettore.fois@uninsubria.it
ABSTRACT

The relationships between synthetic zeolites and their natural counterparts unveiled by theoretical studies have contributed to improve properties and applications of zeolite-based materials in strategic areas like industrial catalysis, environmental protection, and solar energy harvesting. To pinpoint the role of modeling in zeolite science, we discuss an example of computational-driven problem-solving: can tetrahedral frameworks sustain straight (i.e. 180°) Si-O-Si bond angles? The true crystal symmetry of zeolite ferrierite, especially in its all-silica form, has been intensely debated for 30 years before being solved in the $Pmnn$ space group. Yet there are indications that an $Immm$ structure with energetically unfavourable linear Si-O-Si linkages could be formed at high temperature. To gather insight, we perform density functional theory optimizations and frequency calculations of all-silica ferrierite in both the $Pmnn$ and $Immm$ space groups. Our results indicate that $Pmnn$ is more stable than $Immm$, in line with experiments. While the $Pmnn$ structure is a true minimum in the energy profile of ferrierite, the $Immm$ structure has four imaginary frequency vibrations, three of which are localized on the 180° Si-O-Si angles. This suggest that ferrierites with $Immm$ symmetry may be classified as metastable phases. Such a designation is also supported by first-principles molecular dynamics on $Immm$ FER, evidencing that the average value of 180° actually results from Si-O-Si angle inversion. An implication of this study with interesting geological and technological consequences is the association of straight Si-O-Si angles experimentally detected in open-framework or low-density silicates to an angle-inversion process occurring at the femtosecond-scale. Such flexibility of the apparently flat Si-O-Si linkages might play an important role in sorption phenomena, which are ubiquitous in geological processes and industrial applications alike.
Keywords: Zeolites, Microporous materials, High temperature, framework flexibility, open framework silicates, molecular dynamics, density functional calculations

INTRODUCTION

Zeolites are porous silicates relevant in mineralogy, industry, and technology (Čejka et al. 2010; Gottardi and Galli 2012). Adsorption of geochemical fluids, solar energy transfer, or catalytic cracking all occur within zeolite nanospaces (Tabacchi 2018). These processes require multi-technique approaches in order to be understood, exploited, and improved (Van Speybroeck et al. 2015; Evans et al. 2017; Paul et al. 2018; Li and Pidko 2019). Computational techniques - such as geometric models (Sartbaeva et al. 2008; Wells and Sartbaeva 2012; Fletcher et al. 2015; Wells et al. 2015), force field methods (Demontis et al. 1991, 2017; Desbiens et al. 2005; Cailliez et al. 2008; Coudert et al. 2009; Demontis and Suffritti 2009; Wang et al. 2014) and quantum chemistry calculations (Campana et al. 1997; Ugliengo et al. 2005; Coudert et al. 2006; Giustetto et al. 2011; Dovesi et al. 2018) - are effective tools to address these issues.

Besides predicting crystal structures and elastic behaviour of geochemical systems (Kubicki 2016), simulations may guide experiments by providing atomistic insight often difficult to access in a laboratory (Marx and Hutter 2009; Tabacchi et al. 2014b; Van Speybroeck et al. 2015; Gaigeot and Sulpizi 2016). Theoretical techniques are particularly valuable at the temperature and pressure conditions typical of earth’s mantle or extra-terrestrial environments (Cruciani 2006; Liang et al. 2007), where experimental observation is often unfeasible (Gatta et al. 2018; Kong et al. 2018). Zeolites are attractive materials for technology owing to their high resistance to thermal and mechanical stress (see Lotti et al. 2016; Santoro et al. 2016; Comboni et al. 2018; Kim et al. 2018; Marqueño et al. 2018; Seryotkin and Bakakin 2018; Confalonieri et al. 2019; Gigli et al. 2019; Seryotkin 2019) for recent experimental studies and (Arletti et al. 2003; Cruciani 2006; Gatta 2008; Gatta and Lee 2014; Vezzalini...

Insight from theory is also useful for zeolite-based applications, like hybrid functional materials (Calzaferri et al. 2003; Brühwiler et al. 2009; Fois et al. 2010b, 2012, 2013; Calzaferri 2012, 2017, 2018; Manzano et al. 2013; Zhou et al. 2013; Cucinotta et al. 2014; Viani et al. 2016; Insuwan et al. 2017; Li and Li 2018; Woodtli et al. 2018; Doungmanee et al. 2018; Pintus et al. 2019), or catalysts for pollutant abatement (Luo et al. 2016; Signorile et al. 2018; Wang et al. 2018a; Li and Pidko 2019; Prinsen and Luque 2019). For all these processes, the flexibility of the T-O-T angles (T is a tetrahedral cation, normally Si or Al) is crucial, and the framework often plays an active role (Fois et al. 2000; Spanó et al. 2006; Sirijaraensre and Limtrakul 2013; Montejo-Valencia and Curet-Arana 2015; Dong et al. 2016; Nie et al. 2017; Fang et al. 2018; Wang et al. 2018b). Many industrial catalysts have intriguing connections with mineralogy: for example, TS1 and natural mutinaite (Vezzalini et al. 1997) share the same MFI topology, and the ferrierite framework (FER) is common in the mineral world.

