1 Revision 1

2	The stability of Fe_5O_6 and Fe_4O_5 at high pressure and temperature
3 4	KOUTARO HIKOSAKA ¹ , RYOSUKE SINMYO ¹ , KEI HIROSE ^{1,2} , TAKAYUKI ISHII ³ , AND YASUO OHISHI ⁴
5	¹ Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1
6	Hongo, Bunkyo, Tokyo 113-0033, Japan
7	² Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550,
8	Japan
9	³ Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany
10	⁴ Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo, Hyogo 679-5198, Japan
11	ABSTRACT
12	The oxygen fugacity in the interior of the Earth is largely controlled by iron-bearing minerals.
13	Recent studies have reported a variety of iron oxides with chemical compositions between FeO
14	and Fe_3O_4 above ~10 GPa. However, the stabilities of these high-pressure iron oxides remain
15	mostly uninvestigated. In this study, we performed in-situ X-ray diffraction (XRD)
16	measurements in a laser-heated diamond-anvil cell (DAC) to determine the phase relations in
17	both Fe_5O_6 and Fe_4O_5 bulk compositions to 61 GPa and to 2720 K. The results show that Fe_5O_6 is
18	a high-temperature phase stable above 1600 K and \sim 10 GPa, while FeO + Fe ₄ O ₅ are formed at
19	relatively low temperatures. We observed the decomposition of Fe_5O_6 into $2FeO + Fe_3O_4$ above
20	38 GPa and the decomposition of Fe_4O_5 into $FeO + h-Fe_3O_4$ at a similar pressure range. The

21	coexistence of FeO and Fe ₃ O ₄ indicates that none of the recently discovered compounds between
22	FeO and Fe ₃ O ₄ (i.e., Fe ₅ O ₆ , Fe ₉ O ₁₁ , Fe ₄ O ₅ , and Fe ₇ O ₉) are formed beyond ~40 GPa at 1800 K,
23	corresponding to conditions in the shallow lower mantle. Additionally, as some superdeep
24	diamonds have genetic links with these high-pressure iron oxides, our results give constraints on
25	pressure and temperature conditions of their formation.
26	Keywords: Iron oxide, diamond-anvil cell, high pressure, Fe ₄ O ₅ , Fe ₅ O ₆
27	INTRODUCTION
28	Since iron is the most abundant transition metal element, oxygen fugacity inside the Earth is
29	controlled by iron-bearing phases. According to recent analyses of natural samples, oxygen
30	
00	fugacity varies widely in the mantle (Kaminsky et al. 2015; Smith et al. 2016). Oxidizing
31	fugacity varies widely in the mantle (Kaminsky et al. 2015; Smith et al. 2016). Oxidizing materials include a fair amount of Fe^{3+} , which may stabilize iron oxides as discrete minerals.

- intermediate in composition between FeO and Fe_3O_4 , including Fe_5O_6 (Lavina and Meng 2015),
- 34 Fe₉O₁₁ (Ishii et al. 2018), Fe₄O₅ (Lavina et al. 2011), and Fe₇O₉ (Sinmyo et al. 2016). However,
- 35 the pressure-temperature (*P*-*T*) stability fields of these iron oxides are poorly known.
- 36 In order to understand the speciation of volatile elements in the mantle, mineral redox buffer
- 37 relations have been revised considering these new iron oxides; for example, Myhill et al. (2016)

38	showed that $FeO-Fe_5O_6$ line crosses the enstatite + magnesite = olivine + diamond (EMOD)
39	buffer line, suggesting Fe_5O_6 is stable at conditions where diamonds are formed. Therefore, a
40	better understanding of the thermodynamic stability of high-pressure, high-temperature iron
41	oxides might enable a more refined understanding of the redox of the Earth's lower mantle and
42	the origin of super-deep diamonds.
43	Here we examined the phase relations in Fe_5O_6 and Fe_4O_5 bulk compositions on the basis of
44	high <i>P-T</i> experiments up to 61 GPa and to 2720 K. Our results demonstrate that the stabilities of
45	Fe_5O_6 and Fe_4O_5 are limited to 35–40 GPa at 1800 K and both are decomposed into FeO wüstite
46	+ h-Fe ₃ O ₄ at higher pressures. Furthermore, our findings indicate that no intermediate compounds
47	between FeO and Fe ₃ O ₄ , including more recently discovered Fe ₉ O ₁₁ and Fe ₇ O ₉ , are formed above
48	~40 GPa.

