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Abstract 20 

Gasparite-(La), La(AsO4), is a new mineral (IMA 2018-079) from Mn ores of the Ushkatyn-21 

III deposit, Central Kazakhstan (type locality) and from alpine fissures in metamorphic rocks 22 

of the Wanni glacier, Binn Valley, Switzerland (co-type locality). Gasparite-(La) is named 23 

for its dominant lanthanide, according to current nomenclature of rare-earth minerals. 24 

Occurrence and parageneses in both localities is distinct: minute isometric grains up to 15 µm 25 

in size, associated with fridelite, jacobsite, pennantite, manganhumite series minerals 26 

(alleghanyite, sonolite), sarkinite, tilasite and retzian-(La) are typically embedded into 27 

calcite-rhodochrosite veinlets (Ushkatyn-III deposit), versus elongated crystals up to 2 mm in 28 

size in classical alpine fissures in two-mica gneiss without indicative associated minerals 29 

(Wanni glacier). Its chemical composition has been studied by EDX and WDX; crystal-30 

chemical formulas of gaspatite-(La) from the Ushkatyn-III deposit (holotype specimen) and 31 

Wanni glacier (cotype specimen) are (La0.65Ce0.17Nd0.07Ca0.06Mn0.05Pr0.02)1.03 32 

((As0.70V0.28P0.02)1.01O4) and (La0.59Ce0.37Nd0.02Ca0.02Th0.01)1.00 ((As0.81P0.16Si0.02S0.02)1.00O4), 33 

respectively. In polished sections, crystals are yellow and translucent with bright submetallic 34 

luster. Selected reflectance values R1/R2 (, nm) for the holotype specimen in air are: 35 

11.19/9.05 (400), 11.45/9.44 (500), 10.85/8.81 (600), 11.23/9.08 (700). Features of the 36 

crystal structure of gasparite-(La) were studied by means of EBSD (holotype specimen), 37 

XRD and SREF (cotype specimen). Gasparite-(La) has a monoclinic structure with the space 38 

group P21/n. Our studies revealed that gasparite-(La) from the Ushkatyn-III deposit and 39 

Wanni glacier have different origins. La/Ce and As/P/V ratios in gasparite-(La) could be used 40 

as an indicator of formation conditions. 41 

Keywords: gasparite-(La), new mineral, arsenate, REE, Mn ores, monazite-type structure, 42 

Ushkatyn-III, Kazakhstan, Wanni glacier, Binn Valley, Switzerland 43 

44 
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Introduction 45 

In the course of this study, we described a new rare-earth element (REE) arsenate-46 

gasparite-(La) (La(AsO4), IMA 2018-079) from the Ushkatyn-III deposit, Central Kazakhstan 47 

and the Wanni glacier, Binn Valley, Switzerland. Gasparite-(La) is named for the dominant 48 

lanthanide according to current nomenclature of REE minerals (Bayliss and Levinson 1988). 49 

The type locality of gasparite-(La) is the Ushkatyn-III deposit, Central Kazakhstan. 50 

Minute isometric grains of gasparite-(La) up to 15 µm in size were discovered in samples 51 

from the Ushkatyn-III deposit collected during field work in 2017. The holotype specimen of 52 

gasparite-(La) was deposited at the Mineralogical Museum of St. Petersburg State University, 53 

St. Petersburg, Russia, catalogue number 19692. 54 

The co-type locality of gasparite-(La) is the Wanni glacier, Binn Valley, Valais, 55 

Switzerland. Elongated crystals of gasparite-(La) up to 2 mm in size were discovered in 56 

autumn 2005 and visually classified as “monazite.” Because of their unusual appearance, the 57 

material was subjected to further analyses, and recognized as likely identical to the gasparite-58 

(La) later discovered in the Ushkatyn-III deposit. The cotype specimen from Wanni glacier is 59 

preserved in Musée Cantonal de Géologie in Lausanne under catalogue number MGL 60 

093518. 61 

The use of crystals from different localities allowed us to describe the whole range of 62 

physical and chemical properties of gasparite-(La), investigate its crystal chemistry and 63 

identify some features characteristic of different genetic types of deposits. 64 

REE-arsenates are among rare minerals: CNMNC IMA has approved only 14 mineral 65 

species to date. Most of them representative of Ce-dominant species and only 3 La-dominant 66 

minerals have been discovered (Dunn et al. 1984; Mills et al. 2010; Modresky 1983).  67 

Despite the limited number of approved mineral species, REE-arsenates are widely 68 

distributed in distinct mineral assemblages on numerous localities. Mineralogical information 69 
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about arsenates (both discovered and crystal-chemical characteristics) provide a key to 70 

understanding the occurrence and subsequent evolution of many localities (e.g., Campbell 71 

and Nordstrom, 2014; Majzlan et al. 2014; Wu et al. 2018; Yang et al. 2018). 72 

REE-arsenates have been reported from several postmagmatic and metasedimentary 73 

rocks, whose mineral composition was strongly influenced by late hydrothermal fluids 74 

(metasomatic replacement). In the Slovak rhyolites (Ondrejka et al. 2007), primary monazite-75 

(Ce) and xenotime-(Y) were transformed into secondary gasparite-(Ce) and chernovite-(Y), 76 

respectively. In case of the granite cupola at Zinnwald (Germany) or Cínovec (Czech 77 

Republic), As-rich hydrothermal fluids dissolved and severely altered primary magmatic 78 

REE–Y–Th–U–Zr mineralization and gave rise to the formation of REE-arsenates: 79 

arsenoflorencite-(Ce), chernovite-(Y), and hydrous xenotime(Y)-chernovite-(Y) solid 80 

solutions (Förster et al. 2011). In the Hora Svaté Kateřiny granite (Czech Republic), reaction 81 

with oxidizing As-bearing fluids caused the decomposition of xenotime-(Y), and led to the 82 

precipitation of chernovite-(Y) and the incorporation of As into altered zircon and thorite 83 

(Breiter et al. 2009). Migrating As-bearing solutions are also believed to have formed the 84 

remarkable, classical assemblage of numerous arsenates and arsenites in the Wanni 85 

glacier/Mt. Cervandone area at the frontier between the Binn Valley (Switzerland) and Alpe 86 

Devero (Italy) (Graeser and Roggiani 1976, Guastoni et al. 2006; Hofmann and Knill 1996). 87 

Besides indirect evidence of the presence of multiple REE-arsenates in close association, 88 

several minerals show direct evidence of originating from such fluids: gasparite-(Ce) was 89 

found as a reaction rim around synchisite-(Ce) (Graeser and Schwander 1987); deveroite-90 

(Ce) was found as a dissolution product of cervandonite-(Ce) (Guastoni et al. 2013); agardite-91 

(Y) (Gatta et al. 2018), rhabdophane-(La) and uranyl arsenates on cafarsite (Appiani et al. 92 

2017). 93 

Manganese rocks of different genesis are often enriched in arsenic, reaching 94 
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concentrations several times higher than the mean values for both sedimentary rocks and for 95 

the upper part of the continental crust as a whole (Li and Schoonmaker 2003; Maynard 2003). 96 

More than half of all discovered Mn-arsenates were found in the famous Mn deposits in 97 

Franklin/Sterling Hill, USA; Långban, Sweden and Moss Mine, Sweden. 98 

Both Långban, Sweden and Franklin/Sterling Hill, New Jersey, USA are represented 99 

by strongly metamorphosed Precambrian rocks of sedimentary origin (Frondel and Baum 100 

1974; Holtstam and Langhof 1999; Lundström 1999). According to Frondel and Baum 101 

(1974), the only primary As-bearing ore minerals in Franklin/Sterling Hill are löllingite, 102 

arsenopyrite and the calcium arsenate svabite. In both cases (Långban and Franklin / Sterling 103 

Hill), the greatest mineralogical diversity is found among the minerals in veins and fissures.  104 

A limited number of small Fe–Mn–(Ba,V,As,Sb,Be,W,REE) deposits, containing both 105 

arsenates and REE-arsenates, have been found and studied in the Swiss, Italian and Austrian 106 

Alps (Abrecht 1990; Brugger and Giere 1999; Brugger and Meisser 2006; Cabella et al. 107 

1999). These occurrences are thought to represent syngenetic exhalative Fe-Mn 108 

accumulations (Majzlan et al. 2014) metamorphosed during the Alpine orogeny (Abrecht 109 

1990; Brugger and Meisser 2006). Brugger and Meisser (2006) argued that the chemical 110 

composition of the rocks reflects the pre-metamorphic state. Cabella et al. (1999) reported 111 

that the abundance of arsenates reduces sharply as a function of proximity to the Fe-Mn ores. 112 

The same genetic conclusion was made for Mn-rich metamorphic rocks in the Hoskins 113 

manganese mine, New South Wales, Australia (Ashley 1989). 114 

Gasparite-(Ce) is, although generally rare, the most widely distributed REE-arsenate. 115 

The type locality for gasparite-(Ce), and several other REE-arsenates and arsenites, is Mt. 116 

Cervandone, a summit on the frontier of Italy (Cervandone, Val Devero) and Switzerland 117 