Natural FER is found both in volcanic and sedimentary rocks,(Yokomori et al. 2001) while hydrothermally synthesized ferrierites with high Si/Al ratio (Guo et al. 2000; Cheng et al. 2006) are excellent industrial catalysts (Corma 2003; de Ménorval et al. 2005; Bonilla et al. 2009). Moreover, all-silica ferrierite (Si-FER) is a very selective framework for bioethanol production (Bai et al. 2015): under high pressures, it acts as a mold, forming new supramolecular nanomaterials (Arletti et al. 2016, 2017a). Such peculiar behaviour suggests that compression might also enhance the yield of FER-catalyzed industrial processes (Wiedemann et al. 2016) by facilitating reactants’ penetration in the pores. Also importantly, both adsorption (Bull et al. 1993) and catalytic power are influenced by the T-O-T angles (Redondo and Hay 1993; Buzzoni et al. 1996; Fois et al. 1998, 1999, 2008c; Tuma and
Sauer 2006; Trudu et al. 2007, 2008). Hence, understanding the structure-property relationships of Si-FER, the flexibility of the T-O-T linkages, and its symmetry becomes of key relevance in this context.

Overview of previous work

The true crystal symmetry of FER was subject of a debate lasting several decades. The structure refinement was first accomplished in space group *Immm* by Vaughan (Vaughan 1966). This highly symmetric group implies an inversion center at (0.25,0.25, 0.25), occupied by a bridging oxygen, and straight T-O-T linkages. This was in contrast with Liebau’s proposition (Liebau 1961) that straight bonds are energetically unfavourable and should not exist in crystalline silicates at normal conditions.

About 20 years later, several crystal structures were examined by Baur (Baur 1980), concluding that linear Si-O-Si bonds may occur in silicates and borosilicates (Baur and Ohta 1982). In 1985, Liebau pointed out that it is not possible to distinguish between dynamic and static disorder from diffraction experiments (Liebau 1985). While dynamic disorder refers to an atom vibrating about a time-averaged mean position, static disorder is related to an atom statistically occupying two (or more) positions close to a space-averaged mean position. Indeed, the high anisotropy of thermal vibrations of the oxygens involved in straight T-O-T bonds suggested that these atoms vibrate in a plane orthogonal to the T···T direction. Shortly later, refinements of several FER crystal structures indicated that the inversion centers disappeared (Alberti 1986) and that the symmetry lowering was intrinsic to the framework (Alberti and Sabelli 1987b). The enigma of the FER symmetry captivated also Kuperman et al (Kuperman et al. 1993): using single-crystal X-ray diffraction, these authors concluded that the actual Si-FER symmetry was orthorhombic *Pmnn* and not *Immm*. By synchrotron X-ray and neutron powder diffraction, Morris et al highlighted significant distortions of Si-FER from the *Immm* symmetry (Morris et al. 1994). The bridging oxygen in the (assumed) linear T-O-T angle (namely, T1-O4-T1), was found 0.3 Å away from the ideal site, causing a reduction of the angle from 180° to about 170°. Although the
spread of the Si-O bond lengths (ca. 1.56-1.65 Å) was slightly larger than that found by the refinement in the ‘incorrect’ Immm group, a Pmnn symmetry for Si-FER was established. The same authors performed variable temperature NMR on a calcined sample of Si-FER (Bull et al. 2003), and hypothesised a temperature-induced transition at about 410 K from the Pmnn to the Immm form of the material. Albeit the researchers could not exclude that the high-temperature structure could be a dynamic average of the low temperature ones, as already suggested e.g., for quartz (Spearing et al. 1992), the data were in favour of Immm Si-FER at high temperature. However, the case of quartz suggests some considerations. Rigid-Unit-Mode (RUM) simulations on the quartz α-β transition showed that the highly-symmetric β-phase was a dynamic average: the instantaneous local structure exhibited large deviations from hexagonal symmetry due to cooperative tilting modes and was more similar to low-symmetry α-quartz (Wells et al. 2002; Sartbaeva et al. 2005). Similarly, the high-temperature cristobalite structure obtained from diffraction displayed a 180° Si–O–Si angle and large-amplitude motions of the oxygen normal to the Si-Si direction. Such dynamic disorder could be accounted for by low-frequency RUMs (Wells et al. 2002). Also, the influence of symmetry-breaking local-structure changes in zeolites was noted for analcime frameworks (Sartbaeva et al. 2008; Gatta et al. 2009; Wells et al. 2011): simulations suggested that the cubic symmetry resulted from a dynamic average over less symmetric structures (Gatta et al. 2009). Hence, various SiO₂-phases with linear Si-O-Si linkages are in fact of lower symmetry when viewed instantaneously and locally.