49

METHODS

We used Fe₅O₆ and Fe₄O₅ as starting materials, both of which were synthesized from mixtures
of reagent grade Fe metal and Fe₂O₃ hematite powders at 10 GPa/1700 K and 15 GPa/1700 K,
respectively, in a Kawai-type multi-anvil press at the Bayerisches Geoinstitut (Ishii et al. 2016).
The Raman spectra of the Fe₅O₆ sample were collected at 1 bar and at high pressures to 27 GPa
in a diamond-anvil cell (DAC) without any pressure medium by using a micro-confocal laser

55	Raman system (JASCO NRS-3100) (Fig. S1 in the supplemental information).
56	Laser-heated DAC experiments were performed using diamond anvils with 300 μ m culets.
57	The Fe ₅ O ₆ and Fe ₄ O ₅ samples were pressed into ~10 μm thick plates and loaded into 100 μm
58	sample chambers at the centers of preindented rhenium gaskets. NaCl or KCl, dried in an oven
59	until just prior to the loading, was used as both a pressure medium and a pressure standard. After
60	compression, the sample was heated from both sides using 100 W single-mode Yb fiber lasers
61	with beam-shaping optics, which converts a Gaussian beam to one with a flat energy distribution.
62	Using this flat-top laser heating system, the resultant laser-heated spots had reduced radial
63	temperature gradients and were approximately 30 μ m in diameter. We measured temperature
64	using spectroradiometry (Ozawa et al. 2016). Sample pressures were calculated from the unit-cell
65	volume of NaCl-B1 (Brown 1999), NaCl-B2 (Ueda et al. 2008), or KCl (Dewaele et al. 2012) at
66	high <i>P-T</i> obtained by X-ray diffraction (XRD) measurements. The temperatures of NaCl and KCl
67	were estimated from measured sample temperature (T_{meas}) (Pigott et al. 2015) as;

68
$$T_{NaCl,KCl} = \frac{3T_{meas} + 300}{4} \pm \frac{T_{meas} - 300}{4}$$
(1)

In-situ XRD measurements were conducted at the BL10XU, SPring-8. An incident X-ray
beam with a wavelength of 0.4127–0.4158 Å was focused using compound refractive lenses and
collimated so that the full width at half maximum was 6 µm. XRD patterns were collected on a

- flat panel detector (*Perkin Elmer*) with an exposure time of 1 sec during heating and 20–30 sec at
 300 K. We employed the IPAnalyzer software package to integrate the 2D diffraction patterns
 into 1D patterns and the PDIndexer to analyze the pattern.
- 75

RESULTS

76 Stability fields of Fe₅O₆ and Fe₄O₅

A total of nine separate high P-T runs were used to determine the phase relations in the Fe₅O₆

bulk composition (Fig. 1a). Since the Fe_5O_6 starting material consisted of a small number of

79 grains and was under large deviatoric stress upon compression at room temperature, it exhibited

80 broad and limited XRD peaks at high pressure before heating. Figures 2a and 2b show the

81 changes in integrated XRD patterns for run #8 (see Fig. S2 in the supplemental information for

82 the raw 2D XRD images). All peaks from the sample were indexed to Fe_5O_6 before heating at 36