(Wanni glacier, Binntal), where it occurs in metasedimentary rocks (Graeser and Schwander 118 

1987). Besides that, gasparite-(Ce) was found as an accessory mineral in the Black Range Tin 119 
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District, New Mexico, USA (Foord et al. 1991); Tisovec-Rejkovo, Slovakia (Ondrejka et al. 120 

2007); Beryllium Virgin Claim, New Mexico, USA (Anthony et al. 2000); Chudnoe and 121 

Nesterovskoe occurrences, Maldynyrd Range, Prepolar Ural, Russia (Moralev et al. 2005); 122 

Kesebol deposit, Sweden (Kolitsch and Holtstam 2004; Kolitsch et al. 2004); Grubependity 123 

Lake cirque, Maldynyrd Range, Prepolar Ural, Russia (Mills et al. 2010); Artana, Carrara, 124 

Apuane Alps, Italy (Mancini 2000); Tanatz Alp, Switzerland (Roth and Meisser 2013) and 125 

Ponte dei Gonazzi, the Maritime Alps, Italy (Cabella et al. 1999).  126 

In most cases, lanthanum is present in gasparite in subordinate amounts (< 15 wt% 127 

La2O3). However, La-dominant grains of gasparite were found in Mn-enriched 128 

metamorphosed rocks from the Ponte dei Gonazzi, the Maritime Alps, Italy (up to 45 wt% 129 

La2O3; Cabella et al. 1999) and in A-type rhyolite from Western Carpathians, Slovakia (up to 130 

26 wt% La2O3; Ondrejka et al. 2007). Particle size was insufficient to allow for the 131 

investigation of the properties of La-dominant gasparite, and therefore these studies did not 132 

describe their findings as a new mineral phase. 133 

Occurrence 134 

Ushkatyn-III deposit, Central Kazakhstan 135 

The Ushkatyn-III deposit (48°16'06"N, 70°10'43"E) is located in Central Kazakhstan 136 

300 km southwest of the city of Karaganda and 20 km to the northeast of the village 137 

Zhayrem. The deposit was discovered in 1962. Manganese ore mining started in 1982 and 138 

continues to date. Beginning from 2015, barite-lead ores started to be mined. As of 2015, 139 

manganese ore reserves amounted to 102 million tons, with an average Mn content of 24 wt% 140 

and Fe 3.5 wt%, and barite-lead ore reserves of 42 million tons, with an average Pb-2.6 wt%, 141 

BaSO4-19 wt% (JSC “Zhayremsky ore mining and processing enterprise,” 2015).  142 

The geological structure of the deposit was considered in the works of Kayupova 143 

(1974), Buzmakov et al. (1975), Mitryaeva (1979), Rozhnov (1982) and Skripchenko (1980, 144 



7 
 

1989). The Ushkatyn-III deposit is located in the western part of the Zhailinsky graben-145 

syncline. This large riftogenic structure originated in the Late Devonian during the 146 

destruction of the epi-Caledonian Central-Kazakhstan continental block. The clay-siliceous-147 

carbonate rocks of the Famennian stage of the Upper Devonian are ore-bearing. In the eastern 148 

part of the deposit, they are represented by reefogenic limestones containing a stratiform 149 

barite-lead mineralization. In the western part of the deposit, these rocks are replaced by 150 

detrital and nodular-layered siliceous limestones containing layers of manganese ores. 151 

Altogether, there are fourteen ore layers, each of which has a well-marked, rhythmically-152 

stratified structure with alternating layers of manganese ore and limestones. The thickness of 153 

individual rhythms range from 15 cm up to 1 m, and the total thickness of ore layers varies 154 

from 5 to 25 m. A series of adjacent layers is grouped into a large pack, traced over a strike of 155 

more than 1.5 km, a drop of 760 m and a thickness of 50–150 m. Volcanic rocks are present 156 

on the deposit but in volumetric inferior amount (no more than 10% of the hole volume of the 157 

ore-bearing strata). 158 

Manganese ores are fine-grained rocks (average size of mineral grains 10–30 m) 159 

with layered and lenticular-banded textures. Altogether, more than 60 minerals have been 160 

identified in manganese ores of the Ushkatyn-III deposit by optical, electron microscopy, X-161 

ray powder and microprobe analysis (Brusnitsyn et al. 2017, 2018; Kayupova 1974). The 162 

main minerals are braunite, hausmannite, quartz, calcite, rhodochrosite, tephroite, friedelite 163 

and minerals of manganhumite series (sonolite, alleghanyite). The most characteristic 164 

secondary minerals are hematite, jacobsite, rhodonite, caryopilite, pennantite, manganese 165 

clinochlore, albite and barite. Among the most interesting accessory minerals are cinnabar, 166 

pyrobelonite, cerianite-(Ce), fluorite and several REE and arsenate minerals: sarkinite, 167 

svabite, tilasite, retzian group minerals. 168 

Manganese ores could be divided into two types: 1) braunite: braunite + calcite + 169 
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quartz ± albite, and 2) hausmannite: hausmannite + calcite + rhodochrosite ± tephroite 170 

(sonolite, alleghanyite) ± friedelite (caryopilite). These types of ores can form separate layers, 171 

and can be combined within a single layer. In the latter case, the mineral composition of ores 172 

change as a result of substitution of braunite for hausmannite/associated 173 

silicates/rhodochrosite. 174 

The first arsenates in the Ushkatyn-III deposit were discovered in the early 70s 175 

(Kayupova 1974). However, due to the lack of technical equipment, only relatively big grains 176 

of minerals (sarkinite, tilasite and brandtite) could be identified.  177 

Gasparite-(La) was found in hausmannite ores, associated with other arsenates. The 178 

mineral was found in microveins cutting layers of hausmannite, calcite, rhodochrosite. 179 

Gasparite-(La) is associated with fridelite, jacobsite, pennantite, manganhumite series 180 

minerals (alleghanyite, sonolite), sarkinite, tilasite and retzian-(La). The microveins 181 

containing gasparite-(La) range in size from microns to 1–5 mm in thickness and to 1–3 cm 182 

in length. Gasparite-(La) forms grains of 2–25 μm in size, as well as aggregates with other 183 

arsenates of irregular shape up to 50 µm and was found in association with retzian-(La) and 184 

alleghanyite (Figure 1a).  185 

Wanni glacier, Binn Valley, Valais, Switzerland 186 

The Wanni glacier, located in the Binn Valley, Valais (Wallis), Switzerland, 187 

represents the Swiss side of the Scherbadung or Pizzo Cervandone, of which the Italian side 188 

is located in Alpe Devero, Piemonte, Italy. Its mineral assemblage extends to both sides of 189 

this mountain and is the type locality of seven REE-arsenates and REE-arsenites (Armbruster 190 

et al. 1988; Demartin et al. 1994; Graeser 1966; Graeser and Schwander 1987; Graeser et al. 191 

1994; Guastoni et al. 2006, 2013) and its geology has been summarized in Streckeisen et al. 192 

(1974), Steck (1987), Klemm et al. (2004), Hettman et al. (2014) and Bergomi et al. (2017). 193 

The REE-As mineralization is hosted in two-mica gneisses of the Monte Leone nappe and 194 



9 
 

extends multiple km westward to the Gischi glacier (Graeser and Roggiani 1967), 195 

Chummibort (Cuchet et al. 2005) and Mättital (Krzemnicki 1992, 1997) and eastwards to the 196 

Lercheltini area. According to Krezemnicki and Reusser (1998), several Pre-alpine ore 197 

concentrations within this nappe were locally re-mobilized during Alpine metamorphism, 198 

thus generating some unique hydrothermal mineralization. 199 

The sample with gasparite-(La) was found in rocks of the Monte Leone nappe 200 

(46°19′20,N, 8°12′48E; Hettman et al. 2014; Klemm et al. 2004). The Monte Leone nappe 201 

includes fine-grained banded orthogneisses and minor coarse-grained augen gneiss 202 

interlayered with paragneisses, hornblende gneisses and amphibolites and shows a 203 

penetrative amphibolite-facies metamorphic overprint of Alpine age (Bergomi et al. 2017; 204 

Maxelon and Mancktelow 2005). 205 

The specimen with gasparite-(La) was extracted from a small, classical Alpine fissure. 206 

The stratum containing the fissure with gasparite-(La) is a fine-layered, two-mica gneiss and 207 

is located outside the main Cu-As-F-mineralization which has cafarsite as the dominating As-208 

containing mineral (Cuchet et al. 2014, 2016). Based on our observation, the As-enrichment 209 

is not very dense in this sublayer. Within the occurrence of REE-arsenates (chernovite-(Y), 210 

gasparite-(Ce)) is increased, whereas arsenites (cafarsite and asbecasite) are a diminished 211 

gasparite form of microcrystalline pseudomorphoses to synchysite-(Ce).  212 

The specimen with gasparite-(La) (containing three elongated crystals) was located on 213 

one side of the cavity; the remainder was empty, apart from minerals that belong to the 214 

classical fissure parageneses: minor titanite, quartz, feldspar and albite. Crystals of gasparite-215 