More recently, the high-pressure behaviour of Si-FER has been investigated on both powdered samples (Arletti et al. 2014) and single crystal (Lotti et al. 2015) using penetrating and non-penetrating fluids. Water intrusion in Si-FER was also studied at moderate pressures (Cailliez et al. 2008; Fraux et al. 2017). All these experiments indicated a Pmnn space group, thus ruling out the presence of 180° angles for Si-FER under compression. Nonetheless, it is worth mentioning that coesite – a high-pressure polymorph of silica– actually has Si-O-Si linkages of 180°, which remain linear even under GPa
pressures (Angel et al. 2003). Its structure (C/2c space group) is composed by four-membered rings of
tetrahedra forming chains parallel to the c axis, and the Sil-O1-Sil angle is symmetrically constrained to
be 180° (Levien and Prewitt 1981). Differently from other silicates with supposed linear linkages (e.g.
β-crystobalite), the displacement parameters for the O1 oxygen of coesite remained small in the
explored pressure range – thus reflecting a limited degree of disorder. On this basis, Angel et al.
concluded that the unusual 180° linkages were due to the connectivity of the coesite framework and not
to its specific symmetry (Angel et al. 2003). This impressive stability was confirmed also by later
studies: indeed, the Si1-O1-Si1 180° angle starts to bend only above ~ 20 GPa, leading to the
appearance of two distinct angles, one of which remains however close to 180° (Černok et al. 2014;
Chen et al. 2016). Hence, the case of coesite suggests that, in principle, we cannot exclude that the
energetically unfavorable 180° angle in ferrierite (Morris et al. 1994; Lewis et al. 1996) might become
a convenient arrangement under non-standard conditions (Bull et al. 2003).

Modeling may provide further insight on the true symmetry of ferrierite and the controversial existence
of 180° angles in silicates. Most of the computational analyses performed to date adopted a Pmnn space
group (Tuma and Sauer 2006; Fois et al. 2008b; Nachtigall et al. 2009; Grajciar et al. 2010; Fischer
2015; Fischer et al. 2015a, 2016; Hay et al. 2015; Fischer and Angel 2017), although some studies
assumed an Immm symmetry (Coudert 2013; Román-Román and Zicovich-Wilson 2015). Herein, we
consider FER models of Immm and Pmnn symmetry, optimize their structure, and compute harmonic
frequencies to gather insight on their relative stability. Finally, the thermal behaviour of FER-Immm
will be studied by first principles molecular dynamics.

METHODS

Adopted DFT functional and dispersion corrections
FER is a medium-sized type zeolite of the mordenite (MOR) family (Baerlocher et al. 2007). Its structure is based on five-membered rings of tetrahedra (5-MR) connected to form oval ten-ring channels (10-MR), both stacked along the [001] direction. Also present and running along the same direction is a smaller 6-MR channel. The 10-MR channels are intersected by eight-ring channels (8-MR), which run parallel to the [010] direction. Within the Density-Functional-Theory (DFT) framework, we have modelled the FER zeolite both in the Immm and Pmnn space groups using the PBE functional (Perdew et al. 1996) and dispersion corrections of the D2-type (Grimme 2006). This DFT functional/dispersion correction combination (nicknamed as PBE-D2), has been widely used in silicate modeling, providing a convenient accuracy/cost balance. Benchmark investigations (Fischer and Angel 2017) indicate even better performances for the (dispersion-corrected) PBE-sol functional in zero-K structural optimization of neutral zeotypes, although (dispersion-corrected) PBE seems to perform better for aluminophosphate zeotypes (Fischer 2018c). Nonetheless, those approaches deliver a rather similar description of bond distances and angles for zeolites and zeotypes. We chose PBE-D2 because, for the water-ethanol segregation in Si-FER (Arletti et al. 2017b, 2017a), it provided an average framework structure in good agreement with X-ray refinements, even at nonstandard conditions. PBE augmented with empirical dispersion has been employed to study various phenomena in porous materials, e.g. pressure-induced phase transitions (Kremleva et al. 2013, 2014), high-pressure template effects (Fischer 2018c), CO$_2$ adsorption (Fischer and Bell 2013b, 2013a, 2014), or zeolitic functional materials (Gigli et al. 2014, 2018a, 2018b; Tabacchi et al. 2015). The reliability of dispersion-corrected PBE has been demonstrated by extensive benchmark tests on solids (Tran et al. 2016), alumino-/germano-silicates (Fischer 2015, 2018a), aluminophosphates (Fischer 2019), silica polymorphs (Hay et al. 2015), and zeotypes (Fischer et al. 2015b, 2016, 2019; Fischer and Angel 2017; Albavera-Mata et al. 2018).

Generation of Si norm conserving pseudopotentials
Within the chosen protocol, the interactions of the electrons with the ionic cores are described by pseudopotentials, either of the ultrasoft (Vanderbilt 1990) or norm conserving (Kleinman and Bylander 1982; Troullier and Martins 1991) type (see below). Calculations were performed with CPMD (www.cpmd.org) and Quantum Espresso (QE) (Giannozzi et al. 2009, 2017). These codes were chosen because QE is effective in optimizing unit-cell parameters, while CPMD performs better in the first principles molecular dynamics (FPMD) runs (Car and Parrinello 1985; IBM Corp. 1990–2017 and MPI für Festkörperforschung Stuttgart 1997–2001 2017). Although both codes describe the electronic structure with DFT using plane waves as basis sets, there are some relevant differences – e.g., QE also allows for the use of augmented plane waves and more flexible pseudopotential forms. This fact prompted us to use (in the case of O) or generate (in the case of Si) pseudopotentials able to work effectively with both codes and to provide equivalent results when tested on the same systems. The ultrasoft pseudopotential (PP) used for oxygen is the same for both codes and is available in the standard PP libraries of the QE distribution (www.quantum-espresso.org) and of the CPMD distribution (www.cpmd.org). The Si PPs we generated for the CPMD are of the norm-conserving type (Troullier and Martins 1991). Among these Si PPs, the three most promising candidates were tested (with both codes) on Pmnn FER and Immm FER against the original QE Si PP’s (see Supporting information for details). The parameters of our best performing pseudopotential (named NCPP1) were obtained by fitting the Si pseudowavefunctions to the all-electron Si wavefunctions calculated for a Si atom in the s2p1d1 configuration. Notably, also the Si PP in the QE library had been generated by taking the Si s2p1d1 electronic configuration as reference state. In the case of Pmnn FER, structural results obtained with NCPP1 were validated against previous theoretical data obtained by (Fischer et al. 2016) with the same dispersion-corrected DFT functional (PBE-D2). The geometrical parameters monitored in these tests (i.e., bond lengths /angles) are reported in tables S1a to S4b in the Supporting Information. On the basis of these tests, NCPP1 was used in all the simulations with the CPMD code.
Computational setup