83 GPa. Upon heating to 1930 K, the peaks from Fe₅O₆ mostly disappeared, and new FeO wüstite

and Fe_4O_5 peaks were observed. With further heating to 2350 K at 34 GPa, the peaks of Fe_5O_6

85 emerged once again in < 1 min. This sample was compressed further to 59 GPa. At this point, the

area outside the laser-heated spot had decomposed into $FeO + Fe_4O_5$ due to the temperature

- gradient. Soon after we started heating a new spot consisting of $FeO + Fe_4O_5$, the XRD pattern
- drastically changed, showing the presence of FeO wüstite + h-Fe₃O₄. While the crystal structure

89	of h-Fe ₃ O ₄ remains controversial, we assume its space group to be <i>Cmcm</i> based on Ricolleau and
90	Fei (2016). On the basis of these experiments using Fe_5O_6 as the starting material, we found that
91	the stability of Fe_5O_6 is limited to temperatures above 1500 K and a pressure range of 10 to 36
92	GPa (Fig. 1a). Furthermore, the boundary between Fe_5O_6 and $FeO + Fe_4O_5$ has a small positive
93	Clapeyron slope. In the other runs, we heated a previously unheated portion of a sample at each
94	heating cycle. The stabilities of Fe_5O_6 , $FeO + Fe_4O_5$, and $FeO + h-Fe_3O_4$ in the Fe_5O_6 bulk
95	composition were determined on the basis of the appearance of new diffraction peaks and their
96	growth (Fig. 1a). The peaks from preexisting, unstable phase(s) decreased in intensity but did not
97	fully disappear due to sluggish kinetics of phase transitions between these phases.
98	We have also conducted an additional experiment using Fe_4O_5 as a starting material (run #12).
99	Broad XRD peaks from Fe_4O_5 were present at 39 GPa and 300 K. They became sharp during
100	heating up to 1620 K. With further heating to 1860 K and above, we observed the dissociation of
101	Fe_4O_5 into FeO wüstite + h-Fe ₃ O ₄ (Fig. 2c). The <i>P</i> - <i>T</i> stability of Fe ₄ O ₅ , in experiments using
102	starting compositions of bulk Fe_4O_5 and Fe_5O_6 (through the decomposition of Fe_5O_6 at high
103	temperatures), are shown in Figure 1b. Fe_4O_5 is stable as a single phase up to 38 GPa at 1950 K
104	and ~60 GPa at 1200 K. The boundary between Fe_4O_5 and $FeO + h-Fe_3O_4$ exhibits a negative
105	Clapeyron slope although the slope is not tightly constrained from the present experiments.

106 Compression curve of Fe₄O₅

107	We obtained the volume of Fe_4O_5 at 300 K in a wide pressure range from 8 to 61 GPa (Table
108	S1 and Fig. S3 in the supplemental information). A large volume reduction (~3%) was observed
109	at 50 GPa (Fig. 3). Since the volumes of Fe4O5 above 50 GPa are too small to be fitted by a single
110	compression curve together with the lower pressure data, we fit a third-order Birch-Murnaghan
111	equation of state (EoS) to these pressure-volume data up to 47 GPa, which gives bulk modulus at
112	1 bar of $K_0 = 201(7)$ GPa and its pressure derivative, $K' = 3.1(5)$ using $V_0 = 357.1$ Å ³ at 1 bar
113	from Lavina et al. (2011). When we instead fit a second-order BM EoS, we obtained $K_0 = 188(2)$
114	GPa, consistent with the $K_0 = 185.7$ GPa reported by Lavina et al. (2011) based on their data up
115	to 28 GPa.