(La) are prismatic of a size up to 2 mm (Figure 1b). An interesting feature of the studied 216 

crystals is that their prism appears non-translucent (as if fractured) and yellow, whereas the 217 

summit faces are perfectly, gemmy translucent and more orange. 218 

Elemental composition 219 
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Elemental compositions of rock-forming minerals were studied on the carbon-coated 220 

polished sections by means of a Hitachi S-3400N scanning electron microscope equipped 221 

with an Oxford X-Max 20 energy dispersive x-ray spectrometer (EDX). EDX spectra were 222 

obtained under the following conditions: 20 kV accelerating voltage and 2 nA beam current 223 

with an acquisition time of 30 s per spectrum. 224 

Elemental analyses for gasparite-(La) were obtained using an Inca Wave 500 225 

wavelength dispersive x-ray (WDX) spectrometer also equipped on the microscope 226 

mentioned above. WDX spectra collection conditions were: 20 kV, 10 nA, beam diameter 5 227 

µm, 30 sec peak and 30 sec background collection per element, XPP matrix correction. Fe 228 

metal, Mn metal, V metal, InP, InAs, wollastonite, Th-, Y-, La-, Ce -, Nd- and Sm-bearing 229 

glass standard samples (MAC-standards) were used for spectrometer calibration. 230 

Preliminary EDX analyses showed that gasparite-(La) from the Ushkatyn-III deposit 231 

had almost no chemical zoning or stable element ratios; all analyzed grains showed 232 

La>Ce>Nd and As>V>P. In the case of gasparite from the Ushkatyn-III deposit, Central 233 

Kazakhstan five analyses (WDX) from three different grains were performed in one carbon-234 

coated polished section (Table 1). The empirical formula of gasparite-(La) from the 235 

Ushkatyn-III deposit based on 4 oxygen is (La0.65Ce0.17Nd0.07Ca0.06Mn0.05Pr0.02)1.03 236 

((As0.70V0.28P0.02)1.01O4).  237 

One elongated crystal of gasparite from Wanni glacier was studied by EDX and WDX 238 

analyses. EDX analysis showed that the crystal had chemical zoning: its La/Ce/Nd ratio 239 

varied significantly, whereas As/P ratio was stable (Figure 2). The optically more translucent 240 

summit of the crystal was La-dominant, while the prismatic part of the crystal was Ce-241 

dominant; and thus, represents gasparite-(Ce). We performed five WDX analyses from the 242 

summit of the crystal and the overall empirical formula of gasparite-(La) from the Wanni 243 

glacier based on 4 oxygen is (La0.59Ce0.37Nd0.02Ca0.02Th0.01)1.00((As0.81P0.16Si0.02S0.02)1.00O4). 244 



11 
 

The simplified formula of gasparite-(La) from both the Ushkatyn-III deposit as the Wanni 245 

glacier was La(AsO4).  246 

Gasparite-(La) belongs to the monazite group, which contain seven monoclinic 247 

phosphate and arsenate minerals (Table 2). It is a La-dominant analog of gasparite-(Ce) 248 

(Graeser and Schwander 1987) and arsenate-dominant analog of monazite-(La). According to 249 

the Nickel-Strunz Classification, gasparite-(La) belongs to 8.AD (8: phosphates, arsenates, 250 

vanadates, A: phosphates, etc. without additional anions, without H2O, D: with only large 251 

cations). 252 

Physical properties and optical data 253 

Gasparite-(La) crystals are yellow and translucent with bright submetallic luster. The 254 

Vickers Hardness Number (VHN) measured on gasparite-(La) from the Wanni glacier was 255 

325 with a range 308–340 kg mm−2 (load 20 g) by means of HMV-2T (Shimadzu). This data 256 

is in a good agreement with data on gasparite-(Ce) (VHN=327 kg mm−2; Graeser and 257 

Schwander 1987). Mohs hardness could not be determined because of the tiny size of the 258 

crystals. The Mohs hardness calculated from the VHN value was approximately 4½.  259 

As gasparite-(La) from the Ushkatyn-III deposit had no chemical zoning, one of its 260 

grains was chosen for optical study. In polished sections, gasparite-(La) from the Ushkatyn-261 

III deposit looked dark gray in reflected light. The mineral was slightly anisotropic with ∆ 262 

R589 = 2.04%. The reflectivity of gasparite-(La) in air (Table 3) was measured against a SiC 263 

standard (Reflexions standard - 474251, No. 545) using MSF-21 spectrophotometer with a 264 

monochromator slit of 0.4 mm and a 100 μm zone diameter. The measurement parameters 265 

were as follows: lens magnification 21x, aperture 0.4 and Δλ=10 nm, SiC. The reflectivity 266 

spectrum is shown in Figure 3. 267 

Raman spectra 268 

Gasparite-(La) crystals from both localities were used for Raman studies. Raman 269 

spectra (Figure 4) were recorded with a Horiba Jobin-Yvon LabRAM HR800 spectrometer 270 
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equipped with an Olympus microscope. The microscope comprised 50x and 100x objectives. 271 

Raman spectra were excited by an Ar ion laser at a wavelength of 514 nm and a maximum 272 

power of 50 mW. The spectra were obtained in the range of 100-4000 cm-1 at a resolution of 273 

2 cm-1 at room temperature. To improve the signal-to-noise ratio, the number of acquisitions 274 

was set to 20. The spectra were processed using licensed Labspec and Origin software . Band 275 

fitting was done using a Lorentz function with the minimum number of component bands 276 

used for the fitting process (Table 4).  277 

Raman spectra of gasparite-(La) from both the Ushkatyn-III deposit and the Wanni 278 

glacier were very close to synthetic La(AsO4) (Fig. 4, Table 4). Bands in the region from 279 

4000 to 1100 cm-1 were not registered, which means that gasparite-(La) contained no (OH)- 280 

groups. Bands assigned to stretching vibrations v1 and v3 of arsenate ion are observed in the 281 

region 900-800 cm-1. There were bending vibrations v2 and v4 of arsenate ion in the region of 282 

500–350 cm-1. The lattice vibrations were located below 320 cm-1. The main differences of 283 

Raman spectra of the minerals in comparison with the pure synthetic phase were associated 284 

with impurities of (VO4)3- (Ushkatyn-III) and (РО4)3- (Wanni glacier). Vibrations v1(PO4) 285 

was about 960 cm-1, v1(VO4) – near 840 cm-1 (Song et al. 2018; Solecka et al. 2018). In the 286 

region of the v4 band the main differences connected with the overlapping of bands related to 287 

(AsO4)3-, (PO4)3- and (VO4)3-. Raman spectra pointed out predominance of La+Ce in the 288 

mineral composition of v1(AsO4) of 861–863 cm-1. The Raman spectrum of Ho(AsO4) 289 

v1(AsO4) was about 895 cm-1 (Barros et al., 2009). Impurity tetrahedral cations (P,V) did not 290 

influence the v1(AsO4) band shift. 291 

Crystallography 292 

Because gasparite-(La) from the Ushkatyn-III deposit occurs as microscopic grains up 293 

to 15 m in size (Fig. 2) it was not possible to determine its crystal structure with a single 294 

crystal X-Ray diffraction. All diffraction data were obtained by electron backscatter 295 
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diffraction (EBSD). In the case of gasparite-(La) from the Wanni glacier, we managed to 296 

isolate the La-enriched zone of the elongated crystal and refine its crystal structure using 297 

single crystal X-Ray diffraction. The same crystal fragment was used for powder X-ray 298 

diffraction studies. 299 

Powder X-ray diffraction (XRD).  300 

The powder XRD pattern for gasparite-(La) from the Wanni glacier was recorded in Debye–301 

Scherrer geometry by means of a Rigaku R-AXIS Rapid II diffractometer equipped with a 302 

curved (cylindrical) imaging plate detector (r=127.4 mm). CoKα radiation (λ=1.79021 Å) 303 

was generated by a rotating anode (40 kV, 15 μA) with microfocus tube optics; exposure time 304 

was set to 15 min. The data were processed using the osc2xrd program (Britvin et al. 2017) 305 

and Stoe WinXPOW software (Stoe and Cie 2006). XRD data for gasparite-(La) from the 306 

Wanni glacier is presented in Table 5 and was similar to synthetic La(AsO4) (Le Berre et al. 307 

2007; JCPDS file 15-0756). Calculated data were obtained using Rietveld refinement of the 308 

powder pattern [c 6.7087(3), b 7.1499(2), a 6.9429(2) Å, β 104.442(2) °]. 309 

Single-crystal X-ray diffraction and refinement (SREF) 310 

REE arsenates, chromates, phosphates and vanadates of Ln(XO4) type can crystallize 311 

in monoclinic (monazite structure) or tetragonal (zircon-type structure) symmetry (Botto and 312 

Baran 1982; Clavier et al. 2011; Schwarz 1963). In the REE arsenate and phosphate series, 313 

the La, Ce, Pr and Nd end-members exhibit the monazite structure (Clavier et al. 2011). REE 314 

vanadates have more complex behavior: the majority of REE vanadates (Ce–Lu, Sc) exhibit 315 

the zircon-type structure, whereas La(VO4) crystallize in both the zircon-type and monazite-316 

type structures (Witzke et al. 2008). 317 

The monazite-type structure was first reported by Mooney (1948) and then refined 318 

from this date by several authors for various REE-phosphates (Beall et al. 1981; Feigelson 319 