The unit-cell parameter optimizations were carried out on \textit{Immm} and \textit{Pmn} FER with QE, using the ultrasoft PP’s from the standard QE distribution and the experimental cell parameters and atomic position from Ref. (Morris et al. 1994) as a guess. In these calculations, a 1x1x2 k-point mesh was adopted. Electronic orbitals were expanded up to a kinetic energy cutoff of 60 Ry (833 eV) for the wavefunction and 300 Ry (4998 eV) for the density), i.e. a value sufficient for convergence of the cell parameters, in line with previous work on neutral zeotypes ((Hay et al. 2015; Fischer et al. 2016; Albavera-Mata et al. 2018), aluminophosphates (Fischer and Angel 2017; Fischer 2018c) and other framework materials (Formalik et al. 2018). Such a step gave us the fully optimized minimum energy structures for FER \textit{Immm} and FER \textit{Pmn} at zero K, which we used as a reference for the other calculations. The optimized lattice parameters are reported in Table 1.

Calculations with the CPMD code were performed taking the parameters in Table 1 and doubling the cell parameter \(c\). The CPMD simulation cell contains 216 atoms (stoichiometry: Si\textsubscript{72}O\textsubscript{144}). The larger size of the CPMD cell with respect to the QE cell allows for considering only the Gamma Point in the Brillouin zone sampling. The CPMD minimum energy structure is well in line with the QE one obtained with a similar setup (see Tables 1-4a,b,c,d in the Supporting information). As frequency calculations require a strict convergence criterion (Marx and Hutter 2009), we considered convergence achieved when the maximum forces on the ions were lower than \(5 \times 10^{-5}\) Hartree/Bohr. Using the CPMD optimized geometry at 60 Ry cutoff, harmonic frequencies and eigenvectors were calculated with a finite difference method and the same set-up as in the optimization runs. Relevant normal modes were analysed by plotting the atomic displacements as vectors centered on the atomic positions. The optimized geometries at 60 Ry cutoff were then re-optimized for lower cutoff values (30 Ry for wavefunction, 240 Ry for the density; 25 Ry for wavefunction, 200 Ry for density) to check whether
convergence of geometric parameters could be achieved in a computationally-cheaper way – which is crucial for long FPMD runs. As such tests gave positive results, the lower plane wave cutoffs (25 Ry for wavefunction, 200 Ry for density) were used in the FPMD simulations on FER $Immm$. FPMDs were performed with the Car-Parrinello (CP) method (Car and Parrinello 1985) in the NVE ensemble. First, we performed a 10 ps equilibration run in the NVT ensemble at a target temperature of 450K with Nose-Hoover thermostats (Nosé 1984; Hoover 1985). Such a target value was chosen because, as reported by Ref. (Bull et al. 2003), for $T> 400$ K the $Immm$ structure should become favored over the $Pmnn$ one. After equilibration, the trajectory was followed for 50 ps to calculate the average coordinates of $Immm$ Si-FER. The average temperature resulted 438 K (with 17 K standard deviation). The equations of motion from the CP Lagrangean were integrated with a time step of 5 au and an inertia parameter for the wavefunction coefficients of 500 au. Such FPMD parameters properly described the dynamics of zeolite hybrids (Fois et al. 2010b, 2012; Zhou et al. 2013), the high-pressure behaviour of zeolites (Ferro et al. 2002; Ceriani et al. 2004; Fois et al. 2005, 2008d; Betti et al. 2007; Gatta et al. 2016; Fois and Tabacchi 2019) and high-temperature processes of oxide porous materials and interfaces (Fois et al. 2003, 2008a, 2010a; Tabacchi et al. 2014a, 2016a, 2007; Barreca et al. 2011, 2018; Deiana et al. 2013, 2016; Martínez-Suarez et al. 2015; Kraus and Frank 2017). Apart from the cell parameters (that were kept fixed along the simulation), no constraints were imposed to the atomic positions, i.e. all atoms were left free to evolve according to the equations of motions, thus the symmetry of the system was fully unconstrained. Graphical representations of the FER structures were created with the VMD code (Humphrey et al. 1996), https://www.ks.uiuc.edu/.