116

DISCUSSION

117 While only three iron oxides, FeO wüstite, Fe_3O_4 magnetite, and Fe_2O_3 hematite, are found at 118 1 bar, recent high-pressure experiments report a rich variety of intermediate compounds between 119 FeO and Fe_3O_4 above ~10 GPa. They include not only Fe_4O_5 and Fe_5O_6 , which were directly 120 examined in this study, but also Fe_9O_{11} (Ishii et al. 2018) and Fe_7O_9 (Sinmyo et al. 2016). In the 121 Earth's interior, these iron oxides may be formed in Fe^{3+} -bearing oxidizing materials such as 122 subducted banded iron formations (BIFs) and play important roles in oxidation/reduction

123	reactions in the presence of fluids. This study demonstrates that FeO coexists with Fe_3O_4 above
124	38 GPa and 1950 K, which is the invariant triple point where FeO, Fe ₅ O ₆ , Fe ₄ O ₅ , and h-Fe ₃ O ₄
125	coexist in the two-component system (Fig. 1). These findings indicate that any intermediate
126	compounds between FeO and Fe_3O_4 cannot form beyond that point. Therefore, the roles of Fe_5O_6 ,
127	Fe ₉ O ₁₁ , Fe ₄ O ₅ , and Fe ₇ O ₉ in oxidation/reduction reactions are limited to <i>P</i> - <i>T</i> conditions of the
128	deep upper mantle to the shallow lower mantle.
129	Our experiments show that Fe ₄ O ₅ undergoes a distinct volume contraction at around 50 GPa
130	(Fig. 3). This mirrors the significant volume reduction that was previously reported to occur in
131	h-Fe ₃ O ₄ at ~50 GPa (Ricolleau and Fei 2016), which is caused by the high-spin to low-spin
132	transition of octahedral Fe^{3+} (Greenberg et al. 2017). The structural similarity between Fe_4O_5 and
133	h-Fe ₃ O ₄ suggests that the observed volume change in Fe ₄ O ₅ might also be attributed to the spin
134	transition of Fe ³⁺ .
135	IMPLICATIONS
136	The origins of superdeep diamonds may be related to carbonaceous melts, C-H-O fluids, or
137	Fe-rich metallic melts in a deep mantle (Shirey 2013; Smith et al. 2016). Magnesiowüstite
138	(Mg,Fe)O found as inclusions in such superdeep diamonds is associated with Fe ³⁺ -rich phases as

139 exsolution lamella or clusters (Kaminsky et al. 2015). Their bulk composition suggests that these

140	inclusions (magnesiowüstite + Fe ³⁺ -rich phases) are relics of high-pressure iron oxides such as
141	Fe_4O_5 and Fe_5O_6 . Myhill et al. (2016) reported that the EMOD buffer line is in the Fe_5O_6 stability
142	field and thus Fe_5O_6 can coexist with diamond, while Fe_4O_5 can co-occur only with carbonate.
143	Accordingly, such diamond inclusions (magnesiowüstite + Fe ³⁺ -rich phases) could be relics of the
144	decomposition of Fe_5O_6 which, as shown by this study, has a stability field limited to high <i>P</i> - <i>T</i>
145	conditions (> 10 GPa and > 1500 K) (Fig. 1a). This stability field is close to the conditions along
146	normal mantle geotherm and the solidus of carbonated mantle rocks (Dasgupta 2013). The host
147	diamonds may therefore have a genetic link with CO ₂ -rich partial melts in the deep upper mantle
148	and below.
149	ACKNOWLEDGMENTS
150	Synchrotron XRD data were collected at BL10XU, SPring-8 (proposal no. 2017B0072,
151	2018A0072, and 2018B0072). We thank Y. Kuwayama for his help in the measurements.
152	Comments provided from three anonymous reviewers helped improve the manuscript.
153	REFERENCES

Brown, J.M. (1999) The NaCl pressure standard. Journal of Applied Physics, 86, 5801-5808.