1964; Ghouse 1968; Mullica et al. 1984; Mullica et al. 1985; Ni et al. 1995; Pepin and Vance 320 
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1981). The structural arrangement in monazite-type structures is based on the nine-fold 321 

coordination of the metallic cation and can be described as an equatorial pentagon 322 

interpenetrated by a tetrahedron (Clavier et al. 2011). The tetrahedron located out of the 323 

equatorial plane can then be described as a link between the REE O9 polyhedra, leading to the 324 

formation of infinite chains along the c axis ([0 0 1] direction). 325 

According to published data, both synthetic La(AsO4) (Schmidt et al. 2005) and 326 

natural gasparite-(Ce) (Kolitsch et al. 2004) had a monoclinic structure with the space group 327 

P21/n.  328 

The crystal structure of gasparite-(La) from the Wanni glacier (cotype specimen) was 329 

solved by direct methods and refined to R1=0.014 using a SHELX-2015 set of programs 330 

(Scheldrick 2015) via Olex2 v.1.2.8 graphical user interface (Dolomanov et al. 2009) (Tables 331 

6–8). Data collection and structure refinement details are given in Tables 6–7 and in the 332 

attached CIF file. The La site is coordinated by nine O atoms, with (La–O) distances of 2.586 333 

(Table 8). The As site was found to be almost fully occupied by As (As0.84 P0.16), in 334 

agreement with the chemical data. The unit cell parameters (ucp) of gasparite-(La) are larger 335 

than values reported for gasparite-(Ce) (Kolitsch et al. 2004), smaller than values reported for 336 

synthetic La(AsO4) (Schmidt et al. 2005) and in good agreement with powder XRD for the 337 

same crystal.  338 

Electron backscatter diffraction (EBSD) 339 

EBSD measurements were performed on an Oxford HKLNordlys Nano EBSD 340 

detector equipped on a Hitachi S-3400N scanning electron microscope. Operating conditions 341 

are listed in Table 10. Both acquisition and analysis of Kikuchi-patterns were made by 342 

Oxford AZtecHKL software. Synthetic La(AsO4) structural data (ICSD) were used as input 343 

(Schwartz et al. 2009). The sample was polished with progressively smaller polycrystalline 344 

diamond suspensions with the ending step of Ar ion etching for 10 min at the final stage 345 
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(Oxford IonFab 300) in order remove amorphized layers for EBSD analysis. The sample was 346 

pre-tilted 70° along the normal to the EBSD detector. The fit factor (mean angular deviation 347 

(MAD)), which describes the angular deviation between the calculated and measured Kikuchi 348 

lines (good fit for deviations <1.0°) was less than 0.3° for synthetic La(AsO4) and Ce(AsO4) 349 

structures (Brahim et al. 2002; Kang and Schleid 2005; Schwartz et al. 2005). 350 

Eighteen electron backscatter patterns from three different gasparite-(La) grains were 351 

collected (Fig. 6). Good matches were obtained for all patterns using monoclinic La(AsO4) 352 

structure with the space group P21/n (Schmidt et al. 2005). 353 

Discussion 354 

Crystal chemistry and substitution mechanisms 355 

The REE ratio in gasparite-(La) from the Ushkatyn-III deposit was stable and in all 356 

analyzed grains, La>Ce. The REE ratio in crystals of gasparite-(La) from the Wanni glacier 357 

varied significantly from Ce-dominant to La-dominant species in the same crystal (Fig. 2).  358 

Our data revealed a very limited P-for-As substitution (P up to 0.02 apfu) and intense 359 

V-for-As substitution (V up to 0.28 apfu) in gasparite-(La) from the Ushkatyn-III deposit 360 

(Fig. 7). On the other hand, gasparite-(La) from the Wanni glacier contained no V and had 361 

intense P-for-As substitution (P up to 0.16 apfu). 362 

Impurity of tetrahedral cations (P,V) did not appear to influence the (AsO4) band shift 363 

as isolated tetrahedra ((AsO4), (PO4) and (VO4)) in the gasparite structure surrounded by 364 

polyhedral ((LaO9), (CeO9), (NdO9)). As a result, cations in the polyhedra appeared to have a 365 

major impact the position of the bands related to As-O vibrations in (AsO4)3-. Both P-for-As 366 

and V-for-As were reflected in the appearance of additional bands or broadening the main 367 

bands. The band around 390 cm-1 in the case of P-for-As (Wanni glacier), shifted upwards, 368 

and in the case of V-for-As (Ushkatyn-III deposit), downwards (Fig. 4).  369 

No natural vanadates of monazite structure-type have been reported yet. Only 370 



16 
 

wakefieldite group minerals with the zircon structure were reported (Deliens and Piret 1986; 371 

Witzke et al. 2008). No experimental evidence for the existence of AsO4–PO4 substitution 372 

was reported. Cabella et al. (1999) described gasparite-(Ce) enriched with P and V and 373 

reported a wide range of V-for-As substitutions (V up to 0.30 apfu) and P-for-As 374 

substitutions (P up to 0.15 apfu). Kolitsch et al. (2004) reported that 10% of the As atoms 375 

were substituted by P (P up to 0.12 apfu) in gasparite-(Ce).  376 

The crystal chemistry of the MXO4 monazite-type compounds in general (M=La, Ce; 377 

X=As, P, V) have been studied intensively (e.g., Clavier et al. 2011; Kolitsch et al. 2004). 378 

Kolitsch et al. (2004) assumed that the substitution of P for As les to the substantial decrease 379 

of the c-parameter, which can be explained by the stacked arrangement along the [0 0 1] 380 

direction the XO4 groups in the structure. 381 

Our data confirmed, that both a and с ucp are influenced mainly by the size of XO4 382 

tetrahedra (r=0.99, r=0.92, respectively; Fig. 8a), whereas the b parameter is mainly 383 

influenced by the size of the MO9 polyhedra (r=0.92; Fig. 8b).  384 

Comparison of LaXO4 monazite-type compounds showed that the (La-O) distance in 385 

MXO4 monazite-type compounds varied significantly: 2.579 (La(PO4); Ni et al. 1995) to 386 

2.599 Å (La(AsO4); Schmidt et al. 2005). This could explain the distortion of LaO9 387 

polyhedra, which is well correlated to (X-O) distance (r=0.99; Table 9) and could be the 388 

reason for b vs. (M-O) correlation. 389 

Origin of gasparite-(La) 390 

As presented above, gasparite-(La) was found in occurrence with distinct geological 391 

situations. Gasparite-(La) from the Wanni glacier, Binn Valley was found in an alpine fissure 392 

with evidence of hydrothermal alteration (well-shaped crystals in an almost empty cavity), 393 

whereas gasparite-(La) from the Ushkatyn-III deposit was found in primary Mn ores 394 

(irregular-shaped grains in calcite-rhodochrosite-fridelite veins). 395 
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We believe that in the case of gasparite-(La) from the Wanni glacier, the source of 396 

arsenic was an As-rich hydrothermal fluid, as in the case of gasparite-(Ce) (Graeser and 397 

Schwander 1987) from the same area. More challenging to explain was the source of 398 

lanthanum. The host mineral could be the main source of REE, as was shown in the case of 399 

synchisite-(Ce) (Graeser and Schwander 1987), monazite-(Ce) (Ondrejka et al. 2007) and 400 

cervandonite-(Ce) (Guastoni et al. 2013). High P content in gasparite-(La) from the Wanni 401 

glacier could indicate that monazite could be the host mineral. However, additional process 402 

of REE redistribution needed as (1) crystal of gasparite-(La) had La/Ce zoning and (2) (Ce)- 403 

and (Y)-dominant species were the rule in this region, supported by Ce/Y >> La in whole 404 

rock samples (Hofmann and Knill 1996). Another possible explanation to La-enrichment 405 

were the partial oxidation of Ce3+ to insoluble Ce4+ during fluid transportation and subsequent 406 

LREE (La, Nd, Sm) enrichment. This mechanism is well recorded in uranyl minerals (e.g., 407 

Meisser et al. 2010). 408 

Thus, gasparite-(La) from the Wanni glacier was formed as a metasomatic mineral in 409 

the process of alteration of primary REE mineralization by As-rich hydrothermal fluid and 410 

the ensuing La/Ce separation.  411 

The Ushkatyn-III deposit is considered as an object of hydrothermal-sedimentary 412 

genesis, transformed by processes of low-grade regional metamorphism (Brusnitsyn et al. 413 

2018; Mitryaeva 1979; Rozhnov 1982; Skripchenko 1980). 414 

Gasparite-(La) from the Ushkatyn-III deposit was found in microveins in hausmannite 415 

ores. It was found in association with fridelite, jacobsite, pennantite, manganhumite series 416 

minerals, sarkinite, tilasite and retzian-(La) and embedded into calcite-rhodochrosite veinlets. 417 