RESULTS AND DISCUSSION
The optimized cell parameters of ferrierite are reported in Table 1. By considering that the cell parameters (and the atomic coordinates) from DFT-structural optimizations refer to minimum structures at 0 K, while experimental structural data are clearly obtained from finite temperature measurements, the cell parameters calculated for \(Pmnn \) Si-FER are in keeping with the corresponding experimental ones (Morris et al. 1994; Lewis et al. 1996). Moreover, our Si-FER \(Pmnn \) cell parameters are also in line with the results of previous theoretical studies (Hay et al. 2015; Fischer et al. 2016; Fischer and Angel 2017), including those obtained by (Fischer et al. 2016) using the same combination of density functional/dispersion correction and a comparable energy cutoff (800 eV). It is worth underlining that several dispersion-corrected versions of widely-used density functionals provide a satisfactory performance for structural parameters of zeolites, as shown e.g. in Ref. (Fischer 2015, 2018c; Fischer et al. 2016; Fischer and Angel 2017).

The cell parameters obtained for \(Immm \) (Table 1) favourably compare with those reported for the FER-\(Immm \) framework in the IZA-SC database of Zeolite Structures (Baerlocher et al. 2007; Baerlocher and McCusker 2017). Noticeably, the calculated \(Immm \) parameters are all slightly longer than the \(Pmnn \) ones, resulting thus into a larger cell volume than Si-FER \(Pmnn \), also in line with experimental data. The Si-O bond distances and Si-O-Si bond angles calculated for the \(Pmnn \) and \(Immm \) structures of Si-FER are reported in the supporting information (Tables 1a-d and Tables 2a-d, respectively); since the \(Immm \) and \(Pmnn \) space groups bear a different number of crystallographically different atoms in the unit cell, it is not possible to describe the two structures with a single labelling scheme. More importantly, the comparison of the calculated \(Pmnn \) and \(Immm \) minimum energy structures indicates that the former one is the most stable phase at 0 K – specifically, the energy difference per formula unit amounts to 0.15 kcal/mol in favour of \(Pmnn \). This finding is in line with the now generally accepted space group of Si-FER, \(Pmnn \), supported by the broad series of experimental and theoretical results discussed in the introduction. Moreover, a clear distinction between the \(Pmnn \) and \(Immm \) structures of
ferrierite emerges from the vibrational analysis of the calculated energy minima. All the vibrational
frequencies of $Pmnn$ are positive, which indicates that this structure is a stable minimum of the
potential energy surface of FER. This result provides further support to the $Pmnn$ space group
assignment for Si-FER. In contrast, four frequencies calculated for $Immm$ are imaginary, indicating that
this structure is not a stable minimum of the potential energy surface of Si-FER. This important finding
suggests a closer analysis of the four normal modes corresponding to the imaginary frequencies. The
 graphical representations of these modes, labelled Mode1 to Mode4, are displayed in Figures 4 to 7 in
the Supporting Information, respectively. Since these modes involve neither stretching of Si-O bonds
nor bending of O-Si-O angles, but only tilting of tetrahedra, they may be assimilated to rigid unit
modes (Swainson and Dove 1993; Matthew et al. 2001; Wells et al. 2002; Sartbaeva et al. 2005). First,
we observe that not all the modes imply variation of the Si1-O4-Si1 angle. In particular, Mode1 takes
place in the bc plane: it may be described as a collective zig-zag corrugation of the tetrahedral chains
along the c direction, is localized on the Si1-O2-Si2, Si1-O1-Si3, Si3-O7-Si4, Si3-O8-Si4 linkages, and
exhibits a $C2/m$ symmetry. The other three modes show significant contributions from the Si1-O4-Si1
linkages and cause distortions of the bond angle from the 180° value during vibration. Moreover, the
displacement of the O4 atoms is always more pronounced than those of the Si1 atoms, in line with the
flexibility behaviour expected for tetrahedral T-O-T linkages. Interestingly, in Mode2 the motion of the
O4 atom occurs in the ab plane of $Immm$-FER, while in Mode3 and Mode4 the O4 displacement is in
the ac and bc planes, respectively. Anyway, in all three modes the O4 atoms move nearly perpendicular
to the Si1----S1 axis, i.e. according to the dynamical disorder mechanisms previously postulated for Si-
FER (Liebau 1985; Alberti 1986; Alberti and Sabelli 1987a) and discussed in the Introduction. In
addition to the Si-O4-Si1 linkage, these modes involve other atoms of the Si-FER framework. Mode2
has a significant participation of the Si1-O2-Si2 linkages, plus a minor contribution of the Si1-O1-Si3
ones, resulting thus into a breathing deformation of the 10MR in the ab plane. The Si3-O7-Si4 and Si3-
O8-Si4 bonds of the 5MR containing the Si-O4-Si1 linkages are involved as well, yet to a minor extent. Mode4 essentially involve the same linkages as in Mode2, but now they contribute nearly equally to the mode, and the O4 displacements occur mostly in the ac plane. Mode3 also involves Si1-O3-Si1 and Si2-O2-Si2, and brings about a collective deformation of the 8MR. The atomic displacement analysis of the three angle-changing modes indicates that Mode2 and Mode4 belong to $I_{2}mm$, while Mode3 to $I_{mm}2$. Indeed both $I_{2}mm$ and $I_{mm}2$ are orthorhombic (space group 44), and can be obtained from I_{mmm} by removing the inversion center on the O4 positions. In contrast, Mode1 does not change the S1-O4-Si1 angle and has a much lower symmetry, as it belongs to the monoclinic $C2/m$ (12).