154

- 155 Dasgupta, R. (2013) Ingassing, storage, and outgassing of terrestrial carbon through geologic
- time. Reviews in Mineralogy and Geochemistry, 75, 183–229.
- 157 Dewaele, A., Belonoshko, A.B., Garbarino, G., Occelli, F., Bouvier, P., Hanfland, M., and
- 158 Mezouar, M. (2012) High-pressure–high-temperature equation of state of KCl and KBr.
- 159 Physical Review B, 85, 214105.
- 160 Fischer, R.A., and Campbell, A.J. (2010) High-pressure melting of wüstite. American
- 161 Mineralogist, 95, 1473–1477.
- 162 Greenberg, E., Xu, W.M., Nikolaevsky, M., Bykova, E., Garbarino, G., Glazyrin, K., Merkel,
- 163 D.G., Dubrovinsky, L., Pasternak, M.P., and Rozenberg, G.K. (2017) High-pressure
- 164 magnetic, electronic, and structural properties of MFe_2O_4 ($M = Mg_2Zn_2Fe$) ferric spinels.
- 165 Physical Review B, 95, 195150.
- 166 Ishii, T., Shi, L., Huang, R., Tsujino, N., Druzhbin, D., Myhill, R., Li, Y., Wang, L., Yamamoto,
- 167 T., Miyajima, N., and others (2016) Generation of pressures over 40 GPa using Kawai-type
- 168 multi-anvil press with tungsten carbide anvils. Review of Scientific Instruments, 87,
- 169 024501.

170	Ishii, T., Uenver-Thiele, L., Woodland, A.B., Alig, E., and Ballaran, T.B. (2018) Synthesis and
171	crystal structure of Mg-bearing Fe ₉ O ₁₁ : New insight in the complexity of Fe-Mg oxides at
172	conditions of the deep upper mantle. American Mineralogist, 103, 1873–1876.
173	Kaminsky, F.V., Ryabchikov, I.D., McCammon, C.A., Longo, M., Abakumov, A.M., Turner, S.,
174	and Heidari, H. (2015) Oxidation potential in the Earth's lower mantle as recorded by
175	ferropericlase inclusions in diamond. Earth and Planetary Science Letters, 417, 49–56.
176	Lavina, B., and Meng, Y. (2015) Unraveling the complexity of iron oxides at high pressure and
177	temperature: Synthesis of Fe ₅ O ₆ . Science Advances, 1, e1400260.
178	Lavina, B., Dera, P., Kim, E., Meng, Y., Downs, R.T., Weck, P.F., Sutton, S.R., and Zhao, Y.
179	(2011) Discovery of the recoverable high-pressure iron oxide Fe ₄ O ₅ . Proceedings of the
180	National Academy of Sciences USA, 108, 17281–17285.
181	Myhill, R., Ojwang, D.O., Ziberna, L., Frost, D.J., Ballaran, T.B., and Miyajima, N. (2016) On
182	the P–T–fO ₂ stability of Fe ₄ O ₅ , Fe ₅ O ₆ and Fe ₄ O ₅ -rich solid solutions. Contributions to
183	Mineralogy and Petrology, 171, 51.
184	Ozawa, H., Hirose, K., Yonemitsu, K., and Ohishi, Y. (2016) High-pressure melting experiments
185	on Fe–Si alloys and implications for silicon as a light element in the core. Earth and
186	Planetary Science Letters, 456, 47–54.

187	Pigott, J.S.,	Ditmer.	D.A.,	Fischer.	R.A.	Reaman.	D.M.,	Hrubiak.	R.,	Meng	Y	Davis.	R.J.	. and
		,	,		,	, ,				,	,,	,		,