Similar veinlets in other rocks have a different composition. Calcite and quartz were found in 418 

microveins in the enclosing limestone. Calcite, kutnohorite, rhodonite, axinite-(Mn), 419 

friedelite, hematite, jacobsite and barite were found in microveins in braunite ores. A regular 420 
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change in the composition indicates the segregation mechanism of the genesis of such 421 

microveins. They were formed by local redeposition of a substance from the rocks in which 422 

they developed into thin cracks. Probably these processes occurred during the period of 423 

tectonic deformation of the region during Late Paleozoic time. 424 

We believe that As and REE were accumulated syngenetically with manganese 425 

sediments in the Ushkatyn-III deposit. Most likely, the initial manganese oxides absorbed 426 

these elements as it happens in modern oceans, there the absorption of REE to manganese 427 

oxides occurs much more intensively than many other precipitation minerals (Dubinin 2006).  428 

Occurrence of As-minerals in the Ushkatyn-III deposit is connected to the manganese 429 

ores only and has not been found in the host rocks or tectonic deformation zones. Manganese 430 

rocks of different genesis are often enriched in arsenic, and more than half of all discovered 431 

Mn-arsenates were found in the famous Mn deposits (Abrecht 1990; Brugger and Giere 1999; 432 

Brugger and Meisser 2006; Cabella et al. 1999; Frondel and Baum 1974; Holtstam and 433 

Langhof 1999; Lundström 1999). Therefore, As and REE infiltration into ore layers from any 434 

external source is unlikely in this case. 435 

Apparently, REE and As accumulated in the initial ore-bearing sediments as a 436 

component of Mn minerals. In the process of metamorphism and tectonic deformation, these 437 

elements were mobilized by pore solutions and re-deposited into secant ore veins. A similar 438 

mechanism for the genesis of REE-bearing arsenates is also assumed for metamorphosed Fe-439 

Mn deposits in other regions (Cabella et al. 1999; Kolitschi et al. 2004). 440 

Gasparite-(La) from the Ushkatyn-III deposit is characterized by relatively small 441 

amount of other REE (Ce+Nd+Pr <0.3 apfu) compared to other gasparite-(Ce) (Fig. 7) and 442 

have stable La/Ce ratio. Its occurrence with retzian-(La) (Fig. 2) may indicate specific 443 

conditions of mineral formation in which rocks were depleted by cerium. 444 

Lanthanum and cerium have very close chemical properties, but the average content 445 
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of lanthanum in the Earth's crust is almost two times lower than cerium: 30 and 58 ppm, 446 

respectively (Li and Schoonmaker 2003). Gasparite-(La) and retzian-(La) formation require 447 

separating lanthanum from cerium. This could be done in two ways: (1) during the 448 

accumulation of manganese sediment or (2) later during lithification. 449 

In favor of the first option is the fact that accumulations of manganese oxides of 450 

hydrothermal genesis are characterized by cerium deficiency relative to the remaining REE. 451 

In the REE spectra of such rocks, a negative cerium anomaly is usually well expressed 452 

(Dubinin 2006; Bau et al. 2014). In other words, La/Ce is higher in them than in "normal" 453 

marine sediments, which determines the possibility of the formation of lanthanum minerals. 454 

If this assumption is correct, then lanthanum minerals, including gasparite-(La) and retzian-455 

(La), should be considered as indicators of the hydrothermal-sedimentary genesis of 456 

manganese ores. However, this issue requires further study. 457 

According to the second option, the separation of lanthanum and cerium occurred at 458 

the post-sedimentation stage of the development of the deposit. The very low Ce content of 459 

both gasparite-(La) and retzian-(La) (less than 12 and 9 wt%, respectively) could be 460 

explained by formation from a strongly Ce-depleted source due to oxidation of Ce3+ and 461 

subsequent formation of insoluble cerianite-(Ce) as shown in the case of wakefieldite-(La) 462 

(Witzke et al. 2008). Cerianite-(Ce) was observed in several cases in the same samples from 463 

the Ushkatyn-III deposit where La arsenates were found. According to experimental data 464 

(Ohta, Kawabe, 2001), the oxidation of cerium with manganese oxides proceeds according to 465 

the reaction: 466 

2Ce3+ + MnO2 + 2H2O = 2CeO2 + Mn2+ + 4H+ 467 

Reaction will shift to the right by a weak alkaline mineral formation medium, typical 468 

for carbonate associations. As a result, cerianite-(Ce) can coexist with Mn2+ minerals 469 

(rhodochrosite, tephroite, friedelite, etc.). However, it is possible only in the absence of 470 
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organic matter. Otherwise, there will be a dissolution of cerianite-(Ce) with the restoration of 471 

cerium by the reaction (Dubinin 2006): 472 

CH2O + 5H2O + 11CO2 + 4CeO2 = 4Ce3+ + 12HCO3
− 473 

Accordingly, the formation of cerianite-(Ce) and, as a consequence, formation of La-rich 474 

(Ce-depleted) minerals is controlled by local distribution of Mn, REE, and organic matter. 475 

Both scenarios considered (cerium deficiency in initial sediments and cerium 476 

concentration in cerianite-(Ce) at post-sedimentary stages) do not contradict each other. Most 477 

likely, each of them contributed to the formation of gasparite-(La) and other La-rich minerals 478 

in manganese ores of the Ushkatyn-III deposit. 479 

Thus, gasparite-(La) from the Ushkatyn-III deposit was formed in primary ores and 480 

was not influenced by metasomatic processes. We believe that it is precisely the features of 481 

the chemical composition of the initial Mn-Fe ores that predetermined the possibility of the 482 

formation of lanthanum minerals in the Ushkatyn-III deposit. 483 

Implications 484 

Gasparite-(La) from Mn ores of the Ushkatyn-III deposit and metamorphic rocks of 485 

the Wanni glacier have different geological settings and different formation conditions. Thus, 486 

an occurrence of gasparite-(La) in rocks and its chemical composition could be used as a tool 487 

for geological reconstruction of their host rock formation. 488 

In the case of gasparite-(La) from the Ushkatyn-III deposit, both REE and As were 489 

sourced from host Mn ores. In all analyzed grains, we have stable As/V/P and La/Ce ratios 490 

and As>V>P and La>Ce. Constant lanthanum predominance in analyzed gasparite grains 491 

indicate specific conditions of Mn ore formation: Ce depletion or La enrichment and no 492 

metasomatic process. Besides that, gasparite from Mn ores is characterized by low P and high 493 

V content (our data; Cabella et al. 1999). Modern metalliferous sediment is mainly composed 494 

of Fe- and Mn-oxy / hydroxides and smectite minerals (e.g., Vereshchagin et al. 2019), which 495 
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are carriers of V and REE (Emerson and Huested 1991; Gurvich, 2006). Ferromanganese ores 496 

are sources of several REE-dominant vanadates (Moriyama et al. 2011; Witzke et al. 2008). 497 

Thus, V content originated from primary Fe-, Mn- sediments and its value could be used as 498 

an indicator of gasparite origin. 499 

Gasparite-(La) from the Wanni glacier has different chemical features. It also has 500 

stable As/V/P ratio, but in this case, As>P>V. High P content is a typical feature of gasparite 501 

from metasomatic rocks (Graeser and Schwander 1987; Ondrejka et al. 2007). It also has 502 

variable La/Ce ratio, which is typical for gasparite from metasomatic rocks, probably due to 503 

La/Ce separation during recrystallization. 504 
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Figure captions 777 

Figure 1. Morphology of gasparite-(La): (a) irregular-shaped grains and aggregates in calcite 778 

veins from the Ushkatyn-III deposit (BSE image), (b) elongated crystal (yellow) with albite 779 

crystals (white) from the Wanni glacier (optical microscopy). Note: gasparite-(La)-Gas, 780 

jacobsite-Jac, retzian-(La)-Ret, alleghanyite-All, calcite-Cal.  781 

Figure 2. Chemical zoning of gasparite crystal from the Wanni glacier 782 

Figure 3. Reflectance spectra in air for gasparite-(La) from the Ushkatyn-III deposit. 783 

Figure 4. Raman spectra in air for gasparite-(La) from the Ushkatyn-III deposit, gasparite-784 

(La) from the Wanni glacier and synthetic La(AsO4) (Botto and Baran, 1982) 785 

Figure 5. (a) EBSВ pattern of the gasparite-(La) crystal taken (30 kV accelerating voltage, 786 

0.3 nA beam current, 5 seconds exposure per frame, averaging of 20 frames, 1344x1024 787 

pixels image size), and (b) the pattern indexed with the P21/n structure (MAD 0.15, 80 bands 788 

are represented on an image) 789 

Figure 6. Chemical composition variations in gasparite group minerals: (a) La-Ce-Nd ratio, 790 

(b) As-V-P ratio 791 

Figure 7. As vs. V+P+S substitution 792 

Figure 8. Unit cell parameters of M(XO4) compounds (M=La, Ce; X=As, P, V): (a) c vs. (X-793 