To demonstrate that I_{mmm}-FER spontaneously evolves to lower-symmetry structures, starting from the I_{mmm} optimized structure we displaced all atomic coordinates along the normal mode eigenvectors associated to the imaginary frequencies, and reoptimized the geometry without symmetry constraints. Indeed, the four resulting optimized geometries, which maintained the symmetry of the respective modes, were all lower in energy than Si-FER I_{mmm} (see Table 2). Although the structure optimized from Mode1 keeps the 180° angle, its symmetry (monoclinic $C2/m$) is lower than the orthorhombic $P_{mn}m$ symmetry of Si-FER at normal conditions. In contrast, the three orthorhombic structures are all characterized by angles different from 180° - i.e., 165.4°, 166.1 and 172.2°, respectively. Yet all the four structures have higher energy compared to Si-FER $P_{mn}m$ – which is therefore the most stable form and true minimum of Si-FER. Thus, the I_{mmm} structure should not be regarded as a stable configuration, but rather as a negative-curvature region of the potential energy surface of Si-FER leading to more stable symmetry-breaking forms. Such metastability appears to be a feature common to other highly symmetric silicates, which have several flexible modes able to break the symmetry of the structure (Wells et al. 2002; Gatta et al. 2009).
Our analysis seem to prove the instability of straight Si-O-Si angles in ferrierite - in line with Liebau’s proposition that 180° angles in aluminosilicates are energetically unfavored (Liebau 1961), and hence to exclude stable Immm phases of Si-FER. On the other hand, such structure has been proposed to form at high temperature on the basis of in-situ MAS-NMR and single crystal X-ray diffraction measurements (Bull et al. 2003).

We show that such a contradiction is only apparent because the key variable of the process – temperature - has not been accounted for yet. Hence, we “heated” the Immm simulation system up to 450 K, let it equilibrate and followed its time evolution for about 50 ps. Figure 3 clearly shows that the average atomic positions obtained from the simulations correspond to a Immm Si-FER structure and exhibit Si1-O4-Si1 angles of 180°, in line with the structural data emerging from the high-temperature experiments of Ref. (Bull et al. 2003). Nevertheless, the instantaneous positions of the individual Si1, O4, and Si1 atoms sampled along the trajectory indicate that the inversion of the Si1-O4-Si1 angle occurs regularly and continuously on the femtosecond time scale. More specifically, the atomic positions are symmetrically distributed along the line corresponding to the 180° angle, and the resulting 180° value is due to dynamical disorder induced by temperature. Remarkably, this result can be easily rationalized by considering that the energy difference that at standard conditions favours the Pmnm (~ 0.15 kcal/mol) is largely overcome by the thermal energy, that amounts to ~ 0.8 kcal/mol at 400 K.

Overall, our data suggest that the Immm structure of high-temperature Si-FER (Bull et al. 2003) should rather be viewed as a result of dynamic averaging over configurations exhibiting a lower symmetry. This interpretation is in line with previous propositions for high-symmetry, high-temperature silicate phases, such as β-quartz and cubic analcime based on RUM calculations (Wells et al. 2002; Gatta et al. 2009), and points out the essential role of the flexibility of the zeolite framework. Indeed although the Si1-O4-Si1 linkage could be found instantaneously in the linear arrangement, such a configuration is
energetically disfavoured: hence, these atoms vibrate around their equilibrium positions to allow the O4 bridging oxygen to continuously change its positioning with respect to the Si1----Si1 line, so as to avoid as much as possible the formation of the 180° angle. The consequence of this behavior is the angle inversion mechanism highlighted for high-temperature Si-FER. Interestingly, an analogous behaviour has been recently predicted by DFT calculations for template-containing CHA-aluminophosphates under high compression (Fischer 2018c). Specifically, the pressure-induced inversion of one of the equatorial Al-O-P linkages of the \(d6r\) building unit, accompanied by a considerable deformation of these units, has been associated to the presence of \(\text{AlO}_4\text{F}_2\) octahedra, and has been shown to depend on the nature of the organic template occupying the CHA cage (Fischer 2018c). Hence, these examples indicate that the inherent flexibility of apparently linear T-O-T linkages appear to be a more general aspect of the behavior of crystalline framework silicates, aluminosilicates or aluminophosphates when subjected to high pressure or high temperature conditions. Actually the case of coesite is somewhat different: dynamical disorder appears only at very high temperatures (above 1300 K) (Bourova et al. 2004; Bourova and Petitet 2006), and, at room temperature, the straight Si-O-Si linkages persist up to \(\sim 20\) GPa. This stiffness appears to be a direct consequence of the extremely compact packing of \(\text{SiO}_4\) tetrahedra in coesite, which hinders the variation of Si–O–Si angles with increasing temperatures and pressures (Richet and Ottonello 2014). On the contrary, in open-framework structures like Si-FER, the inherent flexibility of the linkages allows to achieve Si-O-Si angle inversion at a low energetic cost.