- 188 Panero, W.R. (2015) High-pressure, high-temperature equations of state using
- 189 nanofabricated controlled-geometry Ni/SiO₂/Ni double hot-plate samples. Geophysical
- 190 Research Letters, 42, 10239–10247.
- 191 Ricolleau, A., and Fei, Y. (2016) Equation of state of the high-pressure Fe₃O₄ phase and a new
- structural transition at 70 GPa. American Mineralogist, 101, 719–725.
- 193 Shirey, S.B., Cartigny, P., Frost, D.J., Keshav, S., Nestola, F., Nimis, P., Pearson, D.G., Sobolev,
- 194 N. V., and Walter, M.J. (2013) Diamonds and the geology of mantle carbon. Reviews in
- 195 Mineralogy and Geochemistry, 75, 355–421.
- 196 Sinmyo, R., Bykova, E., Ovsyannikov, S.V., McCammon, C., Kupenko, I., Ismailova, L., and
- 197 Dubrovinsky, L. (2016) Discovery of Fe_7O_9 : A new iron oxide with a complex monoclinic
- 198 structure. Scientific Reports, 6, 32852.
- 199 Smith, E.M., Shirey, S.B., Nestola, F., Bullock, E.S., Wang, J., Richardson, S.H., and Wang, W.
- 200 (2016) Large gem diamonds from metallic liquid in Earth's deep mantle. Science, 354,

201 1403–1405.

202	Ueda, Y., Matsui, M., Yokoyama, A., Tange, Y., and Funakoshi, K. (2008)
203	Temperature-pressure-volume equation of state of the B2 phase of sodium chloride. Journal
204	of Applied Physics, 103, 113513.
205	Woodland, A.B., Frost, D.J., Trots, D.M., Klimm, K., and Mezouar, M. (2012) In situ
206	observation of the breakdown of magnetite (Fe ₃ O ₄) to Fe ₄ O ₅ and hematite at high pressures
207	and temperatures. American Mineralogist, 97, 1808–1811.
208	
209	
210	
211	
212	
213	
214	
215	
216	
217	
218	

219	FIGURE 1. Phase relations in (a) Fe_5O_6 and (b) Fe_4O_5 bulk compositions. In (a), blue diamonds
220	= Fe_5O_6 ; orange squares = $FeO + Fe_4O_5$; green triangles = $FeO + h-Fe_3O_4$; purple circle =
221	condition for synthesizing the Fe_5O_6 starting material. White squares and triangles are from (b).
222	In (b), yellow squares = Fe_4O_5 ; light blue triangles = $FeO + h-Fe_3O_4$; red circle = condition for
223	synthesizing the Fe_4O_5 starting material. Open symbols are the data from (a). The Fe_5O_6 +
224	h-Fe ₃ O ₄ region is supposed to exist although not observed in this study. The dark gray area is the
225	region where Woodland et al. (2012) reported the breakdown of Fe_3O_4 into $Fe_2O_3 + Fe_4O_5$. The
226	light gray area indicates the conditions at which Fe ₄ O ₅ was synthesized by Lavina et al. (2011).
227	The dashed line is based on Myhill et al. (2016). The chain curve shows the melting curve of FeO
228	(Fisher and Campbell 2010), which can be a guide for melting temperatures of Fe_5O_6 and Fe_4O_5 .
229	Error bars are smaller than symbols where they are not shown.
230	
231	FIGURE 2. Changes in XRD patterns (a , b) in run #8 and (c) in run #12, using the Fe ₅ O ₆ and
232	Fe_4O_5 starting materials, respectively. The wavelength of the incident X-ray beam was 0.4141Å
233	for the former and 0.4150 Å for the latter. The color of labels: black = Fe_5O_6 , red = Fe_4O_5 , blue =
234	h-Fe ₃ O ₄ , and green = FeO. Peak positions moved to some extent upon heating because of the
235	release of large deviatoric stress at 300 K. See text for further details.

236

237	FIGURE 3. Compression curve of Fe_4O_5 . The volume at 1 bar is from Lavina et al. (2011). Error
238	bars are smaller than symbols where they are not shown. The solid gray curve is the fit by
239	third-order Birch-Murnaghan equation of state based on data up to 47 GPa which yields $K_0 =$
240	201(7) GPa and $K' = 3.1(5)$. A ~3% volume reduction is found above 50 GPa.
241	

243

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-7097

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-7097

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-7097