O), (b) b vs. (M-O) 794 

795 
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 796 

Table 1. Chemical composition of gasparite-(La) 797 

Constituent 
Ushkatyn-III deposit Wanni glacier 

Wt% Range Wt% Range 
Fe2O3 0.05 0.00-0.16 0.00 0.00 
MnO 1.30 0.91-1.96 0.00 0.00 
CaO 1.33 0.97-1.54 0.34 0.24-0.48 
ThO2 0.00 0.00 0.58 0.37-0.72 
Y2O3 0.01 0.00-0.05 0.01 0.00-0.03 
La2O3 40.21 37.83-41.17 35.59 34.57-36.74 
Ce2O3 10.69 9.76-11.61 22.55 21.26-23.67 
Pr2O3 1.46 0.00-1.99 0.29 0.00-0.88 
Nd2O3 4.24 3.53-4.69 1.04 0.50-1.30 
Sm2O3 0.09 0.00-0.33 0.07 0.00-0.35 
V2O5 9.77 8.58-11.21 0.00 0.00 
P2O5 0.64 0.22-0.99 4.29 4.18-4.45 

As2O5 30.32 29.46-31.41 34.48 33.27-35.22 
Total 100.11  100.13  

 798 



 

Table 2. Comparative crystallographic data for monazite group minerals 799 

Mineral Gasparite-
(La) 

Gasparite-
(Ce) Rooseveltite Monazite-

(La) 
Monazite-

(Ce) 
Monazite-

(Nd) 
Monazite-

(Sm) Cheralite 

Chemical formula La(AsO4) Ce(AsO4) Bi(AsO4) La(PO4) Ce(PO4) Nd(PO4) Sm(PO4) CaTh(PO4)2 

Crystal system Monoclinic 
Space group P21/n 

a (Å) 6.9576(4) 6.929(3) 6.879(1) 6.8313(10) 6.7880(10) 6.7352(10) 6.6818(12) 6.7085(8) 
b (Å) 7.1668(4) 7.129(3) 7.159(1) 7.0705(9) 7.0163(9) 6.9500(9) 6.8877(9) 6.4152(6) 
c (Å) 6.7155(4) 6.697(3) 6.732(1) 6.5034(9) 6.4650(7) 6.4049(8) 6.3653(9) 6.4152(6) 
 (°) 104.414(1) 104.46(3) 104.84(1) 103.27(1) 103.43(1) 103.68(1) 103.86(1) 103.71(1) 

Z 4 

Reference Our data Kolitsch  
et al. 2004 

Bedlivy  
and Mereiter 

1982 
Ni et al. 1995 Raison  

et al. 2008 

 800 

 801 



 

Table 3. Reflectance of gasparite-(La) from the Ushkatyn-III deposit measured in air 802 

 (nm) R1 R2  (nm) R1 R2 
400 11.19  9.05 560 10.92 8.90 
420 12.04 9.82 580 10.88 8.84 
440 12.35 10.15 589 10.87 8.83 
460 12.35 10.13 600 10.85 8.81 
470 12.16 9.95 620 10.85 8.77 
480 11.97 9.77 640 10.89 8.74 
500 11.45 9.44 650 10.92 8.77 
520 11.15 9.17 660 10.94 8.79 
540 11.00 9.00 680 11.09 8.86 
546 10.98 8.98 700 11.23 9.08 

 803 

Table 4. Raman spectral signatures of gasparite-(La) 804 

Raman shift, cm-1 /  
Relative Intensity 

Assignment 

Raman shift (cm-1) /  
Relative Intensity 

Assignment Ushkatyn- 
III 

Wanni 
glacier 

Botto  
and Baran 

1982 

Ushkatyn- 
III 

Wanni 
glacier 

Botto  
and Baran 

1982 
92 / vw 94 / vw  

Lattice 
vibrations 

364 / vw 367 / w 350 / vw 
367 / w v4(AsO4) 104 / vw 107 / w  

126 / vw 125 / w  
379 / st 395/  st 392 / m v2(AsO4) 138 / vw 139 / 

vw  

153 / vw 155 / w  
422 / w 
452 / w 

421 / m 
462 / w 

418 / w 
440 / sh 
461 / w 

v4(AsO4) 190 / vw 190 / w  

203 / m 203 / 
vw  

264 / vw 267 vw  

822 / m 
843 / sh 

812 / sh 
826 / sh 
848 / sh 

798 / vw 
827 / m 
845 / st 
872 / sh 

v3(AsO4) 
320 / w  322 / w 
334 / vw 337 / w 336 / w 

   
   
   860 / vs 864 / vs 861 / vs v1(AsO4) 
    951 / w  v1(PO4) 

Note: Vs – very strong; st – strong; m – medium; w – weak; vw – very weak; sh –shoulder.  805 
 806 

807 



 

Table 5. Powder X-ray diffraction data for gasparite-(La) from the Wanni glacier 808 

Iobs dobs Icalc dcalc h k l  Iobs dobs Icalc dcalc h k l 

9 5.39 5 5.39 1 0 -1  19 1.898 13 1.900 0 2 3 
13 4.89 10 4.90 0 1 1  6 1.851 3 1.853 3 2 0 
12 4.80 9 4.81 1 1 0  19 1.814 19 1.816 2 -2 -3 
12 4.30 10 4.31 1 -1 -1    2 1.794 1 3 2 
8 4.18 3 4.18 1 0 1    5 1.789 0 4 0 
  5 3.61 1 1 1  25 1.780 22 1.780 2 3 1 

20 3.574 16 3.577 0 2 0  11 1.727 10 1.728 0 4 1 
64 3.361 58 3.363 0 0 2    3 1.681 0 0 4 
6 3.249 5 3.249 2 0 0  9 1.673 8 1.673 2 0 -4 

100 3.156 100 3.158 0 2 1    7 1.637 0 1 4 
22 3.042 18 3.043 0 1 2  17 1.633 5 1.633 0 3 3 
  26 2.968 2 -1 -1    2 1.633 4 -1 -1 

77 2.956 69 2.958 2 1 0    2 1.631 4 0 -2 
24 2.693 22 2.695 2 0 -2    5 1.624 4 0 0 
19 2.519 18 2.524 2 -1 -2  8 1.619 3 1.618 2 1 3 
19 2.511 12 2.506 2 1 1  8 1.587 6 1.590 4 -1 -2 
8 2.446 5 2.450 0 2 2    2 1.584 4 1 0 
6 2.407 6 2.410 2 -2 -1  12 1.579 5 1.579 2 -3 -3 
5 2.301 3 2.304 1 0 -3    3 1.579 0 4 2 
16 2.233 8 2.239 1 3 0  7 1.517 5 1.519 4 -2 -1 
  8 2.230 3 0 -1    2 1.494 3 2 2 

12 2.189 8 2.193 1 -1 -3  6 1.491 2 1.491 2 -4 -2 
11 2.163 6 2.166 1 2 2  4 1.473 2 1.474 4 -1 -3 
8 2.138 3 2.139 0 1 3  6 1.397 3 1.398 0 4 3 
  2 2.021 2 -1 -3  10 1.379 8 1.380 4 2 1 

33 2.004 31 2.006 2 1 2  8 1.374 6 1.372 4 -3 -1 
9 1.941 4 1.942 1 -3 -2  15 1.362 3 1.364 2 -4 -3 
30 1.923 28 1.925 2 -3 -1         

 809 

810 



 

Table 6. Crystal data, collection and structure refinement details for gasparite-(La) from the 811 

Wanni glacier 812 

Crystal Data 
Chemical formula (La0.60 Ce0.40) ((As0.84 P0.16) O4) 

Mr 271.39 
Crystal system, space group Monoclinic, P21/n 

a, b, c (Å) 6.7155 (4),  
7.1668 (4), 6.9576 (4) 

β (°) 104.414 (1) 
V (Å3) 324.32 (3) 

Z 4 
Dx (g/cm3) 5.558 

Crystal size (mm) 0.04 × 0.04 × 0.03 
Data collection 

Diffractometer Bruker APEX-II CCD 
Radiation type MoKα (0.71073 Å) 

μ (mm-1) 21.95 
Absorption correction Multi-scan 

No. of measured, independent 
and 

 observed [I > 2s(I)] reflections 
3839, 944, 869 

2Θ range for data collection (°) 7.55 to 60.00 
Index ranges -9 ≤ h ≤ 9, -9 ≤ k ≤ 10, -9 ≤ l ≤ 9 

Refinement 
Rint, Rσ 0.0207, 0.0175 

R1[F2 > 2σ(F2)], wR2(F2), S 0.014,  0.029,  1.12 
No. of reflections 944 
No. of parameters 57 

Δρmax, Δρmin (e Å-3) 0.76, -0.55 
 813 

Table 7. Fractional atomic coordinates and isotropic displacement parameters (Uiso, Å2) for 814 

gasparite-(La) from the Wanni glacier 815 

Site x y z Uiso 
Occupancy 

(<1) 
M (4e) 0.40018 (2) 0.34494 (2) 0.21899 (2) 0.00827 (6) (La0.6 Ce0.4) * 
X (4e) 0.38653 (4) 0.16300 (4) 0.69644 (4) 0.00626 (11) (As0.84 P0.16) 