IMPLICATIONS

We showed that the high temperature structure of Si-FER has on average an \(Immm\) symmetry and angles of 180 degrees. Yet, when viewed instantaneously, its true symmetry is lower, and inversions of the angle actually occur at the femtosecond timescale.
Interestingly, the insight obtained from the application of DFT techniques to the ferrierite case corroborates a behaviour observed by other experimental and modelling methods in analogous systems, namely that highly symmetric phases like cubic analcime (Gatta et al. 2009) and beta-quartz (Wells et al. 2002; Sartbaeva et al. 2005) should be considered as dynamic averages over lower-symmetry structures. An angle-inversion mechanism has been predicted by DFT simulations also for some aluminophosphates under high-pressure (Fischer 2018c). In a different way, the existence of truly linear Si-O-Si linkages could not be excluded in coesite, in view of the low disorder found for the bridging oxygen positions, consequence of the higher density of this phase (Angel et al. 2003). Indeed, an intriguing value of 180° has also been recently proposed for a high-pressure form of phosphorous oxonitride with coesite crystal structure (Baumann et al. 2015).

Our results bear profound geological implications. The strict relationship between flat Si-O-Si angles and metastability of a zeolite framework might represent a key to better understand the possible phase-transition mechanisms of open-framework (alumino-) silicate minerals (e.g., zeolites, feldspathoids, feldspars) under non-standard, non-ambient conditions, which typically coincide with the elevated pressures and temperatures of geological relevance. For example, the deviation from a Si-O-Al angle of 180° causes the spectacular \(P \)-induced iso-symmetric first-order phase transition in kalsilite (KAISiO\(_4\)) at 3.5 GPa, as reported by Gatta et al. (2011)(Gatta et al. 2011), with a drastic change of the mineral density and of the deformation mechanisms at atomic scale, coupled with a completely different anisotropic compressional scheme for the two polymorphs. Similarly, the \(P \)-induced deviation from a Si-O-Al angle of 180° in davyne at high pressure makes the structure unstable already at very low \(P \) and drives a \(P6_3/m \)-to-\(P6_3 \) displacive phase transition at \(\sim 0.38 \) GPa (Lotti et al. 2014). These two examples show how the configuration of the T-O-T angle equal to 180° or different from that value can have a drastic impact on the structure stability of open-framework silicates.
In a broader perspective, the Si-O-Si angle inversion mechanism may help to achieve a deeper general knowledge of sorption/desorption events in zeolites. These processes essentially involve molecules – which may enter, remain outside, or leave the pores according not only to trivial relative size considerations, but also thanks to the flexibility of both molecular species and host framework. Such flexibility may help rationalize various technologically important phenomena in zeolites, such as catalytic performances of Lewis-acid sites (Luo et al. 2016), window effects (Balestra et al. 2015; Coudert and Kohen 2017; Ke et al. 2019), fabrication of functional materials (Tabacchi et al. 2015, 2016b) or hybrid nanocatalysts (Zendehdel et al. 2018). All these phenomena essentially involve correlated vibrational motions of guest molecules and zeolite framework, and collective oscillations of the T-O-T bond angles.

ACKNOWLEDGEMENTS

This work was supported by the Italian MIUR, within the frame of the following projects: PRIN2015 “ZAPPING” High-pressure nano-confinement in Zeolites: the Mineral Science know-how APPlied to engineerING of innovative materials for technological and environmental applications (2015HK93L7), ImPACT (FIRB RBFR12CLQD), and University of Insubria Far 2017. We gratefully acknowledge the Reviewers of this manuscript for their insightful comments.

DEDICATION

We dedicate this manuscript to the memory of the late Prof. Alberto Alberti.

REFERENCES

European Journal, 17, 10864–10870.

Chen, T., Wang, X., Qi, X., Ma, M., Xu, Z., and Li, B. (2016) Elasticity and phase transformation at high pressure in coesite from experiments and first-principles calculations. American
Mineralogist, 101, 1190–1196.

Fischer, M. (2015) Structure and bonding of water molecules in zeolite hosts: Benchmarking plane-

zeolites: How does the inclusion of dispersion interactions affect predictions made from DFT calculations? The case of Na-CHA. Theoretical Chemistry Accounts, 134, 91.

Physical Chemistry Chemical Physics, 1, 531–536.

the analcime-like feldspathoids: experimental and theoretical findings. European Journal of
Mineralogy, 21, 571–580.

elastic behavior, and pressure-induced structural evolution of kalsilite: A ceramic material and
high-T/high-P mineral. American Mineralogist, 96, 1363–1372.

Rb7NaGa8Si12O40·3H2O (a zeolite with EDI topology): a combined experimental–

Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R.,
Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., and others (2009) QUANTUM ESPRESSO: a modular and open-
source software project for quantum simulations of materials. Journal of Physics: Condensed
Matter, 21, 395502.

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti,
G.L., Cococcioni, M., Dabo, I., and others (2017) Advanced capabilities for
materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed
Matter, 29, 465901.

Gigli, L., Arletti, R., Tabacchi, G., Fois, E., Vitillo, J.G., Martra, G., Agostini, G., Quartieri, S., and

polymorphs: An ab initio study. PHYSICAL REVIEW B, 92, 144111.

Review Letters, 48, 1425–1428.

Perspectives and Challenges on Reactivity, Synthesis, and Stability. Annual Review of Chemical
and Biomolecular Engineering, 7, 663–692.

absorption by single BODIPY dye confined in LTL zeolite nanochannels. Journal of Physical
Chemistry C, 117, 13331–13336.