O1 (4e) 0.2803 (3) 0.2142 (3) 0.8797 (3) 0.0131 (4)  
O2 (4e) 0.5664 (3) -0.0012 (3) 0.7481 (3) 0.0133 (4)  
O3 (4e) 0.5031 (3) 0.3390 (3) 0.6113 (3) 0.0122 (4)  
O4 (4e) 0.1793 (3) 0.1075 (3) 0.5181 (3) 0.0130 (4)  

Note:* Occupancy of M site was fixed according to electron microprobe data. 816 
817 



 

Table 8. Anisotropic displacement parameters (Å2) for gasparite-(La) from the Wanni glacier 818 

Site U11 U22 U33 U12 U13 U23 
M 0.00902 (8) 0.00690 (9) 0.00836 (8) 0.00092 (6) 0.00117 (5) 0.00025 (6) 
X 0.00599 (16) 0.00562 (17) 0.00700 (16) -0.00001 (11) 0.00131 (11) 0.00013 (11) 

O1 0.0119 (10) 0.0165 (11) 0.0105 (9) -0.0006 (8) 0.0024 (8) -0.0027 (8) 
O2 0.0108 (10) 0.0086 (10) 0.0199 (10) -0.0009 (8) 0.0029 (8) -0.0012 (8) 
O3 0.0162 (10) 0.0097 (10) 0.0117 (9) -0.0033 (8) 0.0054 (8) 0.0009 (8) 
O4 0.0119 (10) 0.0131 (11) 0.0120 (9) 0.0002 (8) -0.0011 (8) -0.0048 (8) 

 819 

Table 9. Selected bond lengths (Å) and distortion of M-polyhedra for gasparite-(La) 820 

from the Wanni glacier and structurally related M(XO4) compounds (M=La, Ce; X=As, P, V). 821 

Bond 
Length 

Gasparite- 
(La) 

Gasparite- 
(Ce) La(AsO4) Ce(AsO4) La(VO4) La(PO4) 

M—O1iii 2.554 (2) 2.486(5) 2.571(3) 2.939(8) 2.521(4) 2.479(3) 
M —O1iv 2.481 (2) 2.527(5) 2.489(3) 2.636(9) 2.497(3) 2.554(3) 
M —O2v 2.479 (2) 2.902(5) 2.498(4) 2.460(7) 2.656(3) 2.783(3) 
M —O2ii 2.559 (2) 2.544(4) 2.560(4) 2.619(8) 2.568(3) 2.589(3) 
M —O3ii 2.901 (2) 2.632(5) 2.655(3) 2.472(8) 2.528(4) 2.615(3) 
M —O3vi 2.562 (2) 2.620(6) 2.577(3) 2.551(7) 2.677(4) 2.503(3) 
M —O3 2.6440 (19) 2.457(5) 2.912(4) 2.562(7) 2.887(4) 2.672(3) 

M —O4iii 2.624 (2) 2.488(5) 2.644(4) 2.476(7) 2.533(4) 2.466(3) 
M —O4vii 2.472 (2) 2.555(4) 2.486(3) 2.543(7) 2.502(4) 2.548(3) 

(M-O) 2.586 2.579 2.599 2.584 2.597 2.579 
M 0.035 0.036 0.035 0.038 0.037 0.030 

X—O1 1.650 (2) 1.647(5) 1.670(4) 1.682(8) 1.724(4) 1.523(3) 
X—O2 1.660 (2) 1.664(5) 1.680(4) 1.699(7) 1.720(4) 1.553(3) 
X—O3 1.669 (2) 1.659(5) 1.695(4) 1.692(7) 1.699(4) 1.541(3) 
X—O4 1.6656 (19) 1.615(5) 1.691(3) 1.686(8) 1.693(4) 1.537(3) 
(X-O) 1.661 1.646 1.684 1.690 1.709 1.538 

Reference Our data Kolitsch 
et al. 2004 

Schmidt 
et al. 2005 

Brahim  
et al. 2002 

Rice and 
Robinson 

1976 

Ni  
et al. 1995 
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Table 10. Parameters of Electron Backscatter Diffraction of gasparite-(La) 825 

from the Ushkatyn-III deposit 826 

Electron microscope model Hitachi S-3400N 
EBSD detector Oxford HKL Nordlys Nano 

Acceleration voltage, kV 30 
Beam current, nA 0.3 

Incidence angle, degrees 70 
Sample Tilt 70 

Exposure time, seconds per frame 5 
Averaging, frames 20 

ICSD number of reference 
structure 155917 (Schmidt et al. 2005) 

Number of indexed bands 12 (max) 
Mean angular deviation (MAD) 0.15 

 827 
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Table 1. Chemical composition of gasparite-(La) 

Constituent 
Ushkatyn-III deposit Wanni glacier 

Wt% Range Wt% Range 
Fe2O3 0.05 0.00-0.16 0.00 0.00 
MnO 1.30 0.91-1.96 0.00 0.00 
CaO 1.33 0.97-1.54 0.34 0.24-0.48 
ThO2 0.00 0.00 0.58 0.37-0.72 
Y2O3 0.01 0.00-0.05 0.01 0.00-0.03 
La2O3 40.21 37.83-41.17 35.59 34.57-36.74 
Ce2O3 10.69 9.76-11.61 22.55 21.26-23.67 
Pr2O3 1.46 0.00-1.99 0.29 0.00-0.88 
Nd2O3 4.24 3.53-4.69 1.04 0.50-1.30 
Sm2O3 0.09 0.00-0.33 0.07 0.00-0.35 
V2O5 9.77 8.58-11.21 0.00 0.00 
P2O5 0.64 0.22-0.99 4.29 4.18-4.45 

As2O5 30.32 29.46-31.41 34.48 33.27-35.22 
Total 100.11  100.13  
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Table 2. Comparative crystallographic data for monazite group minerals 1 

Mineral Gasparite-
(La) 

Gasparite-
(Ce) Rooseveltite Monazite-

(La) 
Monazite-

(Ce) 
Monazite-

(Nd) 
Monazite-

(Sm) Cheralite 

Chemical formula La(AsO4) Ce(AsO4) Bi(AsO4) La(PO4) Ce(PO4) Nd(PO4) Sm(PO4) CaTh(PO4)2 
Crystal system Monoclinic 
Space group P21/n 

a (Å) 6.9576(4) 6.929(3) 6.879(1) 6.8313(10) 6.7880(10) 6.7352(10) 6.6818(12) 6.7085(8) 
b (Å) 7.1668(4) 7.129(3) 7.159(1) 7.0705(9) 7.0163(9) 6.9500(9) 6.8877(9) 6.4152(6) 
c (Å) 6.7155(4) 6.697(3) 6.732(1) 6.5034(9) 6.4650(7) 6.4049(8) 6.3653(9) 6.4152(6) 
β (°) 104.414(1) 104.46(3) 104.84(1) 103.27(1) 103.43(1) 103.68(1) 103.86(1) 103.71(1) 

Z 4 

Reference Our data Kolitsch  
et al. 2004 

Bedlivy and 
Mereiter 

1982 
Ni et al. 1995 Raison  

et al. 2008 

Note: for comparison u.c.p parameters given as a>c 2 
 3 
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Table 3. Reflectance of gasparite-(La) from the Ushkatyn-III deposit measured in air 4 
λ (nm) R1 R2 λ (nm) R1 R2 

400 11.19 9.05 560 10.92 8.90 
420 12.04 9.82 580 10.88 8.84 
440 12.35 10.15 589 10.87 8.83 
460 12.35 10.13 600 10.85 8.81 
470 12.16 9.95 620 10.85 8.77 
480 11.97 9.77 640 10.89 8.74 
500 11.45 9.44 650 10.92 8.77 
520 11.15 9.17 660 10.94 8.79 
540 11.00 9.00 680 11.09 8.86 
546 10.98 8.98 700 11.23 9.08 

 5 
Table 4. Raman spectral signatures of gasparite-(La) 6 

Raman 
shift (cm-1) 

Relative  
Intetsity (a.u.) Assignment Raman  

shift, (cm-1) 

Relative  
Intetsity (a.u.) AssignmentUshkatyn- 

III 
Wanni 
glacier 

Ushkatyn- 
III 

Wanni 
glacier 

92 0.6  

Lattice 
vibrations 

364 3  v4(AsO4) 
94  3 367  7 v4(AsO4) 
104 0.8  379 73  v2(AsO4) 
107  6 395  100 v2(AsO4) 
125  6 421  28 v4(AsO4) 
126 0.3  422 9  v4(AsO4) 
138 2  452 10  v4(AsO4) 
139  4 462  16 v4(AsO4) 
153 3  812  4 v3(AsO4) 
155  5 822 21  v3(AsO4) 
190 2 7 826  9 v3(AsO4) 
203 29 4 843 8  v3(AsO4) 
264 0.8  848  74 v3(AsO4) 
267  1 860 100  v1(AsO4) 
320 8  864  86 v1(AsO4) 
334 4      
337  12     