Marqueño, T., Santamaria-Perez, D., Ruiz-Fuertes, J., Chuliá-Jordán, R., Jordá, J.L., Rey, F., McGuire,
C., Kavner, A., MacLeod, S., Daisenberger, D., and others (2018) An Ultrahigh CO₂-Loaded
Silicalite-1 Zeolite: Structural Stability and Physical Properties at High Pressures and

Synthesis over Cu/ZnO Nanocatalysts. ACS Catalysis, 5, 4201–4218.

Marx, D., and Hutter, J. (2009) Ab Initio Molecular Dynamics. Cambridge University Press,

cristobalite: neutron total scattering measurement and reverse Monte Carlo modelling. Journal of
Physics: Condensed Matter, 13, 403.

Hydrothermal Stabilities of BEC and BEA Zeolites Substituted with Ti, Sn, and Ge. The Journal
of Physical Chemistry C, 119, 4148–4157.

Morris, R.E., Weigel, S.J., Henson, N.J., Bull, L.M., Cheetham, A.K., Janicke, M.T., and Chmelka,
B.F. (1994) A Synchrotron X-ray Diffraction, Neutron Diffraction, 29Si MAS-NMR, and

Redondo, A., and Hay, P.J. (1993) Quantum chemical studies of acid sites in zeolite ZSM-5. The

——— (2014b) Opening the Pandora’s jar of molecule-to-material conversion in chemical vapor

Tran, F., Stelzl, J., and Blaha, P. (2016) Rungs 1 to 4 of DFT Jacob’s ladder: Extensive test on the lattice constant, bulk modulus, and cohesive energy of solids. The Journal of Chemical Physics, 144, 204120.

Wiedemann, S.C.C., Ristanovic, Z., Whiting, G.T., Reddy Marthala, V.R., Kärger, J., Weitkamp, J.,

LIST OF CAPTIONS OF FIGURES

Figure 1. Optimized structure of *Pmnn* Si-FER with atom labels. Solid lines represent simulation cell.

Figure 2. Optimized structure of *Immm* Si-FER with atom labels. Solid lines represent simulation cell.

Figure 3. Instantaneous positions of the Si1, O4, Si1 centers sampled along the FPMD simulation at 60 fs time intervals (dots) superposed to the average structure of Si-FER *Immm* obtained from the time-average of the atomic positions (grey sticks).

DEPOSIT ITEMS

Supporting information pdf file; cif file of the optimized *Immm*-SI-FER (Fer_Immm_opt_60_360.cif); cif file of the optimized structure of *Pmnn* Si-FER (Fer_Pnnm_opt_60_360.cif); cif file of the time-average of the atomic positions from FPMD simulation of *Immm*-SI-FER at 438 K (Fer_Immm_FPMD_438K.cif); cif files of the structures including displacements associated to Mode1, Mode2, Mode3, Mode4. These deposit items are also available in the ChemRxiv repository under the link https://doi.org/10.26434/chemrxiv.7746371.v2.

TABLES

Table 1. Optimized lattice parameters calculated for Si-FER *Immm* (orthorhombic, SG=71) and Si-FER *Pmnn* (orthorhombic SG=58).

<table>
<thead>
<tr>
<th></th>
<th>Immm</th>
<th>Immm</th>
<th>Pmnn</th>
<th>Pmnn (a)</th>
<th>Pmnn (b)</th>
<th>Pmnn (c)</th>
<th>Pmnn (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c / Å</td>
<td>7.5254</td>
<td>7.5410</td>
<td>7.4312</td>
<td>7.4281</td>
<td>7.440</td>
<td>7.41971</td>
<td>7.418</td>
</tr>
<tr>
<td>V / Å³</td>
<td>2042.00</td>
<td>2051.26</td>
<td>1965.06</td>
<td>1963.22</td>
<td>1968.48</td>
<td>1954.32</td>
<td>1953.1</td>
</tr>
</tbody>
</table>
Table 2. Space group (SG), energy difference with respect to Si-FER \textit{Pmnn} (ΔE), and value of the Si1-O4-Si1 angle for the structures obtained from geometry optimization along Mode1, Mode2, Mode3, and Mode4. The values for Si-FER \textit{Immm} and Si-FER \textit{Pmnn} are included for comparison.a

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SG</td>
<td>71</td>
<td>12 (\textit{C2/m})</td>
<td>44 (\textit{I2mm})</td>
<td>44 (\textit{Imm2})</td>
<td>44 (\textit{I2mm})</td>
<td>58</td>
</tr>
<tr>
<td>ΔE / kcal/mol</td>
<td>0.154</td>
<td>0.070</td>
<td>0.083</td>
<td>0.092</td>
<td>0.119</td>
<td>0</td>
</tr>
<tr>
<td>Si1-O4-Si1 / $^\circ$</td>
<td>180</td>
<td>180</td>
<td>165.4</td>
<td>166.1</td>
<td>172.2</td>
<td>158.7</td>
</tr>
</tbody>
</table>

a All calculations performed with CPMD (30/240 PW cutoff). Energy differences per formula units are calculated with respect to the \textit{Pmnn} minimum energy structure. b For \textit{Pmnn}, the angle corresponding to the \textit{Immm} Si1-O4-Si1 angle is labeled Si1-O8-Si2.
Figure 1.
Figure 2.
Figure 3.