 7 
8 



Oleg S. Vereshchagin 

4 
 

 9 
Table 5. Powder X-ray diffraction data for gasparite-(La) from Wanni glacier 10 

 11 
Iobs dobs Icalc dcalc h k l  Iobs dobs Icalc dcalc h k l 

9 5.39 5 5.39 1 0 -1  19 1.898 13 1.900 0 2 3 

13 4.89 10 4.90 0 1 1  6 1.851 3 1.853 3 2 0 

12 4.80 9 4.81 1 1 0  19 1.814 19 1.816 2 -2 -3 
12 4.30 10 4.31 1 -1 -1    2 1.794 1 3 2 

8 4.18 3 4.18 1 0 1    5 1.789 0 4 0 

  5 3.61 1 1 1  25 1.780 22 1.780 2 3 1 

20 3.574 16 3.577 0 2 0  11 1.727 10 1.728 0 4 1 

64 3.361 58 3.363 0 0 2    3 1.681 0 0 4 

6 3.249 5 3.249 2 0 0  9 1.673 8 1.673 2 0 -4 

100 3.156 100 3.158 0 2 1    7 1.637 0 1 4 

22 3.042 18 3.043 0 1 2  17 1.633 5 1.633 0 3 3 

  26 2.968 2 -1 -1    2 1.633 4 -1 -1 

77 2.956 69 2.958 2 1 0    2 1.631 4 0 -2 
24 2.693 22 2.695 2 0 -2    5 1.624 4 0 0 

19 2.519 18 2.524 2 -1 -2  8 1.619 3 1.618 2 1 3 

19 2.511 12 2.506 2 1 1  8 1.587 6 1.590 4 -1 -2 

8 2.446 5 2.450 0 2 2    2 1.584 4 1 0 

6 2.407 6 2.410 2 -2 -1  12 1.579 5 1.579 2 -3 -3 

5 2.301 3 2.304 1 0 -3    3 1.579 0 4 2 

16 2.233 8 2.239 1 3 0  7 1.517 5 1.519 4 -2 -1 

  8 2.230 3 0 -1    2 1.494 3 2 2 

12 2.189 8 2.193 1 -1 -3  6 1.491 2 1.491 2 -4 -2 

11 2.163 6 2.166 1 2 2  4 1.473 2 1.474 4 -1 -3 
8 2.138 3 2.139 0 1 3  6 1.397 3 1.398 0 4 3 

  2 2.021 2 -1 -3  10 1.379 8 1.380 4 2 1 

33 2.004 31 2.006 2 1 2  8 1.374 6 1.372 4 -3 -1 

9 1.941 4 1.942 1 -3 -2  15 1.362 3 1.364 2 -4 -3 

30 1.923 28 1.925 2 -3 -1         
12 
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Table 6. Crystal data, collection and structure refinement details  13 
for gasparite-(La) from Wanni glacier 14 

Crystal Data 
Chemical formula (La0.60 Ce0.40) (As0.84 P0.16) O4 

Mr 271.39 
Crystal system, space group Monoclinic, P21/n 

a, b, c (Å) 6.7155 (4),  
7.1668 (4), 6.9576 (4) 

β (°) 104.414 (1) 
V (Å3) 324.32 (3) 

Z 4 
Dx (g/cm3) 5.558 

Crystal size (mm) 0.04 × 0.04 × 0.03 
Data collection 

Diffractometer Bruker APEX-II CCD 
Radiation type MoKα (0.71073 Å) 

μ (mm-1) 21.95 
Absorption correction Multi-scan 

No. of measured, independent 
and 

 observed [I > 2s(I)] reflections 
3839, 944, 869 

2Θ range for data collection (°) 7.55 to 60.00 
Index ranges -9 ≤ h ≤ 9, -9 ≤ k ≤ 10, -9 ≤ l ≤ 9 

Refinement 
Rint, Rσ 0.0207, 0.0175 

R1[F2 > 2σ(F2)], wR2(F2), S 0.014,  0.029,  1.12 
No. of reflections 944 
No. of parameters 57 

Δρmax, Δρmin (e Å-3) 0.76, -0.55 
 15 

Table 7. Fractional atomic coordinates and isotropic displacement parameters (Uiso, Å2)  16 
for gasparite-(La) from Wanni glacier 17 

Site x y z Uiso Occupancy 
(<1) 

M (4e) 0.40018 (2) 0.34494 (2) 0.21899 (2) 0.00827 (6) (La0.6 Ce0.4) * 
X (4e) 0.38653 (4) 0.16300 (4) 0.69644 (4) 0.00626 (11) (As0.84 P0.16) 

O1 (4e) 0.2803 (3) 0.2142 (3) 0.8797 (3) 0.0131 (4)  
O2 (4e) 0.5664 (3) -0.0012 (3) 0.7481 (3) 0.0133 (4)  
O3 (4e) 0.5031 (3) 0.3390 (3) 0.6113 (3) 0.0122 (4)  
O4 (4e) 0.1793 (3) 0.1075 (3) 0.5181 (3) 0.0130 (4)  

Note:* Occupancy of M site was fixed according to electron microprobe data. 18 
 19 

20 
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Table 8. Anisotropic displacement parameters (Å2) for gasparite-(La) from Wanni glacier 21 
Site U11 U22 U33 U12 U13 U23 
M 0.00902 (8) 0.00690 (9) 0.00836 (8) 0.00092 (6) 0.00117 (5) 0.00025 (6)
X 0.00599 (16) 0.00562 (17) 0.00700 (16) -0.00001 (11) 0.00131 (11) 0.00013 (11)

O1 0.0119 (10) 0.0165 (11) 0.0105 (9) -0.0006 (8) 0.0024 (8) -0.0027 (8) 
O2 0.0108 (10) 0.0086 (10) 0.0199 (10) -0.0009 (8) 0.0029 (8) -0.0012 (8) 
O3 0.0162 (10) 0.0097 (10) 0.0117 (9) -0.0033 (8) 0.0054 (8) 0.0009 (8) 
O4 0.0119 (10) 0.0131 (11) 0.0120 (9) 0.0002 (8) -0.0011 (8) -0.0048 (8) 

 22 
Table 9. Selected bond lengths (Å) and distortion of M-polyhedra  23 

for gasparite-(La) from Wanni glacier 24 
and structurally related MXO4 compounds (M=La, Ce; X=As, P, V). 25 

Bond 
Length 

Gasparite- 
(La) 

Gasparite- 
(Ce) La(AsO4) Ce(AsO4) La(VO4) La(PO4) 

M—O1iii 2.554 (2) 2.486(5) 2.571(3) 2.939(8) 2.521(4) 2.479(3) 
M —O1iv 2.481 (2) 2.527(5) 2.489(3) 2.636(9) 2.497(3) 2.554(3) 
M —O2v 2.479 (2) 2.902(5) 2.498(4) 2.460(7) 2.656(3) 2.783(3) 
M —O2ii 2.559 (2) 2.544(4) 2.560(4) 2.619(8) 2.568(3) 2.589(3) 
M —O3ii 2.901 (2) 2.632(5) 2.655(3) 2.472(8) 2.528(4) 2.615(3) 
M —O3vi 2.562 (2) 2.620(6) 2.577(3) 2.551(7) 2.677(4) 2.503(3) 
M —O3 2.6440 (19) 2.457(5) 2.912(4) 2.562(7) 2.887(4) 2.672(3) 

M —O4iii 2.624 (2) 2.488(5) 2.644(4) 2.476(7) 2.533(4) 2.466(3) 
M —O4vii 2.472 (2) 2.555(4) 2.486(3) 2.543(7) 2.502(4) 2.548(3) 

(M-O) 2.586 2.579 2.599 2.584 2.597 2.579 
∆M 0.035 0.036 0.035 0.038 0.037 0.030 

X—O1 1.650 (2) 1.647(5) 1.670(4) 1.682(8) 1.724(4) 1.523(3) 
X—O2 1.660 (2) 1.664(5) 1.680(4) 1.699(7) 1.720(4) 1.553(3) 
X—O3 1.669 (2) 1.659(5) 1.695(4) 1.692(7) 1.699(4) 1.541(3) 
X—O4 1.6656 (19) 1.615(5) 1.691(3) 1.686(8) 1.693(4) 1.537(3) 
(X-O) 1.661 1.646 1.684 1.690 1.709 1.538 

Reference Our data Kolitsch 
et al. 2004 

Schmidt 
et al. 2005 

Brahim  
et al. 2002

Rice and 
Robinson, 

1976 

Ni  
et al. 1995

 26 
Table 10. Parameters of Electron Backscatter Diffraction of gasparite-(La)  27 

from the Ushkatyn-III deposit 28 
Electron microscope model Hitachi S-3400N 

EBSD detector Oxford HKL Nordlys Nano 
Acceleration voltage, kV 20 

Beam current, nA 1 
Incidence angle, degrees 70 

Sample Tilt 0 
Exposure time, seconds per frame 0.5 

Averaging, frames 20 
ICSD number of reference 

structure 155917 (Schmidt et al. 2005) 

Number of indexed bands 12 (max) 
Mean angular deviation (MAD) 0.1053 

 29 
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